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We say that a ring R has bounded index if there is a positive integer n such that
a" = 0 for each nilpotent element a of R. If n is the least such integer we say R has index
n. For example, any semiprime right Goldie ring has bounded index, and so does any
semiprime ring satisfying a polynomial identity [10, Theorem 10.8.2]. This paper is mainly
concerned with the maximal (right) quotient ring Q of a semiprime ring R with bounded
index. Several special cases of this situation have already received attention in the
literature. If R satisfies a polynomial identity [1], or if every nonzero right ideal of R
contains a nonzero idempotent [18] then it is known that Q is a finite direct product of
matrix rings over strongly regular self-injective rings, the size of the matrices being
bounded by the index of R. On the other hand if R is reduced (that is, has index 1) then
Q is a direct product of a strongly regular self-injective ring and a biregular right
self-injective ring of type III ([2] and [15]; the terminology is explained in [6]). We prove
the following generalization of these results (see Theorems 9 and 11).

THEOREM. Let R be a semiprime ring of index n and let Q be its maximal right quotient
ring. Then Q = Q i ® Q 3 where Q3 is a biregular right self-injective ring of type III, and
where Q t is a finite direct product of matrix rings over strongly regular self-injective rings,
the size of the matrices being at most n x n.

We also show that the natural attempt to generalize this theorem to right nonsingular
rings with bounded index breaks down quite badly. We give an example where Q is itself
type III but not biregular, and show (Proposition 15) that every regular right self-injective
ring of type I is the maximal quotient ring of a ring with index at most 2. The only part of
the theorem which remains intact is that Q still cannot have a direct factor of type II
(Theorem 17).

None of the techniques used in the special cases mentioned above seems to work for
general semiprime rings with bounded index, so we must start from scratch. In section 1
we develop some basic properties of rings with bounded index (most of these are probably
well-known but I have been unable to find a suitable reference for them). For our
purposes the main point to emerge is that if R is semiprime with bounded index then R is
(right) nonsingular. This implies that the maximal right quotient ring Q of R is regular
and right self-injective, and means that we have a decomposition of Q into a direct
product of type I, II and III rings (as described in [6] and [7]). In section 2 we show how
properties of the maximal quotient ring can induce nilpotent elements in the original ring
(Lemma 7). We use this to simplify the decomposition of Q, and thus obtain the results
mentioned earlier.

In what follows all rings are associative but they need not have an identity element. A
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ring is semiprime if it has no nonzero nilpotent ideals. We denote the right annihilator of a
subset X of a ring R by rR(X) or simply r(X). The left annihilator of X is denoted by
lR(X) or 1{X). For general background on ring theory we refer to [10]. The basic results
about maximal quotient rings which we use are proved in [3]. For results about regular
self-injective rings we refer to [6], [7] and [8]. Any unexplained terminology or notation
may be found in [6].

ACKNOWLEDGEMENT. I would like to thank Jim Richardson for helping me clarify
some of the ideas in this paper.

1. General structure. We begin with a lemma which, though quite elementary, is
the key idea in most of the following results. It is based on a trick used by Kaplansky in
[11, Theorem 2.3] (although the exact connexion may not be apparent until we use it in
Lemma 7).

LEMMA 1. Let Rbe a ring with index at most n. If X b X2,..., Xn are subsets of R such
that XfX, = 0 whenever i>j then XtX2 . . . Xn = 0.

Proof. If XjGX; for l < i < n consider z = x1 + x2+ • • • + xn. By hypothesis z" =
xYx2 • • • Xn and z"+1 = 0. As R has index at most n we get xtx2 . . . x,, = 0 and the result
follows.

The property in Lemma 1 does not in general characterize rings with bounded index:
any commutative ring has the property. However it is equivalent if R is semiprime. In fact
we have:

PROPOSITION 2. Let R be a semiprime ring and n a positive integer. The following
statements are equivalent.

(a) R has index at most n.
(b) 1/ Xj, X 2 , . . . , Xn s R such that XjX, = 0 whenever i > / then XXX2 . . . Xn = 0.
(c) If X c R then r(Xn) = r(X"+1).
(d) For each xeRwe have r(xn) = r(x"+1).

