BULL. AUSTRAL. MATH. SOC. VOL. 6 (1972), 107-115.

A characterization of pre-near-standardness in locally convex linear topological spaces

J.J.M. Chadwick and R.W. Cross

Let X be a locally convex linear topological space. A point z in an ultralimit enlargement of X is pre-near-standard if and only it is finite and for every equicontinuous subset S' of the dual space X', a point z' belongs to $*S' \cap \mu_{\sigma(X'X)}(0)$ only if z'(z) is infinitesimal.

1. Introduction

In a recent paper Luxemburg [2] obtains a characterization of pre-near-standardness for normed spaces leading to several interesting applications in the standard theory. Our object here will be to derive a characterization for locally convex spaces generalizing ([2], 3.17.2). An introduction to the theory of non-standard analysis can be found in [3] and [4]. In addition we make implicit use of ultralimit (or suitably saturated) enlargements. All the necessary metamathematical background will be found in [2]. For the topological vector space concepts see for example Köthe [1].

Some definitions and notations will now be given. Let Ω be a family of subsets of a given set. We denote the (*intersection*) monad of Ω by $\mu(\Omega)$ (see [2]). By definition, $\mu(\Omega) = \Omega(*E : E \in \Omega)$.

When Ω is the filter F of neighbourhoods of a point x in a topological space (X, τ) , we often write $\mu_{\tau}(x)$ for $\mu(F)$. The definition of $\mu_{\tau}(x)$ accords with that of Robinson [4].

Received 27 September 1971.

If (X, τ) is a linear topological space, and $\{N_{\delta} : \delta \in \Delta\}$ the set of all neighbourhoods of the origin, then the set of vicinities $V_{\delta} = \{(x, y) : x - y \in N_{\delta}\}$ is a uniformity u on X which induces the topology τ . For any point $z \in {}^{*}X$ we define

$$\mu_{\mathcal{H}}(z) = \bigcap (*V(z) : V \in u),$$

where $*V(z) = (*V)(z) = \{x : x-z \in *V\}$.

We recall that a proper filter F of subsets of X is a *Cauchy* filter if for each $V \in u$ there exists $F \in F$ such that $F \times F \subset V$, or equivalently, if and only if $\mu(F) \times \mu(F) \subset \mu(u)$. A Cauchy filter is called *minimal* if it does not properly contain a Cauchy filter.

The point $z \in {}^{*}X$ is called *pre-near-standard* if there exists a filter F of subsets of X (necessarily a Cauchy filter) such that $\mu(F) \subset \mu_{\mathcal{U}}(z)$. Clearly every near-standard point is pre-near-standard. The concept of pre-near-standardness was first introduced by Luxemburg [2]. A necessary and sufficient condition that a uniform space A be precompact is that every point of ${}^{*}A$ be pre-near-standard [2].

We shall make use of the following result:

THEOREM 1.1 ([2], 3.12.1). A point $z \in *X$ is pre-near-standard if and only if there exists a minimal Cauchy filter F such that $\mu(F) = \mu_{\mu}(z)$.

Throughout the remainder of this paper the following notation will be used. Except where stated otherwise, X will denote a locally convex linear topological space whose generating family of seminorms is $(p_{\lambda} : \lambda \in \Lambda)$. X_{λ} will denote the seminormed space (X, p_{λ}) , and S'_{λ} the unit ball of the topological dual X'_{λ} of X_{λ} . For an arbitrary topological space (X, τ) , $\mu_{\tau}(x)$ denotes the τ -monad of $x \in X$. In particular, $\mu_d(x)$ is the monad of x in the discrete topology, and $\mu_{\sigma(X',X)}(0)$ is the monad of the origin of X' in its weak star topology. For any pair of real numbers a, b the relation $a =_1 b$ means that a - bis infinitesimal.

