Phyto-oestrogens, their mechanism of action: current evidence for a role in breast and prostate cancer

Pamela J. Magee* and Ian R. Rowland
Northern Ireland Centre for Food and Health (NICHE), School of Biomedical Sciences, University of Ulster, Cromore Road, Coleraine BT52 1SA, UK

(Received 1 September 2003 – Revised 19 November 2003 – Accepted 24 November 2003)

The incidence of hormone-dependent cancers, such as those of the breast and prostate, is much lower in Eastern countries such as China and Japan in comparison with the Western world. Diet is believed to have a major effect on disease risk and one group of compounds, the phyto-oestrogens, which are consumed in large amounts in Asian populations, have been implicated in cancer protection. This view follows the finding that plasma and urinary levels of phyto-oestrogens are much higher in areas where cancer incidence is low in comparison with areas of high cancer incidence. The phyto-oestrogens are comprised of two main groups; the isoflavones and lignans. Of the isoflavones, genistein and daidzein have been the most widely studied. These compounds have been shown to possess anticancer properties; however their precise mechanism of action remains to be elucidated. In comparison, few studies have investigated the effects of lignans in breast and prostate cancer. In vitro studies have shown that genistein exerts biphasic effects on cancer cell growth, stimulating growth at low concentrations (<10 μM) and inhibiting growth at high concentrations (>10 μM), which suggests that low phyto-oestrogen levels may stimulate cancer growth in vivo. Plasma phyto-oestrogen concentrations of >10 μM cannot be achieved by dietary intake and therefore the timing of exposure to phyto-oestrogens may be of the utmost importance in determining their chemopreventive effects. The present paper reviews the effects of phyto-oestrogens on breast and prostate cancer in vivo and in vitro and discusses possible mechanisms of action via which these compounds may exert their effects.

Phyto-oestrogens: Breast cancer: Prostate cancer

Phyto-oestrogens are naturally occurring hormone-like compounds found in plant foods which have a unique diphenolic structure, providing the compounds with exceptional stability (Adlercreutz & Mazur, 1997). Due to their structural similarity to the human female hormone 17-β-oestradiol, phyto-oestrogens have the ability to bind to oestrogen receptors (ER; Setchell, 2001), having a greater affinity for ERβ than ERα (Kuiper et al. 1998). Phyto-oestrogens can therefore act as oestrogen agonists and antagonists competing for oestradiol at the receptor complex (Bingham et al. 1998). However, this is not the only mechanism by which phyto-oestrogens exert their effects; many of which may be unrelated to the oestrogenic properties of these compounds.

There are two main classes of phyto-oestrogens; the isoflavones, found predominantly in soya beans (Reinli & Block, 1996) and the lignans, which are found in a wide variety of foods including flaxseed, cereals, fruits and berries (Thompson et al. 1991). The major glycosides found in soya beans are daidzin, genistin and glycitin. These glucose-conjugated compounds are inactive oestrogenically (Miksicek, 1995) but upon consumption are hydrolysed by mammalian enzymes and the gut microflora to form the active aglycone isoflavone compounds daidzein, genistein and glycitein (Fig. 1; Price & Fenwick, 1985; Setchell & Adlercreutz, 1988; Rowland et al. 2003). Daidzein is further metabolised by the intestinal microflora to form the active aglycone isoflavone compounds daidzein, genistein and glycitein (Fig. 1; Price & Fenwick, 1985; Setchell & Adlercreutz, 1988; Rowland et al. 2003). Daidzein is further metabolised by the intestinal microflora to form the active aglycone isoflavone compounds daidzein, genistein and glycitein (Fig. 1; Price & Fenwick, 1985; Setchell & Adlercreutz, 1988; Rowland et al. 2003). Daidzein is further metabolised by the intestinal microflora to form the active aglycone isoflavone compounds daidzein, genistein and glycitein (Fig. 1; Price & Fenwick, 1985; Setchell & Adlercreutz, 1988; Rowland et al. 2003). Daidzein is further metabolised by the intestinal microflora to form the active aglycone isoflavone compounds daidzein, genistein and glycitein (Fig. 1; Price & Fenwick, 1985; Setchell & Adlercreutz, 1988; Rowland et al. 2003). Daidzein is further metabolised by the intestinal microflora to form the active aglycone isoflavone compounds daidzein, genistein and glycitein (Fig. 1; Price & Fenwick, 1985; Setchell & Adlercreutz, 1988; Rowland et al. 2003). Daidzein is further metabolised by the intestinal microflora to form the active aglycone isoflavone compounds daidzein, genistein and glycitein (Fig. 1; Price & Fenwick, 1985; Setchell & Adlercreutz, 1988; Rowland et al. 2003). Daidzein is further metabolised by the intestinal microflora to form the active aglycone isoflavone compounds daidzein, genistein and glycitein (Fig. 1; Price & Fenwick, 1985; Setchell & Adlercreutz, 1988; Rowland et al. 2003).
by the intestinal bacteria, an action that is inhibited following treatment with antibiotics. Enterodiol can be further converted into enterolactone in the gut (Setchell & Adlercreutz, 1988).

The coumestans comprise another class of phyto-oestrogens, of which coumestrol is the most studied. Coumestrol (Fig. 3), uncommon in the diet, is found in clovers, soya-bean sprouts and in high amounts in mung-bean sprouts (Adlercreutz & Mazur, 1997). This compound has a higher affinity for the ER than the isoflavones, being only ten to twenty times lower than oestradiol (Bingham et al. 1998).

As the phyto-oestrogen parent compounds and their metabolites appear to differ in their biological activity and due to the fact that the gut microflora appear to play a crucial role in phyto-oestrogen metabolism (Rowland et al. 1999, 2003; Bowey et al. 2003), inter-individual metabolism of phyto-oestrogens may have major health implications; for example, for cancer risk.