Proof. Lemma 1 gives (a)^(b) and (c)=>(d) is trivial. If R satisfies (d) and xeR then
r(x") = r(xk) for all fc > n. Hence if x is nilpotent, r(x") = R. As R is semiprime it follows
that x" = 0 and (a) is true. Now suppose R satisfies (b). We imitate the proof of [16,
Lemma 8]. Suppose X c R and for each i let Xt = r(Xl)X\ If i>j then X;X, =0 and so
our hypothesis gives ( ^ X ^ . . . Xn = [r(X)][Xr(X2)]... [X"-1r(X")]X". As each term
in square brackets contains Xnr(Xn+1) we get [Xnr(Xn+1)]"+1 = 0. Since R is semiprime
the right ideal Xnr(X"+1) is zero. Hence r(Xn+1)cr(X") and (c) follows.

REMARKS. (1) As statement (a) is left-right symmetric we could of course have used
left, rather than right, annihilators in (c) and (d).

(2) If R is not semiprime the equivalence of (a) and (c) breaks down. To see this
consider the algebra R constructed by Nagata in [13, §5]. Then R has bounded index but
it is easy to check that r(Rn) j= r(Rn+l) for each n. I do not know whether (a) and (d) are
still equivalent without the semiprimeness of R.
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(3) Proposition 2 generalizes Rowen's Lemma 8 in [16] which says that (c) holds
whenever R is a semiprime ring for which xxx2 . . . x« is an almost pivotal monomial. I do
not know whether all the rings described in Proposition 2 must have an almost pivotal
monomial. However it should be noted that all the properties which Rowen deduces for
semiprime rings with an almost pivotal monomial are also possessed by semiprime rings of
bounded index.

We can also use Lemma 1 to prove the following result. See [10, Theorem 10.8.2] for
the corresponding result for P.I. algebras.

PROPOSITION 3. Suppose R has index at most n and let N be the sum of the nilpotent
ideals of R. If S is a nil subring of R then S" c N.

Proof. Suppose first that S is nilpotent. Let k be the least integer such that SkR is
nilpotent and suppose that k>n. The ideal 1= RSkR is nilpotent and so the ring R/I has
index at most n. If we write Xf = S^RS1 for i = l,...,n then for each i>/ we have
XjXj = S^RS^-'RS1 <= /. Applying Lemma 1 in the ring R/I thus gives XtX2 . . . Xn c /.
Thus (Sk-lRS)(Sk~2RS2)...(Sk-nRSn)Ql and so (Sk-lR)n+1cl. This implies that
Sk~*R is nilpotent which is a contradiction. Hence SnR is nilpotent and S" + SnR + RS" +
RS"R is a nilpotent ideal of R containing Sn. Thus S" c N.

Now let S be any nil subring of R. By [12] S is locally nilpotent. Hence if
Si , . . . , s , ,eS the subring T generated by s 1 ; . . . , sn satisfies T"sJV. In particular

... sneN and so S" QN as required.

REMARK. Let R be a nil ring of index n and let N be the sum of the nilpotent ideals of
R. The proposition shows that R/N is nilpotent. However R ^ N is general. An example
may be constructed in the same way as for the corresponding question for P.I. algebras
[10, p. 233]. Thus let A be any nil ring of bounded index which is not nilpotent (as, for
instance, in [13, §5]). Let B be the ring obtained by adjoining an identity to A and let R
be the ring of all matrices of the form (" *) where w, y, z e A and xeB. Then R is nil of
bounded index (see [17, p. 138 Corollary]) but is not a sum of nilpotent ideals since the
ideal R(Q l)R contains the subring {(g o):a<=A2} and so cannot be nilpotent.

As a consequence of Propositions 2 and 3 we have the following.

PROPOSITION 4. Let R be a semiprime ring of index n.
(a) If S is a nil subring of R then S" = 0.
(b) R has no nonzero nil right (or left) ideals.
(c) R is right and left nonsingular.