2. The main theorem

Our principal result will be the following:

THEOREM 2.1. Let z be a point of *X. Then z is pre-near-standard if and only if it is finite and for every equicontinuous set S' in X', z' $\in *S' \cap \mu_{\sigma(X',X)}(0)$ implies z'(z) = 10.

The theorem will be proved by means of some auxiliary theorems and lemmas.

Let $z \in {}^{*}X$ and let B(z) denote the collection of all finite intersections of sets $\{x : p_{\lambda}(z-x) < \varepsilon\}$ where λ and $\varepsilon > 0$ are both standard.

THEOREM 2.2. The point z is pre-near-standard if and only if each B in B(z) contains a standard point.

Proof. Suppose z is pre-near-standard. It is clear that $\mu_u(z) = \{x : p_\lambda(x-z) = 1 \text{ 0 for all standard } \lambda\}$. By Theorem 1.1, $\mu_u(z)$ is a filter monad and therefore $\mu_d(z) \subset \mu_u(z)$. Let $B \in \mathcal{B}(z)$. Then B is by definition internal and $\mu_u(z) \subset B$. Hence, since $\mu_d(z) \subset B$, B contains a standard point by ([2], 2.8.1).

Conversely, suppose that each member of B(z) contains a standard point. For each $B \in B(z)$ select a standard $x_B \in B$. Now B(z) becomes a directed set if we define $B_1 \leq B_2 \iff B_2 \subset B_1$ and then $(x_B : B \in B(z))$ becomes a net. Let F be the associated filter of subsets $\{x_{B'} : B' \geq B\}$.

We will show that F is a Cauchy filter. We have $\mu(F) = \{x_B : B \in {}^*B(z), B \ge B' \text{ for all standard } B'\}$.

Therefore

$$x \in \mu(F) \Rightarrow x \in B \text{ for every standard } B \text{ in } {}^{*}B(z)$$
$$\Rightarrow p_{\lambda}(x-z) < \varepsilon \text{ for all standard } \lambda \text{ and } \varepsilon > 0$$
$$\Rightarrow p_{\lambda}(x-z) = 0 \text{ for all standard } \lambda.$$

Hence if $x, y \in \mu(F)$ we have

$$p_{\lambda}(x-y) \leq p_{\lambda}(x-z) + p_{\lambda}(z-y) = 10$$
,

whence $(x, y) \in \mu(u)$. Consequently $\mu(F) \times \mu(F) \subset \mu(u)$, that is, F is Cauchy.

Now $x \in \mu(F) \Rightarrow p_{\lambda}(x-z) = 0$ for all standard $\lambda \Rightarrow x \in \mu_{u}(z)$. Thus $\mu(F) \subset \mu_{u}(z)$ showing that z is pre-near-standard.

We remark that Theorem 2.2 implies ([2], 3.17.1).

COROLLARY 2.3. Every pre-near-standard point is finite.

PROPOSITION 2.4. If $z \in *X$ is finite, then f(z) is also finite for every standard $f \in X'$.

Proof. Let $z \in {}^{*}X$ be finite, and let $f \in X'$. If f(z) is infinite, then for all standard λ , $p_{\lambda}(z/f(z)) =_{1} 0$ since $p_{\lambda}(z)$ is finite. Thus $z/f(z) \in \mu_{\tau}(0)$. But f(z/f(z)) = 1, contradicting the continuity of f, ([3], 5.4.1).

DEFINITION 2.5. Let z be a finite point of $^{*}X$. The functional st₁₀(z), (cf. [2], p. 83), is defined by

$$st_{i}(z)(f) = stf(z)$$
 for $f \in X'$,

where stf(z) denotes the standard part of f(z), ([4], p. 57). By Proposition 2.4, $st_{ij}(z)$ is a linear functional on X'.

We make use of the following elementary result:

LEMMA 2.6. Let S' be a uniform space, and $(g_{\delta} : \delta \in \Delta)$ a net of continuous mappings of S' into the space of real numbers such that $g_{\delta} + g$ uniformly on S'. Then g is continuous.