The oestrogenic effects of phyto-oestrogens first became apparent in the 1940s when sheep became infertile after grazing on pastures containing clover in Australia (Bennetts et al. 1946). This 'clover disease' was later attributed to the rich quantities of formononetin present in the clover which is converted to daidzein in the rumen (Shutt, 1976). Although infertility in captive cheetahs has also been attributed to soya isoflavones in their diet (Setchell et al. 1987), no effects of soya intake on fertility have subsequently been reported in commercially bred animals (Barnes, 1998) or in man (Mitchell et al. 2001).

The theory that phyto-oestrogens could have a protective effect against cancer due to their similarity in structure to oestrogens was first postulated in the 1980s (Setchell & Adlercreutz, 1988). Subjects with, or at high risk of, hormone-dependent cancers excrete low amounts of isoflavones and lignans (Adlercreutz et al. 1982, 1988) whereas subjects living in areas with a low risk excrete high levels (Adlercreutz et al. 1986, 1987, 1991, 1992, 1993b, 1995). These findings have prompted a wealth of research into the possible preventive effects of phyto-oestrogens against hormone-dependent cancers. Here we review current findings in relation to the effects of phyto-oestrogens on breast and prostate cancer and discuss possible mechanisms of action by which phyto-oestrogens may exert their effects.

Phyto-oestrogens and breast cancer

Epidemiology

Breast cancer is the most common form of cancer affecting women in the UK with approximately 116 per 100,000 women being affected annually (Ferlay et al. 2001). There are a number of hormone-related risk factors for breast cancer; for example, early onset of menarche, late onset of menopause, delayed age of first pregnancy and elevated free oestradiol concentrations in post-menopausal women (Hulka & Moorman, 2001). In addition, environmental factors, especially diet, are also thought to play a major role in cancer risk. This is mainly due to the fact that breast cancer incidence is much higher in Western populations in comparison with Asian populations, a finding which has been associated with the consumption of a traditional low-fat, high-fibre, high-soya diet among Asian populations (Tham et al. 1998). Moreover, Asian women living in Asia have approximately 40% lower serum oestrogen levels than Caucasian women living in the USA or Britain (Goldin et al. 1986; Key et al. 1990).
The protection against breast cancer conferred on Asian women is however lost upon immigration and exposure to Western lifestyles within a few generations (Ziegler et al. 1993), further linking lifestyle with breast cancer risk. These studies suggest that early exposure to phyto-oestrogens is extremely important in order to gain from their cancer-preventive effects. Most of the epidemiology and dietary intervention studies have been conducted with soya or flaxseed and not phyto-oestrogens per se (Table 1). Results from studies investigating the effects of these compounds on breast cancer risk have however been conflicting. High intakes of soya proteins and total soya products were found to be associated with a decreased risk of breast cancer in premenopausal Singapore Chinese women in a case–control study carried out by Lee et al. (1991). Furthermore Wu et al. (1996) found increased tofu consumption to be associated with a decreased breast cancer risk in a case–control study of pre- and post-menopausal Asian–American women. In contrast, Yuan et al. (1995) found no protective effect against breast cancer with a high intake of soya protein in a case–control study in two Chinese populations. Furthermore, phyto-oestrogen levels consumed by non-Asian US women have been shown to have little effect on breast cancer risk for both pre- and post-menopausal women (Horn-Ross et al. 2001). In a soya-feeding (154 mg, ±8.4 mg, total isoflavones consumed/d) intervention study, circulating levels of 17β-oestradiol were found to be reduced by 25% in premenopausal women, implicating a protective effect against breast cancer (Lu et al. 2000). Flaxseed supplementation significantly increased the urinary 2-hydroxyoestrogen:16α-hydroxyoestrogen ratio in premenopausal women in a cross-over study, implicating a decreased breast cancer risk (Haggans et al. 2000). Furthermore, serum enterolactone concentration has been shown to correlate inversely with breast cancer risk in a case–control study in both pre- and post-menopausal Finnish women (Pietinen et al. 2001). In a short-term soya intervention study in premenopausal women with breast disease, McMichael-Phillips et al. (1998) found a significant correlation between soya intake and Ki67 and thymidine-labelling index in normal breast tissue indicating that soya may induce the proliferation of breast tissue. These findings were not substantiated when the study was expanded, although apo D levels were significantly lowered and expression of the oestrogen-responsive gene, pS2, was increased in nipple aspirate suggesting that short-term dietary soya may exert a weak oestrogenic effect on the breast (Hargreaves et al. 1999).

Animal studies

In animal studies, both soya and purified phyto-oestrogen diets have been fed, thus providing specific information on the activity of phyto-oestrogens. The majority of animal studies have shown that phyto-oestrogens can protect against chemically induced mammary cancer (Table 2). Isoflavones have been implicated as the active components of soya, since protection against tumour formation is not evident when isoflavone-free soya protein is fed (Barnes et al. 1990). What has become increasingly apparent is that the time of exposure to the test compound is of the utmost importance. For example, rats treated with genistein neonatally or prepubertally have a longer latency before the appearance of chemically induced mammary tumours and a marked reduction in tumour number, whereas rats treated after 35 d of age have smaller alterations in breast cancer risk (Barnes, 1997). These findings suggest that early exposure to soya bean products is vital in breast cancer prevention and may explain why protection against breast cancer is lost in Asian immigrants after a few generations. Lamartiniere et al. (1995) have postulated that genistein may exert its chemopreventive effects in animal models by enhancing mammary cell maturation and lobular–alveolar development, thus reducing cell proliferation in the mammary gland. In contrast Hsieh et al. (1998) have demonstrated that dietary genistein (750 parts per million) fed to 28-d-old athymic ovariectomised mice stimulates mammary gland growth without maturation and also stimulates the growth of MCF-7 oestrogen-dependent tumours. The concentration of total plasma genistein (free and conjugated forms) employed by Hsieh et al. (1998) following genistein supplementation was 2·1 μM (0·24 μM in free form), a concentration which