Proof, (a) and (b) follow immediately from Proposition 3 and then (c) follows exactly
as in [16, Theorem 9(ii)].

Proposition 4 generalizes [16, Theorem 9] which in turn generalizes the correspond-
ing results for semiprime P.I. rings (due to Amitsur [10, Theorem 10.8.2] and Fisher [4]).
Part (c) also generalizes the well known fact that a reduced ring is nonsingular [2, p. 139].

It follows from Proposition 4(c) that any semiprime ring of bounded index has a
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maximal right (left) quotient ring which is regular and right (left, respectively) self-
injective (see [3, p. 69]). We shall study these maximal quotient rings in more detail in the
next section.

Our next result shows that Proposition 2 can be considerably strengthened if the ring
involved is prime. This result generalizes [16, Proposition 3] and the well known fact that
any prime P.I. ring satisfies the ascending chain condition on right (or left) annihilator
ideals (see [14, p. 180]).

PROPOSITION 5. Suppose R is a prime ring and n is a positive integer. The following are
equivalent.

(a) R has index at most n.
(b) Every chain of right {left) annihilators in R has at most n proper inclusions.

Proof. (b)=^(a) follows as in Proposition 2 so suppose (a) is true. Once again we
follow Rowen's argument [16, Proposition 3]. Let

A , c A 2 c . . . c A t

be a chain of right annihilator ideals. We suppose that Ar £ 0 and A, ̂  R and show that
t<n. For each i let Xi=Ail(Ai) so that for i>j we have XiXi = 0.

If t > n then Lemma 1 gives XXX2 ... Xn = 0 and so

Al[l(A1)A2]... [l(An_1)Aj/(AJ = 0.

Now if some /(Aj.^A; = 0 we have Af c r(I(Ai_1)) = Aj_x since A ^ is a right annihilator
ideal. Since this contradicts A^j <= A; we see that each l(A;_i)Aj is a nonzero left ideal R.
But Aj is a nonzero right ideal of R and l(An) is a nonzero left ideal (as Anj^ R and is a
right annihilator). Thus t> n contradicts the primeness of R. Hence t < n and the result
follows.

This strengthening of Proposition 2 is not true for general semiprime rings, as may be
seen by considering the case where R is an infinite direct product of fields.

Recall that a ring R is said to be right strongly prime if every nonzero aeR has a
right insulator, that is, a finite subset X of R such that r(aX) = 0 (see [9]). If each of these
right insulators can be chosen with m elements (or fewer) we say that R is bounded right
strongly prime. If m is the least such integer we say, for short, that R is right SP(m). Left
SP(m) rings are defined similarly.

COROLLARY 6. Let Rbe a prime ring of index n. Then R is right SP(m) for some m^n.

Proof. This now follows as in [9, Proposition I.I] (the proof there still works if R
does not have an identity element).

REMARKS. (1) It is quite possible, in Corollary 6, that m<n and that m takes a
different value when R is viewed as a left strongly prime ring. Indeed suppose S is a left
Ore domain which does not satisfy the right Ore condition (see, for example, [5, p. 219])
and let R =Mn(S), the nxn matrix ring over S, where n> 1. Then R is a prime ring of
index exactly n {R cannot contain nilpotent elements of greater index since it is a subring
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of Mn(D) where D is the division ring of left fractions of S). By Corollary 6 R is right
SP{m) for some m<n. But if m > 1 then R is a right Goldie ring (by [8, Theorem 2.3])
which is impossible as S is not a right Ore domain. Hence R must be right SP(1). On the
other hand R is left SP(n) by [9, Proposition 1.2].

(2) Let R be as in Corollary 6. If R is SP(m) where m > 1 we have just remarked that
R is a right Goldie ring. It follows from the Faith-Utumi theorem (see [3, p. 91]) that R
contains the ring of m x m matrices over some right Ore domain and that m = n. It would
be interesting to know whether all prime rings of index n must contain (and/or be
contained in) the ring of n x n matrices over some domain.

