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0 Introduction
The purpose of this paper is to expose a method which will match a function

00

/(z) existing in a domain D to a formal series £ AnZ" whose radius of con-
o

vergence may be zero. This matching process has to be done in a " natural
00

way ", and has to be " regular ", which means that if a power series £ AnZ
n

converges absolutely in the circle E = {z\\ z\<r}, then the summability
00

function/(z) produced by our method in the domain D and matched to V AnZ"
o

00

will coincide with £ AnZ" in the domain EnD. Euler, in his time, matched
o

the function/(z) = — — to the power series V ( - l)"/j !Z\ This matching
Jo (1 + zw) o

process was justified by the following properties (1, p. 26):
00

(i) Y, (—l)nn!Z" is a formal solution of the linear differential equation:

Z 2 / ' + ( Z + l ) / = l .

(ii) /(z) = is a solution of the linear differential equation

(iii) /(z) has £ (—l)"n\Z" as its asymptotic expansion for z-»0 and Re z>0.
o

Euler's procedure can be converted into a " regular " summability method if
proper answers are given to the following questions:

(i) How many linear differential equations does a formal series satisfy?
(ii) How many (if any) functions /(z) satisfying the linear differential

equation have this formal series as their asymptotic expansion?
(iii) How may we define in a systematic way the summability functions such

that the method will be regular?
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42 H. GINGOLD

The following notation and abbreviations will be used throughout the paper.
The capital letters A, B, C will stand for the corresponding formal series

£ AnZ", £ BnZ", £ CnZ".... The abbreviations S.C.Z., S.C.P. and L.D.E. will
0 0 0

stand for a power series whose radius of convergence is zero, a power series
whose radius of convergence is positive and Linear Differential Equation
respectively. Finally, a{z), b(z), c(z), ... will denote the power series,

00 00 00

£ anz", £ bnz\ £ cnz",
0 0 0

which are S.C.P.
00

From now on we will consider the set of all formal power series £ AnZ"

as a vector space over the complex field and define on this the following
operations:

(i) A+B = C means C is the series such that for every n ^ 0
C = An+Bn.

(ii) AB = C means C is the series such that for every n ^ 0

CB =
 Vfn AvBn.v.

v = 0
(iii) If Bo # 0, A/B = C means C is the series such that for every n ^ 0

An = V £" BvCn.v
v = 0

CO

(iv) A', the formal derivative of A, will be defined by A' = £ nAnZ
n~l and

I
the feth formal derivative of A, Aw, will be defined by

A™ = £ « ( „ - l)...(n
k

(See 2, pp. 11-14).
We must keep in mind that addition, multiplication, division and differentiation
are merely operations on an infinite set of equations. The rest of this paper may
be summarised as follows. In Section 1 we define an equivalence relation 0L
on the set of all formal series, and find its characteristics and invariants. In
Section 2 we define a characteristic domain for every L.D.E. and prove an
existence and uniqueness theorem for the summability functions. In Section 3
we prove some functional properties of the summability functions and define
our method.

1
Let us be given two formal series A, B, where

A=fjAnZn, B=tBnZ".
0 O
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A SUMMABILITY METHOD 43

Definition 1. We say that A is in the same class of B, and write A0tB if
there exist three power series S.C.P.

a(Z)=£aBz", b(z)=tbnzn, <z) = £ cnz"
O O O

such that a(z). b(z) ^ 0 and
a(z)A + b(z)B = c(z) (1.1)

or

f £ B-v = cn n^O. (1.1')
v = 0 v = 0

Proposition 1. Definition 1 determines on the set of formal series an equivalence
relation which separates this set into disjoint classes.

We omit the trivial proof. If two series A, B, belong to the same equivalence
class we may agree that to every ordered couple (A, By where A3$B, there
exists at least one ordered triplet <a(z), b(z), c(z))> such that (1.1) is true. What
is interesting is the fact that we can prove a uniqueness theorem for the triples
if A, B, are S.C.Z.

Proposition 2. Let A3&B, where A is S.C.Z. If

B = c(z) (1.2)
and also

a1(z)A+b1(z)B = cl(z) (1.3)
where a(z), b{z), v(z), at(z), b^z), ct(z) are S.C.P. and

a(z).b(z)^0,a1(z).b1(z)^0,
then

a(z) = b(z) = c(z)

«i(z) *i(z) Ci(z)'

Proof. Multiply (1.2) by bt{z) and (1.3) by b(z) and subtract the multiplied
equations to obtain

\_bi(z)a(z)-b(z)a1(Zy]A = 61(z)c(z)-6(2)c1(z). (1.4)

Then bl(z)a(z)—b(z)a1(z) must be identically zero. If not, then

bl[z)a{z)-b{z)ax{z) = zmd(z) (1.5)

where m is a non-negative integer and d(z) is S.C.P. with d(0) # 0. Substitute
(1.5) into (1.4) to obtain

z
mA = bi(zMz)-ft(z)ci(z). (! 6)

d(z)
Since A is an S.C.Z., zmA is also an S.C.Z., which contradicts the right hand of
(1.6) which must be an S.C.P. This means that fc1(z)a(z)-6(z)a1(z) = 0,
together with b1(z)c(z)-b(z)cl(z) = 0 and the result follows.
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44 H. GINGOLD

Definition 2. Let U denote an equivalence class relative to 01. We say
that U is a summability class if Ae U implies A'@A.