<table>
<thead>
<tr>
<th>Study type</th>
<th>Population</th>
<th>Diet or compound</th>
<th>Findings</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case–control</td>
<td>Premenopausal Singapore women</td>
<td>Soya protein, total, soya products</td>
<td>Decreased risk of breast cancer</td>
<td>Lee et al. (1991)</td>
</tr>
<tr>
<td>Case–control</td>
<td>Asian-American women</td>
<td>Tofu</td>
<td>Decreased risk of breast cancer</td>
<td>Wu et al. (1996)</td>
</tr>
<tr>
<td>Case–control</td>
<td>Two Chinese populations</td>
<td>Soya protein Enterolactone</td>
<td>No protective effect</td>
<td>Yuan et al. (1995)</td>
</tr>
<tr>
<td>Case–control</td>
<td>Finnish women</td>
<td></td>
<td>Inverse correlation between serum enterolactone and breast cancer</td>
<td>Pietinen et al. (2001)</td>
</tr>
<tr>
<td>Cross-over</td>
<td>Premenopausal women</td>
<td>Flaxseed</td>
<td>Increased urinary 2-hydroxyoestrogen:16α-hydroxyoestrogen</td>
<td>Haggans et al. (2000)</td>
</tr>
<tr>
<td>Intervention</td>
<td>Premenopausal women</td>
<td>Isoflavones (154 ± 8.4 mg/d)</td>
<td>Circulating levels 17β-oestradiol decreased by 25%</td>
<td>Lu et al. (2000)</td>
</tr>
<tr>
<td>Intervention</td>
<td>Premenopausal women</td>
<td>Soya (45 mg isoflavones/d)</td>
<td>Increased Ki67, thymidine labelling index</td>
<td>McMichael-Phillips et al. (1998)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Decreased apo D, increased pS2 (nipple aspirate)</td>
<td>Hargreaves et al. (1999)</td>
</tr>
</tbody>
</table>
these workers have shown to stimulate MCF-7 cell proliferation in vitro. It is therefore clear that both the dose and time of exposure are critical factors in determining the effects of phyto-oestrogens on breast cancer risk.

Although both epidemiological and in vivo studies have demonstrated a protective role of phyto-oestrogens against breast cancer, their precise mechanisms of action remain to be elucidated and can only be determined at the cellular level by in vitro studies.

In vitro studies

Proliferation. Many in vitro studies have examined the effects of phyto-oestrogens on the proliferation of both ER(+) (mainly MCF-7) and ER(−) breast cancer cell lines (Table 3). Genistein has been the most intensively studied compound, probably due to its abundance in soya foods and because it has been shown to have anticancer effects on the proliferation of MCF-7 cells (Welshons et al. 1997; Le Bail et al. 2000) and potently inhibiting cell proliferation >10 μM (Peterson & Barnes, 1991; Monti & Sinha, 1994; Pagliacci et al. 1994; Wang & Kurzer, 1997; Zava & Duwe, 1997; Hsieh et al. 1998; Le Bail et al. 2000) and potentially inhibiting cell proliferation >10 μM (Peterson & Barnes, 1991; Monti & Sinha, 1994; Pagliacci et al. 1994; Wang & Kurzer, 1997; Zava & Duwe, 1997; Le Bail et al. 2000). The lignan metabolite enterolactone has also been shown to exert similar biphasic effects on the proliferation of MCF-7 cells (Welschons et al. 1987; Mousavi & Adlerecreutz, 1992). Phyto-oestrogenic compounds are unable to stimulate the growth of ER(−) cell lines but, for ER(+) cell lines, inhibit cell proliferation at high concentrations (>10 μM). Zava & Duwe (1997) have shown that stimulation of the ER(+) cell lines MCF-7 and T47D by genistein and equol correlates with the binding affinities of these compounds to the ER. These studies suggest differential mechanisms of action for phyto-oestrogens on cell proliferation; at low concentrations they appear to act via an ER-mediated mechanism whereas at higher concentrations a different mechanism of action is exerted on the cells as both ER(+) and ER(−) cell growth is inhibited. The intracellular phyto-oestrogen concentration following treatment is unknown; however, it is evident that media phyto-oestrogen concentration is important in cell growth response.

Cell cycle and apoptosis. Pagliacci et al. (1994) have shown that 10 μM-genistin causes a reversible G2/M arrest in MCF-7 cell-cycle progression whereas doses ≥50 μM result in a marked fall in S-phase cell percentage associated with a persistent arrest in the G2/M phase. In addition, exposure of MCF-7 cells to genistein for >48 h induced apoptosis. Similar effects have been reported by others (Choi et al. 1998; Constantinou et al. 1998; Hu et al. 2001). Genistein also exerts similar effects on the cell cycle of ER(−) MDA-MB-231 and MDA-MB-468 cells (Choi et al. 1998; Fioravanti et al. 1998; Constantinou et al. 1998). Furthermore, in the same study, genistein blocks G2/M cell-cycle progression in non-neoplastic human mammary epithelial cells (MCF-10F; Frey et al. 2001). G2/M cell-cycle arrest induced by genistein in breast cancer cells is associated with an increased expression of the cell-cycle inhibitor p21WAF/CIPI followed by an increase in apoptosis (Shao et al. 1998a; Li et al. 1999). Shao et al. (1998a) found that these effects were induced similarly in a variety of breast cancer cell lines upon genistein exposure irrespective of the cell line’s ER and p53 status, suggesting that genistein’s mechanism of action is modulated via ER- and p53-independent mechanisms. Furthermore, the induction of apoptosis induced by genistein in MDA-MB-231 and MDA-MB-435 cells is associated with the up regulation of Bax and p21WAF and the down regulation of p53 and Bcl-2, an anti-apoptotic protein regulated by the ER (Li et al. 1999). Similar effects have been seen following the exposure of MDA-MB-231 cells to oestradiol (Nomoto et al. 2000).