2. Maximal quotient rings. Let R be_ a semiprime ring with bounded index of nilpo-
tence. We have seen in Proposition 4 that R is right nonsingular and so has a regular
right self-injective maximal right quotient ring Q. It follows from [6, Theorem 10.13] that
Q is a direct product d © Q2© Q3 where the rings Qu Q2, Q3 are of types I. II. Ill
(respectively). In this section we study the structure of these rings Qx, Q2, Q3 to see what
effect the bounded index of R has on them. We begin with a couple of technical lemmas,
the first of which gives us the basic construction we shall be using.

LEMMA 7. Let R be a right nonsingular ring of index n and let Q be the maximal right
quotient ring of R. Suppose al5 a 2 , . . . , <*„+! e R such that 0 ̂  On+1 e Qa^R and for each
i > 1 we have On+1 e QafR and at e r(ay, a 2 , . . . , Oj_i). Then at least one of the right ideals
atR contains a nonzero nilpotent right ideal of R.

Proof. Suppose that no atR contains a nonzero nilpotent right ideal of R. For each
i = 1, 2 , . . . , n let Xj = ai+iRat so that if i < / we have XjX, = 0 (since a^+i = 0). Since R
has index n we can use the mirror image of Lemma 1 to deduce that 0 =
XnXn_!... X2XX = On^RalR ... RalRa^. Hence alR ... a ^ R ^ R a ^ R is a nilpotent
right ideal of R inside c^R. By hypothesis a\R... alRa1Ran+1R = 0 and so, as an+1e
Qa2

nR, we get c^^Ral^R... ajRa.R^^R = 0.
We continue like this, moving the left-hand factor an+lR to the right-hand end, and

replacing the afR factor which has been exposed by another an+lR factor. When the
factor a\R has finally been replaced we have the conclusion on+1Ra1i?(an+1R)"~1 = 0.
The right ideal a^RiOn^RY is then nilpotent and so zero. But we then get the
contradiction (an+1R)n+1 s Qa1R(an+1R)" = 0. Hence at least one atR must contain a
nonzero nilpotent right ideal.

LEMMA 8. Let Rbe a ring with a regular right quotient ring Q. If X is a right ideal of Q
and 0 ^ q e Q such that q Q s X then there is a nonzero x eXfl QqR PIR such that

Proof. Suppose a € X with aQ s qQ. As Q is regular a = yqz for some y, z € Q (see,
for instance, the proof of [7, Lemma ll.l(b)]). As Q is a right quotient ring of R the right
ideal L = {re R :zreR} is essential in R. Since QR is nonsingular [3, p. 59 Proposition 4]
we have aLfQ and so aLCiR^O. As aLHR^XDQqR HR and as any xeaLHR
satisfies xQ £ aQ = qQ the proof is complete.
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Our first main result in this section describes the subrings Qj and Q2 mentioned
above. A special case of this result (that when R has index 1) was proved in [2, Theoreme
2.2].

THEOREM 9. Let R be a semiprime ring of index n. Let Q be its maximal right quotient
ring and suppose that Q = QX®Q2®Q3 is the decomposition of Q into its type I, II and III
parts (respectively). Then Q2 = 0 and Q t is a finite direct product of rings of the form Mk(D)
where k < n and D is a strongly regular self-injective ring.

Proof. We proceed in two steps. Firstly suppose that O ^ a e R such that aQ is
directly finite. We show that Q contains at most n independent copies of aQ.

Suppose on the contrary that (n + l ) a Q s Q . We shall construct a sequence of
elements a1; a 2 , . . . , a,,+1 satisfying the hypotheses of Lemma 7. Since R is semiprime
Lemma 7 will then give the desired contradiction. Set al = a and suppose we have found
au a2, • • •, ak e R such that

