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Abstract

We prove that there is a natural plectic weight filtration on the cohomology of Hilbert modular varieties in the
spirit of Nekovář and Scholl. This is achieved with the help of Morel’s work on weight t-structures and a detailed
study of partial Frobenius. We prove in particular that the partial Frobenius extends to toroidal and minimal
compactifications.
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1. Introduction

Nekovář and Scholl recently proposed in [26] a program on plectic theory, which is about some hidden
symmetries of Shimura varieties. The theme of this article is to exploit some of these hidden symmetries
and provide evidence for their conjectures. More precisely, Nekovář and Scholl observed that when the
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2 Zhiyou Wu

group of a Shimura variety - is of the form '4B�/Q� with � totally real, the cohomology of -
has extra structures. This is most easily observed in the (Betti) intersection cohomology of (minimal
compactification of) Shimura varieties, in which case we have

��∗(-min (C),C) = �∗(2) (- (C),C) = ⊕c�
∗(g,  ∞; c∞) ⊗ c

 5
5

=

⊕
c
⊗
E |∞

�∗(gE ,  ∞,E ; cE ) ⊗ c
 5
5
,

where the first equality is the (proven) Zucker’s conjecture, c ranges over irreducible !2 automorphic
representations of the group '4B�/Q� and the last equality follows by applying the Kunneth theorem
for (g,  )-cohomology to c∞ = ⊗

E |∞
cE . Because each (g,  )-cohomology �∗(gE ,  ∞,E ; cE ) is equipped

with a Hodge structure of type (?E , @E ), we see that ��∗(-min(C),C) is a sum of refined Hodge
structures of type ⊗

E |∞
(?E , @E ); that is, plectic Hodge structures. A remarkably similar structure appears

in the etale cohomology, at least in the case of Hilbert modular varieties, which suggests that it is motivic
in nature. This motivates the question of explaining this extra structure.

Nekovář and Scholl proposed that the Shimura variety extends to a variety defined over Spec(: ?;42),
where Spec(: ?;42) is a (product of) symmetric product of Spec(:) over F1, the field with one element.
Obviously, this does not make sense because we do not have a good theory of F1. However, this heuristic
allows us to guess what extra structures we can expect on the cohomology, which sometimes can be
established directly. In particular, we expect that for noncompact Shimura varieties of type '4B�/Q�,
the Betti cohomology has a natural plectic weight filtration, which is a Z3-indexed filtration whose
graded pieces have pure plectic Hodge strutures as we observed using (g,  )-cohomology. What we
prove in this article is that this is true in the special case of Hilbert modular varieties. Before explaining
more about the results, we remark that the plectic conjectures have powerful arithmetic consequences
on special values of L-functions; see [26] for details.

Let us first recall how we detect the classical weight filtration on a smooth nonproper complex
variety - . Using Nagata embedding and resolution of singularities, we can find an open embedding
9 : - ↩→ - into a proper smooth variety with - \- union of normal crossing divisors. Then, as observed
by Deligne [8], the weight filtration is detected using the filtration on ' 9∗C induced by the standard
truncation g≤0' 9∗C, and the graded pieces of the weight filtration are detected using cohomology of
strata of - . More precisely, we have a spectral sequence induced by the filtration g≤0' 9∗C,

�
?,@

1 = H?+@ (- (C), g≥−?g≤−?' 9∗C) ⇒ � ?+@ (- (C),C), (1)

which is nothing but the (reindexed) Leray spectral sequence for 9 . The graded sheaves g≥−?g≤−?' 9∗C
are supported on the strata defined by intersections of boundary divisors, and the weight filtration is a
shift of the converging filtration of the spectral sequence.

When - is a Shimura variety of type '4B�/Q�, we can find an explicit - using toroidal compactifi-
cations. However, we cannot use them to detect the plectic weight filtration because toroidal compact-
ifications are not ‘plectic’; in particular, their strata possess no plectic structures on their cohomology.
Our strategy is to look at the minimal compactification -<8= of - instead, and what we gain is that the
strata are now again Shimura varieties of type '4B�/Q�; hence plectic. This is a highly singular proper
variety, and g≤0' 9∗C is not a reasonable object to consider. The way to approach it is to use Morel’s
weight t-structures ([20]) in place of the standard t-structures. The formalism gives us a new truncation
F≤0' 9∗C, giving rise to a spectral sequence of Hodge structures

�
?,@

1 = H?+@ (-<8= (C), F≥−?F≤−?' 9∗C) ⇒ � ?+@ (- (C),C) (2)

first observed by Nair in [24]. Note that Morel’s formalism only makes sense in a theory with good
notion of weights and perverse sheaves, and we have to use the derived category of mixed Hodge
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modules here. It is not hard to see that F≥−?F≤−?' 9∗C decomposes into shifted simple Hodge modules
strictly supported on (closure of) strata of -<8= and can be made explicit with the help of Burgos and
Wildeshaus’s results ([5]). Moreover, these simple summands are automorphic in the sense they are
associated to algebraic representations of the groups associated to the strata they support. Now �

?,@

1 is
a sum of intersection cohomology of plectic Shimura varieties with automorphic coefficients; the same
computation as before using (g,  )-cohomology on twisted automorphic representations shows that it
possesses plectic structures.

To proceed further, we have to know whether the spectral sequence detects the weight filtration and
how we can extract the plectic weight filtration from it. Unfortunately, the answer to the first question
is no in general, though it is true in the Hilbert modular case. The problem is that the graded pieces
of the filtration are not necessarily pure but direct sums of pure Hodge structures possibly of different
weights. It is a coincidence that in the Hilbert modular case this does not happen. On the other hand, to
find the plectic weight filtration it is not necessary to know the weight filtration a priori, and the spectral
sequence does help with our purpose.

To motivate the strategy, let us recall that there is another way to detect weights, namely, using
Frobenius weights. By spreading out the variety, we can assume that it is defined over a finitely generated
Z-algebra and reduce it to a variety defined over a finite field. Then the Weil conjecture proved by
Deligne [9] tells us that the ;-adic cohomology has a weight filtration defined by Archimedean places
of Frobenius eigenvalues. Using comparison theorems and base change or nearby cycles, we can find
the weight filtration on Betti cohomology using finite fields. It is necessary to check that the new weight
filtration is the same as the previously defined one, and this is proved by observing that the Frobenius acts
on the spectral sequence (1) through the comparison isomorphism and has the right Frobenius weight on
each � ?,@1 .

In the plectic case, we expect that there are plectic Frobenius weights in some reasonable sense, and
the above classical method can be applied to find the plectic weight filtration. Fortunately, morphisms
called partial Frobenius have been defined and studied in the literature ([25]). These are decompositions
of the usual Frobenius, and their eigenvalues are naturally expected to give plectic Frobenius weights;
hence the plectic weight filtration. To fulfil the expectation, we have to prove that the partial Frobenius
extends to the minimal compactification and induces a morphism on the spectral sequence (2). This is
achieved through toroidal compactifications. Indeed, we prove firstly that the partial Frobenius extends
to toroidal compactifications, using Lan’s universal property of toroidal compactifications ([18]). To
check the universal property, we have to make full use of the degeneration data of semi-abelian varieties
constructed by Faltings-Chai and Lan [11]. Then we prove that the extended partial Frobenius morphism
descends to the minimal compactification, which is a standard argument adapted from Lan ([18]).

Theorem 1.1. Let "= be a (similitude) PEL Shimura variety with principal level = structure, and " tor
=,Σ

its toroidal compactification associated to an admissible smooth rational polyhedral cone decomposition
Σ. We assume that "= is defined over a finite field over which we have a well-defined partial Frobenius
map �p8 : "= → "=; then there is an admissible smooth rational polyhedral cone decomposition Σ′

naturally associated to Σ for which �p8 admits an extension

�p8 : " tor
=,Σ −→ " tor

=,Σ′ .

See Theorem 5.21 for a detailed description of Σ′.

Corollary 1.2. �p8 extends to the minimal compactification

�p8 : "min
= −→ "min

= .

Now the partial Frobenius acts on each summand of � ?,@1 , which, as we have already seen, is
the intersection cohomology of (closure of) strata of the minimal compactifications with automorphic
coefficients and have plectic Hodge structures given by (g,  )-cohomology. A subtle point here is that
we have to pass to special fibres of integral models of Shimura varieties and use the spectral sequence
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(2) in the ;-adic setting in order to have the action of the partial Frobenius and then compare it with the
one in the Hodge theory setting. This can be done with some technical input from Huber and Morel’s
horizontal mixed complexes in [21] (a simpler proof in the special case of Hilbert modular varieties
exists; see Remark 4.4).

Now, similar to the classical case, we have to check that the eigenvalues of the partial Frobenius on
each summand are Weil numbers with absolute value compatible with the multi-weights of the plectic
Hodge structures. In the case of Hilbert modular varieties, we have two different types of summands.
The first type is when the summand is the cohomology of cusps with automorphic coefficients, which
can be checked by direct computations.

The second is when it is the intersection cohomology of (minimal compactification of) Hilbert
modular variety with trivial coefficients. This is decomposed into Hecke equivariant isotypic components
indexed by discrete cohomological automorphic representations. If the automorphic representation is
cuspidal, we know that it corresponds to a holomorphic Hilbert modular form 5 of parallel weight 2,
and the plectic Hodge type is

⊗
E |∞
((1, 0) ⊕ (0, 1)),

which is of plectic weights (1, · · · , 1). We have to show that each partial Frobenius acts with eigenvalues

of absolute value ?
1
2 . This follows from the Eichler-Shimura relation of the partial Frobenius proved

by Nekovář in [25]. Indeed, it tells that the eigenvalues of the partial Frobenius are the same as the
eigenvalues of the Frobenius �A>1p ∈ �0; (�/�) on the Galois representation d 5 associated to 5 ,
where p ranges over primes of � above ?. We know that d 5 is pure of weight 1 by Blasius ([3]) and
Blasius-Rogawski ([4]), proving the claim. If the automorphic representation is discrete but not cuspidal,
we know that they are one-dimensional and have plectic Hodge types (wedge products of) the sum of
⊗
E |∞
(?E , @E ), with (?E , @E ) = (1, 1) for one E and (?E , @E ) = (0, 0) for the rest, which is of plectic weight

(0, · · · , 0, 2, 0, · · · , 0).

This forces us to show that the partial Frobenius corresponding to E (under the embedding Q? ↩→ C
implicitly fixed in the comparison theorem) has eigenvalues with absolute value ?, and the rest have
eigenvalues with absolute value 1. This is shown by observing that these cohomology spaces are
spanned by first Chern classes of the natural line bundles !E whose sections are modular forms of
weight (0, · · · , 0, 2, 0, · · · , 0), and the partial Frobenius acts on them in the expected way (�∗E!E = !

⊗?
E

and �∗E′!E = !E ). Note that here we use a motivic explanation of the plectic strucutures to compare the
plectic Frobenius weights and plectic Hodge weights, and this is the main reason we restrict to Hilbert
modular varieties.

Now we have a Z3-filtration defined by eigenvalues of the partial Frobenius, and the last paragraph
shows that the graded pieces have natural plectic Hodge structures given by (g,  )-cohomology in a
compatible way. This finishes the construction of the plectic weight filtration and gives a conceptual
explanation of the ad hoc construction of the plectic weight filtration by Nekovář and Scholl in [27].
Moreover, the proof has the potential to extend to more general situations where the naive construction
of Nekovář and Scholl fails. Indeed, most ingredients we use are proved for general PEL-type Shimura
varieties. The only serious obstacle for the general case is the use of motivic explanation as remarked
above. To summarise, we have the following.

Theorem 1.3. Let ℳ be a Hilbert modular variety, then there is an increasing Z3-filtration,0 (defined
over C) on �∗(ℳ(C),C) with 0 = (01, · · · , 03) ∈ Z3 , defined by

,0 =
⊕
|V8 |=?

:8
2

:8≤08

+(V1 , · · · ,V3) ,
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where +(V1 , · · · ,V3) is the generalised eigenspace of �8 with eigenvalue V8 for all 8. The action of �8 on

�∗(ℳ(C),C) is through the natural comparison isomorphism �∗(ℳ(C),C) � y∗�∗(ℳF̄? ,Q;) for

some fixed isomorphism y : Q; � C.
The filtration is plectic in the sense that there is a natural plectic Hodge structure on �A,0 with

plectic weight 0.

The reader is warned that the construction does not a priori give the plectic mixed Hodge structure
in the sense of Nekovář and Scholl ([27]) because we have not proved that the plectic Hodge filtration
is compatible with plectic weight filtration. This is left to future works.

We now give a summary of each section. In Section 2 we review Morel’s work on the weight
t-structures and prove a comparison theorem between two spectral sequences obtained using mixed
Hodge modules and etale cohomology, respectively. In Section 3 we define the PEL moduli varieties
and the partial Frobenius. This section is mostly to fix notations. In Section 4 we use the results on partial
Frobenius proved in Section 5 and the weight spectral sequences in Section 2 to prove the existence of
plectic weight structures on cohomology of Hilbert modular varieties. In particular, we make the weight
spectral sequence in this case explicit in Subsection 4.2 and carry out the computations of the eigenvalues
of the partial Frobenius in Subsection 4.3. Section 5 is a largely independent section, in which we
prove that the partial Frobenius extends to toroidal compactifications and minimal compactifications.
Following Lan, we review the construction of toroidal compactifications in Subsections 5.1 to 5.3.
In particular, we review with some details on the degeneration data and how to construct it from
degenerating abelian varieties. This is then used to construct the formal boundary strata of the toroidal
compactifications and provides fundamental local formal models of the boundary strata. We use those
constructions to prove the extension of partial Frobenius to toroidal and minimal compactifications in
Subsections 5.4 and 5.5, respectively.

2. Morel’s weight t-structure

2.1. Formalism

We review Morel’s weight t-structures in this section. Everything in this section is due to Morel and
Nair (the Hodge module case is due to Nair). The references we follow are [24] and [20].

In this section, - denotes a separated scheme of finite type over a field : . We assume that : is either
finitely generated over its prime field or : = C. Let ; be a prime number different from the characteristic
of : and �12 (-, Q̄;) be the usual constructible derived category. We use �8 to denote the cohomology
with respect to the usual constructible t-structure and ?�8 for the cohomology with respect to the
perverse t-structure. For Hodge modules, ?�8 will denote the usual cohomology of complexes of Hodge
modules. They correspond to perverse cohomology under A0C; see the paragraph after remark 2.1 for
explanation of the terminology.

We denote both �1< (-,Q;) and �1"�" (- (C)) by �1< (-), where �1< (-,Q;) is the bounded
derived category of horizontal mixed complexes with weight filtrations as defined in [21] when :

is finitely generated, and �1"�" (- (C)) is the bounded derived category of Saito’s mixed Hodge
modules when : = C. Note that here < means ‘mixed’. The key property of �1< (-) is that they have
the notion of weights and perverse t-structures, giving rise to canonical weight filtrations on perverse
sheaves in �1< (-). Further, morphisms between perverse sheaves strictly preserve weight filtrations.
Under this abuse of notation, perverse sheaves refers to the usual perverse sheaves in the ;-adic case and
Hodge modules in the complex case.

When : is a finite field,�1< (-,Q;) is the usual derived category of mixed sheaves defined by Deligne;
that is, �1<(-,Q;) ⊂ �12 (-,Q;) is the full subcategory defined by  ∈ �1< (-,Q;) if and only if for
every 8 ∈ Z, �8 ( ) has a finite filtration , whose graded pieces are pure in the sense that for every
closed point 8G : (?42(: (G)) ↩→ - and = ∈ Z, 8∗G�A

,
= �

8 ( ), as a representation of �0; ( :̄/: (G)), has
algebraic Frobenius eigenvalues whose absolute value are (#: (G))−=/2 for every Archimedean place.
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We review Morel’s construction in [21] of �1< (-,Q;) for : finitely generated. We can write :
as a direct limit of regular finite type Z-algebras � sitting inside : and having fraction field : . The
standard spreading argument shows that for � as above (possibly passing to a localisation) there is a
flat finite type �-scheme �� such that (��): � - . The {��}� forms a direct system and induces
natural functors between constructible derived categories. We define the derived category �1

ℎ
(-,Q;)

of horizontal constructible sheaves on - to be the 2-limit of the category �12 (��,Q;) indexed by �
as above. The perverse t-structures on �12 (��,Q;) induce a t-structure on �1

ℎ
(-,Q;), whose heart

Pervℎ (-) is called the category of horizontal perverse sheaves. The usual t-structures also induce a
t-structure on �1

ℎ
(-,Q;) whose hearts are called horizontal constructible sheaves.  ∈ �1

ℎ
(-,Q;) is

called mixed if �8 ( ) has a finite filtration whose graded pieces can be represented by a constructible
sheaf �� on �� such that for every closed point G ∈ Spec(�) (necessarily of finite residue field), (��)G
is pure of some weight as discussed in the previous paragraph. Mixed horizontal complexes define a
triangulated subcategory of �1

ℎ
(-,Q;), and the perverse t-structure on �1

ℎ
(-,Q;) induces a t-structure

on it, whose heart Perv<(-) is called the category of mixed horizontal perverse sheaves. The problem is
that an element of Perv<(-) does not necessarily have a weight filtration. However, the weight filtration
is unique if it exists. We can define the subcategory Perv< 5 (-) of Perv<(-) consisting of those with
a weight filtration. The uniqueness shows that morphisms in Perv< 5 (-) are strict with respect to the
weight filtration. Finally, we define the derived category of mixed horizontal perverse sheaves to be

�1< (-,Q;) := �1 (Perv< 5 (-)).

Morel proved that the six functors can be defined on �1< (-,Q;). Note that for : a finite field, � = : and
every mixed perverse sheaf has a weight filtration, proving that �1<(-,Q;) is identical to the category
in the previous paragraph; see A. A. Beı̆linson, J. Bernstein and P. Deligne, ‘Faisceaux pervers’ ([2])
for details.

Remark 2.1. The constructions, especially the six functors, depend fundamentally on the finiteness
results of Gabber; see [15]. If we restrict to : with transcendental dimension smaller than 2, which
is the only case we need, then the older finiteness results of Deligne in SGA [6] suffices. Moreover,
Morel’s proof uses sophisticated homological algebra results, including Beilinson’s reconstruction of
constructible t-structures from perverse ones, and Ayoub’s work on crossed functors.

For mixed Hodge modules, we will not give a precise review. We only remind the reader that a mixed
Hodge module consists of a good filtred regular holonomic �-module together with a perverse Q-sheaf
that is isomorphic after tensoring with C to the D-module under the Riemann-Hilbert correspondence.
The precise conditions to put on these data are through a delicate induction process where vanishing
cycles play an important role. It can be proved that admissible graded polarisable variations of Hodge
structures are mixed Hodge modules, and they (their intermediate extension) constitute the simple mixed
Hodge modules in a way similar to local systems and perverse sheaves. Forgetting about the �-modules
gives a faithful functor

A0C : �1"�" (-) → �12 (-,Q),

where we use the classical topology on - (C) to define the right-hand side. An important property is
that A0C commutes with the six functors. The comparison theorem gives an ;-adic perverse sheaf for
each Hodge module. We will only use C-Hodge modules, in which case the extra choices of perverse
sheaves are redundant.

We will only need the cases when : is a finite field, a number field or a complex number. Indeed,
we will be primarily concerned with complex numbers, and finite fields come into play by reducing the
complex situation to the finite fields cases. The reduction step will be achieved through number fields.

We now introduce Morel’s fundamental weight t-structures.
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Definition/Theorem 2.2 ([20] Proposition 3.1.1). With notations as above, for 0 ∈ Z ∪ {∞} there is a
C-structure

(F�≤0, F�≥0+1)

on �1< (-) defined by  ∈ F�≤0 (respectively  ∈ F�≥0+1) if and only if for all 8 ∈ Z, ?�8 ( ) has
weights ≤ 0 (respectively ≥ 0 + 1). Moreover, F�≤0 and F�≥0+1 are triangulated subcategories and
are stable under extensions. For  ∈ F�≤0 and ! ∈ F�≥0+1, we have

'�><( , !) = 0.

Note that this is stronger than being given by a C-structure. We have F�≤0 (1) = F�≤0−2 and F�≥0 (1) =
F�≥0−2, where (1) is the Tate twist.

Remark 2.3. The t-structure is unusual in that it has trivial heart and is stable under shift [1] in the
triangulated category. Note that a complex  ∈ F�≤0 ∩ F�≥0 is not a pure complex of weight 0 in the
sense of Deligne, which means �8 ( ) that has weight 0 + 8 (or, equivalently, ?�8 ( ) has weight i+a).

Recall that (over finite fields) a pure complex is a direct sum of its shifted perverse cohomology after
base change to the algebraic closure, and the decomposition does not hold before base change. This fact
plays an important role in the proof of the decomposition theorem. The next proposition gives a variant
of this fact in complete generality. In particular, we do not need to pass to algebraic closure.

Proposition 2.4 ([24] Lemma 2.2.3). If  ∈ F�≥0 ∩ F�≤0, we have an isomorphism

 � ⊕
8

?�8 ( ) [−8] .

The constituents ?�8 ( ) are pure, and they decompose by supports into intersection complexes; that
is, intermediate extension of smooth sheaves on a smooth locally closed subscheme.

Moreover, this isomorphism is canonical and the constituents are semisimple if we are in the mixed
Hodge modules case.

Remark 2.5. The corresponding statement is not true in the ;-adic case.

The t-structure gives us functors F≤0 : �1< (-) → F�≤0 (respectively F≥0 : �1< (-) → F�≥0)
such that for every  ∈ �1<(-), we have a distinguished triangle

F≤0 −→  −→ F≥0+1 
+1−→ ·

If  is written as a complex of perverse sheaves  8 , which is always possible, then F≤0 is the complex
represented by F≤0 8 , where F≤0 8 is the weight filtration on  8 . We have the following proposition
on the behaviour of F≤0.

Proposition 2.6 ([20] Proposition 3.1.3). Let  ∈ �1<(-), then we have that F≤0 (respectively F≥0 )
is exact with respect to the perverse t-structure; that is,

F≤0
?�8 ( ) = ?�8 (F≤0 )

F≥0
?�8 ( ) = ?�8 (F≥0 ).

Moreover, the distinguished triangle

F≤0 −→  −→ F≥0+1 
+1−→ ·
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induces a short exact sequence of perverse sheaves

0 −→ ?�8 (F≤0 ) −→ ?�8 ( ) −→ ?�8 (F≥0+1 ) −→ 0.

The four functors interact with the weight t-structure as described in the following proposition.

Proposition 2.7 ([20] Proposition 3.1.3). Let 5 : - → . be a morphism with dimension of the fibres
less than or equal to 3, then

' 5!(F�≤0 (-)) ⊂ F�≤0+3 (. )

5 ∗(F�≤0 (. )) ⊂ F�≤0+3 (-)

' 5∗(F�≥0 (-)) ⊂ F�≥0−3 (. )

5 !(F�≥0 (. )) ⊂ F�≥0−3 (-).

The duality functor � := '�><(−, l- ) (l- is the dualising complex) exchanges F�≤0 (-) and
F�≥−0 (-); that is, � (F�≤0 (-)) = F�≥−0 (-), so

� ◦ F≤0 = F≥−0 ◦ �.

The most important property of F≤0 is its relation with the intermediate extension functor.

Theorem 2.8 ([20] Theorem 3.1.4). Let 9 : * → - be a nonempty open embedding and  ∈ �1< (-)
a pure perverse sheaf of weight 0 on U; then we have natural isomorphisms

F≥0 9! = 9!∗ = F≤0' 9∗ .

We now introduce a refined version of the weight t-structure, taking a specified stratification into
consideration. Let - = ∪

0≤8≤=
(8 be a stratification such that each (8 is locally closed in - and (: is open

in ∪
:≤8≤=

(8 for every : ∈ [0, =]. Let 0 = (00, · · · , 0=) with each 08 ∈ Z ∪ {∞} and 8: : (: ↩→ - be the

inclusion.

Definition/Theorem 2.9 ([20] Proposition 3.3.2). Let F�≤0 (respectively F�≥0) be the subcategory of
�1< (-) defined by  ∈ F�≤0 (respectively  ∈ F�≥0) if and only if 8∗

:
 ∈ F�≤0: ((: ) (respectively

8!
:
 ∈ F�≥0: ((: )) for every : . Then

(F�≤0, F�≥0+1)

defines a t-structure on �1< (-), giving rise to functors

F≤0 : �1< (-) → F�≤0

and

F≥0 : �1< (-) → F�≥0

such that for every  ∈ �1< (-), there is a distinguished triangle

F≤0 −→  −→ F≥0+1 
+1−→ ·

Moreover, we have '�><(!,  ) = 0 for ! ∈ F�≤0 and  ∈ F�≥0+1.

Most of the properties of F�≤0 (respectively F�≥0) generalise to F�≤0 (respectively F�≥0). We
summarise them as follows.
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Theorem 2.10 ([20] Proposition 3.4.1). F�≤0 and F�≥0 are triangulated subcategories of �1< (-)
that are stable under extensions. If 0 = (0, · · · , 0), then F�≥0 = F�≥0 and F�≤0 = F�≤0.

For . another scheme with strata {(′8}0≤8≤= satisfying the same condition as before, and 5 : - → .

a morphism such that 5 ((: ) ⊂ (′: , assume that the dimension of the fibres of 5 is smaller than or equal
to 3. Then we have

' 5!(F�≤0 (-)) ⊂ F�≤0+3 (. )

5 ∗(F�≤0 (. )) ⊂ F�≤0+3 (-)

' 5∗(F�≥0 (-)) ⊂ F�≥0−3 (. )

5 !(F�≥0 (. )) ⊂ F�≥0−3 (-).

Further, we have

� ◦ F≤0 = F≥−0 ◦ �.

The next proposition tells us how to compute F≤0 and F≥0 in terms of F≤0 and F≥0.

Proposition 2.11 ([20] Proposition 3.3.4). Let : ∈ {0 · · · =} and 0 ∈ Z ∪ {∞}, then we denote

F:≤0 := F≤(∞, · · · ,∞,0,∞, · · · ,∞)

F:≥0 := F≥(∞, · · · ,∞,0,∞, · · · ,∞) ,

where 0 sits in the :th position. We have

F≤0 = F=≤0= ◦ · · · ◦ F
0
≤00

F≥0 = F=≥0= ◦ · · · ◦ F
0
≥00
.

For  ∈ �1<(-), we have distinguished triangles

F:≤0 −→  −→ '8:∗F≥0+18
∗
: 

+1−→ ·

8:!F≤0−18
!
: −→  −→ F:≥0 

+1−→ ·

Corollary 2.12. We have natural isomorphisms

8∗: ◦ F:≤0 = F≤0 ◦ 8∗:

8!: ◦ F
:
≥0 = F≥0 ◦ 8!:

and

8∗9 ◦ F:≤0 = 8∗9

8!9 ◦ F:≥0 = 8!9

for 9 < : .

Theorem 2.13 ([20] Proposition 3.4.2). Let * := (0 and 9 = 80 : * ↩→ - be the inclusion of the open
stratum, then for  ∈ �1< (*) a pure perverse sheaf of weight 0 we have

F≥(0,0+1, · · · ,0+1) 9! = 9!∗ = F≤(0,0−1, · · · ,0−1)' 9∗ .
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2.2. Applications to Shimura varieties

In this subsection, we take - to be a Shimura variety associated to a Shimura datum (�,�), where �
is a reductive group over Q and � is a conjugacy class of cocharacters '4BC/RG< −→ �R. The pair
has to satisfy a list of axioms to be a Shimura datum, which we will not review. We assume that - is
smooth, which can always be achieved if we take a small enough level structure. An important property
of Shimura varieties is that they have a canonical model over a number field �, called the reflex field of
(�,�). For simplicity, we assume that � is simple.

An algebraic rational representation of � naturally gives an admissible variation of Hodge structure
on - , whence a mixed Hodge module. The representation creates a smooth ;-adic sheaf on - as well.
However, unlike Hodge modules, the ;-adic sheaf is not known to be mixed in general, although this is
expected to be the case. Fortunately, we know that the associated ;-adic sheaves are of geometric origin,
and hence mixed, if the Shimura variety is of abelian type. We will only need to work with Shimura
varieties of PEL type (up to similitude) in this article, so we make this assumption from now on. We note
that PEL-type Shimura varieties have the hereditary property that strata of the minimal compactification
are also of PEL type.

Let -min be the minimal compactification of - . It has a natural stratification -min = ∪
0≤8≤=

(8 with

(0 = - and (: open in ∪
:≤8≤=

(8 for each : . Each (8 is the union of standard strata corresponding to

parabolic subgroups of � of a fixed type. We will not give an explicit description of (8 here; see Nair
[24] for details.

Let + be a rational algebraic representation of � and F+ ∈ �1<(-) the corresponding sheaf. We
note that F+ is concentrated in degree 0 and smooth. Let 9 : - ↩→ -min be the open embedding, then
applying 'Γ(-min,−) to the weight truncations F≤0' 9∗(F+) of ' 9∗(F+) induces a spectral sequence

�
?,@

1 = � ?+@ (-min, F≥−?F≤−?' 9∗(F+)) ⇒ � ?+@ (-,F+).

Because � is simple reductive, we can assume that + is irreducible and pure of weight −0. Note that

the weight of + is the weight of the representation G<R ↩→ ResC/RG<
ℎ→ �R → End(+R) for one (and

hence any) ℎ ∈ �. Then F+ is pure of weight 0, and the first nontrivial truncation of ' 9∗(F+)) is

F≥0F≤0' 9∗(F+) = F≤0' 9∗(F+) = 9!∗(F+) (3)

by Proposition 2.7 and Theorem 2.8. It completes into a distinguished triangle

9!∗(F+) −→ ' 9∗(F+) −→ F≥0+1' 9∗(F+)
+1−→ ·

which shows that F≥0+1' 9∗(F+) has support in the complement of - as 9∗ 9!∗ = 9∗' 9∗ = 83. Let
8 : ∪

1≤8≤=
(8 ↩→ -min be the complement of - , then

F�≥0+1 ∋ F≥0+1' 9∗(F+) = 8∗(8∗F≥0+1' 9∗(F+)).

Because 8∗ = 8! is exact with respect to the weight C-structure by Proposition 2.7, 8∗F≥0+1' 9∗(F+) ∈
F�≥0+1. Applying 8∗ to the distinguished triangle

F≤0' 9∗(F+) −→ ' 9∗(F+) −→ F≥0+1' 9∗(F+)
+1−→ ·

we have

8∗F≤0' 9∗(F+) 8∗' 9∗(F+) 8∗F≥0+1' 9∗(F+) ·+1
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We see by Proposition 2.7 that 8∗F≤0' 9∗(F+) ∈ F�≤0. Together with 8∗F≥0+1' 9∗(F+) ∈ F�≥0+1

that we have just observed, we obtain

8∗F≥0+1' 9∗(F+) = F≥0+18∗' 9∗(F+).