THEOREM 2.7. If $z \in *X$ is pre-near-standard, then $st_{ij}(z)$ is

continuous in the $\sigma(X^\prime\,,\,X)$ topology on every equicontinuous subset of X^\prime .

Proof. Let $z \in {}^{*}X$ be pre-near-standard and let S' be an equicontinuous subset of X'. By Theorem 2.2, for each B in B(z) we can select a standard x_B in B. Then \hat{x}_B is $\sigma(X', X)$ continuous on S'. By Lemma 2.6 it is sufficient to show that \hat{x}_B converges uniformly to $\operatorname{st}_{w}(z)$ on S'. This will follow if we can show that for given $\varepsilon > 0$, there exists $B \in B(z)$ such that

$$B' \subset B \Rightarrow \left| \hat{x}_{B'}(f) - \operatorname{st}_{y}(z)(f) \right| < \varepsilon \text{ for all } f \in S'$$
.

Let N be a 0-neighbourhood such that

$$x-y \in N \Rightarrow |f(x)-f(y)| < \varepsilon/2$$
 for all $f \in S'$

and such that N contains an element B_0 of B(0). Set $z + B_0 = B \in B(z)$. Then for all $B' \subseteq B$, $x_{B'} - z \in B_0 \subseteq *N$, whence $|f(x_{B'}) - f(z)| < \varepsilon/2$ ($f \in S'$). Consequently $|\hat{x}(f) - \mathrm{st}(z)(f)| = |f(r_0) - \mathrm{st}f(z)| \leq \varepsilon$

$$\begin{aligned} |\hat{x}_B(f) - \operatorname{st}_w(z)(f)| &= |f(x_B) - \operatorname{st}f(z)| \leq \\ & |f(x_B') - f(z)| + |f(z) - \operatorname{st}f(z)| \leq_1 \varepsilon/2 < \varepsilon \end{aligned}$$

as required.

THEOREM 2.8. Let $z \in *X$ be pre-near-standard, and let S' be an equicontinuous subset of X'. Then $st_w(z)(z') =_1 z'(z)$ for every z' in *S'.

Proof. Let z and S' be as stated, and let $\varepsilon > 0$ be given. Since S' is equicontinuous, there is a basic 0-neighbourhood N in X such that

(1)
$$y \in \mathbb{N} \Rightarrow |x'(y)| < \varepsilon/2 \quad (x' \in S')$$

Then $|z'(y)| < \varepsilon/2$ for all z' in *S' and y in *N. Next we have for $z' \in *S'$

$$st_{w}^{z(z')} - z'(z) = st_{w}^{(z-x)(z')} + st_{w}^{x(z')} - z'(z-x) - z'(x)$$

whenever x is standard.

Put $B = \{z\} - *N$. Since z is pre-near-standard we can select $x \in X$ with $x \in B$ (Theorem 2.2). Putting y = z - x, y belongs to *N and so by (1), $|x'(y)| < \varepsilon/2$ ($x' \in S'$). Hence for (standard) $x' \in S'$,

$$|st_{y}(z-x)(x')| = |stx'(z-x)| =_1 |x'(y)| < \varepsilon/2$$
.

Transferring to *X' we obtain

(2)
$$\left| \operatorname{st}_{u}(z-x)(z') \right| < \varepsilon/2 \quad (z' \in *S')$$

Next for all x' in X' we have $st_{i}x(x') = x'(x)$. Hence in X',

$$(3) \qquad \qquad \operatorname{st}_{x}(z') = z'(x)$$

Since $z-x \in {}^*N$, we have from (1)

$$|z'(z-x)| < \varepsilon/2 \quad (z' \in *S') .$$

Finally,

112

$$|\operatorname{st}_{w} z(z') - z'(z)| \leq |\operatorname{st}_{w} (z - x)(z')| + |\operatorname{st}_{w} x(z') - z'(x)| + |z'(z - x)| < \varepsilon$$

by (2), (3) and (4).