Table 2. Effects of flaxseed, soya and soya isoflavones on chemically induced mammary cancer in laboratory animals

<table>
<thead>
<tr>
<th>Animal</th>
<th>Product tested</th>
<th>Cancer-inducing agent</th>
<th>Finding</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>SD rats</td>
<td>Soya protein isolate</td>
<td>DMBA</td>
<td>No effect</td>
<td>Carroll (1975)</td>
</tr>
<tr>
<td>SD rats</td>
<td>Soya protein isolate</td>
<td>DMBA</td>
<td>No effect</td>
<td>Hsu & Park (1990)</td>
</tr>
<tr>
<td>SD rats</td>
<td>Soyabean chips, soya protein isolate</td>
<td>MNU, DMBA</td>
<td>Protective</td>
<td>Barnes et al. (1990)</td>
</tr>
<tr>
<td>SD rats</td>
<td>Flaxseed flour</td>
<td>DMBA</td>
<td>Protective</td>
<td>Thompson & Serraino (1990), Serraino & Thompson (1992)</td>
</tr>
<tr>
<td>Rats</td>
<td>Genistein, daidzein</td>
<td>MNU</td>
<td>Genistein decreased tumour multiplicity</td>
<td>Constantino et al. (1996)</td>
</tr>
<tr>
<td>SD CD rats</td>
<td>Genistein</td>
<td>DMBA</td>
<td>Protective</td>
<td>Fritz et al. (1998)</td>
</tr>
<tr>
<td>SD CD rats</td>
<td>Genistein</td>
<td>DMBA</td>
<td>Protective</td>
<td>Gotth et al. (1998)</td>
</tr>
<tr>
<td>CD and Crj rats</td>
<td>Soyabeans, miso biochanin A</td>
<td>MNU</td>
<td>Protective</td>
<td>Hakkak et al. (2000)</td>
</tr>
<tr>
<td>SD rats</td>
<td>Soyabean protein</td>
<td>DMBA</td>
<td>Protective</td>
<td>Ohta et al. (1998)</td>
</tr>
<tr>
<td>SD rats</td>
<td>Fermented soya milk</td>
<td>PhIP</td>
<td>Protective</td>
<td>Zaizen et al. (2000)</td>
</tr>
<tr>
<td>F344 rats</td>
<td>Soyabean protein, soyaabean hypocotyls</td>
<td>MNU</td>
<td>Protective</td>
<td>Lamartiniere et al. (1998, 2002a); Lamartiniere (2000)</td>
</tr>
<tr>
<td>Rats</td>
<td>SOYSELECT soya extract</td>
<td>DMBA</td>
<td>Slowed tumour development</td>
<td>Lamartiniere (2002b)</td>
</tr>
<tr>
<td>SD rats</td>
<td>Genistein</td>
<td>DMBA</td>
<td>Protective</td>
<td>Lamartiniere et al. (1998, 2002a); Lamartiniere (2000)</td>
</tr>
<tr>
<td>Rats</td>
<td>Daidzein</td>
<td>DMBA</td>
<td>No effect</td>
<td>Lamartiniere et al. (2002b)</td>
</tr>
</tbody>
</table>

SD, Spague–Dawley; DMBA, dimethylbenz[a]anthracene; MNU, N-methyl-N′-nitrosourea; PhIP, 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine.
et al. 2002) suggesting that some of the mechanisms of
action of phyto-oestrogens may be similar to those of oes-
tradiol. In MCF-7 cells, genistein exposure has been shown
to induce apoptosis in conjunction with the expression of
both Bcl-2 and Bax (Leung & Wang, 2000). Cells were
also found to be under stress following genistein exposure,
with c-jun N-terminus kinase and stress-activated protein
kinase activity being directly proportional to genistein con-
centrations. As the excess Bcl-2 protein may be involved in
neutralising the up regulated Bax, the stress pathway may
play an important role in inducing cell death since persist-
tent elevated stress-activated protein kinase activity has
been linked to apoptosis. Thus, the anti-tumour effects of
have shown to inhibit the invasion of the murine cell line 410.4
a highly metastatic subline of BALB/c mammary carcino-
ma) with an EC50 of approximately 1 μM (Scholar &
Toews, 1994). Daidzein was also able to inhibit invasion,
yet at a much higher concentration (370 μM). Scholar &
Toews (1994) have postulated that the ability of genistein
to inhibit tumour cell invasion is due to its potent inhibitory
action on tyrosine kinases and have supported this theory
with preliminary studies which demonstrate that other tyro-
sine kinase inhibitors, for example, methyl 2,5-dihydroxy-
cinnamate and herbimycin, also inhibit tumour invasion.
Angiogenesis
Tumours require a blood supply to develop and grow. They
take over existing blood vessels and stimulate the
production of new vessels from these; a process termed
angiogenesis. Phyto-oestrogens can inhibit angiogenesis,
both in vitro and in vivo. Fotsis et al. (1995) have shown
that genistein can inhibit the proliferation and in vitro
angiogenesis of vascular endothelial cells at half-maximal
concentrations of 5 and 150 μM respectively. Subsequently
structurally related flavonoids, for example, 3-hydroxyfla-
vone, have been found to potently inhibit angiogenesis in