We remark that if A'Si A and ASiB then B'&B. This is easily verified and we
shall not prove it.

Proposition 3. Let U be a summability class and let Ae U, A is an S.C.Z.;
then there exists a unique L.D.E. of the form

{z), (1.7)

where s is a natural number greater than 1 and b(0) # 0.

Proof. Any relation of the form (1.1) can be made such that a(z) is equal
to zs with s the least integer possible. By a slight modification of (3, p. 22) we
know that s>l, since A is S.C.Z. Moreover, if s is the minimal integer, then
b(0) = b0 # 0, otherwise we would have c(0) = 0 in (1.7), and we could arrive
at the relation zs~1A'+ (b(z)/z)A = c(z)/z. Proposition 3, and the result follows.
Every L.D.E. of type (1.7), where s>l, and b0 # 0 has a characteristic ordered
couple <J, boy. This ordered couple happens to be an invariant characteristic
of the whole class U containing the power series A.

Proposition 4. Let Ae U, where A satisfies an L.D.E. of type (1.7) with
s>l, and b0 # 0. IfAMB then B satisfies an L.D.E. of type (1.7) with the same
ordered couple <$, boy.

Proof. We are given the equations A MA written as

z*A'+b(z)A + [-c(z)] .1 = 0. (1.8)

Writing the relation A0tB as

0A' + a1(z)A + [b1(z)B-ci(zy] . 1 = 0 (1.9)

and from differentiating (1.3) we have

z)B'-c'1(z)] .1 = 0. (1.10)

We look on (1.8) (1.9) (1.10) as a homogeneous system with A', A,\, as " un-
knowns ". Since the system possesses a non-trivial solution, the determinant
of the coefficient matrix must be identically 0. Computing the determinant
and rearranging its equation we obtain the final equation

We remember that b(z), c{z), a^z), b^z), c^z) are S.C.P. such that
a^.b^z) # 0, and observe that zJ(fc'1(z)/h1(z)) and zs(a'i(z)/ai(z)) are S.C.P.
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since s>l. This means that the coeflBcient of B in (1.11) must be an S.C.P.
Moreover, because s> 1 we have

lim [b(z)+zs(bi(z)/b1(z))-zs(ai(z)/a1(z))] = lim b(z) = b0.
2->0 z-»0

Since the left-hand side of (1.11) is a formal power series so also is the right-hand
side. Further it is an S.C.P. and our result follows.

00

Proposition 5. The class U containing the S.C.Z. £ e"lZ" is not a summability

class.
Proof. On the contrary, assume that this series satisfies an L.D.E. of type

(1.7), then we have for every n+1 ^ s

f \_ v e V I =cn.
v = 0

Since s> 1 we may write

K = cI,/e
B!-(« + l-s)e(n+1-s) |- '"-l- * " f * bn.ve

v'--"\ (1.12)
v = 0

Since a{z), b(z) are S.C.P., there exists p>0, p # 1 such that

\bv\<M/p\ \cv\<Mlp\

where M>0. By this we have from (1.12)

M (n+l-sV-"-*)' Mee-^q/p"-!)
I M + + D " ( }

The right-hand side of (1.13) tends to 0, as n tends to infinity, so that b0 = 0,
which gives a contradiction.

2
Before finding the functions we match to given power series, we define a

characteristic domain of an L.D.E. of type (1.7).
Suppose we are given r = min {rb, rc}, where rbf rc are the corresponding

radii of convergence of b{z), c(z) appearing in (1.7). Let <s, 60> be the invariant
couple of the class U associated with (1.7).

Definition 2. We call Dr
v the characteristic domain of the L.D.E. (1.7), if

Dr
v=

k~\J2Dr
k, (2.1)

k = 0

and D'k is one of {s— 1) open sectors contained in the circle | z | <r, arg z = 6
zeDr

k, k = 0, 1, ..., s—2 and 0 satisfies:

---2nk<4>-{s-l)9<--2nk, k = 0, 1, ..., s-2, (2.2)
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46 H. GINGOLD

where
h = I b0 | e*. (2.3)

The reason for this definition appears later.

Proposition 6. Given a power series A which satisfies an L.D.E. of type (1.7),
then:

(i) In every sector Dk of the characteristic domain Dr
v there exists a holo-

morphic function GA(z) whose asymptotic expansion is the series A.

