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Apatite [Ca5(PO4)3(F,Cl,OH)] is one of the primary and ubiquitous phosphate minerals in different planetary 

bodies including the Martian meteorite, Shergotty. Terrestrial apatites have sulfur mostly as S6+ because of 

their formation in oxidized environments [1, 2]. Recently, S2--only bearing apatites have been documented in 

natural environments (lunar and terrestrial) and in experiments [1-3], however, the latter also reports 

simultaneous incorporation of both S6+ and S2- at intermediate oxygen fugacities (fO2) [2]. Thus, it is suggested 

that proportions of S6+/S2- in apatite, together with major element compositions, T and P, may be a record of 

the fO2 of formation of these apatites. Martian rocks record intermediate fO2 between the Moon and Earth and 

thus may contain only S2- bearing apatites that provide a record of fO2 during apatite crystallization [4]. 

The Martian meteorite Shergotty has recorded fO2 of ~IW+1.9 – IW+2.8 [5, 6]. At these low fO2s, silicate 

liquids are expected to contain sulfur exclusively as S2- [7] and thus apatites crystallized from these liquids 

and which preserve their igneous signatures are expected to contain only S2-, like in the case of lunar apatites 

[1]. In order to examine the oxidation state of sulfur in apatites from Shergotty, we present S-XANES 

measurements of apatite grains and other associated phases (e.g., Fig. 1). These measurements were undertaken 

at beamline 13-IDE at the Advanced Photon Source. Argonne National Laboratory. Spectra were collected in 

fluorescence mode between 2447 eV and 2547 eV (at every 2.5 eV from 2447-2462 eV, every 0.1 eV from 

2462-2487 eV and every 1.5Ev from 2487-2547 eV), with a dwell time of two seconds on each point. 

The S-XANES spectra of Shergotty apatites contain peaks at 2470 and 2477 eV (Fig. 2), consistent with the 

presence of structural S2- in apatite, and an absence of peaks commonly associate with oxidized forms of sulfur, 

S4+ (2473 eV) and S6+ (2481 eV). This demonstrates that, like in the case of Apollo rocks 12039 and 10044, 

Shergotty apatites incorporate only S2- into their mineral structures, consistent with independent mineralogical 

constraints on the fO2 of crystallization for Shergotty meteorite (between IW+1.9 and IW+2.8; [5, 6]) and 

expectations of the oxidation state of sulfur in silicate liquids at those low fO2s [7]. Additionally, variability 

in the relative intensities of peaks at 2470 and 2477 eV (attributed to S2-) suggests that there may be significant 

variability in the bonding environment of S2- in these apatites. For example, the 2470 eV peak is commonly 

attributed to Fe2+-S2- interactions [8], and the variability in the intensity in this peak may arise as the result 

of significant variations in the FeO* concentration of Shergotty apatites [e.g., 9]. 

The presence of S2- only apatites in Shergotty, which is relatively oxidized amongst the shergottites [5], suggest 

that apatites in other shergottites also contain sulfur in its reduced form in the column anionic site with F-, Cl- 

and OH- [10], calling for consideration of sulfur in studies using apatite to constrain volatile behavior and 

abundances on Mars. 
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Figure 1. Figure 1- Back scattered electron (BSE) image of Shergotty showing the typical texture including 

minerals cpx- clinopyroxene, msk-maskelynite, ap- apatite, sulf- sulfide, silica and Fe-Ti oxide. 
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Figure 2. Figure 2- S- XANES spectra for analysis points on epoxy, apatite Sh_18-1-b and SH_18-1-c. The 

positions of absorption peaks are assigned to S2- (2470 and 2477 eV) and to S6+ (2481.7 eV) are marked in 
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vertical dashed lines. The orange dots are data, and the black curves are fit spectra produced using Fityk 

software. 

References 

[1] Brounce M. et al.  (2019) Am. Min., 104, 307-312. [2] Konecke B.A. et al. (2019) Geochim. Cosmochim. 

Acta, 265, 242-258. [3] Sadove G. et al. (2019) Ore Geol. Rev., 107, 1084-1096. [4] Brounce M. et al. (2019) 

LPSC 50th, Abstract # 2601. [5] Wadhwa M. (2001) Science, 291, 1528-1530. [6] Herd C.D.K et al. (2001) 

Am. Min., 86, 1015-1024 [7] Jugo P.J. et al. (2005) J. Petrol., 46, 783-798 [8] Fleet M.E. (2005) Canad. 

Mineral., 43, 1811-1838. [9] McCubbin F.m. et al. (2014) Am. Min., 99, 1347-1354 [10] Boyce J.W. et al. 

(2010) Nature, 466, 466-469. 

https://doi.org/10.1017/S1431927621009041 Published online by Cambridge University Press

https://doi.org/10.1017/S1431927621009041