Therefore,

F≤0+1F≥0+1' 9∗(F+) = F≤0+18∗F≥0+18∗' 9∗(F+) = 8∗F≤0+1F≥0+18∗' 9∗(F+)

and, similarly,

F≤0+:F≥0+:' 9∗(F+) = 8∗F≤0+:F≥0+: 8∗' 9∗(F+) (4)

for all : > 0 (applying F≤0+:F≥0+: to F≥0+1' 9∗(F+) and using that F≥0+:F≥0+1 = F≥0+: ).
It is shown that 8∗' 9∗(F+) is constructible with respect to the standard stratification (and in particular

for {(8}) by Burgos and Wildeshaus ([5]) in the Hodge Module case and Pink ([29]) in the ;-adic
case. Moreover, the restriction of 8∗' 9∗(F+) to strata has automorphic cohomology sheaves in the
sense that they are associated to algebraic representations of the group corresponding to the strata as a
Shimura variety. We claim that F≤0+:F≥0+: 8∗' 9∗(F+) is also constructible with respect to the standard
stratification and even automorphic when restricted to each stratum. Indeed, by Proposition 2.11,

F≤0+: 8
∗' 9∗(F+) = F≤(0+:, · · · ,0+:) 8∗' 9∗(F+) = F=≤0+: ◦ · · · ◦ F

1
≤0+: 8

∗' 9∗(F+)

and there is a distinguished triangle

F1
≤0+: 8

∗' 9∗(F+) −→ 8∗' 9∗(F+) −→ 81∗F≥0+:+18
∗
18
∗' 9∗(F+)

+1−→ ·

Because both 8∗' 9∗(F+) and 81∗F≥0+:+18∗18
∗' 9∗(F+) are constructible and automorphic with re-

spect to the standard stratification (using F≤0F+ = F(F≥38<-−0+); see [20] Lemma 4.1.2), so is
F1
≤0+: 8

∗' 9∗(F+). The same argument applies to F2
≤0+: by replacing 8∗' 9∗(F+) to F1

≤0+: 8
∗' 9∗(F+),

and an easy induction proves that F≤0+: 8∗' 9∗(F+) is constructible and automorphic. The claim follows
from the distinguished triangle

F≤0+:−18
∗' 9∗(F+) −→ F≤0+: 8

∗' 9∗(F+) −→ F≥0+:F≤0+: 8
∗' 9∗(F+)

+1−→ ·

and what we have just proved for the first two terms. Note that F≥0+:F≤0+: = F≤0+:F≥0+: (see [24]
Lemma 2.2.3).

Recall that Proposition 2.4 tells us that F≥0+:F≤0+: 8∗' 9∗(F+) decompose into shifts of pure per-
verse sheaves, and the claim we have just proved shows that these perverse sheaves are intermediate
extensions of automorphic sheaves on the standard strata. This is also true for F≥0+:F≤0+:' 9∗(F+)
using (3) and (4). We know that the normalisation of the closure of a stratum is the minimal com-
pactification of the stratum and intersection cohomology is invariant under normalisation; hence,
H?+@ (-min, F≥−?F≤−?' 9∗(F+)) is a sum of intersection cohomology of the minimal compactification
of the strata with coefficients automorphic sheaves. We now summarise what we have proved.

Theorem 2.14 (Nair [24]). For - a Shimura variety of PEL type with Shimura data (�,�) and + a
representation of �, we have a spectral sequence

�
?,@

1 = H?+@ (-min, F≥−?F≤−?' 9∗(F+)) ⇒ � ?+@ (-,F+)

whereH?+@ (-min, F≥−?F≤−?' 9∗(F+)) is a sum of ��∗(.min,F,) := H∗(.min, 9!∗F,) with. ⊂ -min

a standard strata and, an algebraic representation of the group associated to . .

Remark 2.15. It is possible to write � ?,@1 more explicitly using Pink’s ([29]) or Burgos and Wildeshaus’s
([5]) results. We will do that with Hilbert modular varieties later.
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We know that the PEL-type Shimura variety - has a natural smooth integral model X over an open
subset U of SpecO� and the automorphic sheaf F+ extends to X, which we still denote by F+ . Let
(?42(:) be a closed point of U; hence : is a finite field. The above theorem 2.14 gives us two spectral
sequences

��
?,@

1 = H?+@ (-<8= (C), F≥−?F≤−?' 9∗(�F+)) ⇒ � ?+@ (- (C), �F+)

and

;�
?,@

1 = H?+@ (X<8=
:̄

, F≥−?F≤−?' 9∗(;F+)) ⇒ � ?+@ (X:̄ , ;F+),

where �F+ is the (C-) Hodge module associated to + (it is normalised so that A0C (�F+) = F+ [0] ∈
�12 (- (C),Q); in other words, �F+ ∈ �1"�" (- (C)) sit in degree dim-) in the first spectral sequence
and ��

?,@

1 is obtained from the weight truncation in �1"�" (- (C)). Similarly, ;F+ is the mixed
;-adic lisse sheaf associated to + in the second one, and the spectral sequence is obtained by looking
at the weight truncation in �1<(X: ,Q;) and then passing to the algebraic closure of : . Note that the
first spectral sequence takes values in (complex) mixed Hodge structures, and the second takes values
in Gal(:/:)-modules. The next theorem provides a comparison between the two spectral sequences.
Because it seems not to be in the literature, we give a proof.

Theorem 2.16. Fix an isomorphism y : C � Q; , then for all but finitely many Spec(:) ⊂ U there is a
natural isomorphism

y∗�
= (- (C), �F+) � �= (X: , ;F+)

as Q;-vector spaces, and the filtrations induced by ��
?,@

1 and ;�
?,@

1 are identified through the
isomorphism.

Proof. Recall that �1<(-/�,Q;) is the derived category of horizontal mixed complexes on -/�, which
is defined by the direct limit of suitable subcategories of �12 (XV,Q;), indexed by open subsets V ⊂ U.
Because ;F+ extends to X, it defines an element ;F+ ∈ �1< (-/�,Q;). Because -min also descends to a
canonical model Xmin over U, which is a compactification of X, we have that ' 9∗(;F+) ∈ �12 (Xmin,Q;)
defines an element of �1< (-min/�,Q;).

The weight t-structure on �1< (-min/�,Q;) gives the truncations F≤0' 9∗(;F+) ∈ �1< (-min/�,Q;),
which are represented by complexes on Xmin

V
for some nonempty open subset V ⊂ U by definition of

the horizontal complexes. Because there are only finitely many truncations, we can assume that V is
chosen such that all of the truncations are represented by complexes on Xmin

V
, which we still denote by

F≤0' 9∗(;F+) ∈ �12 (Xmin
V
,Q;).

Recall that weights on �1< (-min/�,Q;) are defined by first reducing to finite fields and then taking
the weights there. We have basically from the definition that

(F≤0' 9∗(;F+)): = F≤0 ((' 9∗(;F+)): ) ∈ �1< (Xmin
: ,Q;).

By the lemma 2.17 below, we have (' 9∗(;F+)): = ' 9:∗(;F+ |X: ), where 9: : X: ↩→ Xmin
:

is the base
change of 9 to : . Thus, we have

(F≤0' 9∗(;F+)): = F≤0' 9:∗(;F+ |X: ). (5)

We base change F≤0' 9∗(;F+) ∈ �12 (Xmin
V
,Q;) to a complex point of V; then the comparison between

etale and classical sites and that F+ is of geometric origin provide us with a natural isomorphism

(F≤0' 9∗(;F+))C � y∗A0C (F≤0' 9C∗(�F+)). (6)
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Let V(:) be the etale localisation of V at B?42(:) and [̄ the geometric generic point of V(:) . By
properness of 6 : Xmin

V(:)
→ V(:) , we have

'Γ(Xmin
[̄ , (F≤0' 9∗(;F+))[̄) = 'Γ([̄, ('6∗F≤0' 9∗(;F+))[̄) = 'Γ(V(:) , '6∗F≤0' 9∗(;F+))

= ('6∗F≤0' 9∗(;F+)):̄ = 'Γ(Xmin
:̄
, (F≤0' 9∗(;F+)):̄ ).

Together with equation (5), we have

'Γ(Xmin
[̄ , (F≤0' 9∗(;F+))[̄) = 'Γ(Xmin

:̄
, F≤0' 9:∗(;F+ |X: )). (7)

Choose an embedding of [̄ into C, then (6) and (7) give us

y∗�
= (-min (C), F≤0' 9C∗(�F+)) � �= (-min

C , (F≤0' 9∗(;F+))C) (8)

= �= (Xmin
[̄ , (F≤0' 9∗(;F+))[̄) = �= (Xmin

:̄
, F≤0' 9:∗(;F+ |X: )).

We know by definition of the spectral sequence ��
?,@

1 that the image of y∗�= (-min (C), F≤0
' 9C∗(�F+)) in

y∗�
= (-min(C), ' 9C∗(�F+)) = y∗�= (- (C), �F+)

is the filtration corresponding to ��
?,@

1 , and similarly for �= (Xmin
:̄
, F≤0' 9:∗(;F+ |X: )). The isomor-

phism (8) for 0 large enough defines the isomorphism in the statement of the theorem, and it respects
the filtration by what we have just observed. �

Lemma 2.17. Let 9 : X ↩→ Xmin be the inclusion of a PEL Shimura variety into its minimal compacti-
fication, defined over U ⊂ Spec(O� ), and + an algebraic representation of the group � associated to
the Shimura variety. Let (?42(:) ⊂ U be a closed point that has characteristic different from ;, then we
have an isomorphism

(' 9∗(;F+)): � ' 9:∗(;F+ |X: )

induced by the base change map.

Proof. We know that ;F+ is up to a Tate twist a summand of ' 5∗Q; , where 5 : A×= → X is the structure
map of the =th fibre product of the universal abelian scheme A→ X; that is, A×= := A×X · · · ×X A, for
some integer =. By [19] (Proposition 4.1), we have that A×= is Z×(;) -isogenous to another abelian scheme

. over X such that . extends to a proper scheme . over Xtor
Σ

for some choice of smooth projective

toroidal compactification Xtor
Σ
/U with . \ . union of normal crossing divisors over U. Because Z×(;) -

isogeny does not change Tate modules, we see that ;F+ is (up to a Tate twist) a summand of 'c∗Q; ,
where c : . → X the structure map. Thus, it suffices to show

(' 9∗'c∗Q;): � ' 9:∗('c∗Q; |X: ).

Let c : . → Xtor
Σ

be the extension of c, � : X → Xtor
Σ

, �. : . → . the inclusion, which form a
Cartesian diagram

. .

X XC>A
Σ

�.

c c

�

https://doi.org/10.1017/fms.2021.27 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2021.27


14 Zhiyou Wu

Let q : XC>A
Σ
→ X<8= be the natural proper projection map. We denote by c: the base change of c to : ,

and similarly for the other maps. We know that 9 = q ◦ �, so

(' 9∗'c∗Q;): = ('q∗'�∗'c∗Q;): = 'q:∗('�∗'c∗Q;):

= 'q:∗('c∗'�. ∗Q;): = 'q:∗'c:∗('�. ∗Q;):

by proper base change. Moreover,

('�. ∗Q;): = '�. :∗Q;

by Paragraph 5.1.3 of section 7.5 (the appendix by Illusie) of SGA 4.5 ([6]), where we use that . \ .
are the union of normal crossing divisors over U. This gives

(' 9∗'c∗Q;): = 'q:∗'c:∗'�. :∗Q; = 'q:∗'�:∗'c:∗Q; = ' 9:∗('c∗Q; |X: )

by proper base change again, proving the claim. �

Lastly, we record the functoriality of the spectral sequence � ?,@1 .

Proposition 2.18. Let - and . be varieties defined over a field : that is either finitely generated over
its prime field or the complex number, as in the previous section. Let - ⊂ - and . ⊂ . be nonempty
open subvarieties and 5 : - → . a finite morphism that restricts to a morphism 5 : - → . making the
following diagram Cartesian:

- -

. .

9-

5 5

9.

Let F ∈ �1< (-) and G ∈ �1<(. ) together with a morphism ℎ : G→ ' 5∗F, then ℎ induces a morphism

. �
?,@

1 −→ -�
?,@

1

between the weight spectral sequences

-�
?,@

1 = H?+@ (-, F≥−?F≤−?' 9-∗F) ⇒ H?+@ (-,F)

. �
?,@

1 = H?+@ (., F≥−?F≤−?' 9. ∗G) ⇒ H?+@ (.,G).

In particular, the morphism '?+@Γ(.,−)(ℎ) : H?+@ (.,G) → H?+@ (-,F) respects filtrations induced
by the spectral sequences.

Proof. Observe that ℎ induces a morphism

' 9. ∗G
' 9. ∗ℎ−→ ' 9. ∗' 5∗F = ' 5 ∗' 9-∗F (9)

and applying 'Γ(.,−) to it recovers the usual morphism induced by ℎ,

'Γ(.,−)(ℎ) : 'Γ(.,G) −→ 'Γ(-,F),

which is the sought-after morphism on �∞. Applying the functor F≤0 to (9) gives us

F≤0' 9. ∗G −→ F≤0' 5 ∗' 9-∗F = ' 5 ∗F≤0' 9-∗F, (10)
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where in the last equality we use that 5 is finite; hence 5 ∗ = 5 ! preserves both F�≤0 and F�≥0 by
proposition 2.7 (3 = 0 as 5 is finite). Now (10) shows that the morphism (9) preserves the filtration
induced by the weight truncation F≤0, hence defining a morphism between spectral sequences as
desired. �

3. PEL moduli problems

3.1. Kottwitz’s PEL moduli problems

We begin by recalling the definition of PEL moduli problems given by Kottwitz in [17]. We follow the
notation of Lan ([18]).

Let � be a finite-dimensional simple algebra over Q with a positive involution ∗ and O a Z-order
in � that is invariant under ∗ and maximal at ?, where ? is a rational prime that is unramified in B;
that is, �Q? � "= ( ) for some finite unramified extension  of Q? . Let ! be an O-lattice in a finite-
dimensional �-module + and 〈·, ·〉 : ! × ! → Z(1) an alternating nondegenerate bilinear form on !
that satisfies 〈UG, H〉 = 〈G, U∗H〉 for U ∈ O and G, H ∈ !. We also assume that when localised at ?, ! is
self-dual with respect to 〈·, ·〉. Here we denote Z(1) := Ker(exp : C→ C∗). A choice of

√
−1 gives an

identification of it with Z, but we do not fix such an identification.
We assume that there is an R-algebra homormorphism ℎ : C→ EndOR (!R) such that 〈ℎ(I)G, H〉R =

〈G, ℎ( Ī)H〉R and 〈·, ℎ(
√
−1)·〉R is symmetric and positive definite. If we fix an identification Z(1) � Z

so that 〈·, ·〉R takes values in R. Let

�∗(') := {(6, A) ∈ �!O' (!') ×G<(') : 〈6G, 6H〉 = A 〈G, H〉,∀G, H ∈ !'}

for a Z-algebra '. This defines an algebraic group �∗ over Z. We assume that the derived group has
type A or C in the classification.

The morphism ℎ defines a decomposition ! ⊗ C = +0 ⊕+20 , where ℎ(I) acts as 1 ⊗ I on +0 and 1 ⊗ Ī
on +20 . We know that +0 is an O ⊗ C-module because ℎ(I) commutes with OR by definition. The reflex
field �0 is defined to be the field of definition of +0 as an O ⊗ C-module; see [18] Definition 1.2.5.4 for
more details.

Definition 3.1. Let H be an open compact subgroup of �∗(A?∞), "A0C
H

is defined to be the category
fibred in groupoids over the category of locally Noetherian schemes defined over O�0 ⊗ Z(?) , whose
fibre over ( consists of tuples

(�, _, 8, [Û]H),

where � is an abelian scheme over S,

_ : �→ �∨

is a prime-to-? quasi-polarisation of � and

8 : O ⊗ Z(?) → �=3( (�) ⊗ Z(?)

is a ring homomorphism such that

8(1)∨ ◦ _ = _ ◦ 8(1∗)

for every 1 ∈ O⊗Z(?) and !84�/( satisfies the determinant condition specified by ℎ; see [18] Definition
1.3.4.1 for a precise formulation. Moreover, if we choose a geometric point B̄ in each connected
component of (, [Û]H is an assignment to each B̄ a c1 ((, B̄)-invariant H-orbit of O ⊗ A?∞-equivariant
isomorphisms

Û : ! ⊗ A?∞ ∼→ + ?�B̄

https://doi.org/10.1017/fms.2021.27 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2021.27


16 Zhiyou Wu

together with an isomorphism

a(Û) : A?∞(1) ∼→ + ? (G<,B̄)

such that

〈Û(G), Û(H)〉_ = a(Û) ◦ 〈G, H〉,

where G, H ∈ ! ⊗A?∞, 〈·, ·〉_ is the Weil pairing associated to the polarisation _, and + ? is the prime to
? rational Tate module of either � or G<.

The isomorphisms in the groupoid are defined to be (�, _, 8, [Û]H) ∼ (�′, _′, 8′, [Û′]H) if and only
if there is a prime to ? quasi-isogeny 5 : �→ �′ such that over each connected component of (,

_ = A 5 ∨ ◦ _′ ◦ 5

for some A ∈ Z×(?) ,〉0, 5 ◦ 8(1) = 8′(1) ◦ 5 for all 1 ∈ O ⊗ Z(?) . Moreover, we require that for each

geometric point B̄ of (, Û′
−1 ◦+ ? ( 5 ) ◦ Û ∈ H, and a(Û′)−1 ◦ a(Û) ∈ a(H)A ⊂ A?∞,× for the A specified

by _ = A 5 ∨ ◦ _′ ◦ 5 at B̄.

Remark 3.2. Note that the moduli problem depends only on the �-module + , and different choices of
! will only affect the choices of maximal compact subgroup of �∗(A?∞). This will be helpful when
we consider moduli problems defined by isomorphism classes where the choice of ! is important. We
can compare different moduli problems defined by different choices of ! by identifying the moduli
problems with the above one using isogeny classes.

Remark 3.3. We work with locally Noetherian test schemes rather than arbitrary schemes because etale
fundamental groups do not behave well for general schemes. General (affine) schemes can be written as
inverse limits of locally Noetherian schemes, and we can extend the moduli functor to the general case
by taking limits.

Remark 3.4. a(Û) is a rigidification of Kottwitz’s definition of PEL moduli problems, where he allows
the ambiguity that the Weil pairing is equal to the fixed pairing 〈·, ·〉 up to a similitude factor. If ! ≠ 0,
a(Û) is uniquely determined by Û; hence the two definitions are equivalent. If ! = 0, a(Û) is the only
nontrivial data. We include the ! = 0 case because it will appear in the boundary of the minimal
compactification of PEL Shimura varieties.

It is not hard to see that the moduli space is represented by an algebraic stack that is smooth of finite
type over O�0 ⊗ Z(?) , and it is even represented by a finite-type smooth scheme over O�0 ⊗ Z(?) if H is
small enough. We will use the same symbol "A0C

H
to denote the stack or scheme it represents.

The above definition uses isogeny classes of abelian varieties. We will next define another moduli
problem using isomorphism classes. This is necessary for the toroidal compactifications because semi-
abelian varieties do not behave well under isogeny.

We will only define moduli problems for principal level structures; the general level structures can be
defined by taking orbits of the principal ones, but we choose to ignore them for reasons to be explained
later.

Definition 3.5. Let = be a natural number prime to ? and define"= to be the category fibred in groupoids
over the category of schemes over O�0 ⊗ Z(?) , whose fibre over ( is the groupoids with object tuples

(�, _, 8, (U=, a=)),

where � is an abelian scheme over (,

_ : �→ �∨

is a prime-to-? polarisation and

8 : O→ �=3( (�)
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a ring homomorphism such that 8(1)∨ ◦ _ = _ ◦ 8(1∗) for every 1 ∈ O. We require that !84�/( satisfies
the determinant condition given by ℎ. The principal level-n structure is an O-equivariant isomorphism

U= : (!/=!)(
∼→ �[=]

together with an isomorphism

a= : (Z/=Z(1))(
∼→ `=,(

of group schemes over S such that 〈U= (G), U= (H)〉_ = a= ◦ 〈G, H〉 for G, H ∈ (!/=!)( . The (U=, a=) has
to satisfy a sympletic-liftablity condition that roughly says that it can be lifted to a level-m structure for
arbitary < that is prime to p and divisible by =; see [18] Definition 1.3.6.2 for precise definitions.

The isomorphisms in the groupoid are defined to be

(�, _, 8, (U=, a=)) ∼ (�′, _′, 8′, (U′=, a′=))

if and only if there is an isomorphism 5 : �→ �′ such that

_ = 5 ∨ ◦ _′ ◦ 5 ,

5 ◦ 8(1) = 8′(1) ◦ 5 for all 1 ∈ O and U′= = 5 ◦ U=, a= = a′=.

Let

U(=) :=  4A (�∗(Ẑ?) → �∗(Z/=Z)),

then we can show that "= � " rat
U(=) , the map being the obvious one sending PEL abelian varieties to

their isogeny classes. The inverse map is to choose an abelian variety in each isogeny class, determined
by the choice of the O-lattice ! inside �-module + ; see [18] Section 1.4.3 for a careful proof of
the isomorphism. One subtle point is that "= and " rat

U(=) are defined over different categories of test
schemes. We can show that "= is determined by its value on locally Noetherian schemes by writing
any (affine) scheme as an inverse limit of locally Noetherian ones and note that the moduli functor "=,
being fintely presented, commutes with inverse limits. See also Remark 3.3.

3.2. Similitude PEL moduli problems

Let �2 be the center of �, which is a number field by simplicity of �. Let � := �2,∗=1, and we assume
that O� ⊂ O. We define a group scheme � over O� by

� (') := {(6, A) ∈ �!O⊗O� ' (! ⊗O� ') ×G<(') : 〈6G, 6H〉 = A 〈G, H〉,∀G, H ∈ ! ⊗O� '}

for an O� -algebra '. Let

� := '4BO�/Z�

and we have the similitude map a : � → '4BO�/ZG<; then

�∗ = a−1(�<,Z) ⊂ �.

Note that ℎ : C → �=3OR (!R) defines a Deligne cocharacter '4BC/RG< → �∗ and hence also
'4BC/RG< → �. Their conjugacy classes define Shimura varieties associated to � and �∗, which
we will denote by (ℎ (�, ℎ) and (ℎH (�∗, ℎ) for compact open subgroups  ⊂ � (Ẑ?) and H ⊂
�∗(Ẑ?). These are abbreviated notions for (ℎ � (Z?) (�, ℎ) and (ℎH�∗ (Z?) (�∗, ℎ), which might be
more standard.
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We have made the assumption that our PEL datum has type A or C; then "A0C
H

is an integral model
of the Shimura variety (ℎH (�∗, ℎ) in case (A, 4E4=) or C. In the case (A, >33), "A0C

H
is a disjoint

union of integral models of the Shimura variety (ℎH (�∗, ℎ), due to the failure of Hasse principle.
We will be working with the Shimura variety associated to � instead of �∗, and one advantage

of � is that it always satisfies the Hasse principle. For our purpose, the more important reasons are
that Shimura varieties associated to � are plectic, whereas Shimura varieties of �∗ are only plectic in
positive dimension. More precisely, the difference between the two Shimura varieties is that they have
different sets of connected components, and we have c0 ((ℎ (�, ℎ)) is plectic while c0 ((ℎH (�∗, ℎ))
is not; that is, c0 ((ℎ (�, ℎ)) is the 0-dimensional Shimura variety associated to Res�/QG< (plectic),
whereas c0 ((ℎH (�∗, ℎ)) has group G< (not plectic). The plectic nature of (ℎ (�, ℎ) will give rise to
the so-called partial Frobenius, which will play an important role in our study.

On the other hand, the price to pay when changing to � is that we do not have a good fine moduli
problem represented by (ℎ (�, ℎ). Instead, (ℎ (�, ℎ) will only be a coarse moduli space. We now
give the moduli problem of (ℎ (�, ℎ). We will follow Nekovář’s approach as in [25].

Definition 3.6. Fix U ∈ (� ⊗ A?∞)× and  ⊂ � (Ẑ?) open compact subgroup and let us define ℳU, 

to be the category fibred in groupoids over the category of locally Noetherian schemes over O�0 ⊗ Z(?) ,
whose objects over ( are quadruples

(�, _, 8, ([, D)),

where � is an abelian scheme over S,

_ : �→ �∨

is a prime-to-? quasi-polarisation of � and

8 : O→ �=3( (�)

is a ring homomorphism such that 8(1)∨ ◦ _ = _ ◦ 8(1∗) for every 1 ∈ O, and !84�/( satisfies the
determinant condition specified by ℎ; see [18] Definition 1.3.4.1 for a precise formulation. Moreover,
if we choose a geometric point B̄ in each connected component of (, the level structure ([, D) is an
assignment to each B̄ a c1 ((, B̄)-invariant  -orbit of O ⊗ A?∞-equivariant isomorphisms

[ : ! ⊗ A?∞ ∼→ + ?�B̄

together with an O� ⊗ Ẑ?-equivariant isomorphism

D : d−1
� ⊗ Ẑ? (1)

∼→ ) ? (d−1
� ⊗Z G<,B̄)

such that

〈[(G), [(H)〉_ = )AO� /Z(D ◦ (U〈G, H〉� )),

where G, H ∈ ! ⊗ A?∞, d−1
� is the inverse different of � and D extends naturally from d−1

� ⊗ A?∞(1) to
the rational Tate module. Here d−1

�
⊗Z G<,B̄ is defined in the category of fppf sheaf of abelian groups,

which can be easily seen to be representable. The O� -action on the first factor equips d−1
� ⊗Z G<,B̄ with

an action of O� and hence defines a O� ⊗ Ẑ?-module structure on the Tate module ) ? (d−1
�
⊗Z G<,B̄).

The )AO� /Z : d−1
� ⊗Z G<,B̄ → Z ⊗Z G<,B̄ is the trace map on the first factor. Moreover,

〈·, ·〉� : ! × ! → d−1
� ⊗ Z(1)

is the unique O� -linear pairing such that

)AO� /Z ◦ 〈·, ·〉� = 〈·, ·〉.
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The action of  on ([, D) is given by ([, D)6 = ([ ◦ 6, D ◦ a(6)) for 6 ∈  , where a(6) ∈ (O� ⊗ Ẑ?)×
acts on d−1

� ⊗ Ẑ? (1) in the obvious way.
The isomorphisms in the groupoid are defined to be

(�, _, 8, ([, D)) ∼ (�′, _′, 8′, ([′, D′))

if and only if there is a prime to ? quasi-isogeny 5 : �→ �′ such that over each connected component
of (,

_ = 5 ∨ ◦ _′ ◦ 5 ,

5 ◦ 8(1) = 8′(1) ◦ 5 for all 1 ∈ O ⊗ Z(?) and ([′, D′) = ( 5 ◦ [, D).

Remark 3.7. The above moduli problem is in some sense in between the isogeny classes and the
isomorphism classes moduli problems, in that it uses isogeny as morphisms in the groupoid and rational
Tate modules for level structures, while also encoding integral structures in endomorphism structures
and D. This has the effect that the morphism 5 in the groupoid is required to strictly preserve the
polarisation _ = 5 ∨ ◦ _′ ◦ 5 without the factor A in Definition 3.1.

It is not hard to see that ℳU, is representable by a smooth quasi-projective scheme "U, over
O�0 ⊗ Z(?) .

There is an action of totally positive prime to ? units (O� )×+ on ℳU, given by the formula

n · (�, _, 8, ([, D)) = (�, 8(n)_, 8, ([, nD))

that factors through the finite quotient groupΔ := (O� )×+ /#<�2/� ((O�2 )×∩ ). The quotient"U, /Δ
always exists. Let Ω = {U} ⊂ (� ⊗ A(?∞) )× be a set of representatives of the double cosets

(� ⊗ A(?∞) )× =
∐
U∈Ω
(O� ⊗ Z(?) )×+ U(O� ⊗ Ẑ?)×,

then we have

(ℎ (�, ℎ) =
∐
U∈Ω

"U, /Δ = " /Δ , (11)

where " :=
∐
U∈Ω

"U, . This means that " /Δ has the same complex points as (ℎ (�, ℎ), hence

defining an integral model of (ℎ (�, ℎ). This is a consequence of the fact that � satisfies the Hasse
principle; see [14] Section 7.1.5.

Remark 3.8. We can show that " /Δ is the coarse moduli space of the functor sending ( to quadruples

(�, _, 8, ([, D))

where � is an abelian scheme over S,

_ : �→ �∨

is a prime to ? quasi-polarisation of � and

8 : O ⊗ Z(?) → �=3( (�) ⊗ Z(?)

is a ring homomorphism such that 8(1)∨ ◦_ = _ ◦ 8(1∗) for every 1 ∈ O ⊗ Z(?) , and !84�/( satisfies the
determinant condition specified by ℎ; see [18] Definition 1.3.4.1 for a precise formulation. Moreover,
if we choose a geometric point B̄ in each connected component of (, the level structure ([, D) is an
assignment to each B̄ a c1 ((, B̄)-invariant  -orbit of O ⊗ A?∞-equivariant isomorphisms

[ : ! ⊗ A?∞ ∼→ + ?�B̄
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together with an � ⊗ A?∞-equivariant isomorphism

D : � ⊗ A?∞(1) ∼→ + ? (d−1
� ⊗Z G<,B̄)

such that

〈[(G), [(H)〉_ = )AO� /Z(D ◦ 〈G, H〉� ),

where G, H ∈ ! ⊗ A?∞.
The isomorphisms in the groupoid are defined to be

(�, _, 8, ([, D)) ∼ (�′, _′, 8′, ([′, D′))

if and only if there is a prime to ? quasi-isogeny 5 : �→ �′ such that over each connected component
of (,

_ ◦ 8(0) = 5 ∨ ◦ _′ ◦ 5

for some 0 ∈ (O� ⊗ Z(?) )×+ , 5 ◦ 8(1) = 8′(1) ◦ 5 for all 1 ∈ O ⊗ Z(?) and ([′, D′) = ( 5 ◦ [, D ◦ 0).
Note that this functor kills all of the integral structures in Definition 3; see Remark 4. Moreover, it

enlarges the domain of ambiguity factor A in Definition 1 from (Z(?) )×+ to (O� ⊗ Z(?) )×+ .
See [14] Section 7.1.3 for more details on this moduli problem.