(ii) In every Dk, k = 0, 1, ...,s — 2, GA(z) is unique.

(iii) If we associate with every point £ of Dr
k the corresponding solution g(z, Q

of (1.7) which satisfies g(£, £) = Co, then

GA(z) = limg(z,0, ^ C ^ O , k = 0, 1, ..., s-2, (2.3)

for z contained in any closed subdomain of Dk for every limit process of (2.3)
(k is held constant) and Dk is any closed subsector contained in Dr

k and having z = 0
in its closure.

Proof, (i) From a theorem of Wasow (3, p. 57, Theorem 12.1) we conclude
that in every open sector of the z-plane contained in some circle \z\<r0, r0

positive, with vertex at the origin and a positive central angle not exceeding
n/(s— 1), there exists a function GA(z) which satisfies (1.7) and A is its asymptotic
expansion in every proper subsector. If the function GA(z) exists only in
| z | < r0 < r, then we easily can extend its existence in the corresponding sector for
|z |<rby(1 .7) .

(ii) We need two lemmas to prove this statement.

Lemma 1. Let s> 1, b0 # 0/ then for any fixed real m>0,

\im\C\-"exp(- ! ^ d t ) = O, Dr
k3^0, k = 0, 1, ..., s -2 , (2.4)

uniformly for z contained in any closed subsector of Dr
k and £ belonging to any

closed subsector Dk which has £ = 0 in its closure. The path of integration in
(2.4) is contained in Dr

k.
Define

B(z)-B(O= I K?-°dt (2.5)

and

P(z)-P(C)= - | E -^rdt (2.6)
Jc v = o r

so that

-P(z)= E , -fcs_ilnz. (2.7)
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A SUMMABILITY METHOD 47

We take a branch of In z with
0^argz<27i;

then

= | exp (B(O~B(z) + P(z))\ | exp (-P(O)I- (2.8)

By assumption the term exp (B(Q—B(z)+P(z)) is uniformly bounded. Substi-
tuting £ = peiB, 0<p<r, 0 ^ 0<27i, we obtain

R e E _
L

+Re {b^ In p.-} ^ - lfrolco»[rf-(»-l)g]
(5-l)pS-X

V — S—2 I L I

The dominating term of Re[-i>(Q] is - I bo 1 cos [<ft-(s-l)9] a n d go tf

( s - l )p ' x

0 varies in a closed subsector of DJ, Re [—P(Q] -• — oo when p->0 and the result
follows.

Lemma 2. We use the same notation and make the same assumptions as
in Lemma 1. In addition, let T be a smooth Jordan arc imbedded in Dr

k and having
z = 0 as one of its end points. Let G^z) be a holomorphic solution of (1.7)
for zeT, except possibly at z = 0. Let m be a positive number such that for
zeT, z->0, Gi(z) = O(| z r m ) then Gt(z) = GA(z) for zeT, where GJz)
exists by (i).

Proof. Since GY(z), GA(z) satisfy (1.7) for zeT, define

A(z) = G1(z)-Gil(z) (2.10)
so that A(z) satisfies

zsA'(z) + 6(z)A(z) = 0. (2.11)

The function A(Q exp ( - V b(t)dt/A satisfies (2.11) for every CeT, £ # 0,
\ J
( - V

so by the existence and uniqueness theorem of differential equations it must
coincide with A(z). By (i), lim GA(Q = Ao so that A(Q = O(\ f r m ) . Using

ra{-0

Lemma 1 we obtain, for every zeT, z # 0, A(z) = 0. We remark that the
integration path is taken along T in the expression of A(z).

(iii) Every function g(z, Q is uniquely determined when restricted to any
simply connected domain of existence not including z = 0. Our remark is
true, in particular, if z e D'k, and £ e D'k, £ ¥= 0. By considering the explicit formula
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for g(z, 0 we can show that g{z, fn), Cn->0 a r e Cauchy sequences. It is easily
verified that

exp -

+ (2.12)

The first and second right-hand terms tend to zero by Lemma 1. The paths of
integration in the third right-hand term can be taken at our convenience as long
as they are imbedded in Dr

k. In particular, choose the path from £2 to Ci
to be a straight segment. Then the third right hand term is dominated by

I C2-C1 I max I c(f)|

By Lemma 1 our result then follows.

We are able now to state some functional results.

Proposition 7.

(i) Let A and A' satisfy an L.D.E. of type (1.7); then

in the intersection of the characteristic domains of A and A'.

(ii) IfAS&B by (1.9), and A,B satisfy L.D.E.'s of type (1.7), then

ai(z)GA(z)+ b^Gsiz) = cx(z) (3.1)

in the intersection of the characteristic domains of A,B and the three
circles with centre at the origin where a^z), b^z), ct(z) are holomorphic.