(i) at e r(ax, a2,.. •, aj_t) whenever 1 < i < k,
(ii) a;Q:SaQ for l< i£k ,
(hi) afc e QajR n Qa?R for Ki<k and alj=0.
If k < n we proceed as follows. Let / : Q —» aiQ© . . . (BakQ be the homomorphism

f(q) = (a1q,..., akq) so that ker /= r(au . . . , ak). As Q is regular f(Q) is projective and
so Q = ker /©/(Q) £ r(au ..., ak)(&k(aQ) by (ii) of the induction hypothesis. Since
k + l < n + l we thus have (k + l ) a Q s r ( a 1 ; . . . ,ak)(Bk(aQ). Since aQ is directly finite
we can apply the cancellation result [6, Corollary 9.19] to deduce that aQ s r(au ..., ak).
In particular alQ s r(au..., ak). By Lemma 8 there is a nonzero ak+1e
r(au ..., ak)DQalR f)R such that ak+1Q s alQ ^ aQ. Furthermore, by Proposition
4(b), the right ideal ak+iR is not nil and so we may assume that a£+1 ^ 0 . This completes
the induction. Thus we have elements au a2, • • •, cin+x which contradict Lemma 7. Hence
we cannot have (n + l)aQ s Q.

Now Q, being regular and right self-injective, can be written as a direct product
Qi©Q2©Q3 where the rings Qu Q2, Q3 are of types I, II, III respectively (by [6,
Theorem 10.13]). If Q 2 ^0 then Q contains a nonzero directly finite idempotent c such
that eQ contains no nonzero abelian idempotents of Q. By [7, Corollary 5.8] there is a
right ideal A of Q such that eQs(n + l)A. Choosing a nonzero aeADR then yields
(n + l)aQ :S Q and aQ is still directly finite. As this contradicts the first part of the proof
we must have Q2 = 0.

Similarly, since every nonzero right ideal of Q1 contains a nonzero abelian idempo-
tent and since any abelian idempotent is directly finite, the first part of the proof shows
that Qx does not contain any families of n +1 nonzero independent pairwise isomorphic
right ideals. By [6, Theorem 7.2] Qj has index at most n. By [6, Theorem 7.20] it follows
that d is a finite direct product of matrix rings over strongly regular self-injective rings.
Since the index of Qx is at most n the size of the matrix rings appearing in this direct
product cannot be greater than nXn and so the result is proved.

REMARKS. (1) The final part of the proof showed that if R is semiprime of index n
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then (retaining the above notation) d has index at most n. In particular if the type III
part of Q is zero (so that Q = d ) then R and Q have the same index.

(2) Under stronger hypotheses it is possible to show that the Q3 in Theorem 9 is also
zero. This is the case, for example, if R is semiprime and satisfies a polynomial identity [1,
Introduction and Theorem 3.1]. Another such case occurs when every nonzero right ideal
of the ring R in Theorem 9 contains a nonzero idempotent (see [18, Theorem 5 and (2)
on page 13]). However Q 3 ^0 in general. For instance if R is a domain not satisfying the
right Ore condition then Q itself is of type III [2, Corollaire 2.3].

(3) Of course the left-hand version of Theorem 9 yields a similar decomposition for
Q' the maximal left quotient ring of R. Indeed, in the cases treated by Armendariz and
Steinberg [1] and Utumi [18] (see the previous remark) we actually have Q = Q'.
However in general the two decompositions need not even be of the same type. For
example, if R is a left but not a right Ore domain then Q' is a division ring (and so of type
I,) while Q is of type III.

Although Q3 need not be zero in Theorem 9 it does have a simpler structure than
the general run of type III rings. Before proving this we need another lemma (which has
been adapted from [15, Lemme 3.5]).

LEMMA 10. Let Q be a regular right self-injective ring such that if O ^ q e Q then there
is a central idempotent v ̂  0 such that vQ s qQ. Then Q is biregular.