We will work with integral toroidal and minimal compactifications of (ℎ (�, ℎ). However, this
has only been constructed by Lan for the PEL moduli problems in Definitions 3.1 and 3.5. Fortunately,
(ℎ (�, ℎ) is not very different from (ℎH (�∗, ℎ). The precise relation is that for eachH ⊂ �∗(Ẑ?), there
exists an open compact subgroup  ⊂ � (Ẑ?) containing H such that the natural map (ℎH (�∗, ℎ) →
(ℎ (�, ℎ) induced by �∗ ⊂ � is an open immersion containing the identity component of (ℎ (�, ℎ),
and the Hecke translates of (ℎH (�∗, ℎ) cover (ℎ (�, ℎ); see, for example, [7] Proposition 1.15. We
need a more explicit description of (ℎ (�, ℎ) in terms of (ℎH (�∗, ℎ), so we focus on principal level
structures from now on.

Suppose that = is prime to ? and let

 (=) :=  4A (� (Ẑ?) → � (Z/=Z)).

Observe that

a( (=)) =  4A ((O� ⊗Z G<) (Ẑ?) → (O� ⊗Z G<) (Z/=Z)). (12)

Recall that

U(=) :=  4A (�∗(Ẑ?) → �∗(Z/=Z))

and

a(U(=)) =  4A (G<(Ẑ?) → G<(Z/=Z)). (13)

Choose a set Λ of representatives of the double quotient

(O� ⊗ Ẑ?)× =
∐
X∈Λ
(O� )×+ X(a( (=))Ẑ?,×), (14)

then together with the representatives Ω,

(� ⊗ A(?∞) )× =
∐
U∈Ω
(O� ⊗ Z(?) )×+ U(O� ⊗ Ẑ?)×, (15)
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we have the decomposition

(� ⊗ A(?∞) )× =
∐
U∈Ω
X∈Λ

(O� ⊗ Z(?) )×+ UX(a( (=))Ẑ?,×). (16)

Let us change the notation "= in Definition 3.5 into "= (!, 〈·, ·〉) to emphasise the dependence of
"= on ! and 〈·, ·〉. Then there is a natural embedding

"= (!, )AO� /Z ◦ (UX〈·, ·〉� )) ↩→ "U, (=)/Δ

sending (�, _, 8, (U=, a=)) to (�, _, 8, ([, D)), where [ : ! ⊗A?∞ ∼→ + ?�B̄ is defined by a lifting of U= to

Û : ! ⊗ Ẑ? ∼→ ) ?�B̄

whose existence is a condition on the level structure in Definition 3.5, and then inverting all prime to p
integers. D : d−1

� ⊗ Ẑ? (1)
∼→ ) ? (d−1

� ⊗Z G<,B̄) is defined by

〈[(G), [(H)〉_ = )AO� /Z(D ◦ (UX〈G, H〉� ))

for G, H ∈ ! ⊗ A?∞. Here we abuse notation by denoting both D and D ⊗ 83Z(?) by D. The  (=)-class of
([, D) does not depend on the choice of the lifting Û.

Warning 3.9. )AO� /Z ◦ (UX〈·, ·〉� )) is not defined on ! but rather on ! ⊗ Ẑ? because UX ∈ O� ⊗ Ẑ?
if we choose U ∈ O� ⊗ Ẑ? , which we assume from now on. This does not affect the moduli problem
because the moduli problem in Definition 3.5 only depends on ! ⊗ Ẑ? , ! ⊗ R and the corresponding
pairing on them.

The appropriate notation for "= (!,)AO� /Z ◦ (UX〈·, ·〉� )) would be "= (!, 〈·, ·〉1) for some pairing
〈·, ·〉1 on ! that is isomorphic to )AO� /Z ◦ (UX〈·, ·〉� ) on ! ⊗ Ẑ? , perfect on ! ⊗ Z? and compatible
with ℎ on ! ⊗ R. Such a pairing exists if the moduli problem is nonempty. See [18] Remark 1.4.3.14 for
more explanations.

We use the wrong notation "= (!, )AO� /Z ◦ (UX〈·, ·〉� )) for simplicity.

By definition of the moduli problem, the decomposition (14) gives

"U, (=)/Δ =
∐
X∈Λ

"= (!,)AO� /Z ◦ (UX〈·, ·〉� )).

Then it follows from (16) and the definition of " (=)/Δ that

" (=)/Δ =
∐
U∈Ω
X∈Λ

"= (!, )AO� /Z ◦ (UX〈·, ·〉� )). (17)

This will help us construct toroidal and minimal compactifications of " (=)/Δ from those constructed
by Lan. We briefly recall Lan’s results on minimal compactifications.

Theorem 3.10 (Lan [18]). There exists a compactification "= (!, 〈·, ·〉)<8= of "= (!, 〈·, ·〉) together
with a stratification by locally closed subschemes

"= (!, 〈·, ·〉)<8= =
∐

[ (/= ,Φ= , X=) ]
"= (!/= , 〈·, ·〉/= )
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where

(1) /= is a O-invariant filtration on !/=!,

0 ⊂ /=,−2 ⊂ /=,−1 ⊂ /=,0 = !/=!,

that can be lifted to a O-invariant filtration / on ! ⊗ Ẑ? ,

0 ⊂ /−2 ⊂ /−1 ⊂ /0 = ! ⊗ Ẑ? ,

such that / is the restriction of a splitO-invariant filtration /A? on !⊗A? satisfying /⊥
A? ,−2 = /A? ,−1

and �A8/A? � !8 ⊗ A? for some O-lattice !8 . Let !Z= := !−1 and 〈·, ·〉Z= be a pairing on !Z= that
induces 〈·, ·〉 on �A−1/A? . There exists an ℎ/= : C→ �=3OR (!

/=
R
) that makes (!/= , 〈·, ·〉/= , ℎ/= )

a PEL data defining the moduli problem "= (!/= , 〈·, ·〉/= ). See [18] Lemma 5.2.7.5 for details.
(2) Φ= is a tuple (-,., q, i−2,=, i0,=), where -,. are O-lattices that are isomorphic as �-modules

after tensoring with Q and q : . ↩→ - is an O-invariant embedding.

i−2,= : �A/=−2

∼→ �><(-/=-, (Z/=Z) (1))

and

i0,= : �A/=0

∼→ ./=.

are isomorphisms that are reduction modulo n of O-equivariant isomorphisms i−2 : �A/−2

∼→
�><Ẑ? (- ⊗ Ẑ? , Ẑ? (1)) and i0 : �A/0

∼→ . ⊗ Ẑ? such that

i−2(G) (q(i0 (H))) = 〈G, H〉

for G ∈ �A/−2 and H ∈ �A/0 .

(3) X= : ⊕
8
�A

/=
8

∼→ !/=! is a splitting that is reduction modulo n of a splitting ⊕
8
�A/8

∼→ ! ⊗ Ẑ? .

The tuple (/=,Φ=, X=) is called a cusp label at principal level n, and [(/=,Φ=, X=)] is the
equivalence classes of the cusp label; see [18] Definition 5.4.1.9 for the precise definition of
equivalences.

There is a precise description of closure relations of strata in terms of the cusp labels parametris-
ing them; see [18] Definition 5.4.1.14 for details.

Remark 3.11. There are also toroidal compactifications of "= together with universal semi-abelian
varieties over them that parametrise how abelian varieties degenerate into semi-abelian varieties. The
toric part of the universal semi-abelian variety is parametrised by the cusp labels, which are discrete in
nature. The minimal compactification is roughly obtained by contracting the isomorphic toric part, so
it keeps track of only information on the abelian part, which is where the strata in Thoerem 3.10 come
from.

In other words, the toric part of toroidal compactifications degenerates into discrete indexing sets
of the strata, and the abelian part is remembered in the strata themselves. What is lost by passing to
minimal compactifications is the extension between torus and abelian varieties.

Corollary 3.12. " (=)/Δ has a compactification (" (=)/Δ)<8= together with a stratification by locally
closed subschemes

(" (=)/Δ)<8= =
∐
U∈Ω
X∈Λ

"= (!, )AO� /Z ◦ (UX〈·, ·〉� ))<8=

=
∐
U∈Ω
X∈Λ

∐
[ (/UX,= ,ΦUX,= , XUX,=) ]

"= (!/UX,= , 〈·, ·〉/UX,= )
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where (/UX,=,ΦUX,=, XUX,=) are cusp labels of"= (!,)AO� /Z◦(UX〈·, ·〉� )), and"= (!/UX,= , 〈·, ·〉/UX,= )
are as in the theorem. See Warning 3.9 for clarifications.

3.3. The partial Frobenius

From now on, we assume that ? satisfies the following condition:

? splits completely in the center �2 of �.

This implies that O ⊗ Z? �
∏
"=8 (Z?), � and �∗ splits over Q? and � (Q?) =

∏
p8

� (Q?), where p8

are prime ideals of � = �2,∗=1 such that ? =
∏
8
p8 .

In this section, all moduli problems are defined over O�0 ⊗Z F?; that is, "= or " (=) in this section
denotes "= ×O�0 ⊗Z(?) (O�0 ⊗ F?) or " (=) ×O�0 ⊗Z(?) (O�0 ⊗ F?) using notations in previous sections.
We follow Nekovář’s approach as in [25].

Definition 3.13. We fix a b ∈ �×+ satisfying Ep8 (b) = 1 and Ep8′ (2) = 0 for 8′ ≠ 8. The partial Frobenius
�p8 : " (=)/Δ → " (=)/Δ is defined by disoint union of maps

"U, (=)/Δ → "U′, (=)/Δ

sending (�, _, 8, ([, D)) in Definition 3.6 to (�′, _′, 8′, ([′, D′)) 1, where

�′ := �/( 4A (�) [p8])

with � the usual Frobenius and  4A (�) [p8] := {G ∈  4A (�) |0G = 0,∀0 ∈ p8}, 8′ is induced by the
quotient map cp8 : � → �′, _′ is a prime to ? quasi-isogeny characterised by b_ = c∨p8 ◦ _

′ ◦ cp8 ,
[′ = cp8 ◦ [ and U′ is defined by

bU = nU′_,

where U′ ∈ Ω, n ∈ (O� ⊗ Z(?) )×+ and _ ∈ (O� ⊗ Ẑ?)× as in decomposition (15). Lastly, D′ is the
composition of O� ⊗ Ẑ?-equivariant isomorphisms

D′ : d−1
� ⊗ Ẑ? (1)

_−→
∼

d−1
� ⊗ Ẑ? (1)

D−→
∼
) ? (d−1

� ⊗Z G<,B̄).

Remark 3.14. It is easy to see that �p8 is independent of the choice of b. Moreover, the same definition
works for ? not necessarily split in �2 . We make the assumption because that is the only case we will use.

We observe that

�p8�p 9 = �p 9�p8

and ∏
8

�p8 = �,

where F is the usual Frobenius, explaining the name partial Frobenius.
It is helpful to write the partial Frobenius in terms of the decomposition (17). We will use the

description to prove that the partial Frobenius extends to minimal compactifications and toroidal com-
pactifications.

1�′ satisfies the determinant condition because !84�′ = !84�′ [?] = ⊕
9
!84�′ [p 9 ] = ⊕9≠8!84�[p 9 ] ⊕ �

∗!84�[p8 ] as O ⊗ F?-

modules, showing that !84�′ has the same O ⊗ F? structure as !84�, which satisfies the determinant condition by our choice.
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The equation

bU = nU′_

with U′ ∈ Ω, n ∈ (O� ⊗Z(?) )×+ and _ ∈ (O� ⊗Ẑ?)× plays an important role in the definition of the partial
Frobenius. In particular, it determines how the partial Frobenius permutes components parametrised by
U ∈ Ω as in (11). We refine the description by using the finer decomposition (17) parametrised by UX.

With notations as in the previous paragraph, let

_X = n0X
′W

where X, X′ ∈ Λ, n0 ∈ O×�,+ and W ∈ (a( (=))Ẑ?,×), as in the decomposition (14). From equations (12)
and (13), we observe that

a( (=))Ẑ?,× =
∐
^

a( (=))^,

where ^ ranges over a complete set of representatives of Ẑ?,×/a(U(=)) � (Z/=Z)× in Ẑ?,×. Let

W = V^

with V ∈ a( (=)) and ^ as above be the decomposition of W.
The partial Frobenius �p8 induces a map

"= (!,)AO� /Z ◦ (UX〈·, ·〉� )) → "= (!,)AO� /Z ◦ (U′X′〈·, ·〉� ))

sending (�, _, 8, (U=, a=)) in Definition 3.5 to (�′, _′, 8′, (U′=, a′=)), where �′ := �/( 4A (�) [p8]), 8′ is
induced by the quotient map cp8 : � → �′, _′ is characterised by b_ = c∨p8 ◦ _

′ ◦ cp8 , which defines
a quasi-isogeny _′, U′= = cp8 ◦ U=, and a′= = a= ◦ ^. In the last equation, we view ^ as an element of
(Z/=Z)× that acts on Z/=Z(1), and a′= is defined to be

a′= : (Z/=Z(1))(
^−→
∼
(Z/=Z(1))(

a=−→
∼
`=,( .

A subtle point in the above description is that in Definition 3.5, _′ should not only be a prime to ?
quasi-isogeny but an actual isogeny. The characterisation b_ = c∨p8 ◦ _

′ ◦ cp8 defines a quasi-isogeny _′

but does not give an isogeny _′ a priori. We have to check that _′ is indeed a prime to p isogeny to make
the above a well-defined map.

Before giving the proof, let us introduce some more suggestive notations. Let �(p8) :=
�/( 4A (�) [p8]) and � (p8) := cp8 : � → �(p8) . Then we observe that there is a natural map
+ (p8) : �(p8) → � ⊗O� p−1

8 such that the composition

�
� (p8 )−→ �(p8)

+ (p8 )−→ � ⊗O� p−1
8

is the map 83� ⊗O� (O� ↩→ p−1
8 ), which has kernel �[p8]. Here p−1

8 is the inverse of p8 as fractional
ideals and � ⊗O� p−1

8 is defined in the category of fppf sheaf of O� -modules, which can be easily seen
to be represented by an abelian scheme isogenous to �. Here �p8 and +p8 should be viewed as partial
Frobenius and Verschiebung, whose products over all 8 will be the usual ones.
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We have a commutative diagram

� �(p8) � ⊗O� p−1
8

�∨ ⊗O� p8 �∨ (�∨) (p8) �∨ ⊗O� p−1
8

�∨ ⊗O� p8 (�∨) (p8) ⊗O� p8 �∨

(�(p8) )∨

� (p8 )

_

+ (p8 )

_(p8 ) _′ _⊗83
83⊗(p8↩→O� )

b ⊗83p8

�
(p8 )
�∨

b

+
(p8 )
�∨

(+ (p8 ) )∨ (� (p8 ) )∨

≃

that induces the dashed arrows. For example, the left dashed arrow is induced by �∨ [p8] ⊂ �∨ [b], and
similarly for the other two. We define _′ to be a composition of the middle vertical maps, which is an
actual isogeny and satisfies b_ = c∨p8 ◦ _

′ ◦ cp8 as the diagram shows.
The only nontrivial arrow in the above diagram is the isomorphism

(�(p8) )∨ � (�∨) (p8) ⊗O� p8 .

We give a proof here.

Lemma 3.15. With notations as above, for any abelian scheme �/( over a characteristic ? scheme (,
together with a ring homomorphism O→ �=3( (�), we have a canonical isomorphism

(�(p8) )∨ � (�∨) (p8) ⊗O� p8 .

Proof. Applying �>< 5 ?? 5 (−,G<) to the short exact sequence

0→ �[p8]/ 4A (�) [p8] → �(p8)
+ (p8 )−→ � ⊗O� p−1

8 → 0

and using that �GC1
5 ?? 5

(�,G<) � �∨, we have

0→ �>< 5 ?? 5 (�[p8]/ 4A (�) [p8],G<) → �∨ ⊗O� p8 → (�(p8) )∨ → 0.

We know that �>< 5 ?? 5 (�[p8]/ 4A (�) [p8],G<) is the Cartier dual (�[p8]/ 4A (�) [p8])∨ of
�[p8]/ 4A (�) [p8], so the dual of the short exact sequence

0→  4A (+) →  4A (+) ⊗O� p−1
8 → �[p8]/ 4A (�) [p8] → 0

gives

(�[p8]/ 4A (�) [p8])∨ �  4A ( 4A (+)∨ ⊗O� p8 →  4A (+)∨)

�  4A ( 4A (��∨) ⊗O� p8 →  4A (��∨))

�  4A (��∨) [p8] ⊗O� p8 ,

which is the kernel of

�∨ ⊗O� p8
� (p8 ) ⊗83−→ (�∨) (p8) ⊗O� p8 ,

proving (�(p8) )∨ � (�∨) (p8) ⊗O� p8 . �
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We now state the main technical result of the article, which claims that the partial Frobenius extends
to the minimal compactification in Corallary 3.12.

Theorem 3.16. �p8 extends to a morphism

�p8 : (" (=)/Δ)<8= −→ (" (=)/Δ)<8=

sending the strata "= (!/UX,= , 〈·, ·〉/UX,= ) associated to U ∈ Ω, X ∈ Λ and the cusp label
[(/UX,=,ΦUX,=, XUX,=)] to the strata "= (!/U′ X′,= , 〈·, ·〉/U′X′,= ) associated to U′ ∈ Ω, X′ ∈ Λ as in the
above description of the partial Frobenius, and the cusp label is [(/U′X′,=,ΦU′X′,=, XU′X′,=)] defined as
follows:

/U′X′,= = /UX,=.

If ΦUX,= = (-,., q, i−2,=, i0,=), then

ΦU′X′,= = (- ⊗O� p8 , . , q
′, i′−2,=, i

′
0,=),

where

i′−2,= : �A
/U′X′,=
−2 = �A

/UX,=
−2

i−2,=−→ �><(-/=-, (Z/=Z) (1))

∼−→ �><(- ⊗ p8/=(- ⊗ p8), (Z/=Z) (1))

and

i′0,= : �A
/U′X′,=
0 = �A

/UX,=
0

i0,=−→ ./=. .

Lastly, q′ is defined by the following diagram similar to the above diagram defining _′:

- - ⊗O� p8

. ⊗O� p−1
8 . . ⊗O� p8

. ⊗O� p−1
8 .

83⊗(O�←↪p8)

83⊗(p−1
8 ←↪O� )

q

83⊗(O�←↪p8)

q⊗83

b ⊗83

83⊗(p−1
8 ←↪O� )

q′

Moreover, on each strata, �p8 induces the morphism

"= (!/UX,= , 〈·, ·〉/UX,= ) → "= (!/U′ X′,= , 〈·, ·〉/U′X′,= )

sending (�, _, 8, (U=, a=)) to (�′, _′, 8′, (U′=, a′=)) as in the description before the theorem. For complete-
ness, we summarise the description as follows. Using the above notations, �′ := �/( 4A (�) [p8]), 8′ is
induced by the quotient map cp8 : � → �′, _′ is characterised by b_ = c∨p8 ◦ _

′ ◦ cp8 which defines a
prime to ? isogeny _′, U′= = cp8 ◦U= and a′= = a= ◦ ^. In other words, restriction of the partial Frobenius
to (suitable union of) strata recovers the partial Frobenius on them.

Remark 3.17. The diagram defining q′ is similar to the diagram defining _′, and there is a reason for
that. We will see in the proof that the diagram defining _′ also defines a polarisation for the universal
semi-abelian variety over toroidal compactfications, and the diagram for q′ is the one induced on the
(character group of) toric part.

Moreover, the theorem is proved by first extending �p8 to toroidal compactifications and then con-
tracting to a morphism on the minimal compactification. The description of the morphism on strata
is obtained by looking at how �p8 operates on semi-abelian varieties. In particular, the morphism on
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indexing sets is obtained by looking at the toric part, and the morphism on strata is determined by the
abelian part. See also Remark 3.11.

Remark 3.18. The description of strata in the minimal compactification shows that minimal com-
pactification is plectic, which is the underlying reason that partial Frobenius extends to the minimal
compactification. This can be made precise if we take care of the subtlety in dimension zero, which
means taking appropriate unions of the strata to define Shimura varieties of similitude PEL type as in
Definition 3.6 (the strata we use are of Kottwitz’s type as in definition 3.5).

Another way to see the phenomenon is through Pink’s mixed Shimura varieties, where he uses mixed
Shimura varieties associated to parabolic subgroups (more precisely, the Levi group) to define strata of
the minimal boundary, called rational boundary components in his terminology. In our case, the Shimura
variety is associated to � = '4B�/Q�, and the parabloics are also of the form '4B�/Q%. However, the
strata are assocaited to a subgroup %1, in Pink’s notation, of the parabolic, which is the Hermitian part
in classical language, and this is not necessarily plectic; that is, not of the form '4B�/Q(−). The reason
is that in [28] Section 4.7, Pink defines %1 as the group satisfying certain minimality property; see [28]
Example 12.21 for an example how this kills ‘plecticity’. The failure is similar to the difference between
� and �∗, and the remedy is the same. We can replace %1 by another group in the parabolic, which is
different only up to a similitude. Pink’s theory still works in this slightly different setting, as already
observed by him in Remark (ii) of [28] Section 4.11.

The proof of the theorem is rather technical, and we defer to the last section for details. We first give
an application of it on the construction of plectic weight filtration of cohomology of Hilbert modular
varieties in the next section.

4. Hilbert modular varieties

4.1. Basics

We now specialise discussions in the previous section to the Hilbert modular varieties. The notations in
this section will be the same as in the previous one. We simply restrict everything to a special case as
follows.

We take O = O� , with � a totally real field of degree [� : Q] = 3 and ∗ = 83, which coincides
with notations in the previous section in that � = � and � = �2 is the ∗-invariant part of the center
of �. Moreover, ! = O� ⊕ O� , 〈·, ·〉� is the standard O� -bilinear alternating pairing defined by

the matrix

(
0 −1
1 0

)
, and 〈·, ·〉 = )AO� /Z(〈·, ·〉� ). The morphism ℎ : C → �=3OR (!R) is defined by

ℎ(G + 8H) = ∏
g:�↩→R

(
G −H
H G

)
. These data define a type C PEL datum. It is easy to see that the reflex field

�0 is Q. The relevant groups are

� = '4BO�/Z�!2

and

�∗ = 34C−1(G<) ⊂ �,

where 34C : � → '4BO�/ZG< is the similitude map.
We give a brief account of the moduli problem it defines, which is a special case of Definition 3.6.

Let U ∈ Ω be as in decomposition (15), then "U, (=) is the moduli space representing the functor
associating a locally Noetherian Z(?) -scheme ( to the isomorphism classes of tuples (�, _, 8, ([, D)).
Here � is an abelian scheme over (, _ : �→ �∨ is a prime to ? polarisation and 8 : O� → �=3( (�) a
ring isomorphism inducing the trivial involution on O� through _ and a rank 1 O� -module structure on
!84(�). Note that the last condition is Kottwitz’s determinant condition in this special case. Moreover,
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the level structure ([, D) is an c1 ((, B̄)-invariant  (=)-orbit of O� ⊗ A?∞-equivariant isomorphism

[ : ! ⊗ A?∞ = (O� ⊗ A?∞)⊕2 ∼→ + ?�B̄

together with an O� ⊗ Ẑ?-equivariant isomorphism

D : d−1
� ⊗ Ẑ? (1)

∼→ ) ? (d−1
� ⊗Z G<,B̄)

such that

〈[(G), [(H)〉_ = )AO� /Z(D ◦ (U〈G, H〉� )),

where G, H ∈ ! ⊗ A?∞. Because we work only with principal level-= structures, the level structure can
also be seen as isomorphisms

(O�/=O� )⊕2
� �[=]

and

d−1
� /=d−1

� � d−1
� ⊗ `=.

Remark 4.1. In the literature, it is common to use a variant of the above moduli problem. More precisely,
the polarisation is defined as an O� -equivariant isomorphism

(c, c+) � (�><(H<O�
(�, �∨), �><(H<

O�
(�, �∨)+)

where c is a fixed prime to ? fractional ideal representing [U] ∈ �;+ (�) = (O� ⊗ Z(?) )×+ \ (� ⊗
A(?,∞) )×/(O� ⊗ Ẑ?)×, c+ is the totally positive part (the elements that are positive for all embeddings of
� into R), �><(H<

O�
(�, �∨) is the symmetric O� -equivariant homomorphisms and �><(H<

O�
(�, �∨)+ is

the set of polarisations. The level structure is defined as anO� -equivariant isomorphism (O�/=O� )⊕2
�

�[=] together with an isomorphism O�/=O� � `= ⊗ c∗; see [30] for details. For the equivalence to our
definition, see [14] Section 4.1.1 for some discussion.

Similar to the previous section, we have

(ℎ (=) (�, ℎ) =
∐
U∈Ω

"U, (=)/Δ = " (=)/Δ ,

where " (=) :=
∐
U∈Ω

"U, (=) , and

" (=)/Δ =
∐
U∈Ω
X∈Λ

"= (!, )AO� /Z ◦ (UX〈·, ·〉� )).

We now describe the minimal compactification in more explicit terms. Recall from Theorem 3.12
that cusp labels are equivalence classes of tuples [(/=,Φ=, X=)], where /= is an O� -invariant filtration

0 ⊂ /=,−2 ⊂ /=,−1 ⊂ /=,0 = !/=!

on !/=! satisfying /⊥
=,−2 = /=,−1 and some liftability condition, Φ= is a tuple (-,., q, i−2,=, i0,=) and

X= : ⊕
8
�A

/=
8

∼→ !/=! is a splitting with a liftability condition. In the definition of Φ=, -,. are O-lattices

that are isomorphic as �-modules after tensoring with Q, q : . ↩→ - is an O-invariant embedding.

i−2,= : �A/=−2

∼→ �><(-/=-, (Z/=Z) (1))
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and

i0,= : �A/=0

∼→ ./=.

are isomorphisms that are reduction modulo n of O-equivariant isomorphisms i−2 : �A/−2

∼→
�><Ẑ? (- ⊗ Ẑ? , Ẑ? (1)) and i0 : �A/0

∼→ . ⊗ Ẑ? such that

i−2(G) (q(i0 (H))) = 〈G, H〉

for G ∈ �A/−2 and H ∈ �A/0 .

In our case, ! = O⊕2
�

and there are essentially two different filtrations on !/=!, either /=,−2 = 0 and
/=,−1 = !/=! or /=,−2 = /=,−1 is a O� -submodule of !/=! being reduction of a rank 1 O� ⊗ A?-
submodule of ! ⊗A? . The first case is trivial; the corresponding strata is the open strata in the minimal
compactification. We focus on the second case from now on.

The isomorphisms i0,= and i−2,= force - and . to be rank 1 O� -modules, which are isomorphic to
fractional ideals of � and classified by �; (�). We observe that �A/=−1 = 0, implying that !/= = 0. Thus,
the strata associated to [(/=,Φ=, X=)] must be �B><(Z/=Z(1), `=); that is,

"= (!/= , 〈·, ·〉/= ) = �B><(Z/=Z(1), `=);

see Remark 3.4 for explanations. In other words, the boundary components all have dimension zero,
and they are generally referred to as cusps.

4.2. The weight spectral sequence

We now make the spectral sequence in Theorem 2.14 more explicit in our special case. With notations
as in Subsection 2.2, we take + = Q(0) to be the trivial representation of �, then F+ = Q(0) is the
constant sheaf in �1< ((ℎ (=) (�, ℎ)); that is, Q(0) is either the constant Hodge module Q� (0) or the

constant mixed ;-adic sheaf Q; (0). Let 9 : (ℎ (=) (�, ℎ) ↩→ (ℎ (=) (�, ℎ)<8= be the open embedding,
then the spectral sequence is

�
?,@

1 = H?+@ ((ℎ (=) (�, ℎ)<8=, F≥−?F≤−?' 9∗(Q(0))) ⇒ � ?+@ ((ℎ (=) (�, ℎ),Q(0)). (18)

BecauseQ(0) is pure of weight 0, Proposition 2.7 and Theorem 2.8 tell us that the first nontrivial piece is

F≥0F≤0' 9∗(Q(0)) = F≤0' 9∗(Q(0)) = 9!∗(Q(0))

as we see in the discussion prior to Theorem 2.14, so

�
0,@
1 = ��@ ((ℎ (=) (�, ℎ)<8=,Q(0)).

Similarly, the discussion before Theorem 2.14 gives information on the rest of the pieces. In particular,
equation (4) tells that for : > 0,

F≤:F≥:' 9∗(Q(0)) = 8∗F≤:F≥: 8∗' 9∗(Q(0)), (19)

where

8 : (ℎ (=) (�, ℎ)<8= \ (ℎ (=) (�, ℎ) =
∐
U∈Ω
X∈Λ

∐
[ (/UX,= ,ΦUX,= , XUX,=) ]

/UX,=,−2≠0

�B><(Z/=Z(1), `=)

↩−→ (ℎ (=) (�, ℎ)<8= (20)
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is the inclusion of the complement of (ℎ (=) (�, ℎ); that is, the inclusion of finitely many cusps. Now
Pink ([29]) or Burgos and Wildeshaus’s ([5]) formula tells us that

8∗m'
= 9∗(Q(0)) = ⊕

0+1==
F(�0 (�� , �1 (!84,1,Q(0)))), (21)

where m := [(/UX,=,ΦUX,=, XUX,=)] and 8m is the inclusion of the cusp corresponding to m. Moreover,
,1 is the unipotent of the Borel subgroup corresponding to the cusp m, and�� is an arithmetic subgroup
of the linear part of the Levi group determined by the level  (=). By proof of Theorem 3.5 in [31], we
have that

8∗m'
= 9∗(Q(0)) =

{∧= (Q(0)3−1) 0 ≤ = ≤ 3 − 1,∧23−1−= (Q(0)3−1) (−3) 3 ≤ = ≤ 23 − 1.

Note that the author only works with the Hodge module case in [31], but the proof works equally
well for the ;-adic case. Indeed, if we view Q(0) as the trivial representation of G<, which is the
group corresponding to the 0-dimensional Shimura variety �B><(Z/=Z(1), `=) indexed by m, and (−3)
twisting by 3th power of the dual of the standard representation, then the proof in [31] shows that

8∗m'
= 9∗(Q(0)) =

{
F(∧= (Q(0)3−1)) 0 ≤ = ≤ 3 − 1,

F(∧23−1−= (Q(0)3−1) (−3)) 3 ≤ = ≤ 23 − 1.
(22)

We will use a different parametrisation of the cusps than (20). Recall thatΛ in (14) is chosen such that

�B><O�
(d−1
� /=d−1

� (1), d−1
� ⊗Z `=) =

∐
X∈Λ

�B><(Z/=Z(1), `=).