Table 3. Effect of phyto-oestrogens on breast cancer cell proliferation in vitro

<table>
<thead>
<tr>
<th>Phyto-oestrogen tested</th>
<th>Concentration</th>
<th>Cell line</th>
<th>Effect on proliferation</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Genistein</td>
<td>IC50 6–12 μg/ml</td>
<td>MCF-7, MCF-7-D-40, MDA-468</td>
<td>↓</td>
<td>Peterson & Barnes (1991)</td>
</tr>
<tr>
<td>Genistein, biochanin A</td>
<td>IC50 20–34 μg/ml</td>
<td>MDA-231</td>
<td>↓</td>
<td></td>
</tr>
<tr>
<td>Genistein</td>
<td>IC50 40 μM</td>
<td>MCF-7</td>
<td>↑</td>
<td>Pagliacci et al. (1994)</td>
</tr>
<tr>
<td>Enterolactone</td>
<td>0.5–2 μM</td>
<td>MCF-7</td>
<td>↑</td>
<td>Mousavi (1992)</td>
</tr>
<tr>
<td>Daidzein, equol, O-DMA</td>
<td>10–100 nm</td>
<td>MCF-7</td>
<td>↑</td>
<td>Hsieh et al. (1998)</td>
</tr>
<tr>
<td>Equol</td>
<td>1–10 μM</td>
<td>MCF-7, T47D</td>
<td>↑</td>
<td>Welshons et al. (1987);</td>
</tr>
<tr>
<td>Genistein</td>
<td>1 nm–10 μM</td>
<td>MCF-7</td>
<td>↑</td>
<td>Zava & Duwe (1997)</td>
</tr>
<tr>
<td>Genistein</td>
<td>10–100 μM</td>
<td>T47D</td>
<td>↑</td>
<td></td>
</tr>
<tr>
<td>Genistein</td>
<td>100–1000 μM</td>
<td>MDA-468</td>
<td>Little or no effect</td>
<td></td>
</tr>
<tr>
<td>Genistein, coumestrol,</td>
<td>0.1–1 μM</td>
<td>MCF-7</td>
<td>↑</td>
<td>Welshons et al. (1987);</td>
</tr>
<tr>
<td>biochanin A, enterolactone</td>
<td>10–100 μM</td>
<td>MDA-MB-231, MCF-7</td>
<td>↓</td>
<td></td>
</tr>
</tbody>
</table>

↑, Increased proliferation; ↓, decreased proliferation.
tumour cells at half-maximal concentrations, seen in plasma, in the low micromolar range (Fotsis et al. 1998). Furthermore the ability of genistein to inhibit capillary formation in vivo has been demonstrated in both mouse xenografts of various cancer cells (Shao et al. 1998b; Zhou et al. 1998) and in animal models of experimentally induced angiogenesis (Hayashi et al. 1997; Kruse et al. 1997). Shao et al. (1998b) were the first to demonstrate that genistein can inhibit angiogenesis in vivo utilising MDA-MB-231 xenografts in nude mice. In rats, genistein, administered as an eye drop (5 mg/ml), prevented extensive neovascularisation of the cornea induced by chemical cataractisation (Hayashi et al. 1997). The expression of vascular endothelial growth factor mRNA is increased in breast cancer and vascular endothelial growth factor is also thought to play a key role in promoting tumour angiogenesis (Yoshiji et al. 1996). Dabrosin et al. (2002) have recently shown that the extracellular vascular endothelial growth factor levels from large tumours in nude mice exposed to a flaxseed diet were reduced in comparison with those of mice fed a basal diet suggesting that lignans also have antiangiogenic properties. These findings may explain one of the mechanisms of action by which phyto-oestrogens exert their protective effects against cancer metastasis, as the angiogenic process is a key mechanism in tumour growth, progression and metastatic dissemination.

Possible mechanisms of action of phyto-oestrogens in breast cancer

Oestrogen-dependent mechanisms: oestrogen receptor α- and oestrogen receptor β-mediated mechanisms. Phyto-oestrogens appear to exert biphasic effects on breast cancer cell growth in vitro implicating differential mechanisms of action. As highlighted earlier (p. 516), at low concentrations (1–10 μM), cell proliferation is stimulated in ER(+) cell lines only, suggesting that the phyto-oestrogens are acting via the ER. This idea is strengthened by the finding that phyto-oestrogens can induce pS2 expression in MCF-7 cells. Both the ERα and ERβ forms could be involved in the stimulation of cell proliferation by phyto-oestrogens. At low concentrations genistein and quercetin have been shown to be full agonists for ERs as well as ERβ (Maggiolini et al. 2001). It is possible therefore that phyto-oestrogens may exert their effects at the cellular level via a similar mechanism of action to that of oestradiol. It is thought that the binding of oestradiol to the ER results in a conformational change, which enables binding of the oestradiol–ER complex to the oestrogen response element on the DNA. Activation of the oestrogen response element may induce the expression of the growth-related proto-oncogene c-fos (Burg et al. 1989), forming a c-fos–c-jun heterodimer that activates the activation protein-1 site, leading to cell proliferation (Wang & Kurzer, 1997). In contrast, at higher concentrations (>10 μM) cell growth is inhibited in both ER(+) and ER(−) cell lines demonstrating that growth inhibition is not mediated via the ER but instead possibly via anti-tyrosine phosphorylation and/or via inhibition of cell-cycle progression. Wang et al. (1996), finding that tamoxifen can inhibit pS2 expression induced by genistein at high concentrations, suggest that the ER mechanism may still be active at high phyto-oestrogen concentrations. These findings are difficult to relate to human studies, as the concentration required for the inhibition of breast cancer cell proliferation in vitro would rarely be achieved in vivo. Serum phyto-oestrogen levels can be >5 μM in adults consuming a high-soya diet (Morton et al. 1994; Xu et al. 1994, 1995), or in infants fed exclusively with soya-based formula (Setchell et al. 1997). Plasma genistein levels in Japanese men may exceed 2 μM (Adlercreutz et al. 1993b). These levels would appear to be tumour-growth stimulatory; however, this is not consistent with the apparent protective effect of the high-soya Asian diet and results should be interpreted with caution, as the concentrations of phyto-oestrogens found in tissues are unknown.