Proof. Suppose O^qeQ. We want a central idempotent ueQ such that QqQ = uQ.
Choose a maximal family {UjQiieJ} of independent ideals where each vt is a nonzero
central idempotent of Q such that vtQ =£ qQ. Let u be the central idempotent V vt (see [6,
Proposition 9.9]). isf

Since each vt is a central idempotent the embedding UjQ:SqQ is actually an
embedding UjQ^i^qQ. As the ideals vtQ are independent we have an embedding
£ u,Qs £ UjqQeqQ. Since uQ is simply the injective envelope of £ ^Q [6, Proposition
iel ieJ is /

9.9] we thus have uQ&qQ (since qQ is injective). Since Q is regular it follows that
ueQqQ [6, Corollary 2.23]. If QqQj^uQ we would have ( l -u )q^O. But then our
hypothesis gives a nonzero central idempotent weQ such that wQs(1 -u)qQ. Since this
implies that wQ^qQ and that w e ( l - u ) Q we would then have a strictly larger family
{ufQ: i e I}U{wQ} of independent nonzero ideals each of which is embeddable in qQ. This
contradiction shows that QqQ = uQ as required.

THEOREM 11. Let Rbe a semiprime ring of index n. Let Q be its maximal right quotient
ring and let Q3 be the type III part of Q. Then Q3, and so Q, is a biregular ring.

Proof. In view of Theorem 9 and [15, Theoreme 2.3] it is enough to show that Q3 is
biregular. Let 0 i= q e Q3 and choose a nonzero at e qQ D R. In view of Lemma 10 it is
enough to find a nonzero central idempotent veQ such that u Q s a j Q . Once again we
construct a sequence ax,a2,... as in Lemma 7.

If rQ{a()Qa^ = 0 then rQ(ajQ l(QaxQ) = r(QaiQ) = {1 -v)Q where u^O is the
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central cover of a^Q [6, p. 130]. Hence there is a natural epimorphism

Since vQ is projective this implies vQ^axQ and we are finished. So we suppose that
roCaOQa^O. Then ^ (aOnQajQ^O and so ^ ( a ^ n O a ^ HR^O (as in the proof of
Lemma 8). By Proposition 4(b) we can choose a2erQ(ai)C\Qa1Rr\R such that a\±§.
Since a2e QaxQ we have a2Q^k(axQ) for some integer k [6, Corollary 2.23] and since
^ Q is of type III this implies a2Q^a1Q [6, Proposition 10.33].

Now if rQ(au a2)Qal = 0 we get rQ(au a 2 ) e ( l - u ) Q where v is the central cover of
a\Q. As in the previous step this yields

By the proof of Theorem 9 this implies uQsa jQSc^Q. Since a2Q^a^Q and a^ is of
type III we thus get vQ^axQ by [6, Corollary 10.17] and once again we are finished.

So we can suppose rQ(a1, a^)Qa\ / 0. As before this implies ro(a,, a2) Pi Qa^Q^O
and we can find a3e rQ(au a2) n Qa\R C\ R such that a% ^ 0. If we continue like this then
Lemma 7 shows that the process must stop before we reach dn+i- Since the process can
only stop by yielding a nonzero central idempotent veQ such that vQ^a^Q we see that
Q3 is indeed biregular, as required.

There are a couple of interesting special cases of these results. The first, an immediate
consequence of letting n = 1 in Theorems 9 and 11, was proved by Cailleau and Renault
in [2, Theoreme 2.2] and [15, Proposition 3.7].

COROLLARY 12. Let R be a reduced ring and Q its maximal right quotient ring. Then
Q = Q j © Q 3 where Qj is a strongly regular self-injective ring and Q3 is a biregular right
self-injective ring of type III.

COROLLARY 13. Let R be a prime ring of index n and let Q be its maximal right
quotient ring. Then Q is either an nxn matrix ring over a division ring or a simple directly
infinite ring.

Proof. Since R is prime so is Q. In particular Q is indecomposable as a ring. By
Theorem 9 we see that either Q is of the form Mk(D) where k^n and D is strongly
regular, or Q is of type III. In the former case D is a division ring (since Q is prime) and
k = n (since R c Q has an element of index n). In the latter case Q is biregular and so
simple (being already prime). As Q is type III it is certainly directly infinite and so we are
finished. (Alternatively we could deduce this result from Corollary 6 by using [9,
Proposition IV. 1 and its first corollary] and [8, Theorem 2.5].)