0

Proof, (i) Case one. Assume A is an S.C.P. then A = £ Anz" is a holo-
n = 0

morphic function. Since A satisfies (1.7), by proposition 6, GA(z) must coincide
00

with £ Anz" in the characteristic domain of A. By a similar argument,
0

00

52 nAnz"~x must coincide with the function GA.(z) in the characteristic domain of
1

A', and so the result follows.

Case two. Assume A is S.C.Z., then if A satisfies (1.7), A' must satisfy the
unique equation

b{z)
(3.2)
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This follows from Propositions 3 and 4. Moreover, we conclude that the
characteristic domain of A' is included in the characteristic domain of A.
It is easily verified that, if GA(z) satisfies (1.7) in the characteristic domain of A,
then G'A{z) satisfies (3.2) in the characteristic domain of A', and by Proposition 6,
it must coincide with GA-(z) in the characteristic domain of A'.

m
(ii) Case one. If A is S.C.P., so is B. In this case A = £ Anz" must coincide

o
with GA{z) (by Proposition 6 (ii)) in the characteristic domain of the L.D.E.

CO

satisfied by A, and GB(z) must coincide with £ Bnz" in the characteristic domain
o

of the L.D.E. of B. The expression

z)GB(z) = fll(z) £ Anz" + b^z) t Bnz"
0 0

is defined in the intersection of the characteristic domains of the L.D.E.'s of
A and B and the circles with centre at the origin where ax(z) and bt(z) are
holomcrphic and coincides with c{z) in the common domain of existence of
at(z) and bt(z). Notice that the intersection domain may be empty.

Cay; two. If A is S.C.Z., it is easily verified that ax(z)A is S.C.Z. which
satisfies a unique L.D.E.

z\ai{z)A)'+ \b{z)-z° 4&\ [fll(zM] = c(2)fll(z). (3.3)

Moreover, a^i^GJ^z) satisfies (3.3) in the characteristic domain of (3.3) which is
the intersection of the characteristic domain of (1.7) and the circle whose
centre is the origin and in which at(z) is holomorphic. We conclude that in the
above domain

G«,(.M(Z) = « i ( ^ ( 4
In the same manner we observe that a^—b^B satisfies a unique L.D.E.
whose characteristic domain is the intersection of the characteristic domain of
the L.D.E. satisfied by B and the circles whose centres are situated at the origin
and where ct(z) and bx(z) are holomorphic. In this domain we also observe
that the function at(z)-Z>1(z)(?x(z) satisfies the L.D.E. of c^z)-b^z)B. Using
Proposition 6 again, we must have

c1(z)-fo1(z)GB(z) = GeiW_M,)B(z)

ai(z)GA(z) = G.l(lM(z)
so that

(3.4)
in the intersection of the domains of existence of both sides of (3.4), and the
result follows. We are ready now to define our summability method. As a
matter of fact, we may adopt one of three methods. We agree to define an
L.D.E. of order zero as an algebraic equation in the following manner.

E.M.S.—20/1—D
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50 H. GINGOLD

Definition 3. The power series A is said to satisfy an L.D.E. of order zero if
CO 00

A = £ anz" where £ anz" is S.C.P. and its characteristic domain will be the
o o

00

circle with centre at the origin and in which £ anz" is absolutely convergent.
o

Definition 4. We say that GA(z) is the summability function of the power
series A if:

(i) A satisfies an L.D.E. of lowest order (one or zero),

(ii) GA(z) is a solution of the above L.D.E. in its characteristic domain,

(iii) A is the asymptotic expansion of GA(z) in the characteristic domain.

Remark. The regularity property of this method is an immediate consequence
of the definition.

Definition 5. We say that GA{z) is the summability function of A if:

(i) A satisfies an L.D.E. of type (1.7).

(ii) GA(z) is a solution of the above L.D.E. in the characteristic domain,

(iii) A is the asymptotic expansion of GA{z) in the characteristic domain.

Definition 6. We say that GA(z) is the summability function of A if:

(i) A satisfies an L.D.E. of type (1.7).

(ii) GA(z) = lim g{z, 0
Bj3?-»0,«e = 0,1, . . . s - 2

where z varies in the characteristic domain, and £ varies in any proper closed
domain contained in the characteristic domain and having £ = 0 in its closure,
and g(z, £,) are the family of solutions of the above L.D.E. determined uniquely
by the property g(C, Q = Co-

Remarks. 1. Some of these results can be partially extended to L.D.E.'s
of order n. It can also be shown that series which are formal solutions of L.D.E.'s
of order n must satisfy necessary conditions which are " sharp ", that means
that they cannot be improved.

2. Although it seems that these results have to do mainly with the theory of
L.D.E. it will be shown elsewhere that there are a lot of matrix regular summa-
bility methods which sum series to the same functions obtained by our method,
and all of them have common typical features.
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