We use it to rewrite (20) as

8 : (ℎ (=) (�, ℎ)<8= \ (ℎ (=) (�, ℎ) =
∐
U∈Ω

∐
m

�B><O�
(d−1
� /=d−1

� (1), d−1
� ⊗Z `=) (23)

with a new parametrisation set of cusps, which we still denote by m. For a precise description of m, see
[10]. For such a parametrisation, the boundary is a union of 0-dimensional Shimura varieties associated
to '4B�/QG<, and a minor modification of the proof in [31] shows that

8∗m'
= 9∗(Q(0)) =

{
F(∧= (Q(0)3−1)) 0 ≤ = ≤ 3 − 1,

F(∧23−1−= (Q(0)3−1) (−3)) 3 ≤ = ≤ 23 − 1,
(24)

where m denotes the cusps in (23), and (−3) is twisting by the 1-dimensional representation #<−1
�/Q :

'4B�/QG< → G< of '4B�/QG<. Note that the corresponding sheaf is the (−3)th power of the Tate
twisting sheaf, explaining the notation. Further, this is the only new observation one needs in the proof
of the above.

Then together with equation (19) we have that for : > 0,

F≥:F≤:'
= 9∗(Q(0)) =

{
8∗(

∧23−1−= (Q(0)3−1) (−3)) 3 ≤ = ≤ 23 − 1, : = 23

0 otherwise.
(25)
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Thus, the spectral sequence (18) becomes

⊕∧0 (Q(0)3−1) (−3) 0 · · · 0 0 43 − 1

...
...

. . .
...

...
...

⊕∧3−1 (Q(0)3−1) (−3) 0 · · · 0 0 33

0 0 · · · 0 0 33 − 1

...
...

. . .
...

...
...

0 0 · · · 0 0 23 + 1

0 0 · · · 0 ��23 ("∗,Q(0)) 23

...
...

. . .
...

...
...

0 0 · · · 0 ��3+1("∗,Q(0)) 3 + 1

...
...

. . .
...

...
...

0 0 · · · 0 ��0("∗,Q(0)) 0

−23 −23 + 1 · · · −1 0
where

"∗ := (ℎ (=) (�, ℎ)<8=, " := (ℎ (=) (�, ℎ) and

⊕
8∧
(Q(0)3−1) (−3) := ⊕

m
(
8∧
(Q(0)3−1) (−3))⊕=

= �23−1−8 ("∗ \ ", 8∗' 9∗(Q(0)))

for 0 ≤ 8 ≤ 3 − 1. Note that in either case (Hodge modules or ;-adic), the cohomology is taken after
passing to the algebraic closure of the base field, so "∗ \" =

∐
m

�B><(Z/=Z(1), `=) becomes
∐
m

∐
=
{∗},

explaining the second equality of the above.
Now we can read off from the above computation that

0 −→ �
−23,43−1
∞ −→ ⊕

m
(

0∧
(Q(0)3−1) (−3))⊕= −→ ��23 ("∗,Q(0)) −→ �

0,23
∞ −→ 0

0 −→ ��23−1 ("∗,Q(0)) −→ �23−1 (",Q(0)) −→ �
−23,43−1
∞ −→ 0,
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where �0,23
∞ = �23 (",Q(0)) = 0 as " is nonproper of dimension 3. Moreover, we observe easily that

�8 (",Q(0)) = ��8 ("∗,Q(0))

for 0 ≤ 8 ≤ 3 − 1, and

0 −→ ��8 ("∗,Q(0)) −→ �8 (",Q(0)) −→ ⊕
m
(
23−1−8∧

(Q(0)3−1) (−3))⊕= −→ 0

for 3 ≤ 8 ≤ 23 − 2. In the last exact sequence, we use that

�
−23,23+8
∞ = ⊕

m
(
23−1−8∧

(Q(0)3−1) (−3))⊕=

for 3 ≤ 8 ≤ 23 − 2, which follows because the domain and codomain of the differentials in the picture
have different weights in this range.

We observe from the above computation that the spectral sequence (18) gives us the weight filtration
on �∗(",Q(0)), which provides a new computation of the weight filtration of the cohomology of
Hilbert modular varieties without using the Borel-Serre compactifications as done, for example, in
the last section of [27]. This is a philosophically better computation because it is performed in the
algebraic category, whereas the older computation uses the nonalgebraic Borel-Serre compactifications
and proceeds in a more indirect way when establishing the mixed Hodge structures. See [1] for a modern
treatment of the motivic meaning of the reductive Borel-Serre compactifications.

4.3. The plectic weight filtration

Now we make use of the spectral sequence (18) to construct the plectic weight filtration. Note that the
filtration induced by (18) is a Z-filtration, but the plectic weight filtration we are looking for is a Z3-
filtration. We will use the partial Frobenius to cut out the Z-filtration into a Z3-filtration and show that
this is the sought-after plectic weight filtration.

Firstly, we compute the eigenvalues of the partial Frobenius on the boundary cohomology �∗("∗ \
", 8∗' 9∗(Q(0))). We denote the canonical PEL (up to similitude) smooth integral model " (=)/Δ of
" by ℳ, which is defined over an open dense subset of (?42(Z). Similarly, ℳ∗ is the integral model
of the minimal compactification. Now choose a prime ? in the open subset such that it is split in � and
lies in the applicable range of Theorem 2.16. Then as we have already seen, the Frobenius �A>1? on
ℳ
∗
F?

decomposes into �A>1? =
∏
8
�8 , where �8 is the partial Frobenius corresponding to the prime p8

in the prime decomposition ? =
∏
8
p8 of ? in �.

Let us recall the construction of the ;-adic sheaf on a Shimura variety coming from an algebraic
representation, following Pink ([29]). Let � be a reductive group giving rise to a Shimura datum, with
associated Shimura variety (ℎ , for compact open  ⊂ � (A 5 ). For  ′ ⊂  normal, there is a natural
Galois etale covering

c ′ : (ℎ ′ → (ℎ 

with Galois group  / ′. We choose a system of  ′ such that  ′ differs from  only in ;-adic part
 ′
;
; that is,  / ′ =  ;/ ′; , and their ;-adic parts  ′

;
form a basis of � (Q;). Let + be an algebraic

representation of �, then it gives rise to a continuous ;-adic representation of � (Q;), which contains a
lattice Λ stable by all  ′

;
, and for  ′

;
⊂  ; , there exists a number = such that the natural action of  ′

;
and

 ; on Λ induces a representation of  ;/ ′; on Λ/;=Λ, then we have an etale sheaf

V ′ := (c ′∗(Z/;=Z) ⊗Z/;=Z Λ/;=Λ) ;/ 
′
;
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where the action of  ;/ ′; on the first factor is induced by the Galois covering c ′ and the second factor
is induced by the representation we have just constructed. These V ′ form an inverse system, and we
define the associated ;-adic sheaf by

F+ := (lim←−−
 ′

V ′) ⊗Z; Q; .

This is independent of the choices we have made. Similar to Hecke operators, the partial Frobenius
induces natural maps between F+ ; that is, F+ −→ �8∗F+ . The key to it is that the partial Frobenius is
compatible with the projections c ′ ; that is,

(ℎ ′ (ℎ ′

(ℎ (ℎ 

�8

c ′ c ′

�8

is commutative and equivariant for the Galois group. It is a general heuristic that the partial Frobenius
is amplified Hecke operators in characteristic ?.

Moreover, the isomorphism (21) is compatible with the partial Frobenius. As in Theorem 3.16 (for
PEL Shimura varities), the partial Frobenius �8 extends to the minimal compactification and preserves

both the open (ℎ 
9
↩→ (ℎ<8=

 
and the boundary (ℎ<8=

 
\ (ℎ 

8
↩→ (ℎ<8=

 
, therefore inducing the map

8∗' 9∗Q;
8∗' 9∗ (−)−→ 8∗' 9∗�8∗Q; = 8

∗�8∗' 9∗Q;
b.c.−→ �8∗8

∗' 9∗Q;

which under the natural isomorphism (21), corresponds to the natural map F+ → �8∗F+ for+ specified
in (21).

Remark 4.2. The above naturality can be proved with the same proof as in Section 4.8 of [29], where
it is proved for the Hecke operators. The key property underlying the proof is the compatibility of
Hecke operators with the toroidal compactifications. The same compatibility result holds for the partial
Frobenius, as we will see in the next section.

Now we go back to the special case of Hilbert modular varieties. Applying the above functoriality to
the isomorphism (22), we can reduce the computation of 8∗' 9∗Q; → �8∗8∗' 9∗Q; to the computation of
F+ → �8∗F+ for + as in (22).

We make use of the parametrisation (23). For an arbitrary integer : , let

c: : �B><O�
(d−1
� /=;:d−1

� (1), d−1
� ⊗Z `=;: ) → �B><O�

(d−1
� /=d−1

� (1), d−1
� ⊗Z `=)

be the natural map, corresponding to the covering map c ′ as above. Let \ ∈ �B><O�
(d−1
� /=d−1

� (1),
d−1
�
⊗Z `=), and we suppose that \ lies in the position (U, X, m) of the decomposition

ℳ
∗
F?
\ℳF? =

∐
U∈Ω

∐
m

�B><O�
(d−1
� /=d−1

� (1), d−1
� ⊗Z `=).

Recall that �8 maps (U, X, m) to (U1, X1, m1), where U1 is defined by

bU = n1U1_1

with b ∈ O� such that Ep8 (b) = 1 and Ep 9 (b) = 0 for 9 ≠ 8, U1 ∈ Ω, n1 ∈ (O� ⊗ Z(?) )×+ and

_1 ∈ (O� ⊗ Ẑ?)× as in decomposition (15). Moreover, m1 is defined as in Theorem 3.16 (being a union
of m ′ in Theorem 3.16), and �8 maps \ to _1\ as in Definition 3.13. The vague description of m1 here
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suffices for our purpose. In summary,

\ |(U,m)
�8−→ (_1\) |(U1 ,m1)

with obvious notations.
We can repeat the above procedure and obtain

bU1 = n2U2_2

... (26)

bU< = n<+1U<+1_<+1,

where U 9 ∈ Ω, n 9 ∈ (O� ⊗ Z(?) )×+ and _ 9 ∈ (O� ⊗ Ẑ?)× as in decomposition (15). Then

\ |(U,m)
�<8−→ (_1 · · · _<\) |(U< ,m<) .

Because �8 permutes the cusps, we know that there is a minimal integer # such that

�#8 (\) = \.

Note that this means that _1 · · · _# \ = \, U# = U and m# = m.
We denote by ℳ̃ the Hilbert modular variety of principal level =;: , then we have a natural commu-

tative diagram map

ℳ̃
∗
F?
\ ℳ̃F? ℳ̃

∗
F?
\ ℳ̃F?

ℳ
∗
F?
\ℳF? ℳ

∗
F?
\ℳF?

�8

c: c:

�8

.

Together with the decomposition

ℳ̃
∗
F?
\ ℳ̃F? =

∐
U∈Ω

∐
m̃

�B><O�
(d−1
� /=;:d−1

� (1), d−1
� ⊗Z `=;: )

we are reduced to the situation

�B><O�
(d−1
�
/=;:d−1

�
(1), d−1

�
⊗Z `=;: ) |(U,m̃) �B><O�

(d−1
�
/=;:d−1

�
(1), d−1

�
⊗Z `=;: ) |(U1 ,m̃1)

�B><O�
(d−1
� /=d−1

� (1), d−1
� ⊗Z `=) |(U,m) �B><O�

(d−1
� /=d−1

� (1), d−1
� ⊗Z `=) |(U1 ,m1)

�8

c: c:

�8

.

The same description of �8 applies to ℳ̃F? . In summary,

\̃ |(U,m̃)
�8−→ (_1\̃) |(U1 ,m̃1) .

One subtlety here is that there are more than one m̃ lying over m. However, the cusps they parametrise
are canonically isomorphic, and we can choose one m̃ for each m.

For simplicity, we assume that ; is prime to =, then the Galois group for the covering c: is
(O�/;:O� )×. If we denote by + the 1-dimensional representation #<−1

�/Q : '4B�/QG< → G<, then
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its ;-adic points induces the reduced representation #<−1
�/Q : (O�/;:O� )× −→ (Z/;:Z)×, which we

denote by V: . We fix a nonzero element E: ∈ V: for each : , and we assume that they are compatible
when : varies. From the description we have just reviewed, we have

F+ = (lim←−−
:

(c:∗(Z/;:Z) ⊗Z/;:Z V: ) (O�/;
:O� )×) ⊗Z; Q; .

For a fixed : , if we choose a

\̃ ∈ �B><O�
(d−1
� /=;:d−1

� (1), d−1
� ⊗Z `=;: )

such that c: (\̃) = \, then

c:∗(Z/;:Z) ⊗Z/;:Z V: ) (O�/;
:O� )× |\ = (Z/:Z) ·

∑
6∈(O� /;:O� )×

(6\̃) ⊗ (#<−1
�/Q(6)E: );

that is, the choice of E: and \̃ gives a basis
∑

6∈(O� /;:O� )×
(6\̃) ⊗ (#<−1

�/Q(6)E: ) of c:∗(Z/;:Z) ⊗Z/;:Z

V: ) (O� /;
:
O� )× |\ .

Now using this explicit description, we can compute the natural morphism F+ → �8∗F+ (over
ℳ
∗
F?
\ℳF? ) as follows. It is (Q; ⊗ (−)) the direct limit of the morphism

∑
6∈(O� /;:O� )×

(6\̃) ⊗ (#<−1
�/Q(6)E: )

������
(U,m)

→
∑

6∈(O�/;:O� )×
(6_1\̃) ⊗ (#<−1

�/Q(6)E: )

������
(U1 ,m1)

.

For a fixed \ and the corresponding minimal # as above, we can iterate the process and obtain a basis
for the stalk of the sheaf at �<8 (\ |(U,m) ) for < < # . Note that by the choice of # , �<8 (\ |(U,m) ) are all
different for < < # . When < = # , we have �#8 (\ |(U,m) ) = \ |(U,m) , and

∑
6∈(O�/;:O� )×

(6\̃) ⊗ (#<−1
�/Q(6)E: )

�#8−→
∑

6∈(O�/;:O� )×
(6_1 · · · _# \̃) ⊗ (#<−1

�/Q(6)E: )

= #<�/Q(_1 · · · _# )
∑

6∈(O�/;:O� )×
(6\̃) ⊗ (#<−1

�/Q(6)E: ).

This tells us that with the basis we have chosen, �8 has a block of the form

©«

#<�/Q(_1 · · · _# )
1

1
. . .

1

ª®®®®®®¬
.

This is a matrix expression of a morphism between free Z/;:Z-modules. Taking the inverse limit over :
and tensor withQ; , we have the same matrix (partial expression) for the desired morphismF+ → �8∗F+ .
Now from equation (26) and U# = U, we have

b#U = (n1 · · · n# )U(_1 · · · _# )
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with (n1 · · · n# ) ∈ (O� ⊗ Z(?) )×+ and _1 · · · _# ∈ (O� ⊗ Ẑ?)×. Hence,

_1 · · · _# = b# (n1 · · · n# )−1

and

#<�/Q(_1 · · · _# ) = #<�/Q(2# ) = ?# .

It is easy to compute that the characteristic polynomial of the matrix

©«

?#

1
1
. . .

1

ª®®®®®®¬
is G# − ?# ; hence, the eigenvalues are of the form ?Z 8

#
with Z# a primitive #th root of unity. Therefore,

they are Weil numbers with absolute value ?. Because every block is of the above form, we see that the
eigenvalues are all of absolute value ?. If we base change everything to F̄? , then the above computation
computes the eigenvalues of the partial Frobenius �8 on �∗(ℳ∗

F̄?
\ℳF̄? ,F+), which we see are all of

absolute value ?. Then from (;-adic realisation of) equation (25), we have that F≥:F≤:'= 9∗Q; is a sum
of 8∗F+ if : > 0; hence, the partial Frobenius acts on

�∗(ℳ∗
F̄?
, F≥:F≤:' 9∗Q;)

with eigenvalues of absolute value ?, if : > 0.
To summarise, we have proven the following proposition.

Proposition 4.3. The partial Frobenius �8 acts on the spectral sequence (18) by Proposition 2.18. More
precisely, by Proposition 2.18, �8 acts on the special fibre variant of (;-adic realisation of) the spectral
sequence (18)

�
0,1
1 = �0+1 (ℳ∗

F̄?
, F≥−0F≤−0' 9∗Q;) ⇒ �0+1 (ℳF̄? ,Q;),

which is (at least up to convergence) isomorphic to the Hodge module realisation of (18) by Theorem
2.16 and choice of ?. If 0 < 0, �8 acts on �0,11 with eigenvalues of absolute value ? and hence of partial
Frobenius weights (2, · · · , 2).

On the other hand, the Hodge module realisation of (18) has ��
0,1
1 =

�0+1 (ℳ∗(C), F≥−0F≤−0' 9∗C), which is a sum of �0+1 (ℳ∗(C) \ ℳ(C),F+) if 0 < 0, and
hence of plectic Hodge type (1, · · · , 1; 1, · · · , 1) (sum of C(−1)⊗3 , the (−3)th power of Tate structure).
These are of plectic weight (2, · · · , 2), and the above computation shows that under the comparison,
the partial Frobenius weights are the same as the plectic Hodge weights.

Remark 4.4. It is possible to avoid the comparison Theorem 2.16 in the special case of Hilbert modular
varieties. We have observed that the spectral sequence (18) induces (shifts of) the weight filtration on
the open cohomology. Therefore, the comparison automatically holds. To spell this out, we note that the
identification with the weight filtration gives a motivic meaning of the filtration induced by (18), namely,
we can find a smooth projective compactification with smooth normal crossing boundary divisors, and
the filtration can be expressed in terms of the cohomology of the natural strata. Then the comparison is
reduced to the standard comparison between different cohomology theories.

Note that in general the filtration induced by the spectral sequence in Theoerem 2.14 is not the weight
filtration. However, in some sense, it detects the nontrivial extensions of the weight filtration.
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We have computed the partial Frobenius on � ?,@1 for ? < 0 and checked that the partial Frobenius
weights are the same as the plectic Hodge weights. It remains to do the same for the remaining
�

0,@
1 = ��@ (ℳ∗

F̄?
,Q;).

We note that the Hecke algebra decomposes the cohomology into

��∗(ℳ∗
F̄?
,Q;) = ��∗(ℳ∗

F̄?
,Q;)cusp ⊕ ��∗(ℳ∗

F̄?
,Q;)rest,

where ��∗(ℳ∗
F̄?
,Q;)cusp is the subspace on which the Hecke algebra acts with the same type as some

cuspidal automorphic representations. Similarly, ��∗(ℳ∗
F̄?
,Q;)rest is the subspace on which the Hecke

algebra acts as a discrete but noncuspidal automorphic representation.
Note that the corresponding representation is cohomological and we can classify them. The cus-

pidal part corresponds to holomorphic Hilbert modular forms of weight (2, · · · , 2), and the discrete
noncuspidal part corresponds to 1-dimensional representations.

We first compute the cuspidal part. We have

��∗(ℳ∗
F̄?
,Q;)cusp = ⊕

5
��∗(ℳ∗

F̄?
,Q;) 5

where 5 ranges over holomorphic Hilbert modualr forms of weight (2, · · · , 2); see [12] chapter 3, for
example. It is well known from the (6,  )-cohomology computations that ��∗(ℳ∗

F̄?
,Q;) 5 is concen-

trated in degree 3 and (its complex variant) has plectic Hodge type ((1, 0) ⊕ (0, 1))⊗3 , hence of plectic
weight (1, · · · , 1). We want to check that the partial Frobenius weights are again of the same weight,

namely, the eigenvalues of the partial Frobenius �8 on ��∗(ℳ∗
F̄?
,Q;) 5 have absolute value ?

1
2 .

Recall that Nekovář proved in [25] that the partial Frobenius satisfies an Eichler-Shimura relation. In
the Hilbert modular case, it is

�2
8 − ()8/(8)�8 + ?/(8 = 0,

where )8 , (8 are standard Hecke operators of the Hecke algebra of '4B�/Q�!2 at Q?; that is,

)8 , (8 ∈ � ('4B�/Q�!2 (Q?)//'4B�/Q�!2 (Z?),Z) = ⊗8� (�!2 (Q?)//�!2 (Z?),Z)

indexed by {p8}; see [25] A6. The upshot is that this shows that the eigenvalues of the partial Frobenius
�8 on ��∗(ℳ∗

F̄?
,Q;) 5 are the same as the eigenvalues of the (geometric) Frobenius �A>1p8 on the

representation d∨
5
(−1), where d 5 : �0; (Q̄/�) → �!2 (Q;) is the Galois representation associated to

the Hilbert modular form 5 . We know from [3] that the Galois representation d 5 is pure of weight 1 and

so is d∨
5
(−1), proving that the eigenvalues of the partial Frobenius �8 on ��∗(ℳ∗

F̄?
,Q;) 5 have absolute

value ?
1
2 .

Finally, we deal with ��∗(ℳ∗
F̄?
,Q;)rest. It is known that it is concentrated in even degrees, and

��2: (ℳ∗
F̄?
,Q;)rest =

:∧
(��0(ℳ∗

F̄?
,Q;)rest ⊕ ��2(ℳ∗

F̄?
,Q;)rest).

The same holds for the complex variant ([12] chapter 3); thus, it is enough to concentrate on
��2 (ℳ∗

F̄?
,Q;)rest. If we look at a connected component ℳ∗

F̄? ,>
of ℳ∗

F̄?
, we have

��2(ℳ∗
F̄? ,>

,Q;)rest = ⊕
8
Q; · 21(!8) (−1),

where !8 is a line bundle on ℳF̄? ,>
to be defined below, and the equality is interpreted as 21 (!8) (−1) ∈
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�2 (ℳF̄? ,>,Q;) lying in the image of the natural embedding ��2(ℳ∗
F̄? ,>

,Q;)rest ↩→ �2 (ℳF̄? ,>,Q;). Let

? : A → ℳF? ,> be the universal abelian scheme over ℳF? ,>, then !84∨
A/ℳF? ,>

is a coherent sheaf of

projective O� ⊗Z F?-module with rank 1. By the choice of ?, we have O� ⊗Z F? =
∏
8
F? parametrised

by {p8}; hence,

!84∨
A/ℳF? ,> = ⊕

8
!8 ,

where !8 := 48!84
∨
A/ℳF? ,>

and 48 is the idempotent of
∏
8
F? corresponding to the 8th factor. Another

way to characterise !8 is to note that

!84∨
A/ℳF? ,> = !84∨

A[?]/ℳF? ,> = ⊕
8
!84∨

A[p8 ]/ℳF? ,>

and

!8 = !84
∨
A[p8 ]/ℳF? ,> .

Now by definition of the partial Frobenius �8 , we have a Cartesian diagram

A(p8) : A/( 4A (�) [p8]) A

ℳF? ,> ℳF? ,>′

?

�8

with a possibly different connected component ℳF? ,>′ . By abuse of notation, we use the same A to
denote the universal abelian scheme on ℳF? ,>′ , and similarly for !8 . The diagram tells us that

�∗8 (!8) = 4 9!84A(p8 ) /ℳF?,> = !84
A(p8 ) [p 9 ]/ℳF? ,> .

If 9 ≠ 8, then clearly A(p8) [p 9 ] = A[p 9 ]; hence,

�∗8 (! 9 ) = !84A[p 9 ]/ℳF? ,> = ! 9 .

If 9 = 8, then A(p8) [p8] = A(?) [p8], where A(?) := A/ 4A (�) as usual; hence,

�∗8 (!8) = !84A(?) [p8 ]/ℳF? ,> = 48!84A(?) /ℳF? ,> = 48�A>1
∗!84A/ℳF? ,>

= 48�A>1
∗ (⊕
9
! 9 ) = 48 (⊕

9
�A>1∗! 9 ) = 48 (⊕

9
!
⊗?
9 ) = !

⊗?
8 ,

where �A>1 : ℳF? ,> →ℳF? ,> is the absolute Frobenius, and we use that �A>1∗! � !⊗? for any line
bundle ! (by looking at the transition function of !).

Now we have proved that

�∗8 (21 (! 9 )) = 21 (�∗8 ! 9 ) =
{
21 (! 9 ) 9 ≠ 8,

?21 (!8) 9 = 8
.

Taking the subtlety of the connected components, we see that

��2(ℳ∗
F̄?
,Q;)rest = ⊕

8
,8 ,
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where ,8 is the subspace generated by 21 (!8) (−1) on each connected component. Then with the
modification introduced by base change to algebraic closure and the Tate twist, �8 acts on ,8 with
blocks of the form

©«

?

?

?

. . .

?

ª®®®®®®¬
hence we have eigenvalues ?Z for Z some roots of unity. If 9 ≠ 8, �8 acts on, 9 with blocks of the form

©«

1
1

1
. . .

1

ª®®®®®®¬
which have eigenvalues roots of unity. This proves that ,8 have partial Frobenius weights
(0, · · · , 0, 2, 0, · · · 0) with 2 at the 8th position.

On the other hand, the same process gives line bundles !8 on ℳC, where we use that !84∨
A/ℳC is a

sheaf of projectiveO� ⊗ZC =
∏
8
C-modules, which are indexed by Archimedean places of �. The !8 can

be further characterised by its transition functions; that is, its sections correspond to holomorphic Hilbert
modular forms of weight (0, · · · , 0, 2, 0, · · · 0) with 2 at the 8th position. In the comparison between
Betti cohomology and ;-adic cohomology of the special fibre at ?, we implicitly fix an isomorphism
Q? � C, which induces an identification between Archimedean places and ?-adic places of �. We
can compare the Betti and l-adic realizations of the first Chern class of !8 , and the corresponding
,8 ⊂ ��2(ℳ∗(C),C) generated by 21 (!8) is easily seen to be of plectic Hodge type

(0, · · · , 0, 1, 0, · · · 0; 0, · · · , 0, 1, 0, · · · 0)

with both 1s in the 8th position (21(!8) is represented by 3I8 ∧ 3Ī8 with (I: ): ∈ H3). Thus, ,8 have
plectic weight (0, · · · , 0, 2, 0, · · · 0) with 2 at the 8th position, which is compatible with the partial
Frobenius weights.

To summarise, we have proved the following theorem.

Theorem 4.5. The partial Frobenius �8 acts on the special fibre variant of (;-adic realisation of) the
spectral sequence (18)

�
?,@

1 = � ?+@ (ℳ∗
F̄?
, F≥−?F≤−?' 9∗Q;) ⇒ � ?+@ (ℳF̄? ,Q;)

by Proposition 2.18, which is (at least up to convergence) isomorphic to the Hodge module realisation
of (18) by Theorem 2.16 and choice of ?. The Hodge module spectral sequence exhibits plectic Hodge
structures on the graded pieces of the filtration induecd by (18) through (g,  )-cohomology, and the
partial Frobenius weights are compatible with the exhibited plectic Hodge weights on each graded piece.

Corollary 4.6. (Plectic weight filtration) There is a natural increasing Z3-filtration ,0 (defined over
C) on �∗(ℳ(C),C) with 0 = (01, · · · , 03) ∈ Z3 , defined by

,0 =
⊕
|V8 |=?

:8
2

:8≤08

+(V1 , · · · ,V3) ,
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where +(V1 , · · · ,V3) is the generalised eigenspace of �8 with eigenvalue V8 for all 8. The action of �8 on

�∗(ℳ(C),C) is through the natural comparison isomorphism �∗(ℳ(C),C) � y∗�∗(ℳF̄? ,Q;) for

some fixed isomorphism y : Q; � C.
The filtration is plectic in the sense that there is a natural plectic Hodge structure on �A,0 with

plectic weight 0.

Remark 4.7. We have seen that the graded pieces of the constructed plectic weight filtration are motivic
and so are independent of the choice of ?. However, the filtration might still depend on ? a priori. We
leave the proof of independence of ? to future work.

5. Toroidal compactifications and the partial Frobenius

5.1. Polarised degeneration data

We begin by recalling the degeneration data of abelian schemes introduced by Faltings-Chai and refined
by Kaiwen Lan. It is (almost) a collection of linear algebra objects that characterises the degeneration of
abelian varieties into semi-abelian varieties. It is relatively straightforward to find the parametrisation
space of the degeneration data, which constitutes the base of a universal degenerating abelian scheme.
These are used to glue with the PEL Shimura varieties to form toroidal compactifications. We follow
the notations of [18] closely; see also [16] for a minimal summary of definitions.

Let ' be a Noetherian normal domain complete with respect to an ideal �, with
√
� = �. Let

( := Spec('),  := Frac('), [ := Spec( ), (0 := Spec('/�) and (for := Spf(', �).

5.1.1. Definitions and the theorem

Definition 5.1. The category DEGpol(', �) has objects (�, _[), where (1)� is an semi-abelian scheme
over (; that is, a commutative group scheme over ( with geometric fibre extensions of abelian varieties
by torus, such that the generic fibre �[ is an abelian variety and such that �0 := � ×( (0 is globally an
extension

0 −→ )0 −→ �0 −→ �0 −→ 0

where )0 is an isotrivial torus over (0; that is, )0 becomes split over a finite étale cover of (0, and �0 is
an abelian scheme over (0.

(2) _[ : �[ → �∨[ is a polarisation of �[ .
The morphisms in the category are isomorphisms of group schemes over ( that respect the polarisa-

tions on the generic fibres.

Elements of DEGpol(', �) are called degenerating abelian schemes. We will see that they are equiv-
alent to certain data that are more linear algebraic in nature, called degeneration data, to be defined as
follows.

Definition 5.2. The category of degeneration data DDpol(', �) has objects

(�, _�, -,. , q, 2, 2∨, g)

where

(1) � is an abelian scheme over (, and _� : �→ �∨ is a polarisation.
(2) - and . are étale sheaves of free commutative groups of the same rank, which can be viewed as

étale group schemes over (, and q : . ↩→ - is an injective homomorphism with finite cokernel.
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(3) 2 and 2∨ are homomorphisms

2 : - −→ �∨

2∨ : . −→ �

such that

_� ◦ 2∨ = 2 ◦ q.