With the help of Corollary 6 we can give a simple criterion for distinguishing the two
cases in Corollary 13. Notice that, since it tells us precisely when the maximal right
quotient ring of a prime ring R is an n x n matrix ring over a division ring, the following
result may be viewed as a characterization of prime right Goldie rings of dimension n (see
[3, p. 76 (2) and p. 80 (7)]).
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PROPOSITION 14. Let R be a prime ring of index n and let Q be its maximal right
quotient ring. Then Q is an nX-n matrix ring over a division ring if and only if aR is an
essential right ideal of R whenever aeR such that rR(a) = 0.

Proof. The "only if" part is well known (if a e R with rR(a) = 0 then rQ(a) = 0 and so
aQ = Q; as Q is directly finite aQ = Q and so aR is essential). So suppose that aR is
essential whenever aeR with r{a) = 0. Since R is prime of index n, Corollary 6 say that R
is right SP(m) for some m^n. If m> 1 then Q is a matrix ring over a division ring (see
[8, Theorem 2.3]) and so, by Corollary 13, must be an n x n matrix ring over a division
ring. So suppose R is right SP(1). Hence if 0 ̂  x e R there is some seR with r(xs) = 0. By
our hypothesis xsR, and hence xR, is an essential right ideal. Since R is right nonsingular
by Proposition 4(c) it follows firstly that R is a domain and then that R is a right Ore
domain. Hence R has index 1 and Q is a division ring. Thus the result is proved.

Now let R be any ring of bounded index and let Q be its maximal right quotient ring.
The starting point for the above results about Q was the decomposition of Q as a direct
product of rings of types I, II and HI. This decomposition of Q is in fact available
whenever Q is regular and right self-injective, that is, whenever R is right nonsingular.
Thus it is natural to ask whether the above results remain true if R, instead of being
semiprime, is merely right nonsingular. The next result shows that we can no longer say
anything special about type I part of Q.

PROPOSITION 15. Every regular right self-injective ring of type I is the maximal right
quotient ring of some ring of index at most 2.

Proof. Let Q be a regular right self-injective ring of type I and let e e Q be a faithful
abelian idempotent of Q. Thus r(eQ) = 0 and, by [6, Theorem 3.2], eQe contains no
nonzero nilpotent elements. Let R be the subring Qe. Writing R = eQe + (1 — e)Qe we see
easily that the only nilpotent elements of R lie in ( l-e)Qe. Thus R has index at most 2.
On the other hand if 0 + q e O we have qQe + 0 since l(Qe) = l(QeQ) = r(QeQ) = 0. Since
qQe c Q c = R we thus have qRHR^O. Hence Q is a right quotient ring (and so the
maximal right quotient ring) of R, as desired. (Readers who would prefer that R had an
identity could achieve this by using instead R = Qe + Z where Z is the centre of Q.)

By choosing Q in the above proof to be an infinite dimensional full linear ring [6,
Proposition 10.2] we see in particular that Q can be of type L, (as opposed to the type Ik

rings of Theorem 9) and that Q need not be biregular (as Q is prime but not simple [10,
p. 93]). Our result about the type III part of Q also breaks down when R is not
semiprime, as the following example shows.

EXAMPLE. Let S be a domain not satisfying the right Ore condition and let T be its
maximal right quotient ring. Thus T is a simple regular right self-injective ring of type III.
Let a be the smallest cardinal number such that TT^E(aTT), where E( ) denotes the
injective envelope of a module, and let Q = EndT E(f}TT) where fi>a. Then Q is a prime
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regular right self-injective ring of type III (see [6, Corollary 9.3 and Proposition 10.12]).
Furthermore the discussion on page 157 of [6] shows, in conjunction with [6, Theorem
12.21], that Q has proper ideals. Being prime Q therefore cannot be biregular. However
Q is the maximal right quotient ring of a ring of index 2. To see this let e 6 Q be a
projection from E(/3TT) onto one of the summands TT. Then eQe = T as rings and so eQe
is the maximal right quotient ring of some domain S'. Putting R = S' + (l-e)Qe (and
proceeding as in Proposition 15) gives a ring R of index 2 with maximal right quotient
ring Q.