It follows that $\operatorname{st}_{n'} z(z') =_1 z'(z)$ for all $z' \in {}^*S'$.

PROPOSITION 2.9. Suppose S' is an equicontinuous subset of X' and z any finite point of *X such that

(i) $st_{1,z}(z') =_1 z'(z) (z' \in *S');$

(ii) st z is $\sigma(X', X)$ continuous on S'.

Then z'(z) = 0 for all $z' \in *S' \cap \mu_{\sigma(X',X)}(0)$.

Proof. We have only to note that since $\operatorname{st}_w(z)$ is $\sigma(X', X)$ continuous on S' ,

$$\operatorname{st}_{\omega}^{z}(\mu_{\sigma(X',X)}(0) \cap *S') \subset \operatorname{\mu}_{\omega}^{z}(0) \approx \mu(0)$$

by Robinson's continuity criterion ([4], p. 98). Consequently $z' \in \mu_{\sigma(X',X)}(0) \cap {}^*S' \Rightarrow st_{\omega}z(z') =_1 0$ and the result follows on applying condition (*i*).

Let us observe that X'_{λ} is embeddable as a linear subspace of X' .

The following lemma is easily verified:

LEMMA 2.10. S'_{λ} is an equicontinuous subset of X'.

THEOREM 2.11. Let $z \in *X$. Then z is pre-near-standard if and only if z is pre-near-standard in each $*X_{\lambda}$.

Proof. Let $z \in {}^{X}$ be pre-near-standard. By Theorem 2.2, the set $\{x : p_{\lambda}(x-z) < \varepsilon\}$ contains a standard point, and hence z is pre-near-standard in ${}^{*}X_{\lambda}$.

Conversely, suppose that z is pre-near-standard in each ${}^{*}X_{\lambda}$. By Theorem 1.1, there exists a minimal Cauchy filter F_{λ} such that $\mu_{u_{\lambda}}(z) = \mu(F_{\lambda})$ where u_{λ} is the uniformity of (X, p_{λ}) . Since $z \in \mu(F_{\lambda})$ for each λ , it follows that $\cap \mu(F_{\lambda}) \neq \emptyset$, and so the union filter $F = \bigvee F_{\lambda}$ exists as the filter of all finite intersections $F_{\lambda_{1}} \cap \cdots \cap F_{\lambda_{n}}$, where $F_{\lambda_{i}} \in F_{\lambda_{i}}$. Also (5) $\mu(F) = \cap (\mu(F_{\lambda}) : \lambda \in \Lambda)$.

(a) $\mu(u) = \Omega \mu(u_{\lambda})$.

It suffices to show that $u = \bigvee u_{\lambda}$. Indeed the uniformity u is generated by sets of the form

$$B = \left\{ (x, y) : x - y \in \bigcap_{i=1}^{n} \{ p_{\lambda_i} < \varepsilon_i \} \right\} =$$
$$\bigcap_{i=1}^{n} \left\{ (x, y) : x - y \in \{ p_{\lambda_i} < \varepsilon_i \} \right\} = \bigcap_{i=1}^{n} B_{\lambda_i},$$

say. But the B_{λ_i} form a base for u_{λ_i} , so (a) follows from the definition of $\bigvee u_{\lambda_i}$. (b) $\mu_u(z) = \cap \mu_{u_\lambda}(z)$. We have

$$\mu_{u}(z) = \mu(u)(\{z\}) = \{y : (y, z) \in \mu(u)\}$$

= $\{y : (y, z) \in \Omega\mu\{u_{\lambda}\}\}$, using (a),
= $\Omega\{y : (y, z) \in \mu\{u_{\lambda}\}\} = \Omega\mu_{u_{\lambda}}(z)$.