(4) g is a trivialisation

g : 1.×(-,[
∼−→ (2∨ × 2)∗P⊗−1

�,[

of the biextension (2∨ × 2)∗P⊗−1
�,[

over the étale group scheme (. ×( -)[ such that (�3. × q)∗g is

symmetric, where P� is the Poincare line bundle on � ×( �∨, and 1.×(- is the structure sheaf of
. ×( - . See [18] Definition 3.2.1.1 for the precise definition of biextension; g being a trivialisation
of biextensions essentially means that g is bilinear in a (the only) reasonable sense, and symmetric
means the bilinear form is symmetric.

Moreover, g is required to satisfy a positivity condition as follows. Taking a finite étale base change
of ( if necessary, we assume that - and . are constant with values - and . . For each H ∈ . , the
isomorphism

g(H, q(H)) : O(,[
∼−→ (2∨(H) × 2 ◦ q(H))∗P⊗−1

�,[

over the generic fibre extends to a section

g(H, q(H)) : O( −→ (2∨ (H) × 2 ◦ q(H))∗P⊗−1
�

over (, which we still denote by g(H, q(H)). Moreover, for each H ≠ 0, the induced morphism

(2∨ (H) × 2 ◦ q(H))∗P� −→ O(

factors through �, where � is the subsheaf of O( corresponding to the ideal � ⊂ '.
The morphims in the category are defined to be isomorphisms (of �, - and . ) over ( respecting all

of the structures.

Now we can state the first key result.

Theorem 5.3 (Faltings-Chai). There is a functor

�pol (', �) : DEGpol (', �) −→ DDpol(', �)

that induces an equivalence of categories.

Remark 5.4. The inverse functor DDpol(', �) −→ DEGpol(', �) is called the Mumford quotient con-
struction. We will not describe that in detail.

Remark 5.5. There are a few variants of the categories DEGpol(', �) and DDpol(', �). For example,
we can forget about the polarisation _[ , or we can rigidify the situation by replacing the polarisation by
an ample line bundle. The equivalence of categories as in the theorem extends to these variants. This
explains why we include the lower index pol in the notations.
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5.1.2. Motivations

Now we explain the construction of �pol. Essentially, it is to associate linear algebra data to degenerating
abelian varieties that also characterise it, and a basic model for this kind of construction is to write a
complex abelian variety as C=/Γ. However, this is a highly transcendental construction, and it is not
obvious how to proceed in our algebraic setting.

The basic idea is to use the Fourier coefficients of theta functions to detect the periods of abelian
varieties. More precisely, recall that an abelian variety � over C has the universal covering C=, and it
can be written as � = C=/Γ for some period lattice Γ ⊂ C=. A choice of an ample line bundle ! on �
gives a positive definite Hermitian form on C= whose imaginary part � takes integer values on Γ and a
map U : Γ→ C× such that U(G + H) = U(G)U(H) exp (c8� (G, H)) . Then the theta functions are sections
of !, and an element B ∈ Γ(�, !) is equivalent to a holomorphic function 5 : C= → C such that

5 (I + W) = 5 (I)U(W) exp ( 1
2
c� (W, W) + c� (W, I)) (27)

for I ∈ C=, W ∈ Γ.
Now we can find a rank = sublattice* ⊂ Γ isotropic with respect to � , such that

5 (I) = exp (; (I) + �(I, I))
∑

j∈�><(*,Z)
2j exp (2c8j(I))

for some linear form ; : C= → C and complex bilinear form � : C=×C= → C that depends only on ! and
is independent of the section B; see the first chapter of [22] for details. Hence, 5 is essentially a function

on C=/*
exp
� C×,=. Note that �><(*,Z) can be identified with the character group - := - (C×,=) of

the algebraic torus C×,=, and if we write @ := exp (2c8I) ∈ C=,×, then exp (2c8j(I)) = j(@) under the
above identification. Now the essential part of 5 has a Fourier expansion∑

j∈-
2jj(@)

for @ ∈ C×,=. This expression has a potential to be algebraic. The universal cover C= of � is very tran-
scendental, but it seems that the intermediate quotient C=/* � C×,= subsumes all of the transcendental
part through the exponential map, and the factorisation C×,= → � is ‘algebraic’ in nature. Moreover,
because the theta functions define a projective embedding of A (assume that ! is very ample), they
determine � completely, and in particular the multiplicative periods . := Γ/* ⊂ C×,=. Further, the
theta functions are determined by the Fourier coefficients 2j and hence in principle we can read off the
multiplicative periods from 2j.

We can make more explicit the procedure to detect the multiplicative periods from 2j. Note that the
functional equation (27) gives the relation (for W ∈ Γ)

2j = U(W) · exp (−; (W)) · exp (−2c8j(W)) · 2j+q (W) ,

where q : . → - is the homomorphism determined by the polarisation � , namely, for H ∈ Γ and
G ∈ *, � (H, G) = q(H) (G) under the identification - � �><(*,Z) (* is isotropic with respect to � , so
it descends to a map on . = Γ/*). Rewriting it in our new multiplicative notation, we have

2j+q (W) = j(y(W))0(W)2j,

where y : . ↩→ C=,× is the inclusion of the multiplicative periods, and 0 : . → C× is a function
depending on the line bundle !. The desired multiplicative periods are then manifested through the ratio
between 2j and 2j+q (H) .

Further, we note that we can give a more direct characterisation of the multiplicative periods . ,
which is useful when we algebraize the above procedure. Recall that �><(.,Z) is canonically the
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multiplicative periods of the dual abelian variety �∨, so . is naturally the character group of the
multiplicative periods of �∨, which is identified with the character group of the associated algebraic
torus of �∨.

To summarise, for j ∈ - , the linear maps

2j : Γ(�, !) → C

defined by the Fourier coefficients detect the multiplicative periods . ⊂ C×,= of �, where . can be
naturally identified with the character group of the algebraic torus associated to the dual abelian variety
�∨. More explicitly, the relations

2j+q (W) = 1(W, j)0(W)2j

characterise a bilinear pairing

1(·, ·) : . × - → C×

such that 1(·, q(·)) is symmetric, and the multiplicative periods y : . ↩→ C=,× are determined by the
pairing through 1(j, W) = j(y(W)). This is the principle that we aim to algebraize and considerably
generalise.

5.1.3. Equivalent formulation of polarised degeneration data

Before giving the detailed construction of �pol (', �), we first explain the meaning of the tuple in the
degeneration data.

First, the étale sheaf - and . can be viewed as the character groups of torus ) and )∨ over (, and
the homomorphisms 2 and 2∨ are equivalent to extensions

0 −→ ) −→ �♮ −→ � −→ 0

0 −→ )∨ −→ �∨,♮ −→ �∨ −→ 0

of commutative group schemes over (. Passing to a finite étale cover of ( if necessary, we can assume
that ) is split; hence, - is constant with value - . We view �♮ as a )-torsor over �, then because �♮ is
relative affine over �, we have

�♮ � Spec
��

(��♮ ) � Spec
��

( ⊕
j∈-

�j), (28)

where �j := 2(j) ∈ %820 (�/() is the eigensheaf of ��♮ with weight j under the action of ) .
Equivalently, �j is the G<-torsor (viewed as a line bundle) �♮ ×) ,j G<; that is, the pushout of
0 → ) → �♮ → � → 0 along j : ) → G<. This explains the identification of 2 with the first
extension, and similarly for 2∨.

Note that 2 being a group homomorphism equips ⊕
j∈-

�j with an ��-algebra structure. Further, the

)-torsor �♮ being a group scheme is equivalent to 2 taking values in %820(�), which is a consequence
of the characterising property <∗

�
ℒ � ?A∗1ℒ ⊗ ?A

∗
2ℒ of ℒ ∈ %820 (�/().

Next, the homomorphisms q and _� such that

_� ◦ 2∨ = 2 ◦ q

are equivalent to a homomorphism

_ : �♮ −→ �♮,∨
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of group schemes over ( that induces a polarisation _� on �. Note that a homomorphism _ induces a
homomorphism of the extensions

0 ) �♮ � 0

0 )∨ �♮,∨ �∨ 0

_) _ _�

because there is no nontrivial homomorphism from a torus to an abelian variety. Then _� is the induced
map on �, and q is the map on characters induced by _) . The relation _� ◦ 2∨ = 2 ◦ q is forced by (and
equivalent to) the above commutative diagram.

Lastly and most important, the trivialisation

g : 1.×(-,[
∼−→ (2∨ × 2)∗P⊗−1

�,[

of the biextension (2∨ × 2)∗P⊗−1
�,[

is equivalent to a group homomorphism

y : . [ −→ �
♮
[

that lifts 2∨ over the generic fibre; that is, 2∨[ factorises as

2∨[ : . [
y−→ �

♮
[ −→ �[ .

Again, we can assume that both - and. are constant with values - and. , and the general case is by étale
descent. Then g is a collection of sections {g(H, j)}H∈. ,j∈- of the line bundles P�(2∨(H), 2(j))⊗−1

[ on
the generic fibre of ( for each H ∈ ., j ∈ - , satisfying bimultiplicative conditions from the biextension
structures. Now

P�(2∨(H), 2(j))⊗−1
[ = (2∨(H)∗ ◦ (83� × 2(j))∗P⊗−1

�
)[ = (2∨(H)∗�⊗−1

j )[

by the definition of �j; hence, g(H, j) is a morphism

g(H, j) : �j (2∨(H))[ −→ �(,[ .

Together with (28), we have

2∨(H)∗��♮ ,[ = 2∨ (H)∗( ⊕
j∈-

�j)

∑
j
g (H,j)

−→ �(,[ ,

which is a morphism of O(,[-algebras by the bimultiplicativity of g (more precisely, being an algebra
morphism is equivalent to the multiplicativity of the second variable of g). Because�♮ � Spec

��

(��♮ )
is relative affine over �, the algebra morphism is the same as a morphism of y(H) : [→ �

♮
[ of schemes

over �; that is,

[ �
♮
[

�[

y (H)

2∨ (H)[

Taking all H ∈ . together, we obtain the desired morphism

y : .[ → �
♮
[
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of schemes over �[ . It can be shown that y being a group scheme homomorphism is equivalent to the
multiplicativity of the first variable of g.

In summary, the degeneration data are essentially a commutative group scheme�♮ being an extension

of an abelian scheme by a torus over (, a period morphism y : .[ → �
♮
[ over the generic fibre and

some data specifying the polarisation. We view �♮ as a ‘universal cover’, and y as the period lattice,
parallel to the classical complex case . ⊂ C×,=. Recall that in the definition of degeneration data, g has

to satisfy the symmetry and positivity condition, which after translation to the setting y : .[ → �
♮
[ is

the analogue of the positivity and antisymmetry of the polarisation form � in the classical setting.

Remark 5.6. In the classical complex setting, the existence of � controls the position of the period
lattice, and the positivity is the key (equivalent) to finding enough theta functions with respect to the
period lattice to embed the quotient complex torus into a projective space. A similar role is played by

the conditions on g. Indeed, given y : .[ → �
♮
[ together with polarisation data, to construct the quotient

‘�♮/.[’ is a highly nontrivial procedure called Mumford construction as mentioned in Remark 5.4. The
positivity condition of g is a key ingredient in the construction, and the underlying reason seems still to
be that the positivity ensures enough theta functions to define a projective embedding.

5.1.4. The construction of �pol

Now we can explain the construction of �pol in the theorem. The first step is to functorially associate a
‘universal cover’ of � over (, and this will be called the Raynaud extension.

We take the formal completion �for of � along the ideal �, which is a formal scheme over (for :=
Spf(', �). Because the special fibre �0 := � ×( (0 is an extension of an abelian scheme by a torus and
torus can be uniquely lifted infinitesimally, we see that �for is an extension

0→ )for → �for → �for → 0

where )for is a formal torus and �for is a formal abelian variety. There is an ample cubical (see [18]
Definition 3.2.2.7 for definition) invertible sheaf on � whose formal completion descends to an ample
sheaf on �for, and Grothendieck existence theorem implies that �for is algebrizable; that is, �for is the
formal completion of an abelian scheme � over (. Note that the existence of an ample invertible sheaf
on � is a difficult theorem of Grothendieck, where the key ingredient is that the base ( is normal.
Now we know that )for is also algebrizable, whose algebrization we denote by ) . Then the morphism
- ()for) → �∨for corresponding to the extension �for also algebraizes to a unique morphism - ()) → �∨

because the formal completion of proper schemes is a fully faithful functor. The morphism corresponds
to the Raynaud extension

0→ ) → �♮ → �→ 0

over (.
Now we look at the dual semi-abelian schemes. Because the generic fibre �[ is an abelian variety,

the dual abelian variety �∨[ is well defined, and the problem is whether we can extend it naturally
to a semi-abelian scheme over (. The hard fact is that the closure in � of the finite group scheme
 4A (_[) ⊂ �[ is a quasi-finite flat group scheme  4A (_[) over (, and the quotient �/ 4A (_[) is the
desired extension of �∨[ , which we denote by �∨. The semi-abelian extension to ( is unique, so �∨ is
uniquely defined. Moreover, the polarisation _[ : �[ → �∨[ extends to a homomorphism

_( : � −→ �∨

over (.
We can apply the previous argument to �∨ and obtain the Raynaud extension

0→ )∨ → �∨,♮ → �∨ → 0.
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It can be shown that the abelian part of �∨,♮ is naturally identified with the dual abelian variety of �,
explaining the notation. The morphism _( induces the morphisms

0 ) �♮ � 0

0 )∨ �♮,∨ �∨ 0

_) _ _�

where we can show that _� is a polarisation. By what we have observed, these objects are equivalent to

(�, _�, -,. , q, 2, 2∨)

in the degeneration data. Hence, we have constructed the first seven objects in �pol((�, _[)).

It remains to construct g out of (�, _[). We have seen that g essentially corresponds to the periods

y : .[ ↩→ �
♮
[ in the universal cover�♮[ , and� = �♮/.[ as in the classical case. In particular, as intuition

suggests, g is determined by � and is independent of the polarisation or ample invertible sheaves used
in the construction. Our strategy is to use theta functions to extract the periods, as explained in the
motivation part. Indeed, g is essentially the analogue of the bilinear form 1(·, ·) that appears in the
functional equations of Fourier coefficients of theta functions in the complex case.

Now we begin to construct g, following the strategy described in the classical case. Without loss
of generality, we assume that - and . are constant with values - and . . We choose a cubical ample
invertible sheaf L on �, and we can show that its formal completion extends to a cubical ample line
bundle L♮ on �♮. We introduce notations for the maps in the extension by the diagram

0→ )
8→ �♮

c→ �→ 0

and we can choose a cubical trivialisation 8∗L♮ � �) , which forces L♮ to descend to an ample invertible
sheaf M on �; that is, c∗M � L♮. Further, we assume that L[ induces the polarisation _[ on �[ . We
can achieve this by possibly replacing _[ with _L[

, so the construction of g will not depend on the
choice of _[ or L.

We know that �♮ � Spec
��

( ⊕
j∈-

�j) as in (28), which implies that

c∗L
♮
� ⊕
j∈-

Mj,

where Mj := M ⊗�� �j. Then by the relative affineness of �♮,

Γ(�♮,L♮) = Γ(�, c∗L♮) = ⊕
j∈-

Γ(�,Mj).

This is also true if we base change to (8 := Spec('/� 8), which forms a compatible system; hence,

Γ(�♮for,L
♮

for) � ⊕̂j∈-Γ(�,Mj),

where the completion is with respect to the �-adic topology. Now by the definition of the Raynaud

extension, we have that � and �♮ have the same formal completion along �; that is, �♮for � �for. The
canonical pullback map Γ(�,L) → Γ(�for,Lfor) becomes

Γ(�,L) → Γ(�for,Lfor) � Γ(�♮for,L
♮

for) � ⊕̂j∈-Γ(�,Mj),
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and projecting to the jth component we obtain

Γ(�,L) −→ Γ(�,Mj).

Tensoring both sides with  := Frac('), we obtain

fj : Γ(�[ ,L[) −→ Γ(�[ ,Mj,[)

by flat base change, which are the Fourier coefficients of theta functions with respect to L.
Now as in the classical case, we aim to find the functional equation of fj and read off the sought-

after g from it. Let H ∈ . and )2∨ (H) : � → � the translation by the point 2∨(H), then the equation
_� ◦ 2∨ = 2 ◦ q applied to H translates into an isomorphism

)∗2∨ (H)Mj � Mj+q (H) ⊗' Mj (2∨ (H))

(using rigidified line bundles to represent elements of �∨, and elements of �∨ are characterised by the
identity )∗G! � !). This provides us with the natural map

)∗2∨ (H) ◦ fj : Γ(�[ ,L[) → Γ(�[ , )∗2∨ (H)Mj,[) � Γ(�[ ,Mj+q (H) ,[) ⊗ Mj (2∨(H))[ .

On the other hand, we have the map

fj+q (H) : Γ(�[ ,L[) −→ Γ(�[ ,Mj+q (H) ,[).

The functional equation we are searching for is

fj+q (H) = k(H)g(H, j))∗2∨ (H) ◦ fj, (29)

where

k(H) : M(2∨ (H))[
∼→ �(,[

is a trivialisation of the fibre of M at 2∨(H), and

g(H, j) : �j (2∨ (H))[ −→ �(,[

is a section of�j (2∨(H))⊗−1
[ for each H ∈ . and j ∈ - , so thatk(H)g(H, j) is a section ofMj (2∨(H))⊗−1

[

(recall Mj = M ⊗ �j).
It is a hard fact that

fj ≠ 0

for all j ∈ -; hence, g (and k) is uniquely characterised by the functional equation (29). The positivity,
bilinearity and symmetry of g all follow relatively formally from (29) and fj ≠ 0. Further, g is
independent of the choice of L (k depends on L but is independent of the choice of M).

Equation (29) follows formally if we know that fj+q (H) is proportional to )∗
2∨ (H) ◦ fj, and this is

proved using representations of theta groups. Indeed, we can prove thatfj factors through an equivariant
homomorphism between two irreducible representations with respect to a subgroup of the theta group
of L (isomorphic to the theta group of Mj, which acts naturally on Γ(�[ ,Mj,[)), and similarly for
)∗
2∨ (H) ◦fj. The nonvanishing of fj forces that both factorisations are nonzero, so Schur’s lemma gives

the proportionality.
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5.2. PEL degeneration data

We want to generalise the polarised degeneration data to include endormorphisms and level structures,
so that they characterise degenerations of PEL abelian schemes. It turns out that level structures create
substantial technical difficulties, which is one of the main technical contributions of Kaiwen Lan.
Following Lan’s presentation, we separate the data with and without level structures. We use notations
from the previous section, and the notations for PEL datum are as in Subsection 3.1.

5.2.1. Data without level structures

We begin by defining the degenerating PE abelian varieties.

Definition 5.7. The category DEGPE,O(', �) has objects (�, _, 8) where (�, _) ∈ DEGpol(', �), and

8 : O→ �=3( (�)

is a ring homomorphism such that

8[ (1)∨ ◦ _[ = _[ ◦ 8[ (1∗)

for every 1 ∈ O, where 8[ (1)∨ : �∨[ → �∨[ is the dual of 8[ (1). The morphisms are isomorphisms
respecting all structures.

Remark 5.8. We know that the restriction to the generic fibre is a fully faithful functor from the category
of degenerating abelian varieties to that of abelian varieties, which implies that _[ : �[ → �∨[ extends
uniquely to a morphism _ : � → �∨. Thus, it is unambiguous to write (�, _) ∈ DEGpol(', �).
Similarly, we have �=3( (�) � �=3[ (�[), so the extra data are determined by their restriction to the
generic fibre, and the generic fibre is a PE abelian variety by O.

Definition 5.9. The category DDPE,O (', �) has objects

(�, _�, 8�, -,. , q, 2, 2∨, g)

such that (�, _�, -,. , q, 2, 2∨, g) ∈ DDpol(', �) and

8� : O→ �=3( (�)

is a ring homomorphism such that 8�(1)∨ ◦ _� = _� ◦ 8�(1∗) for every 1 ∈ O. The data are required to
the additional O-structures in the sense that

(1) - and . are étale locally constant sheaves of projective O-modules with structure morphisms
8- : O → �=3( (-) and 8. : O → �=3( (. ). - and . are required to be rationally equivalent as
sheaves of O ⊗Z Q-modules. Moreover, q : . → - is O-equivariant.

(2) 2 : - → �∨ and 2∨ : . → � are O-equivariant.

(3) The trivialisation g : 1.×(-,[
∼−→ (2∨ × 2)∗P⊗−1

�,[
satisfies

(8. (1) × �3- )∗g = (�3. × 8- (1∗))∗g

for all 1 ∈ O; that is, g(1H, j) = g(H, 1∗j) for H ∈ . and j ∈ - if - and . are constant.

The morphisms are isomorphisms respecting all structures.

The following theorem follows directly from the functoriality of �pol (', �).

Theorem 5.10. There is an equivalence of categories

�%�,O(', �) : DEGPE,O(', �) → DDPE,O(', �).
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We can strengthen the theorem by adding the Lie algebra condition on both sides. It is the determinant
condition in the definition of PEL moduli problems.

Definition 5.11. The category DEGPE!84 , (!⊗ZR, 〈·, ·〉,ℎ) (', �) has objects

(�, _, 8) ∈ DEGPE,O(', �)

such that (�[ , _[ , 8[) satisfies the determinant condition specified by (! ⊗Z R, 〈·, ·〉, ℎ); see [18]
Definition 1.3.4.1 for definitions. The morphisms are isomorphisms respecting all structures.

Definition 5.12. The category DDPE!84 , (!⊗ZR, 〈·, ·〉,ℎ) (', �) has objects

(�, _�, 8�, -,. , q, 2, 2∨, g) ∈ DDPE,O(', �)

such that there exists a totally isotropic embedding

�><R (- ⊗ R,R(1)) ↩→ ! ⊗ R

of O⊗R-modules with image denoted by /−2,R, where - is the underlying O-module of - and such that
(�[ , _�,[ , 8�,[) satisfies the determinant condition determined by (/⊥−2,R//−2,R, 〈·, ·〉, ℎ−1) induced by
the embedding. The morphisms are isomorphisms respecting all of the structures.

Theorem 5.13 (Lan). There is an equivalence of categories

�PE!84 , (!⊗ZR, 〈·, ·〉,ℎ) (', �) :

DEGPE!84 , (!⊗ZR, 〈·, ·〉,ℎ) (', �) → DDPE!84 , (!⊗ZR, 〈·, ·〉,ℎ) (', �).

5.2.2. Data with level structures

We will only work with principal level structures in this article. The general level structures can be taken
as orbits of principal level structures, and the modification with degeneration data is to take the quotient
of the data with principal level structures by certain groups.

We fix an integer = in this section. We assume that the generic point [ = (?42( ) is defined over
(?42(O�0 , (�) ), where �0 is the reflex field and � is the set of all primes not dividing =�103�8B2O/Z [!# :
!]; see [18] Definition 1.4.1.1 for definitions of these bad primes. In particular, (?42(O�0 , (�) ) is the
maximal base over which the PEL moduli variety is smooth. Moreover, we make the technical assumption
that the O-action on ! extends to a maximal order in �.

All of the morphisms in the category to be defined will be the obvious isomorphisms preserving all
of the structures, and we omit the description.

Definition 5.14. The category DEGPEL,"= (', �) has objects

(�, _, 8, (U=, a=))

where

(�, _, 8) ∈ DEGPE!84 , (!⊗ZR, 〈·, ·〉,ℎ) (', �).

Moreover, U= : !/=! ∼→ � [=][ and a= : Z/=Z(1) ∼→ `=,[ are isomorphisms such that they define a
level-n structure for �[ in the sense that

(�[ , _[ , 8[ , (U=, a=)) ∈ "= ([)

as in Definition 3.5.
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Definition 5.15. The category DDPEL,"= (', �) has objects

(�, _�, 8�, -,. , q, 2, 2∨, g, [U♮=])

where

(�, _�, 8�, -,. , q, 2, 2∨, g) ∈ DDPE!84 , (!⊗ZR, 〈·, ·〉,ℎ) (', �)

and

U
♮
= := (/=, i−2,=, (i−1,=, a−1,=), i0,=, X=, 2=, 2

∨
= , g=)

is the level structure data with objects to be defined as follows:

(1) /= is a filtration

0 ⊂ /=,−2 ⊂ /=,−1 ⊂ /=,0 = !/=!

on !/=!, which can be written as the reduction modulo n of a filtration (of O ⊗Z Ẑ�-modules)

0 ⊂ /−2 ⊂ /−1 ⊂ /0 = ! ⊗Z Ẑ�

on ! ⊗Z Ẑ� such that / extends to a filtration /A� on ! ⊗ZA� that has the property that it is split (as
O ⊗Z A�-modules), �A

/A�

8 is integral for every i; that is, �A
/A�

8 = "8 ⊗Z A� for some torsion-free
finitely generated O-module "8 , and /A� ,−2 is the annihilator of /A� ,−1 under the natural pairing
〈·, ·〉A� on ! ⊗Z A�.

(2) i−1,= : �A/=−1

∼→ �[=][ and a−1,= : Z/=Z(1) ∼→ `=,[ are isomorphisms such that

(�[ , _�,[ , 8�,[ , (i−1,=, a−1,=)) ∈ "= ([)

with respect to the PEL datum determined by �A/=−1,=, which exists because /=, satisfies the condi-
tions in (1).

(3)

i−2,= : �A/=−2

∼→ �><[ ((-/=-)[ , (Z/=Z) (1))

and

i0,= : �A/=0

∼→ (./=. )[

are isomorphisms which are liftable to some isomorphisms i−2 : �A/−2

∼→ �><(- ⊗Z Ẑ�, Ẑ� (1))
and i0 : �A/0

∼→ . ⊗Z Ẑ� over [̄. Moreover, they are required to satisfy the equation

〈i−2,= (·), q ◦ i0,= (·)〉20= = 〈·, ·〉20,=

where 〈·, ·〉20= : �><[ ((-/=-)[ , (Z/=Z) (1))×(-/=-)[ → (Z/=Z) (1) is the canonical evaluation

pairing, and 〈·, ·〉20,= : �A/=−2 × �A
/=
0 → (Z/=Z) (1) is the pairing induced by 〈·, ·〉 on ! (using that

/=,−2 is the annihilator of /=,−1).
(4)

X= : ⊕
8
�A

/=
8

∼→ !/=!

is a splitting of the filtration /=, which can be lifted to a splitting X : ⊕
8
�A/8

∼→ ! ⊗Z Ẑ�.
(5)

2= :
1

=
. [ → �[
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and

2∨= :
1

=
- [ → �∨[

are homomorphisms that lifts 2 and 2∨ over [; that is, 2[ = 2= ◦ (. [ ↩→ 1
=
. [) and similarly for 2∨.

They are required to be compatible with the splitting X= in the sense that

〈i−1,= (·), (_� ◦ 2∨= − 2= ◦ q) ◦ i0,= (·)〉� = a−1,= ◦ 〈·, ·〉10,=

where 〈·, ·〉� : �[=][̄ × �∨ [=][̄ → `=, [̄ is the Weil pairing of �[̄ , and

〈·, ·〉10,= : �A/=−1 × �A
/=
0 → (Z/=Z) (1)

is the pairing induced by X= and the natural pairing 〈·, ·〉 on !/=!; that is, 〈·, ·〉10,= := 〈X= (·), X= (·)〉
with domain �A/=−1 ×�A

/=
0 . Moreover, they need to satisfy a level-lifting condition compatible with

all previous liftings; see [18] Definition 5.2.7.8 for the precise description.
(6)

g= : 1 1
=.×(-,[

∼−→ (2∨= × 2[)∗P⊗−1
�,[

is a lifting of g in the obvious sense. Similar to (5), it is required to be compatible with X= in the
sense that

300,= (i0,= (·), i0,= (·)) = a−1,= ◦ 〈·, ·〉00,=

where 300,= : 1
=
./. × 1

=
./. → `=, [̄ is defined by

300,= (
1

=
H,

1

=
H′) := g= (

1

=
H, q(H′))g= (

1

=
H′, q(H))−1

for 1
=
H, 1
=
H′ ∈ 1

=
. , and 〈·, ·〉00,= : �A/=0 ×�A

/=
0 → (Z/=Z) (1) is defined by 〈·, ·〉00,= := 〈X= (·), X= (·)〉.

They again have to satisfy a level-lifting condition; see [18] Definition 5.2.7.8 for details. Note that
we have tacitly used the canonical identification 1

=
./. � ./=. .

The bracket [U♮=] means the equivalence class of U♮=; see [18] Definition 5.2.7.11 for the definition.
Essentially, taking the equivalence class is to eliminate the choice of the splitting. The subtlety to
define the equivalence is that the complicated relations among the data are described using splittings,
and changing splittings will introduce modifications in various data. We only remark that the data
(/=, i−2,=, (i−1,=, a−1,=), i0,=) are independent of the equivalence class, so the equivalence has effect
only on (X=, 2=, 2∨= , g=).

Remark 5.16. There is redundancy in the above definition, namely, 2 and 2∨ are determined by 2= and
2∨= , and the same is true for g.

Theorem 5.17. There is an equivalence of categories

�%�!,"= (', �) : DEGPEL,"= (', �) → DDPEL,"= (', �).

5.2.3. The construction of �%�!,"=
We now explain the meaning of the above complicated data and the construction of �%�!,"= (', �).

Without loss of generality, we assume that - and . are constant with values - and . from now
on. We have already seen how to associate data that characterise the degenerating abelian scheme �,
together with its PE structures. We now focus on the level structures. The key point is that Mumford
construction tells us that � [=][ is naturally an extension

0→ �♮ [=][ → � [=][ →
1

=
./. → 0,
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which further justifies the heuristic � = �♮/. . Moreover, �♮ being a global extension of an abelian
variety by an algebraic torus implies that �♮ [=][ is also an extension

0→ ) [=][ → �♮ [=][ → �[=][ → 0.

It is clear by naturality that these extensions can be upgraded to extensions in terms of the Tate modules;
that is, )��[ := lim←−−

(<,�)=1

� [<][ , for example.

Now if we are given a level-n structure on the generic fibre, we have an isomorphism U= : !/=! ∼→
� [=][ together with an isomorphism a= : Z/=Z(1) ∼→ `=,[ , which is compatible with the Weil pairing
and liftable to the Tate module. The above two extensions endows a filtration /= on !/=! through U=;
that is,

0 ⊂ /=,−2 ⊂ /=,−1 ⊂ /=,0 = !/=!

such that U= identifies �A/=−2 , �A/=−1 and �A/=0 with ) [=][ , �[=][ and 1
=
./. , respectively. Note that

) [=][ = �><(-/=-, `=)
a=
� �><(-/=-,Z/=Z(1)), and we denote the corresponding isomorphisms

by

i−2,= : �A/=−2

∼→ �><(-/=-, (Z/=Z) (1)),

i−1,= : �A/=−1

∼→ �[=][

and

i0,= : �A/=0

∼→ (./=. )[ .