In fact only one of our results remains true without the semiprimeness of R: the type
II part of Q is still zero. To see this we need a final lemma.

LEMMA 16. Let R be a ring of index n and let N be the sum of the nilpotent ideals of R.
If N is essential as a right ideal of R then the right singular ideal Zr(R) is nonzero.

Proof. Choose aeR such that o " " 1 ^ , and a"=0 . We show that a"~1eZr(R).
Suppose on the contrary that r(a""1) Pi J3 = 0 for some nonzero right ideal B of R. Since N
is essential as a right ideal we may suppose that B is nilpotent and, indeed, that B2 = 0.

Since R has index n we have the following property:

(*)... if x e R with x2 = xa = 0 then a"-1x = 0.

(To see this let z = x + a so that z" = an~lx + an = an~lx and zn+i = 0.)
Choose O^beB. Since r(a"~1)nB = 0 we have an~1bj=0. Since h2 = Owe must, by

(*), have ba^O. As baeB this implies an~1(ba)i=0 and so ba2 = (ba)a^0 (using (*)
again, since (ba)2 = 0). Continuing like this we eventually get ba"~1^0. Then
an~lban~1i=0 and a final application of (*) yields (baIt~1)a^0 which contradicts the fact
that a" =0. Hence a"~1eZr(R) as required.

THEOREM 17. Let R be a right nonsingular ring of bounded index and let Q be its
maximal right quotient ring. The type II part of Q is zero.

Proof. Suppose Q has nonzero type II part Q2. By working inside Q2 (and replacing
R with R fl Q2) we may assume that Q itself is of type II. Let N be the sum of the
nilpotent ideals of R. We shall show that N is essential as a right ideal of R and this
contradiction of Lemma 16 will complete the proof.

Let A be a nonzero right ideal of R and choose 0 ̂  a e A. Notice that A meets every
nonzero R-submodule of aQ nontrivially. As Q is of type II we may suppose that aQ is
directly finite and contains no nonzero abelian submodules [6, Proposition 10.8]. By [7,
Proposition 5.8] there is some nonzero a1 e aQ such that (n + l)axQs aQ (where n is the
index of R as usual). Since A n o , Q ^ 0 w e may suppose that ax e A. We are going to use
Lemma 7 again but this time we must make sure that au a2,..., an+i all lie inside A.

We begin the search for a2 by showing that n(alQ)^aQr\rQ(al). We have the
following obvious maps
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and so (» + l ^ Q s a Q s l / i Q n r Q ^ j X I S c ^ Q . Since a1QcaQ is directly finite we can
use the cancellation property [6, Corollary 9.19] to deduce nia^):£ aQ C\ rQ(ai) as
desired. By Lemma 8 (with X = aQC\rQ(a1) and q = ax) there is a nonzero a2e
aQnrQ(a,)nQa1.Rn.R with a2Q^alQ. We may suppose that a2eA (since a2eaQ
anyway). If a2R is a nil right ideal then Proposition 3 gives (a2R)n £ N which would imply
that A n JV^ 0 (if (a2R)" ̂  0 this is clear and if (a2R)n = 0 then a2R c JV). In that case we
are finished, so we may suppose that a\ j= 0.

We can now continue the construction, showing that (n - l ) a jQSaQnr Q (a u a2) by
means of the embeddings

and the cancellation property (as before). In particular a\QSaQDrQ(ax, a2) and another
application of Lemma 8 then yields either some a3eaQr\rQ(ax,a2)DQalRr\R with
o ^ O o r A ON^O. The process continues until we run out of copies of axQ to cancel.
Either we get A fliV^O at some stage or we construct elements au a2,..., a,,+1 of A
satisfying the hypotheses of Lemma 7. Since Lemma 7 then gives a nonzero nilpotent
right ideal of R inside some atR we get A DJV^O anyway. Thus JV is indeed essential as
a right ideal and we are finished.
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