Oestrogen-dependent mechanisms: effects on endogenous hormones and growth factors. The intracellular concentration of oestradiol plays a key role in regulating hormone action and a further mechanism of action via which phyto-oestrogens may influence cell behaviour is by altering the metabolism and availability of endogenous oestrogens, which drive the growth, and development, of hormone-dependent tumours. Enzymes involved in the metabolism and biosynthesis of oestrogen are shown in Fig. 4. Phyto-oestrogens can potently inhibit sulfotransferases that sulfate both oestrogenic steroids and dietary pro-carcinogens (Kirk et al. 2001), thus preventing their activation. In post-menopausal breast tumours, circulating steroid sulfates are thought to provide a major source of oestradiol. Phyto-oestrogens have been shown to inhibit some of the key enzymes involved in oestrogen biosynthesis and metabolism such as aromatase, 17β- and 3β-hydroxysteroid dehydrogenase (HSD). Flavones that are hydroxylated at the 7-position on the A ring have been found to be the most potent aromatase inhibitors (Kirk et al. 2001); however, lignans can also exert similar effects. Enterolactone (Adlercreutz et al. 1993a) and enterodiol, as well as coumestrol (Wang et al. 1994), can inhibit aromatase activity in vitro in human pre-adipocytes and it has been suggested that these compounds may compete with the natural substrate androstenedione for the enzyme. Coumestrol and apigenin are the most potent inhibitors of 17β-HSD activity (IC50 0.2–0.3 μM) having the ability to inhibit the reduction of oestrone to 17β-oestradiol by this enzyme which is expressed in both normal and malignant breast tissue (Makela et al. 1995). Genistein, daidzein and biochanin A have also been found to inhibit 17β-HSD activity, though at higher concentrations, i.e. IC50 1–10 μM. These isoflavones can also inhibit 3β-HSD activity, but at a higher concentration than is required for 17β-HSD inhibition (Le Bail et al. 2000). The phyto-oestrogen concentration required for inhibition of these enzymes may be achieved physiologically from a phyto-oestrogen-enriched diet and therefore these mechanisms of action may play a key role in the chemopreventive properties of these compounds.

Observational studies have led to the suggestion that phyto-oestrogens may be able to reduce the proportion of free oestrogens circulating in the plasma by stimulating sex hormone-binding globulin (SHBG) levels (Adlercreutz et al. 1987). Intervention studies, however, have shown no
Effect of soya beans on SHBG levels in pre- or post-menopausal women (Cassidy et al. 1994, 1995; Baird et al. 1995; Petrakis et al. 1996). Similarly no effects were evident in premenopausal women receiving lignans (Phipps et al. 1993). Furthermore, in a case–control study Murkies et al. (2000) found no differences between SHBG levels in post-menopausal breast-cancer patients in comparison with controls.

Other theories as to the mechanism of action of phyto-oestrogens in vivo include those concerning their effects on hormone levels. Cassidy et al. (1994) found that a soya-protein diet (45 mg isoflavones/d) administered to premenopausal women for 1 month increased the length of the follicular phase of the menstrual cycle and/or delayed menstruation. In addition, it was reported that mid-cycle surges of luteinising hormone (LH) and follicle-stimulating hormone were suppressed. These results suggest that phyto-oestrogens present in soya may protect against breast cancer since an increase in menstrual cycle length would result in a decreased lifetime exposure to oestrogens. Additionally, a longer follicular phase would be protective as the mitotic activity of the breast is thought to be four times higher during the luteal phase in comparison with the follicular phase (Treolar et al. 1970; Ferguson & Anderson, 1981). These findings have been supported by others (Kumar et al. 2002); however, Maskarinec et al. (2002) found no significant effect on hormone levels in premenopausal women following supplementation with isoflavones (100 mg/d) alone, suggesting that other components in soya may contribute to these effects.

An alternative mechanism for growth inhibition by genistein was postulated by Kim et al. (1998) who suggested that genistein had the ability to modulate transforming growth factor β-1-signalling pathways in vitro. These findings were strengthened by preliminary studies in patients with hereditary haemorrhagic telangiectasia, a genetic disorder involving mutations in proteins that regulate transforming growth factor β receptor complex formation and signalling. Following 1 week of consuming soya-based beverages, several patients experienced a dramatic attenuation of their symptoms.

Oestrogen-dependent mechanisms: pS2 expression. pS2 is a 6·7 kDa protein secreted by MCF-7 cells in response to oestrogens (Prud’homme et al. 1990) and therefore serves as a marker for oestrogen-like activity. Genistein (1–50 μM) has been shown to increase pS2 levels in the growth medium of MCF-7 cells (Zava & Duwe, 1997; Hsieh et al. 1998), as has daidzein, equol (1 μM) (Sathyamoorthy et al. 1994; Zava & Duwe, 1997) and enterolactone (1 μM). Equol was 100-fold more oestrogenic than its parent compound daidzein in stimulating pS2 mRNA expression. Enterolactone (1 μM) induced a weak response whereas enterodiol did not exert any effect (Sathyamoorthy et al. 1994). Several studies have shown that the anti-oestrogen tamoxifen inhibits pS2 expression stimulated by genistein, daidzein and equol (Wang et al. 1994).
1996; Sathyamoorthy & Wang, 1997), suggesting that these compounds are stimulating pS2 expression via an ER-mediated mechanism. Genistein has also been found to promote the transcription of another oestrogen-regulated gene, cathepsin-D, in MCF-7 cells (Fioravanti et al. 1998; Miodini et al. 1999), a finding which may have implications for the effects of genistein on tumour promotion since the overexpression of cathepsin-D has been implicated in invasion and metastasis in breast cancer (Rochefort, 1998).