This explains where (/=, i−2,=, i−1,=, i0,=) come from. The respective liftability conditions in (1),
(2) and (3) of Definition 5.15 correspond to the liftability of the level structure U= and the above
extensions. That they satisfy the conditions on Weil pairings in (1), (2) and (3) are general theorems of
Grothendieck in SGA 7, where the above two extensions are interpreted as monodromy filtration. The
a−1,= in the degeneration data is defined to be a=, which is forced by the Weil pairing condition in (2)
of Definition 5.15.

We have produced the data (/=, i−2,=, (i−1,=, a−1,=), i0,=), which characterise U= up to graded
pieces. Now we aim to find more data from which we can recover the complete U=. The idea is
to introduce auxiliary data that corresponds to splittings of the above two extensions and then take
equivalence relations by identifying different splittings.

First, a splitting of the extension

0→ ) [=][ → �♮ [=][ → �[=][ → 0

is the same as a section of �♮ [=][ → �[=][ , which is equivalent to a subgroup scheme � of �♮ [=][
that is isomorphic to �[=][ through the projection. Let �♮

′
[ := �♮[/�, then the quotient map induces

0 )[ �
♮
[ �[ 0

0 )[ �
♮′
[ �[ 0,

=
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which can be completed into

0 )[ �
♮
[ �[ 0

0 )[ �
♮′
[ �[ 0

0 )[ �
♮
[ �[ 0.

= =

=

We see that the extension �♮
′
[ together with the isogeny

0 )[ �
♮′
[ �[ 0

0 )[ �
♮
[ �[ 0

=

determines the splitting; hence, a splitting of 0 → ) [=][ → �♮ [=][ → �[=][ → 0 is equivalent to a
diagram as above, which is the same as a lifting 2= : 1

=
- → �∨[ of 2 : - → �∨ over the generic fibre.

Next, we look at the splitting of

0→ �♮ [=][ → � [=][ →
1

=
./. → 0.

From the Mumford quotient � = �
♮
[/. , it is reasonable to expect that a splitting 1

=
./. → � [=][ is

equivalent to a lifting

y= :
1

=
. −→ �

♮
[

of the period homomorphism y : . → �
♮
[ , and this can be proved rigorously. The composition of y=

with projection to �[ produces

2∨= :
1

=
.

y=−→ �
♮
[

c−→ �[ ,

which lifts 2∨[ because y= lifts y and 2∨[ = c ◦ y. As we have seen before, such a period homomorphism
y= is equivalent to a trivialisation of biextensions

g= : 1 1
=.×(-,[

∼−→ (2∨= × 2[)∗P⊗−1
�,[

that lift g.
We have seen that a splitting of the monodromy filtration on � [=][ is equivalent to the data

(2=, 2∨= , g=)

that lift (2[ , 2∨[ , g). From the isomorphism U= : !/=! ∼→ � [=][ , the splitting on � [=][ induces a
splitting X= of the filtration /= on !/=!, and this finishes the construction of the remaining

(X=, 2=, 2∨= , g=).

Note that the liftability condition is clearly satisfied.
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To summarise, the data (2=, 2∨= , g=) determine a splitting of the monodromy filtration,= on � [=][
– that is, an isomorphism Z= : ⊕

8
�A

,=
8

∼→ � [=][ – and the level structure U= can be recovered as

U= : !/=!
X−1
=−→
∼
⊕
8
�A

/=
8

⊕
8
i8,=

−→
∼
⊕
8
�A

,=
8

Z=−→
∼
� [=][ , (30)

which is liftable by the liftability condition on all intermediate isomorphisms.
The last ingredient is to find characterising conditions for U= to be compatible with the Weil pairing.

The key is to use the degeneration data to describe the pairing on ⊕
8
�A

,=
8 induced by the Weil pairing

on � [=][ and the isomorphism Z=. This is the most difficult part of the construction, as well as one of
the main technical contributions of Lan.

We know that the two pairings on �A,=−2 ×�A
,=
0 and �A,=−1 ×�A

,=
−1 are independent of the splitting

because,=,−2 is the annihilator of,=,−1 and has been determined by Grothendieck as we have already
remarked. Because the Weil pairing is alternating, the remaining cases to be determined are�A,=−1 ×�A

,=
0

and �A,=0 × �A,=0 . The result is as follows. The pairing on �A,=−1 × �A
,=
0 is given by

�A
,=
−1 × �A

,=
0 = �[=][ ×

1

=
./. → `=,[ ,

which sends (0, 1
=
H) to

〈0, (_�,[ ◦ 2∨= − 2= ◦ q) (
1

=
H)〉�[=]

where 〈·, ·〉�[=] : �[=][ × �∨ [=][ → `=,[ is the canonical Weil pairing. On the other hand, the pairing

�A
,=
0 × �A,=0 =

1

=
./. × 1

=
./. → `=,[

is given by

( 1
=
H1,

1

=
H2) −→ g= (

1

=
H1, q(H2))g= (

1

=
H2, q(H1))−1.

We now transform the pairing from ⊕
8
�A

,=
8 to !/=! using X= and i8,=, then the compatibility of U=

with the Weil pairing is rephrased in the language of degeneration data, which are exactly the various
pairing conditions in Definition 5.15.

Lastly, the equivalence is defined by identifying different splittings Z= and X= that induce the same
U= through (30). This is easily translated into a statement involving only degeneration data; see [18]
Definition 5.2.7.11 for details. Because Z= is equivalent to (2=, 2∨= , g=), clearly the equivalence only
changes (X=, 2=, 2∨= , g=). This concludes the construction of �%�!,"= (', �).

5.3. Toroidal compactifications

We now review the construction of toroidal compactifications of PEL Shimura varieties. This is in some
sense the universal base of a degenerating PEL abelian scheme. We have already seen that degenerating
abelian varieties over a Noetherian normal complete affine base is equivalent to a set of degeneration
data. The basic idea of the construction of toroidal compactifications is to find the moduli space of the
degenerating data and glue them to the Shimura variety.

More precisely, because the degeneration data characterise the degenerating abelian varieties only
over a complete base, the moduli space of degeneration data is the completion of the toroidal com-
pactification along the boundary. To obtain the whole compactification, it is necessary to algebraize the
complete situation, which is a subtle procedure that we will not review.
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Let us start with the construction of moduli space of degeneration data. We first construct the moduli
space of data without the equivalence relation; that is, we want to parametrise the tuple

(�, _�, 8�, -,. , q, 2, 2∨, g, U♮=)

without bracket on U♮=, where

U
♮
= := (/=, i−2,=, (i−1,=, a−1,=), i0,=, X=, 2=, 2

∨
= , g=).

The moduli space of the degeneration data will be the quotient of this parametrisation space by a group
action identifying equivalent data. Without loss of generality, we assume that - and . are constant with
values - and . as before.

Because (2, 2∨, g) is determined by (2=, 2∨= , g=), the data we aim to parametrise are

(/=, (-,., q, i−2,=, i0,=), (�, _�, 8�, (i−1,=, a−1,=)), X=, (2=, 2∨= , g=)),

where

Φ= := (-,., q, i−2,=, i0,=)

describes the torus part of the degeneration and

(�, _�, 8�, (i−1,=, a−1,=))

characterises the abelian part, both with level structure specified by /=. Moreover, (2=, 2∨= , g=) contains
the information on the extension between abelian and torus parts, the periods and a splitting of the
monodromy filtration, which, together with X=, determine the level structure on the generic fibre of the
degenerating abelian variety.

The data

(/=, (-,., q, i−2,=, i0,=), X=)

are discrete in nature, and the equivalence class of the tuple is called the cusp label. Indeed, two
tuples (/=, (-,., q, i−2,=, i0,=), X=) and (/ ′=, (- ′, . ′, q′, i′−2,=, i

′
0,=), X

′
=) are defined to be equivalent

if /= = / ′=, and there exist O-equivariant isomorphisms W- : - ′
∼→ - and WH : .

∼→ . ′ such that
q = W-q

′W. , i′−2,= = W∨
-
i−2,= and i′0,= = W. i0,=. Note that the equivalence classes are independent

of the splitting X=. The cusp labels are essentially equivalence classes of PEL torus. Following Lan’s
notation, we sometimes abbreviate the notation (/=,Φ=, X=) to (Φ=, X=) for simplicity. This is mostly
used in the indexing of various objects.

The abelian part

(�, _�, 8�, (i−1,=, a−1,=))

is precisely a point of the moduli space of PEL abelian varieties "= with PEL data determined by�A/=−1 ,

which we denote by "/=
= . By abuse of notation, we use � to denote the universal PEL abelian variety

over "/=
= .

Next, the homomorphisms 2= and 2∨= are parametrised by the group schemes �><
O
( 1
=
-, �∨) and

�><
O
( 1
=
., �) over "/=

= . Recall that 2= and 2∨= lift 2 and 2∨, and the latter satisfies the relation
_� ◦ 2∨ = 2 ◦ q, which is equivalent to (2=, 2∨=) lies in the group scheme

...

�Φ= := �><
O
( 1
=
-, �∨) ×

�><
O
(. ,�∨)

�><
O
( 1
=
., �),

where the first projection map is 2= → 2= ◦ q ◦ (. ↩→ 1
=
. ), and the second one is 2∨= → _� ◦ 2∨= ◦ (. ↩→

1
=
. ).
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Further, (2=, 2∨=) are required to satisfy the relation

〈i−1,= (·), (_� ◦ 2∨= − 2= ◦ q) ◦ i0,= (·)〉� = a−1,= ◦ 〈·, ·〉10,=, (31)

and we want to find the subspace of the parametrisation space cut out by this relation. Note that the
equation

〈i−1,= (·), 1Φ= , X= ◦ i0,= (·)〉� = a−1,= ◦ 〈·, ·〉10,=

defines a liftable homomorphism

1Φ= , X= :
1

=
./. −→ �∨ [=]

and the relation (31) is rewritten as

1Φ= , X= = _� ◦ 2∨= − 2= ◦ q.

Thus, the parametrisation space we are searching for is the fibre at 1Φ= , X= of the homomorphism

m= :
...

�Φ= −→ �><
O
( 1
=
./., �∨ [=])

that sends (2=, 2∨=) to _� ◦ 2∨= − 2= ◦ q. We denote it by

...

�Φ= ,1= := m−1
= (1Φ= , X= ).

It can be shown that
...

�Φ= ,1= is a trivial torsor with respect to a commutative proper group scheme over
"
/=
= , but it is not necessarily geometrically connected. However, the liftability condition on (2=, 2∨=)

singles out a connected component �Φ= ,1= of
...

�Φ= ,1= , which is an abelian scheme. Thus, we see that
the tuple

(/=, (-,., q, i−2,=, i0,=), (�, _�, 8�, (i−1,=, a−1,=)), X=, (2=, 2∨=))

is parametrised by ∐
(/= ,Φ= , X=)

�Φ= ,1= ,

where �Φ= ,1= is an abelian scheme over "/=
= .

The next step is to include g= into the parametrisation space. By construction, we have two universal
homomorphisms (2=, 2∨=) over �Φ= ,1= . There is a map

1

=
. × - −→ %82(�Φ= ,1= )

defined by ( 1
=
H, j) → (2∨= ( 1

=
H), 2= (j))∗P�. The linearity and O-equivariance of (2=, 2∨=) imply that it

descends to a morphism

Ψ= :
...

(Φ= :=
1

=
. ⊗Z -/{

H⊗q (H′)−H′⊗q (H)
1 1
= H⊗j−(

1
= H) ⊗(1∗j)

} H,H′∈.
j∈-,1∈O

−→ %82(�Φ= ,1= )

and such that

⊕
;∈
...

(Φ=

Ψ= (;)
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is an ��Φ=,1=
-algebra; hence, we have

...

ΞΦ= ,1= := (?42
��Φ=,1=

( ⊕
;∈
...

(Φ=

Ψ= (;)),

which is a
...

�Φ= := �><(
...

(Φ= ,G<)-torsor. By construction, there is a universal trivialisation

g= : 1 1
=.×-

∼−→ (2∨= × 2)∗P⊗−1
�

over
...

ΞΦ= ,1= .

Note that
...

�Φ= is not necessarily a torus because
...

(Φ= can have torsion elements. However, as explained
in [18] Corollary 6.2.3.17, the liftability of g= together with the pairing condition in (6) of Definition

5.15 cuts out a subspace ΞΦ= , X= of
...

ΞΦ= ,1= , which is a

�Φ= := �><((Φ= ,G<)

torsor over �Φ= ,1= where (Φ= :=
...

(Φ= , 5 A44 is the free part of
...

(Φ= .

Remark 5.18. We have seen that the liftability condition restores connectivity in both �Φ= ,1= and
ΞΦ= , X= . This is a subtlety caused by the nontrivial endomorphism structure O. In particular, it does not
appear in the Siegel case treated in Faltings-Chai, where the level-n structure is liftable.

Thus, we have seen that the tuple

(/=, (-,., q, i−2,=, i0,=), (�, _�, 8�, (i−1,=, a−1,=)), X=, (2=, 2∨=), g=)

is parametrised by ∐
(/= ,Φ= , X=)

ΞΦ= , X= ,

where

ΞΦ= , X= := (?42
��Φ=,1=

( ⊕
;∈(Φ=

Ψ= (;))

is a �Φ= -torsor over the abelian scheme �Φ= ,1= defined over "/=
= . This is almost the parametrisation

space we are searching for, except that we have not dealt with the positivity condition on g (or g=).
Indeed, ΞΦ= , X= is the moduli space of ‘degeneration data over the the generic fibre’, and it remains to
construct the boundary on which the data extend and the positivity condition holds universally.

Recall that the positivity condition for g is that the morphism

g(H, q(H)) : (2∨ (H) × 2 ◦ q(H))∗P�,[ −→ O(,[

extends to ( for all H ∈ . and that for H ≠ 0, it factors through the ideal of definition of (. We have
constructed a universal g= overΞΦ= , X= by making (2∨= ( 1

=
H), 2= (j))∗P� = Ψ( 1

=
H⊗j) part of the structure

sheaf of the relatively affine scheme ΞΦ= , X= over �Φ= ,1= . There is a natural way to compactify the �Φ= -
torsor ΞΦ= , X= , namely, the toroidal compactification, which produces directions where g can extend.
However, this is noncanonical and depends on an auxiliary choice of cone decomposition, because there
are infinitely many potential directions and it is necessary to make a choice.

More precisely, the cocharacter of �Φ= is (∨
Φ=

:= �><((Φ= ,Z), and the corresponding real vector
space ((Φ= )∨R can be naturally identified with the space of Hermitian pairings (|·, ·|) : . ⊗ZR×. ⊗ZR→
O ⊗Z R. Let PΦ= ⊂ ((Φ= )∨R be the subset of positive semidefinite Hermitian pairings with admissible
radical; that is, its radical is the R-span of some direct summand O-submodule of . . Let ΣΦ= = {f9 } be
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a rational polyhedral cone decomposition of PΦ= , and let f∨ := {E ∈ (Φ= | 5 (E) ≥ 0,∀ 5 ∈ f}; then we
have the natural toroidal compactification

ΞΦ= , X= ,ΣΦ=

of ΞΦ= , X= , obtained by gluing together the relatively affine toroidal varieties

ΞΦ= , X= (f9 ) := (?42
��Φ=,1=

( ⊕
;∈f∨9

Ψ= (;)).

Alternatively, we can define ΞΦ= , X= ,ΣΦ=
as ΞΦ= , X= ×�Φ= �Φ= ,ΣΦ=

, where �Φ= ,ΣΦ=
is the classical toric

variety associated to the cone ΣΦ= (viewed as schemes over �Φ= ,1= ).
Note that the toroidal compactification ΞΦ= , X= ,ΣΦ=

has the universal property as follows. If ( is a

Noetherian scheme over �Φ= ,1= with ( ⊂ ( a dense open subscheme, and ( → ΞΦ= , X= is a morphism
defined over �Φ= ,1= , then it extends to a morphism

( −→ ΞΦ= , X= ,ΣΦ=

over �Φ= ,1= if and only if for each geometric point G of (, every dominant morphism (?42(+) → (

centred at G, with + a discrete valuation ring, the associated character

(Φ= −→ Z

lies in the closure f for some f ∈ ΣΦ= (f depends only on G). The naturally associated character is
defined as follows. Let ? : ( → �Φ= ,1= be the structure morphism, then we have the commutative
diagram

[ := Spec(Frac(+)) ( ΞΦ= , X=

Spec(+) ( �Φ= ,1=

5 ?

The generic fibre ( 5 ∗?∗Ψ= (;))[ of the line bundle 5 ∗?∗Ψ= (;) is equipped with a natural trivialisation
because it factorises thorough ΞΦ= , X= as the top row of the diagram shows, while the line bundles Ψ= (;)
on ΞΦ= , X= has a canonical trivialisation by construction. Now under this trivialisation, 5 ∗?∗Ψ= (;) is
identified with a +-submodule �; of Frac(+), we define the desired character (Φ= −→ Z by sending ;
to the lower bound of the valuation of elements of �; ⊂ Frac( ). In other words, �; = +c<; ⊂ Frac(+)
with c ∈ + the uniformiser and <; ∈ Z, then ; is sent to <; .

The universal property follows simply by unraveling the definition of toroidal embedding. This is
important because it is the ultimate origin of the universal property of toroidal compactifications of
Shimura varieties to be discussed in theorem 5.19. The formulation is useful because in the situation
we will consider, �; can be directly read off from the degeneration data of a degenerating abelian variety
over + .

We have now constructed the moduli space of the tuple

(/=, (-,., q, i−2,=, i0,=), (�, _�, 8�, (i−1,=, a−1,=)), X=, (2=, 2∨= , g=))

with a specified direction of degeneration, namely,

∐
(/= ,Φ= , X=)

ΞΦ= , X= ,ΣΦ=
,
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over which there is a universal degeneration data, and we would like to find the associated degenerating
abelian variety. However, the equivalence between degenerating abelian varieties and degeneration data
holds only over a complete base, so the correct object to consider is the completion of ΞΦ= , X= ,ΣΦ=

along
the boundary, which we denote by XΦ= , X= ,ΣΦ=

, and there is a universal degenerating abelian variety
over XΦ= , X= ,ΣΦ=

. More precisely, the equivalence between degeneration data and degenerating abelian

varieties is only proved over a complete affine base, and ΞΦ= , X= ,ΣΦ=
is not affine in general. However,

the global degeneration data define degenerating abelian varieties Zariski locally, and it is not hard to
use the functoriality of Mumford’s construction to glue them together to obtain a global one.

The next step is to quotient out the equivalence relation to find the moduli space of degeneration data.
Recall that the equivalence classes [(/=,Φ=, X=)] are called cusp labels, which subsumes the ambiguity

caused by equivalence classes of U♮=. Further, we need to take care of the isomorphism classes in
the category of degeneration data, and this is described by the action of the automorphism group. We
choose a representative (/=,Φ=, X=) for each cusp label, and then the automorphism group of the chosen
label is

ΓΦ= := {(W- , W. ) ∈ �!O (-) × �!O(. ) |i−2,= = W
∨
-i−2,=, i0,= = W. i0,=, q = W-qW. },

which acts on ΞΦ= , X= and PΦ= . We choose the cone decomposition ΣΦ= to be ΓΦ= -admissible; that
is, Wf ∈ ΣΦ= for all W ∈ ΓΦ= and f ∈ ΣΦ= , and the action of ΓΦ= on ΣΦ= has finitely many orbits.
Under this condition on ΣΦ= , the action of ΓΦ= extends to ΞΦ= , X= ,ΣΦ=

, hence also on XΦ= , X= ,ΣΦ=
, and

the moduli space of degeneration data is

∐
[ (/= ,Φ= , X=) ]

XΦ= , X= ,ΣΦ=
/ΓΦ= ,

where we choose a representative (/=,Φ=, X=) for each cusp label, and XΦ= , X= ,ΣΦ=
/ΓΦ= is constructed

with respect to this choice. The degenerating abelian variety onXΦ= , X= ,ΣΦ=
descends toXΦ= , X= ,ΣΦ=

/ΓΦ=
if a technical condition on ΣΦ= is satisfied (see [18] Condition 6.2.5.25), which we assume from now on.

Now the degenerating PEL abelian variety over XΦ= , X= ,ΣΦ=
/ΓΦ= is a PEL abelian variety over the

generic fibre, hence defining a map from the generic fibre of XΦ= , X= ,ΣΦ=
/ΓΦ= to the moduli space "=.

An appropriate algebraization of these attaching maps will provide gluing maps along neighbourhoods
of the boundary of the toroidal compactification of "=. Hence, we can glue them together to obtain
the toroidal compactification. In order for the gluing process to work well, it is necessary to choose the
cones ΣΦ= to be compatible for different Φ=; see [18] Definition 6.3.3.4 for details.

We remark that the algebraization process is very delicate and not canonical. As a consequence, it is
difficult to describe the Zariski neighbourhood of the boundary. On the other hand, because the boundary
is glued by the algebraization of a formal scheme that we constructed rather explicitly, we have a nice
description of the formal neighbourhood of the boundary, which is nothing but XΦ= , X= ,ΣΦ=

/ΓΦ= . This
also tells us what the boundary looks like, which is simply the support of XΦ= , X= ,ΣΦ=

/ΓΦ= . Moreover,

the universal property that we described for ΞΦ= , X= ,ΣΦ=
survives all of the completion, algebraization

and gluing procedures and is transformed to a universal property for the toroidal compactification
of "=.

To summarise, we have the following theorem.

Theorem 5.19 (Lan [18] Theorem 6.4.1.1). To each compatible choiceΣ = {ΣΦ= }[ (Φ= , X=) ] of admissible
smooth rational polyhedral cone decomposition as in [18] Definition 6.3.3.4, there is an associated
algebraic stack" C>A

=,Σ
(which is a scheme when = > 3) proper and smooth over (?42(O�0 , (�) ), containing

"= as an open dense subspace whose complement consists of normal crossing divisors, together with
a degenerating abelian variety

(�, _, 8, (U=, a=))
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over " C>A
=,Σ

as in Definition 5.14, such that we have the following:

(1) The restriction of (�, _, 8, (U=, a=)) to "= is the universal PEL abelian variety over "=.
(2) " C>A

=,Σ
has a stratification by locally closed subschemes

" C>A
=,Σ =

∐
[ (Φ= , X= ,f) ]

/ [ (Φ= , X= ,f) ]

where f ∈ ΣΦ= and [(Φ=, X=, f)] are the equivalence classes of the tuples (Φ=, X=, f), which
are the obvious refinement of the equivalences used to define cusp labels, namely, by requiring the
isomorphisms to preserve f; see [18] Definition 6.2.6.1 for details. Note that we suppress /= in the
notation, following Lan.

The formal completion (" C>A
=,Σ
)∧/[ (Φ=,X=,f) ] of " C>A

=,Σ
along / [ (Φ= , X= ,f) ] is canonically isomorphic

to XΦ= , X= ,f/ΓΦ= ,f ,

(" C>A
=,Σ )∧/[ (Φ=,X=,f) ] � XΦ= , X= ,f/ΓΦ= ,f ,

where XΦ= , X= ,f is the formal completion of

ΞΦ= , X= (f) := (?42
��Φ=,1=

( ⊕
;∈f∨

Ψ= (;))

along the boundary (?42
��Φ=,1=

( ⊕
;∈f⊥

Ψ= (;)), with f⊥ := {G ∈ (Φ= |〈G, H〉 = 0,∀H ∈ f}. The

scheme ΞΦ= , X= (f) is a relative affine toroidal variety over a �Φ= -torsor over �Φ= ,1= , which is an
abelian scheme over the PEL moduli space "/=

= with PEL data specified by �A/=−1 . Then the strata
/ [ (Φ= , X= ,f) ] is isomorphic to the support of XΦ= , X= ,f/ΓΦ= ,f . If = > 3, then the action of ΓΦ= ,f is
trivial, and XΦ= , X= ,f/ΓΦ= ,f � XΦ= , X= ,f .

(3) If ( is an irreducible Noetherian normal scheme over (?42(O�0 , (�) ) over which we have a degen-

erating PEL abelian variety (�†, _†, 8†, (U†=, a†=)) as in Definition 5.14 (with the same PEL data as
that of "=), then there exists a morphism

( −→ " C>A
=,Σ

over (?42(O�0 , (�) ) such that (�†, _†, 8†, (U†=, a†=)) is the pullback of (�, _, 8, (U=, a=)) if and only
if the following condition is satisfied:

For each geometric point B̄ of (, and any dominant morphism (?42(+) → ( centered at B̄ with + a
complete discrete valuation ring, let (�‡, _‡, 8‡, (U‡=, a‡=)) be the pullback of (�†, _†, 8†, (U†=, a†=)) along
(?42(+) → (, then the theorem on degeneration data provides us with the degeneration data

(�‡, _‡
�‡
, 8
‡
�‡
, -‡, .‡, q‡, 2‡, (2∨)‡, g‡, [(U♮=)‡])

over + . Note that - and . are automatically constant (hence the notation) because + is a complete

discrete valuation ring. Moreover, (/‡=,Φ‡=) is determined by [(U♮=)‡]. Let [ = (?42( ) be the generic
fibre of (?42(+), then the isomorphism

g‡ : ((2∨)‡ × 2‡)∗P�‡ ,[
∼−→ 1. ‡×-‡ ,[

defines a trivialisation of the generic fibre of the invertible sheaf ((2∨)‡(H) × 2‡ (j))∗P�‡ on (?42(+)
for each H ∈ .‡, j ∈ -‡, with which we can identify ((2∨)‡(H) × 2‡(j))∗P�‡ with an invertible
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+-submodule �H,j of  . This defines a morphism

.‡ × -‡ → Inv(+)

(H, j) → �H,j

with Inv(+) the group of invertible +-modules (submodules of  ). We can show that it extends to

1

=
.‡ × -‡ −→ Inv(+),

which descends to a homomorphism

�‡ : (Φ= −→ Inv(+)

composed with the natural identification Inv(+) � Z defined by c<+ ←→ < with c the uniformiser.
We obtain a homomorphism

E ◦ �‡ : (Φ= −→ Z

that is an element of (∨
Φ=

. The upshot is that we associate an element E ◦ �‡ ∈ (∨
Φ=

for each dominant
morphism Spec(+) → ( centred at B̄ with + a complete discrete valuation ring.

Then the condition is that for some choice of X‡= making (/‡=,Φ‡=, X‡=) a representative of a cusp label,
there is a cone f‡ ∈ Σ

Φ
‡
=

depending only on B̄ such that E ◦ �‡ ∈ f‡ for all those E ◦ �‡ coming from a

dominant (?42(+) → ( centred at B̄ with + a complete discrete valuation ring, where f‡ is the closure
of f‡.

5.4. Partial Frobenius extends to toroidal compactifications

Now we can prove the main technical results on the extension of partial Frobenius to toroidal compact-
ifications. We follow the notations of Subsection 3.3. In particular, we assume that

? splits completely in the center �2 of �,

and the moduli problems

" (=)/Δ =
∐
U∈Ω
X∈Λ

"= (!,)AO� /Z ◦ (UX〈·, ·〉� ))

are defined over O�0 ⊗Z F? , where Ω and Λ are fixed sets of representatives of the double quotients

(� ⊗ A(?∞) )× =
∐
U∈Ω
(O� ⊗ Z(?) )×+ U(O� ⊗ Ẑ?)×

(O� ⊗ Ẑ?)× =
∐
X∈Λ
(O� )×+ X(a( (=))Ẑ?,×).

Let ? =
∏
8
p8 be the decomposition of ? in O� , and we will focus on a single p8 from now on. We fix

a b ∈ �×+ satisfying Ep8 (b) = 1 and Ep8′ (b) = 0 for 8′ ≠ 8. Recall that the partial Frobenius

�p8 : " (=)/Δ −→ " (=)/Δ

is defined by union of the maps

"= (!, )AO� /Z ◦ (UX〈·, ·〉� )) → "= (!,)AO� /Z ◦ (U′X′〈·, ·〉� ))
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with U′ ∈ Ω, X′ ∈ Λ characterised by

bU = nU′_ (32)

_X = n0X
′W, (33)

where n ∈ (O� ⊗ Z(?) )×+ , _ ∈ (O� ⊗ Ẑ?)×, n0 ∈ O×
�,+ and W ∈ (a( (=))Ẑ?,×) as in the above two

double quotients of (� ⊗ A(?∞) )× and (O� ⊗ Ẑ?)×. The map is defined by

(�, _, 8, (U=, a=)) −→ (�′, _′, 8′, (U′=, a′=)),

where

�′ := �/( 4A (�) [p8]),

8′ is induced by the quotient map cp8 : �→ �′, _′ is characterised by b_ = c∨p8 ◦ _
′ ◦ cp8 , which defines

a quasi-isogeny _′, U′= = cp8 ◦ U=, and a′= = a= ◦ ^.
In the last equality, we fix a set of representatives of Ẑ?,×/a(U(=)) � (Z/=Z)×, which defines

a( (=))Ẑ?,× =
∐
^

a( (=))^,

where ^ ∈ Ẑ?,× ranges over the chosen representatives. Then the ^ in the equality a′= = a= ◦ ^ is defined
by

W = V^,

where V ∈ a( (=)) and W is obtained from the equation _X = n0X′W as above.

Remark 5.20. The above procedure can be performed to any PEL abelian variety (�, _, 8, (U=, a=))
defined over a base scheme ( overO�0 ⊗ZF? , and obtains a new PEL abelian variety (�′, _′, 8′, (U′=, a′=))
over (, which is nothing but the map �p8 on (-points.

Now let Σ = {ΣUX}U∈Ω, X∈Λ, where ΣUX is a compatible choice of admissible smooth rational
polyhedral cone decomposition with respect to the PEL moduli variety "= (!,)AO� /Z ◦ (UX〈·, ·〉� )).
Hence, each ΣUX determines a toroidal compactification "= (!,)AO� /Z ◦ (UX〈·, ·〉� ))C>AΣUX

, the union of
which defines the toroidal compactification

(" (=)/Δ)C>AΣ :=
∐
U∈Ω
X∈Λ

"= (!,)AO� /Z ◦ (UX〈·, ·〉� ))C>AΣUX
.