(c) Combining (b) and (5),

$$(\forall \lambda) \mu_{u_{\lambda}}(z) = \mu(F_{\lambda}) \Rightarrow \mu_{u}(z) = \mu(F)$$

It only remains to show that F is a Cauchy filter in X. Let $U \in u$ and select a basic vicinity

$$V = \left\{ (x, y) : x - y \in \bigcap_{i=1}^{n} \{ p_{\lambda_i} < \varepsilon_i \} \right\}$$

such that $V \subset U$. Since $V_{\lambda_i} = \left\{ (x, y) : x - y \in \{p_{\lambda_i} < \varepsilon_i\} \right\}$ is in u_{λ_i} and F_{λ_i} is Cauchy in X_{λ_i} , we can find F_i in F_{λ_i} such that $F_i \times F_i \subset V_{\lambda_i}$. Put $F = \bigcap_{i=1}^n F_i$. Then $F \in F$, and if $x, y \in F$ then $x, y \in F_i$ for all i and so $(x, y) \in V_{\lambda_i}$. Thus $(x, y) \in \cap V_{\lambda_i} = V$ and $F \times F \subset V$. It follows that F is Cauchy, and the theorem is proved.

Proof of Theorem 2.1. Assume z is a finite point of *X such that for every equicontinuous subset S' of X', $z' \in {}^*S' \cap \mu_{\sigma(X',X)}(0)$ implies $z'(z) =_1 0$. Fix λ and take $S' = S'_{\lambda}$. By Lemma 2.10, S' is an equicontinuous set. Since $S'_{\lambda} \subset X'_{\lambda}$, the topologies $\sigma(X', X)$ and $\sigma(X'_{\lambda}, X)$ coincide on S'_{λ} . Hence

$$z' \in {}^*S'_{\lambda} \cap {}^{\mu}\sigma(x'_{\lambda},x)(0) \Rightarrow z' \in {}^*S' \cap {}^{\mu}\sigma(x',x)(0) \Rightarrow z'(z) =_1 0$$

by hypothesis. By ([2], 3.17.2, (c) \Rightarrow (a)), z is pre-near-standard in ${}^{*}X_{1}$. By Theorem 2.11, this proves that z is pre-near-standard in ${}^{*}X$.

Conversely, let z be a pre-near-standard point of *X. Then z is finite, by Corollary 2.3. Let S' be an equicontinuous subset of X' and

 $z' \in {}^*S' \cap \mu_{\sigma(X',X)}(0)$. By Theorem 2.7, $\operatorname{st}_{\omega}(z)$ is $\sigma(X',X)$ continuous on S', and $\operatorname{st}_{\omega} z(z') =_1 z'(z)$ for $z' \in {}^*S'$ by Theorem 2.8. Hence applying Proposition 2.9, $z'(z) =_1 0$ ($z' \in {}^*S'$).

The proof of Theorem 2.1 is now complete.

References

- [1] Gottfried Köthe, Topological vector spaces I (Translated by D.J.H. Garling. Die Grundlehren der mathematischen Wissenschaften, Band 159. Springer-Verlag, Berlin, Heidelberg, New York, 1969).
- W.A.J. Luxemburg, "A general theory of monads", Applications of model theory to algebra, analysis, and probability (Internat. Sympos., Pasadena, California, 1967, 18-86). (Holt, Rinehart and Winston, New York, Chicago, San Francisco, Atlanta, Dallas, Montreal, Toronto, London, Sydney, 1969).
- [3] Moshé Machover, Joram Hirschfeld, Lectures on non-standard analysis (Lecture Notes in Mathematics, 94. Springer-Verlag, Berlin, Heidelberg, New York, 1969).
- [4] Abraham Robinson, Non-standard analysis (Studies in Logic and the Foundations of Mathematics. North-Holland, Amsterdam, 1966).

Department of Mathematics, Institute of Advanced Studies, Australian National University, Canberra, ACT.