Oestrogen-independent mechanisms: protein tyrosine kinase and topo-isomerase II inhibition. In addition to their actions as partial oestrogen agonists or antagonists (Kuiper et al. 1997; Barkhem et al. 1998), many different mechanisms of action have been proposed to explain the chemopreventive effects of phyto-oestrogens. Genistein in particular exerts a wide range of biological activities suggesting that its mechanism of chemoprevention is pleiotropic in nature. Genistein is a potent inhibitor of protein tyrosine kinase (PTK) activity (Akijama et al. 1987), especially that of the epidermal growth factor receptor. Permanently increased levels of tyrosine phosphorylation are implicated in many cancers, with approximately 50% of known oncogenes encoding for either membrane-bound receptors with tyrosine kinase activity or intracellular proteins undergoing or catalysing tyrosine phosphorylation (Polkowski & Mazurek, 2000). It is improbable, however, that this is a major mechanism behind the chemopreventive effects of genistein since the inhibition of PTK in whole cells in vitro is only apparent at relatively high genistein concentrations and it has been reported that in several cell systems in which genistein inhibits growth, no effect on tyrosine phosphorylation was found (Kim et al. 1998). Furthermore, daidzein, which is not a PTK inhibitor (Scholar & Toews, 1994), exerts similar effects to genistein in many studies. Genistein has also been shown to inhibit topo-isomerase II (Markovits et al. 1989), the nuclear enzyme responsible for maintaining DNA structure. Upon genistein exposure DNA strand breakage is induced, which may explain why cultured cells undergo apoptosis and growth inhibition and differentiation. Interestingly some of the most potent anti-tumour agents currently in use are topo-isomerase II inhibitors; for example, anthracyclines and epipodophyllotoxins.

Oestrogen-independent mechanisms: free radical scavengers. Genistein and flavonoids such as quercetin can also act as free radical scavengers and thus prevent DNA damage (Wei et al. 1993), with genistein having the ability to stimulate several antioxidant enzymes such as catalase, superoxide dismutase, glutathione peroxidase and reductase (Adlercreutz, 2002). Sierens et al. (2001) have reported that genistein and equol offer protection against H2O2-induced DNA damage in human lymphocytes at physiological concentrations, as assessed using the Comet assay. Furthermore, this protection was greater than that offered by 17β-oestradiol, tamoxifen and the known antioxidant vitamins ascorbic acid and α-tocopherol. Wiseman et al. (2000) have shown that soya phyto-oestrogens prevent lipid oxidation in vivo in human subjects. Other workers, however, have postulated that the circulating levels of phyto-oestrogens in the blood are too low to significantly contribute to the removal of free radicals from the human body (Beatty et al. 2000).

Oestrogen-independent mechanisms: metastasis. The anti-invasive properties of genistein appear to be mediated via the transcriptional down regulation of MMP-9 and by the up regulation of tissue inhibitor of metalloproteinase-1. Shao et al. (1998b) have demonstrated that genistein (20 μg/ml) causes a reduced ratio of c-jun:c-fos proteins in MCF-7 and MDA-MB-231 cells, due to an increase in c-fos expression. They have postulated that an excess of c-fos could interfere with jun–jun homodimers and jun–fos heterodimer formation accounting for the reduced activation protein-1-mediated transcription of MMP-9. Furthermore, genistein was also found to regulate the expression of these molecules in vitro in MCF-7 and MDA-MB-231 xenografts. Strong differences in MMP expression and release have been found between highly invasive breast cancer cell lines in comparison with only slightly invasive cells (Balduyck et al. 2000), highlighting the importance of MMP expression in the metastatic process. Further investigations into the effects of phyto-oestrogens on MMP are therefore needed.

Phyto-oestrogens and prostate cancer

Epidemiology. After lung cancer, prostate cancer is the most common form of cancer affecting men in the UK with approximately 74 per 100 000 being affected annually (Ferlay et al. 2001). Although the incidence of latent and non-infiltrative prostate carcinomas is similar in the Western world in comparison with Asian populations, prostate cancer mortality is profoundly higher in the West (Yatani et al. 1982). As with breast cancer, environmental factors, especially diet, have been implicated in disease risk (Giovannucci et al. 1995; Clinton & Giovannucci, 1998; Kolonel et al. 1999; Cohen et al. 2000); for example, in a case-control study conducted in China, Lee et al. (1998) reported that dietary fat intake was associated with an increased risk for prostate cancer. The importance of environmental influences on cancer risk is further emphasised by migration studies; for example, the age-adjusted incidence rate of prostate cancer in Japanese men living in Hawaii is approximately ten times that in Japan (Severson et al. 1989). Other risk factors associated with prostate cancer include age, race, polymorphic repeats in the androgen receptor (AR) gene (Stanford et al. 1997) and high circulating levels of androgens and insulin-like growth factor (Signorello et al. 1999).