Moreover, the union of the strata

"= (!,)AO� /Z ◦ (UX〈·, ·〉� ))C>AΣUX
=

∐
[ (ΦUX,= , XUX,= ,fUX ) ]

/ [ (ΦUX,= , XUX,= ,fUX ) ]

defines

(" (=)/Δ)C>AΣ =
∐
U∈Ω
X∈Λ

∐
[ (ΦUX,= , XUX,= ,fUX ) ]

/ [ (ΦUX,= , XUX,= ,fUX ) ] . (34)

We now state the main result of this section.

Theorem 5.21. The partial Frobenius �p8 : " (=)/Δ −→ " (=)/Δ extends to a map

�p8 : (" (=)/Δ)C>AΣ −→ (" (=)/Δ)C>AΣ′

where Σ′ = {Σ′UX}U∈Ω, X∈Λ is characterised as follows.
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First, for each [(/UX,=,ΦUX,=, XUX,=)] we associate another [(/ ′U′X′,=,Φ′U′X′,=, X′U′X′,=)] as follows:
U′ ∈ Ω, X′ ∈ Λ are determined by U and X as in (32) and (33), then

/ ′U′X′,= = /UX,=,

and if ΦUX,= = (-,., q, i−2,=, i0,=), we define

Φ′U′X′,= = (- ⊗O� p8 , . , q
′, i′−2,=, i

′
0,=)

where

i′−2,= : �A
/U′X′,=
−2 = �A

/UX,=
−2

i−2,=−→ �><(-/=-, (Z/=Z) (1))

∼−→ �><(- ⊗ p8/=(- ⊗ p8), (Z/=Z) (1))

and

i′0,= : �A
/U′X′,=
0 = �A

/UX,=
0

i0,=−→ ./=. .

Further, q′ is defined by the diagram

- - ⊗O� p8

. ⊗O� p−1
8 . . ⊗O� p8

. ⊗O� p−1
8 .

83⊗(O�←↪p8)

83⊗(p−1
8 ←↪O� )

q

83⊗(O�←↪p8)

q⊗83

b ⊗83

83⊗(p−1
8 ←↪O� )

q′

Now for every f ∈ ΣΦUX,= , we associate f′ ∈ Σ′
ΦU′X′,=

by (⊗R of) the pullback map (∨
ΦUX
→ (∨

ΦU′X′

(recall that (∨
ΦUX

is the set of bilinear pairings.×- → Z that areO-compatible and becomes symmetric
Hermitian once we pull back to . × . along q) induced by the natural map

. × (- ⊗ p8) −→ . × -.

More precisely, the pullback map induces an isomorphism ((ΦUX )∨R
∼→ ((ΦU′X′ )∨R preserving positive

semidefinite pairings, hence defining an identification ΣΦUX,=

∼→ Σ′
ΦU′X′,=

, and we define Σ′U′X′ =

{Σ′
Φ′
U′X′,=
}[ (Φ′

U′X′,= , X
′
U′X′,=) ] .

Moreover, with the association as described above, the map �p8 sends / [ (ΦUX,= , XUX,= ,fUX ) ] to
/ [ (Φ′

U′X′,= , X
′
U′X′,= ,f

′
U′X′ ) ] .

Proof. It is enough to prove that �p8 extends to the toroidal compactification on each component; that is,

"= (!, )AO� /Z ◦ (UX〈·, ·〉� )) → "= (!,)AO� /Z ◦ (U′X′〈·, ·〉� ))

extends to a morphism

"= (!,)AO� /Z ◦ (UX〈·, ·〉� ))C>AΣUX
→ "= (!, )AO� /Z ◦ (U′X′〈·, ·〉� ))C>AΣ′

U′X′

and maps strata to the expected ones. This reduces the question to toroidal compactifications of Kottwitz’s
PEL moduli varieties, and we can apply the general machinery of Lan and, in particular, the universal
property in Theorem 5.19.
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The idea is very simple. Let� be the universal semi-abelian variety (with extra structures on the open
part) over "= (!, )AO� /Z ◦ (UX〈·, ·〉� ))C>AΣUX

. Because the partial Frobenius sends � to �/( 4A (�) [p8]),
it is natural to extend the map on semi-abelian varieties by the same formula � → �/( 4A (�) [p8])
(and take care of the extra structures), and this simple idea does indeed work. More precisely, we can
define a new semi-abelian scheme

�/( 4A (�) [p8])

(with extra structures on the part by definition of partial Frobenius) over"= (!,)AO� /Z◦(UX〈·, ·〉� ))C>AΣUX
,

and we would like it to be the pullback of the universal semi-abelian variety over "= (!,)AO� /Z ◦
(U′X′〈·, ·〉� ))C>AΣ′

U′X′
through a morphism

"= (!, )AO� /Z ◦ (UX〈·, ·〉� ))C>AΣUX
→ "= (!,)AO� /Z ◦ (U′X′〈·, ·〉� ))C>AΣ′

U′X′
.

The universal property of "= (!,)AO� /Z ◦ (U′X′〈·, ·〉� ))C>AΣ′
U′X′

tells us exactly when this happens, and

all we need to do is to verify that the semi-abelian variety �/( 4A (�) [p8]) satisfies the condition of
the universal property. This amounts to finding the period of the degenerating abelian variety or, more
precisely, the bilinear pairing E ◦ �‡ ∈ (∨

ΦU′X′
in the notation of Theorem 5.19, which is defined through

the assoicated degeneration data. Hence, we need to find the degeneration data of�/( 4A (�) [p8]). More
precisely, given the degeneration data of �, we aim to write the degeneration data of �/( 4A (�) [p8])
in terms of that of�; that is, to translate the map� → �/( 4A (�) [p8]) to the language of degeneration
data (in a suitable formal setting).

First, note that the restriction of �/( 4A (�) [p8]) to the open stratum is simply the old �′, and the
definition of partial Frobenius already tells us that it comes with the PEL structure; that is, we have a
degenerating PEL family

(� ′, _′, 8′, (U′=, a′=))

over "= (!,)AO� /Z ◦ (UX〈·, ·〉� ))C>AΣUX
, because all of the extra data are defined on the generic open part

(although _′ and 8′ extends to the whole base by formal argument).
Let us specialise the setting of the universal property in Theorem 5.19 to our case. Let us fix

a geometric point B̄ of "= (!,)AO� /Z ◦ (UX〈·, ·〉� ))C>AΣUX
, and we assume that it lies in the strata

/ [ (ΦUX,= , XUX,= ,fUX ) ] . Let+ be a complete discrete valuation ring, and we are given a dominant morphism
(?42(+) → "= (!,)AO� /Z ◦ (UX〈·, ·〉� ))C>AΣUX

centred at B̄, and

(�†, _†, 8†, (U†=, a†=))

the pullback of (� ′, _′, 8′, (U′=, a′=)) to Spec(+).
It is an easy observation that�† � �Spec(+ )/( 4A (�) [p8]); that is, we can first pull back the universal

semi-abelian � and then apply the partial Frobenius operation, and similarly for the extra structures.
Let

(�, _�, 8�, -,. , q, 2, 2∨, g, [U♮=])

be the degeneration data associated to (�, _, 8, (U=, a=))Spec(+ ) . Because + is centred at B̄, which
lies in / [ (ΦUX,= , XUX,= ,fUX ) ] , we see that the torus part of the degeneration data is the same as
ΦUX,=, and similarly for XUX,= (if we choose a representative (/UX,=,ΦUX,=, XUX,=) of the cusp label

[(/UX,=,ΦUX,=, XUX,=)]). Moreover, fUX determines the range of g= in U♮=.
We want to write the degeneration data

(�†, _†
�†
, 8
†
�†
, -†, .†, q†, 2†, (2∨)†, g†, [(U♮=)†])
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of (�†, _†, 8†, (U†=, a†=)) in terms of that of (�, _, 8, (U=, a=))Spec(+ ) . More precisely, our aim is to
describe E ◦ �† in terms of E ◦ �, and it is enough to describe certain parts of the degeneration data for
our purpose, as in the next proposition.

Recall that � is a homomorphism (Φ= → Inv(+) induced by

1

=
. × - −→ Inv(+),

which is

(H, j) −→ �H,j := (2∨(H) × 2(j))∗%�
g⊂  := Frac(+)

when restricted to . × - , and similarly for �†. By Proposition 5.22, we have that

g† = g |. †×-†

under the natural inclusion

.† × -† = . × (- ⊗O� p8) ↩→ . × -

and identification

((2∨)† × 2†)∗%�† � ((2∨ × 2)∗%�). †×-† .

Therefore, by abuse of notation (viewing � as bilinear forms on 1
=
. × - , and similarly for �†),

�† |. †×-† = � |. †×-† ,

where the second restriction is induced by

.† × -† = . × (- ⊗O� p8) ↩→ . × -.

We now have obtained

E ◦ �† |. †×-† = E ◦ � |. †×-† ,

which means that

=(E ◦ �†) = =(E ◦ � |. †×-†).

By construction, we have (for all dominant morphisms (?42(+) → "= (!,)AO� /Z ◦ (UX〈·, ·〉� ))C>AΣUX
centred at B̄)

E ◦ � ∈ fUX ,

and by the definition of f′U′X′ as in the statement of the theorem, we have

=(E ◦ �†) = =(E ◦ � |. †×-†) ∈ f′U′X′ ,

which implies that (for all dominant morphism (?42(+) → "= (!,)AO� /Z ◦ (UX〈·, ·〉� ))C>AΣUX
centred at

B̄)

E ◦ �† ∈ f′U′X′

because f′U′X′ is a cone. This finishes the verification of the universal property and also the proof of
Theorem 5.21, modulo the following Proposition 5.22. �
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Proposition 5.22. Let + be a complete discrete valuation ring that is defined over O�0 ⊗Z F? with
generic fibre [, and

(�, _, 8, (U=, a=))

is a PEL degenerating abelian variety over (?42(+); that is, (�, _, 8, (U=, a=)) ∈ ���%�!,"= (+) as
in Definition 5.14. Let

(� ′, _′, 8′, (U′=, a′=)) ∈ ���%�!,"= (+)

be the degenerating abelian variety defined by

� ′ := �/( 4A (�) [p8])

and the rest of the structures obtained by applying the partial Frobenius to the generic fibre
(�, _, 8, (U=, a=))[ that is a PEL abelian variety, as in Remark 5.20.

Let

(�, _�, 8�, -,. , q, 2, 2∨, g, [U♮=])

be the degeneration data of (�, _, 8, (U=, a=)) and

(�′, _′�′ , 8′�′ , - ′, . ′, q′, 2′, 2′∨, g′, [U′♮=])

be the degeneration data of (� ′, _′, 8′, (U′=, a′=)). Then

(�′, _′�′ , 8′�′ , (i′−1,=, a
′
−1,=))

is obtained by applying the partial Frobenius to (�, _�, 8�, (i−1,=, a−1,=)) over + ,

/ ′= = /=,

- ′ = - ⊗O� p8 ,

. ′ = .,

i′−2,= : �A
/ ′=
−2 = �A

/=
−2

i−2,=−→ �><(-/=-, (Z/=Z) (1))

∼−→ �><(- ⊗ p8/=(- ⊗ p8), (Z/=Z) (1)),

i′0,= : �A
/ ′=
0 = �A

/=
0

i0,=−→ ./=.,

and q′ is defined by the diagram

- - ⊗O� p8

. ⊗O� p−1
8 . . ⊗O� p8

. ⊗O� p−1
8 .

83⊗(O�←↪p8)

83⊗(p−1
8 ←↪O� )

q

83⊗(O�←↪p8)

q⊗83

b ⊗83

83⊗(p−1
8 ←↪O� )

q′
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Moreover, we have

2′ : - ′ = - ⊗O� p8
2⊗83−→ �∨ ⊗O� p8

c⊗83−→ �∨
′ ⊗O� p8 � �

′∨

2′∨ : . ′ = .
2∨−→ �

c−→ �′,

where c : � → �′ := �/( 4A (�) [p8]) is the projection map and the isomorphism �∨′ ⊗O� p8 � �
′∨

is as in Lemma 3.15.
Last and most important, there is a canonical isomorphism

(2′∨ × 2′)∗%�′ � ((2∨ × 2)∗%�). ′×- ′

where the pullback to . ′ × - ′ is through the natural injection

. ′ × - ′ = . × (- ⊗O� p8) ↩→ . × -

induced by - ⊗O� p8 ↩→ - ⊗O� O� � - . Now g′ is identified as

g′ : 1. ′×- ′,[
g |. ′×-′−→ ((2∨ × 2)∗P⊗−1

�,[
). ′×- ′ � (2′∨ × 2′)∗%⊗−1

�′,[ .

Proof. We first fix the notation as follows. For any commutative group scheme � over + with an action
of O, we denote

� (p8) := �/( 4A (�) [p8]),

where � is the relative Frobenius.
We begin by showing that taking the partial Frobenius quotient commutes with the Raynaud extension;

that is, we have the following.

Lemma 5.23.

� (p8) ,♮ � �♮, (p8) .

Proof of the Lemma. Recall that�♮ is characterised as the unique global extension of an abelian variety
by a torus whose formal completion along the maximal ideal of + is the same as that of �; that is, �♮

sits in an extension

0→ ) → �♮ → �→ 0

with ) a torus and � an abelian scheme over + , which satisfies �♮for � �for. We have a commutative
diagram for the relative Frobenius �

0 ) �♮ � 0

0 ) �♮ � 0.

�) � ��

We observe that the relative Frobenius is a faithfully flat morphism on smooth schemes, which in
particular shows that �) is surjective as a morphism in the category of fppf sheaves of abelian groups.
Then the associated long exact sequence of the diagram tells us that we have a short exact sequence

0→  4A (�) ) →  4A (�) →  4A (��) → 0

of finite flat group schemes over+ . Because the diagram is O-equivariant, so is the short exact sequence
of  4A (�). From the observation that  4A (�) is killed by ? (and so are the other two groups), we
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see that  4A (�) = ∏
8
 4A (�) [p8] (and similarly for the other two), and the above short exact sequence

decomposes into a product of short exact sequences

0→  4A (�) ) [p8] →  4A (�) [p8] →  4A (��) [p8] → 0.

Now the commutative diagram

0  4A (�) ) [p8]  4A (�) [p8]  4A (��) [p8] 0

0 ) �♮ � 0

gives us a short exact sequence

0→ ) (p8) → �♮, (p8 ) → �(p8) → 0.

Let < be the maximal ideal of + , : ∈ Z, �♮
:

:= �♮
Spec(+ /<: ) and similarly for other groups defined over

+ . Then the naturality of  4A (�) [p8] (it commutes with base change) provides isomorphisms

(�♮, (p8) ): � �♮:/( 4A (�) [p8]) � �:/( 4A (�) [p8]) = �
(p8)
:
,

which are compatible when : varies. This implies that

�
♮, (p8)
for � �

(p8)
for ;

hence, we have a canonical isomorphism

�♮, (p8) � � (p8) ,♮

by the characterisation of the Raynaud extension.
�

Now by definition of - ′ and �′ in the degeneration data, together with the fact � (p8) ,♮ � �♮, (p8) and

0→ ) (p8) → �♮, (p8) → �(p8) → 0

that we have just proved, we have

�′ = �(p8)

- ′ = �><() (p8 ) ,G<) � - ⊗O� p8 ,

where the last isomorphism follows because on a torus we have � = ?, so

 4A (�) [p8] = ) [p8] =  4A () = ) ⊗O� O�
83⊗↩→−→ ) ⊗O� p−1

8 ),

which implies that

) (p8) � ) ⊗O� p−1
8 , (35)

whence the isomorphism on the characters. Note that everything has an O-action, and the isomorphisms
are O-equivariant, and in particular the O-structure 8′

�′ on �′ is induced from � by the projection
�→ �(p8) , which is consistent with partial Frobenius operation on �.
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On the other hand, we have a canonical isomorphism

�
(p8) ,∨
[ � �

∨, (p8)
[ ⊗O� p8

as proved in Lemma 3.15, which extends to

� (p8) ,∨ � �∨, (p8) ⊗O� p8

by formal nonsense (the restriction to the generic fibre is a fully faithful functor from the category of
degenerating abelian varieties to that of abelian varieties). We can now take the Raynaud extension of
both sides and obtain

� (p8) ,∨,♮ � �∨, (p8) ,♮ ⊗O� p8 � �
∨,♮, (p8) ⊗O� p8 ,

where the first isomorphism follows from the functoriality of Raynaud extensions (which implies that
(−) ⊗O� p8 commutes with the Raynaud extension), and the second isomorphism is the claim we have
just proved. From the extension

0→ )∨ → �∨,♮ → �∨ → 0

and the above isomorphism, we see that

0→ )∨, (p8) ⊗O� p8 → � (p8) ,∨,♮ → �∨, (p8) ⊗O� p8 → 0.

We have already observed that from (35) and Lemma 3.15 there are natural isomorphisms )∨, (p8) �
)∨ ⊗O� p−1

8 and �(p8) ,∨ � �∨, (p8) ⊗O� p8 , which simplifies the extension to

0→ )∨ → � (p8) ,∨,♮ → �(p8) ,∨ → 0.

This tells us that the torus part of the dual Raynaud extension of � ′ is the same as that of �; hence,

. ′ = .

as we expected.

Now we look at the polarisation _′ and the associated part of the degeneration data. Recall that
_′[ : � ′[ → � ′∨[ is characterised by the formula

b_[ = c∨[ ◦ _′[ ◦ c[

with c[ : �[ → � ′[ the projection, which extends uniquely to a morphism _′ : � ′ → � ′∨ by formal
properties of the degenerating abelian varieties. This extension also satisfies the characterising relation

b_ = c∨ ◦ _′ ◦ c

with c : � → � ′ the projection (note that c∨ here has to be interpreted as the unique extension of the
c∨[ being the dual morphism on the dual abelian varieties). The functoriality of Raynaud extensions

provides us with the morphism _′♮ : � ′♮ → � ′∨,♮, which fits in a commutative diagram (with change
of notation)

0 ) (p8) � (p8) ,♮ �(p8) 0

0 ) (p8) ,∨ � (p8) ,∨,♮ �(p8) ,∨ 0.

_
(p8 )
) _(p8 ) ,♮ _

(p8 )
�
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The characterising relation b_ = c∨ ◦ _ (p8) ◦ c extends to

b_♮ = c∨,♮ ◦ _ (p8) ,♮ ◦ c♮

on the Raynaud extension by functoriality, which implies the two relations

b_� = c
∨,♮
�
◦ _ (p8)

�
◦ c♮

�

b_) = c
∨,♮
)
◦ _ (p8)

)
◦ c♮

)

on the abelian and torus parts, respectively. Note that the relation on the abelian part is exactly the
characterising relation of the partial Frobenius operation on (�, _�).

Alternatively, we can write down directly the diagram defining _′ on the generic fibre, which extends
formally to the whole base as follows:

� � (p8) � ⊗O� p−1
8

�∨ ⊗O� p8 �∨ (�∨) (p8) �∨ ⊗O� p−1
8

�∨ ⊗O� p8 (�∨) (p8) ⊗O� p8 �∨

(� (p8) )∨

� (p8 )

_

+ (p8 )

_(p8 ) _′ _⊗83
83⊗(p8↩→O� )

b ⊗83p8

�
(p8 )
�∨

b

+
(p8 )
�∨

(+ (p8 ) )∨ (� (p8 ) )∨

≃

The functoriality of Raynaud extension allows us to draw the same diagram with Raynaud extensions,
and so do the abelian and torus parts, with which we obtain a rather explicit description of _ (p8)

�
and

_
(p8)
)

. This tells us that _ (p8)
�

is obtained as in the partial Frobenius operation, and the morphism q′ on

characters induced by _ (p8)
)

is as in the description of the proposition.

The next step is to look at the level structures. Recall that the level structure U′= : !/=! � � ′[=] on
� ′ is defined by the composition

U′= : !/=!
U=
� � [=] c� � ′[=],

where c : � → � ′ is the projection, which induces an isomorphism on =-torsion points because = is
prime to ?. Because c preserves the monodromy filtration on � [=] and � ′[=], we have

/ ′= = /=

by definition. More explicitly, c induces isomorphisms of the extensions

0 ) [=] �♮ [=] �[=] 0

0 ) (p8) [=] � (p8) ,♮ [=] �(p8) [=] 0

c) ∼ c♮ ∼ c� ∼
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0 �♮ [=] � [=] 1
=
./. 0

0 � (p8) ,♮ [=] � (p8) [=] 1
=
./. 0,

c♮ ∼ c ∼

where we use . ′ = . in the last isomorphism. We have seen that c) : ) → ) (p8) is the natural

morphism ) = ) ⊗O� O�
83⊗↩→−→ ) ⊗O� p−1

8 � ) (p8 ) , and the corresponding map on characters is

- ⊗O� p8
83⊗↩→−→ - ⊗O� O� = - , which clearly implies that the degree-2 part of the level-= structure is

i′−2,= : �A
/ ′=
−2 = �A

/=
−2

i−2,=−→ �><(-/=-, (Z/=Z) (1))

∼−→ �><(- ⊗ p8/=(- ⊗ p8), (Z/=Z) (1)).

Similarly, we have

i′0,= : �A
/ ′=
0 = �A

/=
0

i0,=−→ ./=.,

and

i′−1,= : �A
/ ′=
−1 = �A

/=
−1

i−1,=−→ �[=]
c�
� �(p8) [=] .

Moreover, we have

a′−1,= = a
′
= = a= ◦ ^,

where the first equality is tautological and the second is part of the definition of the partial Frobenius.
To summarise, we have proved that

(�′, _′�′ , 8
′
�′ , (i

′
−1,=, a

′
−1,=))

is exactly the partial Frobenius operation applied to (�, _�, 8�, (i−1,=, a−1,=)) and have identified the
torus argument

(- ′, . ′, q′, i′−2,=, i
′
0,=)

together with the filtration / ′=. The remaining part to be identified is (2′, 2′∨, g′).

First, we note that for any degenerating abelian variety �, the canonical morphism � = � ⊗O�
O�

83⊗↩→−→ � ⊗O� p−1
8 factors through � → � (p8) → � ⊗O� p−1

8 , and tensoring the factoring morphism
with p8 we obtain

+ (p8) : � (p8) ⊗O� p8 → �,

which is characterised by the commutative diagram

� ⊗O� p8 � (p8) ⊗O� p8

�

c� ⊗83p8

83� ⊗(p8↩→O� )
+ (p8 )

We observe that when � is an abelian scheme, under the identification � (p8) ,∨ � �∨, (p8 ) ⊗O� p8 the
morphism � (p8) ⊗O� p8 → � is the dual of the projection c� : � → � (p8) ; that is, we have a
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commutative diagram

� (p8) ,∨ �∨, (p8 ) ⊗O� p8

�

∼

(c� )∨
+ (p8 )

Dually, we have that + (p8) ,∨ is c�∨ under canonical isomorphism; that is,

�∨ (� (p8) ⊗O� p8)∨

�∨, (p8)

+ (p8 ) ,∨

c�∨

∼

is commutative.

Lemma 5.24.

2′ : - ′ = - ⊗O� p8
2⊗83−→ �∨ ⊗O� p8

c⊗83−→ �∨
′ ⊗O� p8 � �

′∨.
Proof of the Lemma. We have seen that there is a natural morphism

+ (p8) : �♮, (p8) ⊗O� p8 → �♮

that induces the morphism between extensions

0 ) �♮, (p8) ⊗O� p8 �(p8) ⊗O� p8 0

0 ) �♮ � 0

+
(p8 )
�

where we use the canonical isomorphism ) (p8) ⊗O� p8 � ) . We note that the extension in the first row
is determined by the morphism

- � (- ⊗O� p8) ⊗O� p−1
8

2′⊗83
p−1
8−→ �(p8) ,∨ ⊗O� p−1

8 � �
∨, (p8)

and the extension in the second row is determined by

2 : - −→ �∨.

For j ∈ - , we write �j := 2(j) ∈ %820 (�) and !j := 2′ ⊗ 83p−1
8
(j) ∈ %820 (�(p8) ⊗O� p8). By abuse

of notation, we will write �j and !j for both the line bundle and the G<-torsor.
Recall that �j is defined as the pushout of �♮ along j; that is, we have a pushout diagram

0 ) �♮ � 0

0 G< �j � 0

j
p
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and similarly for !j. We can complete this in the previous diagram and obtain

0 ) �♮, (p8) ⊗O� p8 �(p8) ⊗O� p8 0

0 ) �♮ � 0

0 G< �j � 0.

+
(p8 )
�

j
p

Similarly, !j is defined by the pushout of �♮, (p8) ⊗O� p8 along j, and the universal property of pushout
implies that the diagram factorises through !j; that is, we have a commutative diagram

0 ) �♮, (p8) ⊗O� p8 �(p8) ⊗O� p8 0

0 G< !j �(p8) ⊗O� p8 0

0 G< �j � 0,

j
p

+
(p8 )
�

which tells us that

(+ (p8)
�
)∗�j = !j .

In other words, we have a commutative diagram

- �(p8) ,∨ ⊗O� p−1
8

�∨ (�(p8) ⊗O� p8)∨.

2′⊗83
p−1
8

2 ∼

(+ (p8 )
�
)∨

Now with the help of the commutative diagram

�∨ (�(p8) ⊗O� p8)∨

�∨, (p8)

+ (p8 ) ,∨

c�∨

∼

we see that

- �(p8) ,∨ ⊗O� p−1
8

�∨ �∨, (p8)

2′⊗83
p−1
8

2 ∼

c�∨

that is, under the identification �∨, (p8 ) � �(p8) ,∨ ⊗O� p−1
8 ,

2′ ⊗ 83p−1
8

= c�∨ ◦ 2
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and tensoring with p8 we obtain

2′ = (c�∨ ◦ 2) ⊗ 83p8 = (-
2→ �∨

c�∨→ �∨, (p8) ) ⊗ 83p8 ,

which is what we want to prove.
�

Dually, we have the following.

Lemma 5.25.

2′∨ : . ′ = .
2∨−→ �

c−→ �′.
Proof of the Lemma. For H ∈ . , we write !2∨ (H) := 2∨(H) ∈ %820 (�∨) and !2′∨ (H) := 2′∨(H) ∈
%820 (�(p8) ,∨). We have seen that � (p8) ,∨,♮ � (�∨,♮) (p8) ⊗O� p8 , which equips with a natural morphism

(�∨,♮) (p8) ⊗O� p8 → �∨,♮ .

Recall that � (p8) ,∨,♮ is an extension

0→ )∨ → � (p8) ,∨,♮ → �(p8) ,∨ → 0

and we observe that the morphism � (p8) ,∨,♮ � (�∨,♮) (p8) ⊗O� p8 → �∨,♮ gives rise to a morphism of
the extension

0 )∨ � (p8) ,∨,♮ �(p8) ,∨ 0

0 )∨ �∨,♮ �∨ 0.

(c�)∨

Now, similar to before, !2∨ (H) is the pushout of �∨,♮ along H, and we have a commutative diagram

0 )∨ � (p8) ,∨,♮ �(p8) ,∨ 0

0 )∨ �∨,♮ �∨ 0

0 G< !2∨ (H) �∨ 0.

(c�)∨

p
H

By the universal property of pushout, we have the factorisation

0 )∨ � (p8) ,∨,♮ �(p8) ,∨ 0

0 G< !2′∨ (H) �(p8) ,∨ 0

0 G< !2∨ (H) �∨ 0,

H
p

(c�)∨

which implies that

(c�)∨∗!2∨ (H) = !2′∨ (H) .

In other words, we have

2′∨ (H) = ((c�)∨)∨ ◦ 2∨(H) = c� ◦ 2∨(H)
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under the canonical identification (�(p8) ,∨)∨ = �(p8) , which means that

2′∨ : .
2∨−→ �

c�−→ �(p8) .

�

Lastly, we determine g′ from g.
Let us write �j := 2(j) ∈ %820(�) for j ∈ - , and similarly �j′ := 2′(j′) ∈ %820 (�′) for j′ ∈ - ′.

By abuse of notation, we will write �j for both the line bundle and the G<-torsor.
We first make an observation on the relation between �j and �j′ , which can be used to write the

canonical morphism �♮ → � (p8) ,♮ in a more explicit way.
Recall that �j is defined as the pushout of �♮ along j; that is, we have a pushout diagram

0 ) �♮ � 0

0 G< �j � 0

j
p

and similarly for �j′ . We have a diagram

0 ) �♮ � 0

0 ) (p8 ) �♮, (p8) �(p8) 0

0 G< �j′ �(p8) 0.

c) c�

j′
p

Let

d : - ′ = - ⊗O� p8 → -

be the map induced by c) (being the obvious map induced by p8 ↩→ O� ), then �d(j′) is the pushout
along c) ◦ j′, and the universal property of the pushout provides us with a factorisation of the short
exact sequence

0 ) �♮ � 0

0 G< �d(j′) � 0

0 G< �j′ �(p8) 0.

p
d(j′)

c�

This shows

c∗��j′ = �d(j′) , (36)

which implies that under the identifications �♮ = Spec
��

( ⊕
j∈-

�j) and � (p8) ,♮ = Spec
�
�(p8 )
( ⊕
j′∈- ′

�j′)
the morphism

�♮ → � (p8) ,♮
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is induced from the map

c∗�( ⊕
j′∈- ′

�j′) � ⊕
j′∈- ′

c∗��j′ � ⊕
j′∈- ′

�d(j′) ↩→ ⊕
j∈-

�j (37)

on relatively affine algebras over �.

Let us recall how we associate g to the degenerating abelian variety�. We start by choosing an ample
invertible cubical sheaf L on � (whose existence is guaranteed by the normality of the base Spev(+)),
then we can show that its formal completion extends canonically to a cubical ample line bundle L♮ on
�♮, which descends to an ample invertible sheaf M on �; that is, if we denote by ? : �♮ → � the
projection map, then ?∗M = L♮. Replacing _[ by _L[

if necessary (so _ is the unique extension of _L[

to �), we assume that _[ = _L[
. The construction of g is independent of the choice of _ or L.

The canonical isomorphism �♮ = Spec
��

( ⊕
j∈-

�j) tells us that

?∗L
♮
� ⊕
j∈-

Mj

with Mj := M ⊗�� �j, from which we obtain

Γ(�♮,L♮) = ⊕
j∈-

Γ(�,Mj)

and

Γ(�♮for,L
♮

for) = ⊕̂j∈-Γ(�,Mj),

whereˆdenotes the completion with respect to the maximal ideal of + . Now we have the canonical map

Γ(�,L) → Γ(�for,Lfor) � Γ(�♮for,L
♮

for) � ⊕̂j∈-Γ(�,Mj) → Γ(�,Mj)

where the first map is the restriction and the last is the projection on the jth component. Tensoring both
sides with Frac(+), we obtain

fj : Γ(�[ ,L[) −→ Γ(�[ ,Mj,[).

Let H ∈ . and )2∨ (H) : �→ � the translation by 2∨ (H), then

_� ◦ 2∨ = 2 ◦ q

tells us that we have a canonical isomorphism of rigidified line bundles

)∗2∨ (H)Mj � Mj+q (H) ⊗' Mj (2∨(H)),

and this is the place where we use the assumption _[ = _L[
on L. Now we have the map

)∗2∨ (H) ◦ fj : Γ(�[ ,L[) → Γ(�[ , )∗2∨ (H)Mj,[) � Γ(�[ ,Mj+q (H) ,[) ⊗ Mj (2∨ (H))[ .

The desired g is obtained by comparing )∗
2∨ (H) ◦ fj with the map

fj+q (H) : Γ(�[ ,L[) −→ Γ(�[ ,Mj+q (H) ,[),

and the result is

fj+q (H) = k(H)g(H, j))∗2∨ (H) ◦ fj,
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where

k(H) : M(2∨ (H))[
∼→ �(,[

is a trivialisation of the fibre of M at 2∨(H) and

g(H, j) : �j (2∨ (H))[ −→ �(,[

is a section of�j (2∨(H))⊗−1
[ for each H ∈ . and j ∈ - , so thatk(H)g(H, j) is a section ofMj (2∨(H))⊗−1

[

(recall Mj = M ⊗ �j). This uniquely characterises g because fj ≠ 0 for every j ∈ - .

Lemma 5.26. There is a canonical isomorphism

(2′∨ × 2′)∗%�′ � ((2∨ × 2)∗%�). ′×- ′

where the pullback to . ′ × - ′ is through the natural injection

. ′ × - ′ = . × (- ⊗O� p8) ↩→ . × -

induced by - ⊗O� p8 ↩→ - ⊗O� O� � - . Now g′ is identified as

g′ : 1. ′×- ′,[
g |. ′×-′−→ ((2∨ × 2)∗P⊗−1

�,[
). ′×- ′ � (2′∨ × 2′)∗%⊗−1

�′,[ .

Remark 5.27. As in Subsection 5.1.3, the lemma is equivalent to the statement that the period of � (p8)

is given by

.[
y−→ �

♮
[ −→ �

(p8) ,♮
[ ,

where y is the period of � and �♮[ −→ �
(p8) ,♮
[ is the natural projection map.

Proof of the Lemma. We have the same description as above for g′, and we want to compare it with g.
Let us first compare fj′ and fj.

We choose an ample cubical invertible sheaf L(p8) on � (p8) whose associated line bundle L(p8) ,♮ on
� (p8) ,♮ descends to an ample invertible sheaf M(p8) on �(p8) . Let L (respectively M) be the pullback of
L(p8) (respectively M(p8) ) along the natural map � → � (p8) (respectively � → �(p8) ). Note that both
L and M are ample because they are pullbacks of ample line bundles along finite maps � → � (p8) and
�→ �(p8) , respectively.

We assume that L(p8)[ induces the polarisation _′[ on � (p8)[ , so we have

)∗2′∨ (H)M
(p8)
j′ � M

(p8)
j′+q′ (H) ⊗' M

(p8)
j′ (2

′∨ (H)). (38)

Let c : � → � (p8) be the projection map, then L := c∗L(p8) and the associated polarisation

_L[
= _

c∗L
(p8 )
[

= c∨[ ◦ _L(p8 )[
◦ c[ = c∨[ ◦ _′[ ◦ c[ = b_[ ,

which has the effect that

)∗2∨ (H)Mj � Mj+b q (H) ⊗' Mj (2∨(H)) (39)

because we have to replace the relation _� ◦ 2∨ = 2 ◦ q by b_� ◦ 2∨ = 2 ◦ bq.
Let

d : - ′ = - ⊗O� p8 → -
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be the map induced by p8 ↩→ O� as before, then for j′ ∈ - ′, the natural map � → � (p8) induces a
commutative diagram

Γ(�,L) Γ(�for,Lfor) Γ(�♮for,L
♮

for) Γ(�,Md(j′) )

Γ(� (p8) ,L(p8) ) Γ(� (p8)for ,L
(p8)
for ) Γ(� (p8) ,♮for ,L

(p8) ,♮
for ) Γ(�(p8) ,M(p8)j′ )

�

�

where the last two horizontal maps are projections

Γ(�♮for,L
♮

for) � ⊕̂j∈-Γ(�,Mj) → Γ(�,Md(j′) )

and

Γ(� (p8) ,♮for ,L
(p8) ,♮
for ) � ⊕̂

j′∈-
Γ(�(p8) ,M(p8)j′ ) → Γ(�(p8) ,M(p8)j′ ),

respectively, and the last vertical map is induced from

c∗�M
(p8)
j′ = c∗�(M

(p8) ⊗�
�(p8 )

�j′) = M ⊗�� c∗�j′
(36)
� M ⊗�� �d(j′) = Md(j′) ;

that is, it is taking the global section of the map M
(p8)
j′ → c�∗c∗�M

(p8)
j′

∼→ c�∗Md(j′) with the
last isomorphism being c�∗ of the isomorphism (36). The commutativity of the first two squares is
tautological, and that of the last square follows from (37). Tensoring with Frac(+) of the above diagram,
we obtain a commutative diagram

Γ(�[ ,L[) Γ(�[ ,Md(j′) ,[)

Γ(� (p8)[ ,L
(p8)
[ ) Γ(�(p8)[ ,M

(p8)
j′,[)

fd(j′)

fj′

for every j′ ∈ - ′.
For H ∈ . , we can complete the diagram as

Γ(�[ ,L[) Γ(�[ ,Md(j′) ,[) Γ(�[ , ()2∨ (H) )∗Md(j′) ,[) · · ·

Γ(� (p8)[ ,L
(p8)
[ ) Γ(�(p8)[ ,M

(p8)
j′,[) Γ(�(p8)[ , ()2′∨ (H) )∗M(p8)j′,[) · · ·

fd(j′) ) ∗
2∨ (H)

fj′ ) ∗
2′∨ (H)

· · · Γ(�[ ,Md(j′)+b q (H) ,[) ⊗Md(j′) (2∨ (H))[

· · · Γ(�(p8)[ ,M
(p8)
j′+q′ (H) ,[) ⊗M

(p8)
j′ (2′∨ (H))[ ,

(39)

(38)

(40)
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where the last vertical arrow is the tensor product of the morphism

Γ(�(p8)[ ,M
(p8)
j′+q′ (H) ,[) → Γ(�[ ,Md(j′)+b q (H) ,[)

induced by c∗
�
M
(p8)
j′+q′ (H) � Md(j′+q′ (H)) = Md(j′)+b q (H) (d ◦q′ = bq by the diagram defining q′), with

the isomorphism

Md(j′) (2∨ (H))[ = c∗�M
(p8)
j′ (2

∨(H))[ = M
(p8)
j′ (c� ◦ 2

∨(H))[ = M
(p8)
j′ (2

′∨ (H))[ ,

where we use 2′∨ = c� ◦ 2∨ in the last equality. The middle square commutes because we have a
commutative diagram

� �

�(p8) �(p8) ,

c� c�

)2∨ (H)

)2′∨ (H)

which follows from 2′∨ = c� ◦ 2∨ and c� being a group homomorphism. The commutativity of the last
square follows from the commutativity of the square

()2∨ (H) )∗Md(j′) ,[ Md(j′)+b q (H) ,[ ⊗Md(j′) (2∨(H))[

c∗
�
()2′∨ (H) )∗M(p8)j′,[ c∗

�
(M(p8 )

j′+q′ (H) ,[ ⊗M
(p8)
j′ (2′∨ (H))[),

∼

∼

∼

∼

and we can prove its commutativity as follows. Recall that the first horizontal map is (using _! (G) =
)∗G! ⊗ !−1 ⊗ !−1

G )

()2∨ (H) )∗Md(j′) ,[ = (_M ◦ 2∨(H))[ ⊗Md(j′) ,[ ⊗Md(j′) (2∨ (H))[

_M=b_�
===== (2 ◦ bq(H))[ ⊗Md(j′) ,[ ⊗Md(j′) (2∨ (H))[

===== �b q (H) ,[ ⊗Md(j′) ,[ ⊗Md(j′) (2∨(H))[

===== Md(j′)+b q (H) ,[ ⊗Md(j′) (2∨(H))[

and similarly the second horizontal map is c∗
�

of

()2′∨ (H) )∗M(p8)j′,[ = (_′�′ ◦ 2′∨(H))[ ⊗M
(p8)
j′,[ ⊗M

(p8)
j′ (2

′∨ (H))[

= (2′ ◦ q′(H))[ ⊗M
(p8)
j′,[ ⊗M

(p8)
j′ (2

′∨ (H))[

= �q′ (H) ,[ ⊗M
(p8)
j′,[ ⊗M

(p8)
j′ (2

′∨ (H))[

= M
(p8)
j′+q′ (H) ,[ ⊗M

(p8)
j′ (2

′∨ (H))[ .

We want to prove that c∗
�

of the second isomorphism is the first isomorphism under canonical identifi-
cations, and the only nontrivial part is to observe that

c∗�(_′�′ ◦ 2′∨(H)) = c∨� ◦ _′�′ ◦ 2′∨ (H)
2′∨=c�◦2∨
==== c∨� ◦ _′�′ ◦ c� ◦ 2∨(H) = b_� ◦ 2∨(H).

https://doi.org/10.1017/fms.2021.27 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2021.27


80 Zhiyou Wu

We now want to compare the diagram (40) with

Γ(�[ ,L[) Γ(�[ ,Md(j′)+b q (H) ,[)

Γ(� (p8)[ ,L
(p8)
[ ) Γ(�(p8)[ ,M

(p8)
j′+q′ (H) ,[).

fd(j′)+b q (H)

fj′+q′ (H)

(41)

Recall that we have

fd(j′)+b q (H) = k(H)g(H, d(j′)))∗2∨ (H) ◦ fd(j′) , (42)

where

k(H) : M(2∨ (H))[
∼→ �(,[

is a trivialisation of the fibre of M at 2∨ (H) and

g(H, j) : �j (2∨ (H))[ −→ �(,[

is a section of �j (2∨ (H))⊗−1
[ for each H ∈ . and j ∈ - , so that k(H)g(H, j) is a section of

Mj (2∨(H))⊗−1
[ . Note that here we have tacitly changed the polarisation of � from _ to b_, which

has the effect of replacing q by bq. This does not affect g but may affect k, for which we use the same
notation as before for simplicity.

Similarly, g′ is characterised by the equation

fj′+q′ (H) = k
′(H)g′(H, j′))∗2′∨ (H) ◦ fj′ (43)

with isomorphism

k ′(H) : M(p8) (2′∨ (H))[
∼→ �(,[

and

g′(H, j′) : �j′ (2′∨ (H))[
∼→ �(,[

so that k ′(H)g′(H, j′) defines a section of M(p8)j′ (2′∨ (H))⊗−1
[ .

Now (40), (41), (42) and (43) together imply that we have a commutative diagram

Γ(�[ ,Md(j′)+b q (H) ,[) ⊗Md(j′) (2∨(H))[ Γ(�[ ,Md(j′)+b q (H) ,[)

Γ(�(p8)[ ,M
(p8)
j′+q′ (H) ,[) ⊗M

(p8)
j′ (2′∨ (H))[ Γ(�(p8)[ ,M

(p8)
j′+q′ (H) ,[)

g (H,d(j′))k (H)

g′ (H,j′)k′ (H)

where we use that fj ≠ 0 and fj′ ≠ 0 for every j ∈ - and j′ ∈ - ′. Observe that the vertical arrows
are nonzero, and we obtain

g′(H, j′) = g(H, d(j′))

under the canonical identification�d(j′) (2∨(H))[ � c∗��j′ (2
∨(H))[ � �j′ (c�◦2∨ (H))[ = �j′ (2′∨ (H)),

which completes the proof if we take the equivalent formulation of g in 5.1.3. �
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5.5. Partial Frobenius extends to minimal compactifications

In this final section, we deduce our main Theorem 3.16 from the theorem proved in the last section. We
retain the setting of the last section, so in particular every scheme is defined over O�0 ⊗Z F? .

We begin by recalling the construction of the minimal compactifications. In the analytic setting, the
minimal compactifications can be constructed directly using rational boundary components. However,
in the algebraic settings, the only known method to proceed is to first construct the toroidal compactifi-
cations and then contract the boundary to obtain the minimal compactifications.

More precisely, let ltor :=
∧top Lie∨

�tor/" tor
=,Σ

, where � tor is the universal semi-abelian scheme over

the toroidal compactification " tor
=,Σ

. Then ltor is an invertible sheaf generated by its global sections, and
we define

"min
= := Proj( ⊕

:≥0
Γ(" tor

=,Σ, (ltor)⊗: )).

Alternatively, "min
= is the Stein factorisation of the map

" tor
=,Σ −→ P(Γ(" tor

=,Σ, l
tor))

defined by global sections of ltor; that is, it factors through∮
: " tor

=,Σ → "min
=

with "min
= → P(Γ(" tor

=,Σ
, ltor)) finite and

�"min
=

∼→
∮
∗
�" tor

=,Σ
.

It can be shown that "min
= is independent of the choice of the toroidal compactification. Moreover, by

construction we have a canonical ample invertible sheaf lmin := �(1) on "min
= such that

∮ ∗
lmin

� ltor.

We can show that "min
= has a stratification

"min
= =

∐
[ (/= ,Φ= , X=) ]

/ [ (/= ,Φ= , X=) ]

where / [ (/= ,Φ= , X=) ] = "
/=
= as defined in Subsection 5.3, and the index ranges through all cusp labels.

Moreover, the map
∮

preserves the stratification and sends / [ (Φ= , X= ,f) ] to / [ (/= ,Φ= , X=) ] .
Similar to the toroidal compactifications, the minimal compactification of " (=)/Δ is defined to be

the union of minimal compactifications of "= (!, )AO� /Z ◦ (UX〈·, ·〉� )).

Theorem 5.28. �p8 extends to a morphism

�min
p8

: (" (=)/Δ)<8= −→ (" (=)/Δ)<8=

sending the strata "= (!/UX,= , 〈·, ·〉/UX,= ) associated to U ∈ Ω, X ∈ Λ and the cusp label
[(/UX,=,ΦUX,=, XUX,=)] to the strata "= (!/U′X′,= , 〈·, ·〉/U′X′,= ) associated to U′ ∈ Ω, X′ ∈ Λ with the
usual notations as before and the cusp label [(/U′X′,=,ΦU′X′,=, XU′X′,=)] defined as follows:

/U′X′,= = /UX,=.
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If ΦUX,= = (-,., q, i−2,=, i0,=), then

ΦU′X′,= = (- ⊗O� p8 , . , q
′, i′−2,=, i

′
0,=)

where

i′−2,= : �A
/U′X′,=
−2 = �A

/UX,=
−2

i−2,=−→ �><(-/=-, (Z/=Z) (1))

∼−→ �><(- ⊗ p8/=(- ⊗ p8), (Z/=Z) (1))

and

i′0,= : �A
/U′X′,=
0 = �A

/UX,=
0

i0,=−→ ./=. .

Lastly, q′ is defined by the following diagram similar to the diagram defining _′:

- - ⊗O� p8

. ⊗O� p−1
8 . . ⊗O� p8

. ⊗O� p−1
8 .

83⊗(O�←↪p8)

83⊗(p−1
8 ←↪O� )

q

83⊗(O�←↪p8)

q⊗83

b ⊗83

83⊗(p−1
8 ←↪O� )

q′

Moreover, on each strata, �min
p8

induces the morphism

"= (!/UX,= , 〈·, ·〉/UX,= ) → "= (!/U′ X′,= , 〈·, ·〉/U′X′,= )

sending (�, _, 8, (U=, a=)) to (�′, _′, 8′, (U′=, a′=)) as in the description before the theorem. For complete-
ness, we summarise the description as follows. Using the above notations, �′ := �/( 4A (�) [p8]), 8′ is
induced by the quotient map cp8 : � → �′, _′ is characterised by b_ = c∨p8 ◦ _

′ ◦ cp8 , which defines a
prime to ? isogeny _′, U′= = cp8 ◦U= and a′= = a= ◦ ^. In other words, restriction of the partial Frobenius
to (suitable union of) strata recovers the partial Frobenius on them.

Proof. It is enough to prove that �p8 extends to the minimal compactification of each component; that is,

"= (!,)AO� /Z ◦ (UX〈·, ·〉� )) → "= (!,)AO� /Z ◦ (U′X′〈·, ·〉� ))

extends to a morphism

"= (!,)AO� /Z ◦ (UX〈·, ·〉� ))min → "= (!,)AO� /Z ◦ (U′X′〈·, ·〉� ))min

and maps strata to the expected ones. We are thus reduced to the situation that we are familiar with.
We have morphisms

"= (!, )AO� /Z ◦ (UX〈·, ·〉� ))tor
ΣUX

"= (!, )AO� /Z ◦ (U′X′〈·, ·〉� ))tor
Σ′
U′X′

"= (!, )AO� /Z ◦ (UX〈·, ·〉� ))min "= (!, )AO� /Z ◦ (U′X′〈·, ·〉� ))min

� tor
p8

∮ ∮ ′
�min
p8

(44)

where the horizontal arrow is the extension of the partial Frobenius to toroidal compactifications as we
have proved in the previous section and the dashed arrow is the morphism we are searching for that
makes the diagram commute. Once the existence of the dashed arrow is established, the description of
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�min
p8

follows from the commutativity of the diagram and the description of the first horizontal arrow as
stated in the last section.

Let�ΣUX (respectively�Σ′
U′X′

) be the universal semi-abelian scheme over" tor
=,ΣUX

:= "= (!, )AO� /Z◦
(UX〈·, ·〉� ))tor

ΣUX
(respectively " tor

=,Σ′
U′ X′

:= "= (!,)AO� /Z ◦ (U′X′〈·, ·〉� ))tor
Σ′
U′X′

). Recall that � tor
p8

is char-

acterised by

(� tor
p8
)∗�Σ′

U′X′
� �

(p8)
ΣUX

:= �ΣUX/( 4A (�) [p8]);

hence,

(� tor
p8
)∗Lie∨

�Σ′
U′X′
/" tor

=,Σ′
U′X′
� Lie∨

�
(p8 )
ΣUX
/" tor

=,ΣUX

.

Because the action of O� on Lie∨
�ΣUX

/" tor
=,ΣUX

(respectively Lie∨
�Σ′

U′X′
/" tor

=,Σ′
U′X′

) factors through O�/? �∏
8
O�/p8 , we have

Lie∨
�ΣUX

/" tor
=,ΣUX

= ⊕
8
48Lie∨

�ΣUX
/" tor

=,ΣUX

(respectively Lie∨
�Σ′

U′X′
/" tor

=,Σ′
U′X′

= ⊕
8
48Lie∨

�Σ′
U′X′
/" tor

=,Σ′
U′X′

) with 48 the idempotent ofO�/? corresponding

to the factor O�/p8 . Because everything is O-equivaraint, we obtain

(� tor
p8
)∗(4 9Lie∨

�Σ′
U′X′
/" tor

=,Σ′
U′X′
) � 4 9Lie∨

�
(p8 )
ΣUX
/" tor

=,ΣUX

=



4 9Lie∨

�ΣUX
/" tor

=,ΣUX

9 ≠ 8,

�∗ (48Lie∨
�ΣUX

/" tor
=,ΣUX

) 9 = 8
(45)

where the last equality follows from

4 9Lie∨
�
(p8 )
ΣUX
/" tor

=,ΣUX

= Lie∨
�
(p8 )
ΣUX
[p 9 ]/" tor

=,ΣUX

=




Lie∨
�ΣUX

[p 9 ]/" tor
=,ΣUX

9 ≠ 8,

�∗(Lie∨
�ΣUX

[p8 ]/" tor
=,ΣUX

) 9 = 8

in which we use

Lie∨
�
(p8 )
ΣUX
/" tor

=,ΣUX

= Lie∨
�
(p8 )
ΣUX
[?]/" tor

=,ΣUX

= ⊕
9
Lie∨

�
(p8 )
ΣUX
[p 9 ]/" tor

=,ΣUX

,

and similarly for Lie∨
�ΣUX

/" tor
=,ΣUX

, together with

�
(p8)
ΣUX
[p 9 ] =

{
�ΣUX [p 9 ] 9 ≠ 8,

�
(?)
ΣUX
[p8] 9 = 8,

where � (?)
ΣUX

:= (�ΣUX/ 4A (�)) is the usual base change by the absolute Frobenius � on " tor
=,ΣUX

.

Let l8 :=
∧top 48Lie∨

�ΣUX
/" tor

=,ΣUX

(respectively l′8 :=
∧top 48Lie∨

�Σ′
U′X′
/" tor

=,Σ′
U′X′

), then we have

l = ⊗
8
l8

and

l′ = ⊗
8
l′8
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with l :=
∧top Lie∨

�ΣUX
/" tor

=,ΣUX

and l′ :=
∧top Lie∨

�Σ′
U′X′
/" tor

=,Σ′
U′X′

as before. Moreover, (45) tells us that

� tor∗
p8

l′9 =

{
l 9 9 ≠ 8,

�∗l8 = l
?
8 9 = 8;

hence,

� tor∗
p8

l′ = ( ⊗
9≠8
l 9 ) ⊗ l?8 .

If we can show that each l8 descends to a line bundle on

"min
=,UX := "= (!,)AO� /Z ◦ (UX〈·, ·〉� ))min

through
∮

– that is, there exists a line bundle lmin
8 on "min

=,UX
such that

∮ ∗
lmin
8 = l8 ,

then (� tor
p8
)∗l′ = ( ⊗

9≠8
l 9 ) ⊗ l?8 tells us that we can find a line bundle !min := ( ⊗

9≠8
lmin
9 ) ⊗ (lmin

8 ) ? such

that ∮ ∗
!min = (� tor

p8
)∗l′

and the universal property of Proj construction tells us that there exists �min
p8

, which makes the diagram
(44) commutative.

Indeed, recall that the universal property of the Proj construction is as follows. Let A = ⊕
:≥0

A: be

a graded '-algebra finitely generated by degree 1 elements and ) be a scheme defined over ' with
structure map 5 : ) → Spec('). Suppose we are given a line bundle L on ) and a morphism of graded
'-algebras

k : A→ 5∗( ⊕
:≥0

L⊗: ) = ⊕
:≥0

Γ(),L⊗: )

whose adjoint morphism at degree 1 5 ∗A1 → L is surjective (viewing A1 as a quasi-coherent module
on Spec(')), then there exists a unique morphism

6 : ) −→ Proj' (A)

of '-schemes together with an isomorphism

\ : 6∗�(1) � L

such that k factorises as

k : A � ⊕
:≥0

Γ(Proj' (A),�(1)⊗: )
6∗
→ ⊕

:≥0
Γ(), 6∗�(1)⊗=) \� ⊕

:≥0
Γ(),L⊗=).

In our setting,
∮ ′ ◦� tor

p8
is induced by

⊕
:≥0

Γ(" tor
=,Σ′

U′ X′
, l′⊗: )

(� tor
p8
)∗
→ ⊕

:≥0
Γ(" tor

=,ΣUX
, ((� tor

p8
)∗l′)⊗: ) (46)
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with L = (� tor
p8
)∗l′. Assume that we know the existence of lmin

8 , then we have !min such that
∮ ∗

!min =

(� tor
p8
)∗l′. Because �"min

=,UX

∼→
∮
∗�" tor

=,ΣUX

, we have by projection formula

∮
∗

∮ ∗
!min = !min ⊗

∮
∗
�" tor

=,ΣUX

= !min ⊗ �"min
=,UX

= !min

(note that because !min is locally free, the derived tensor prodoct and left derived pullback is just the
usual one), which implies that

Γ("min
=,UX , !

min)
∮ ∗
� Γ(" tor

=,ΣUX
,

∮ ∗
!min) � Γ(" tor

=,ΣUX
, (� tor

p8
)∗l′)

and similar for (!min)⊗: . Thus, (46) gives us a morphism

⊕
:≥0

Γ(" tor
=,Σ′

U′ X′
, l′⊗: ) → ⊕

:≥0
Γ("min

=,UX , (!min)⊗: ),

which by the universal property of Proj construction induces a morphism

�min
p8

: "min
=,UX −→ "min

=,U′X′ := Proj( ⊕
:≥0

Γ(" tor
=,Σ′

U′ X′
, l′⊗: )),

which makes the diagram (44) commutative.

Thus, we are reduced to showing the existence of lmin
8 such that

∮ ∗
lmin
8 = l8 . Let "1

=,UX ⊂ "min
=,UX

be the union of the open stratum and all of the codimension 1 strata, then it follows from [18] Proposition
7.2.3.13 that ∮

:

∮ −1

("1
=,UX) � "1

=,UX ,

so we can view "1
=,UX as an open subscheme of " tor

=,ΣUX
as well. Let

lmin
8 := ("1

=,UX ↩→ "min
=,UX)∗(l8 |" 1

=,UX
),

then we will show that lmin
8 is a line bundle and

∮ ∗
lmin
8 � l8 . This is a direct adaption of the proof of

[18] Theorem 7.2.4.1 in our case.
First observe that lmin

8 is a coherent sheaf because "min
=,UX

is normal and the complement of "1
=,UX

has codimension at least 2 ([13] VIII Proposition 3.2). Then to show that it is a line bundle, it is enough
to show that its stalk at every point is free of rank 1. By fpqc descent, it is enough to show this for the
completions of the strict localisations of "min

=,UX ; that is, it is enough to prove that for every geometric

point Ḡ of "min
=,UX , the pullback of lmin

8 to ("min
=,UX)∧Ḡ , the completions of the strict localisation of "min

=,UX

at Ḡ, is free of rank 1. Similarly, it is enough to prove that
∮ ∗

lmin
8 � l8 holds naturally over (" tor

=,ΣUX
)∧H̄

for every geometric point H̄ of " tor
=,ΣUX

.
Suppose that Ḡ lies in the stratum / [ (/= ,Φ= , X=) ] , and we choose a stratum / [ (Φ= , X= ,f) ] lying above

/ [ (/= ,Φ= , X=) ] . Then from (2) of Theorem 5.19 we have a natural identification

(" tor
=,ΣUX

)∧/[ (Φ=,X=,f) ] � XΦ= , X= ,f

where we do not have the quotient by ΓΦ= ,f because we assume that = > 3. We have a canonical map
XΦ= , X= ,f → ("min

=,UX)∧/[ (/=,Φ=,X= ) ] induced by
∮

, and by abuse of notation we let

(XΦ= , X= ,f)∧Ḡ := XΦ= , X= ,f ×("min
=,UX
)∧
/[ (/=,Φ=,X= ) ]

("min
=,UX)∧Ḡ ,
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so by definition we have a morphism

(XΦ= , X= ,f)∧Ḡ → ("min
=,UX)∧Ḡ .

The key point is that we have a morphism

("min
=,UX)∧Ḡ → ("/=

= )∧Ḡ

such that the composition

(XΦ= , X= ,f)∧Ḡ → ("min
=,UX)∧Ḡ → ("/=

= )∧Ḡ

is induced by the structural morphism ? : XΦ= , X= ,f → "
/=
= (recall that XΦ= , X= ,f is the formal

completion along the boundary of an affine toroidal compactification of a torus torsor over an abelian
scheme over "/=

= ); see [18] Proposition 7.2.3.16 for details.
We observe that the pullback of the line bundle l8 over XΦ= , X= ,f is canonically identified with

(∧top
Z
48-) ⊗Z ?∗ (

∧top 48Lie∨
�/"/=

=

), where � is the universal abelian variety over "/=
= . This is a trivial

variant of [18] Lemma 7.1.2.1, and we briefly recall the proof. By étale descent, we can assume that the
base is ( = Spf(', �), with ' normal Noetherian and �-adically complete so that we are in the setting
of Subsection 5.2.2. We have

Lie∨�for/( = Lie∨
�
♮

for/(
;

hence,

l8 =

top∧
48Lie∨�for/( =

top∧
48Lie∨

�
♮

for/(
= (

top∧
Z

48-) ⊗Z
top∧
48Lie∨�for/( ,

where the last equality follows from the short exact sequence

0→ 48Lie) /( → 48Lie�♮/( → 48Lie�/( → 0

induced by the global semi-abelian structure

0→ ) → �♮ → �→ 0

of �♮.
From what we have seen, the restriction of l8 to (XΦ= , X= ,f)∧Ḡ is the pullback of (∧top

Z
48-) ⊗Z

(∧top 48Lie∨
�/"/=

=

) along the composition

(XΦ= , X= ,f)∧Ḡ → ("min
=,UX)∧Ḡ → ("/=

= )∧Ḡ ,

which in particular shows that it is the pullback of some line bundle ! on ("min
=,UX
)∧Ḡ ; that is, by abuse

of notation,

(
∮ ∧

Ḡ

)∗! � (l8)∧Ḡ . (47)

This implies that both (lmin
8 )∧Ḡ and ! are extensions of (the completion of the strict localisation at

Ḡ of) l8 |" 1
=,UX

, which by Stacks Project 30.12.12 is equivalent ((lmin
8 )∧Ḡ is reflexive because it is the

pushforward of an open embedding and ! is reflexive because it is a line bundle on a normal scheme).
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This proves that (lmin
8 )∧Ḡ is free of rank 1 and for every geometric point H̄ of / [ (Φ= , X= ,f) ] with

Ḡ =
∮
( H̄) we have a natural map ℎ : (" tor

=,ΣUX
)∧H̄ → (XΦ= , X= ,f)∧Ḡ and

(
∮ ∗
(lmin
8 ))∧H̄ � ℎ∗ (

∮ ∧

Ḡ

)∗(lmin
8 )∧Ḡ

(47)
� ℎ∗((l8)∧Ḡ ) � (l8)∧H̄

proving what we want.
To be more precise, there are canonical morphisms

l8 �∗�∗l8

∮ ∗
lmin
8

∮ ∗
9∗�∗l8

∮ ∗ ∮
∗ �∗�

∗l8
def

where 9 and � are open embeddings defined by the diagram

"1
=,UX " tor

=,ΣUX

"min
=,UX

�

9 ∮

and the two arrows are the adjunction morphism. We showed that
∮ ∗

lmin
8 andl8 are naturally identified

over (" tor
=,ΣUX

)∧H̄ for every geometric point H̄ of " tor
=,ΣUX

, and the naturality tells us that after localisation

and completion, the images of l8 and
∮ ∗

lmin
8 in �∗�∗l8 are identified. Now we can apply the fpqc

descent to those two image sheaves and conclude that
∮ ∗

lmin
8 � l8 . �
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