Isoflavonoid levels have been found to be higher in men living in Eastern countries, where prostate cancer mortality is low, in comparison with those living in the West; for example, plasma isoflavonoid levels in Japanese men have been shown to be 7–110 times higher than those of Finnish men (Adlercreutz et al. 1993b). In addition, lignan levels in the prostatic fluid in populations at low risk of prostate cancer are higher in comparison with those populations at increased risk (Morton et al. 1997). However, Statin et al. (2002) found no protective effect of high circulating enterolactone levels against prostate cancer in a Nordic nested case–control study. Only one
study has specifically investigated the effects of isoflavones on prostate cancer risk. Strom et al. (1999) reported an inverse association between daidzein and coumestrol intake and prostate cancer risk in a case–control study in American men. Genistein also showed a slightly protective effect.

In a prospective study in Japanese men living in Hawaii, tofu (derived from soya beans) consumption was associated with a decreased risk of prostate cancer (Severson et al. 1989). An additional prospective study in Californian Adventist men showed that the frequent consumption of soya milk was associated with a 70% reduction of the risk of prostate cancer (Jacobsen et al. 1998). In contrast Urban et al. (2001) found no protective effect of soya beverages in lowering levels of the serum prostate cancer biomarker, prostate-specific antigen (PSA), in elderly men. The exposure period, however, was short (6 weeks), which may explain why no significant decreases in PSA levels were found. Probably the most promising study has been conducted by Hussain et al. (2002). Their pilot study demonstrated that isoflavone supplements (100 mg twice daily for a minimum of 3 months) decreased the linear rise in PSA levels in men with treated but uncontrolled prostate cancer (both hormone-sensitive and hormone-refractory). The potential chemoprotective properties of phyto-oestrogens have been highlighted in a case reported by Stephens (1997). A 66-year-old male, with an elevated PSA level of 160 mg/l, self-administered a phyto-oestrogen supplement (160 mg), derived from red clover, daily for 1 week before radical prostatectomy for moderately high-grade adenocarcinoma. The resected specimen showed prominent apoptosis suggestive of tumour regression. Furthermore, no adverse side effects were reported.

No investigations into the direct effects of lignans on prostate cancer have been conducted. However, a cohort study of Adventist men (Mills et al. 1989) and a few case–control studies (Graham et al. 1983; Ewings & Bowie, 1996; Key et al. 1997) have identified the consumption of lignan-rich foods such as lentils, beans and peas as associated with a decreased risk of prostate cancer. Furthermore, a pilot study has suggested that a flaxseed-supplemented, fat-restricted diet may protect against prostate cancer (Demark-Wahnefried et al. 2001).

Evidence is emerging of the beneficial role of soya in prostate cancer (Messina, 2003); however, few human studies have investigated the specific effects of phyto-oestrogens on prostate cancer risk and although isoflavone and lignan intake would appear to protect against prostate cancer (Table 4), a firm link remains to be established.

Animal studies

Studies in animal models of prostate cancer have also demonstrated a protective effect of phyto-oestrogens against prostate cancer development. Onozawa et al. (1999) investigated the effects of a diet containing an isoflavone mixture (genistein, 74%; daidzein, 21%) on the development of adenocarcinomas in the prostate and seminal vesicles of F344 rats induced by 3,2'-dimethyl-4-aminobiphenyl and testosterone propionate. Rats fed a diet containing the soya-bean isoflavone mixture (100 and 400 parts per million) developed significantly fewer adenocarcinomas than controls (Fig. 5). In Lobund–Wistar rats, the spontaneous development of prostate–seminal vesicle complex cancers were significantly prevented in rats consuming a soya protein isolate–isoflavone diet (Pollard & Wolter, 2000).

Table 4. Studies on phyto-oestrogen intake and prostate cancer in human subjects

<table>
<thead>
<tr>
<th>Study type</th>
<th>Population</th>
<th>Diet or compound</th>
<th>Findings</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prospective</td>
<td>7999 Japanese men</td>
<td>Rice, tofu</td>
<td>Decreased risk of prostate cancer</td>
<td>Severson et al. (1989)</td>
</tr>
<tr>
<td>Prospective</td>
<td>225 Adventist men with prostate cancer</td>
<td>Soya milk</td>
<td>Decreased risk of prostate cancer</td>
<td>Jacobsen et al. (1998)</td>
</tr>
<tr>
<td>Pilot</td>
<td>Twenty-five prostate cancer patients awaiting prostatectomy</td>
<td>Flaxseed-supplemented, (30 g/d) fat-restricted diet</td>
<td>Decreased total serum cholesterol, total testosterone and free androgen index, decreased proliferative rates, increased apoptosis</td>
<td>Demark-Wahnefried et al. (2001)</td>
</tr>
<tr>
<td>Nested case–control</td>
<td>794 men with prostate cancer, 2550 controls</td>
<td>Serum enterolactone</td>
<td>No protective effect</td>
<td>Statin et al. (2002)</td>
</tr>
<tr>
<td>Case–control</td>
<td>Eighty-three prostate cancer patients and 107 controls</td>
<td>Coumestrol, daidzein, genistein</td>
<td>Inversely associated with prostate cancer risk</td>
<td>Strom et al. (1999)</td>
</tr>
<tr>
<td>Randomised double-blind</td>
<td>Thirty-four men > 55 years old with PSA > 4 ng/ml</td>
<td>Soya beverages</td>
<td>Decreased serum cholesterol, no effect on serum PSA and p105erB-2</td>
<td>Urban et al. (2001)</td>
</tr>
<tr>
<td></td>
<td>Male with high-grade, adenocarcinoma</td>
<td>160 mg Phyto-oestrogen tablets daily for 1 week</td>
<td>Increased apoptosis</td>
<td>Stephens (1997)</td>
</tr>
</tbody>
</table>

PSA, prostate-specific antigen.
Dietary soya has also been shown to play a protective role against the development of prostatitis in rats (Sharma et al. 1992). In a transgenic mouse model of prostate cancer (TRAMP), the percentage of mice that developed adenocarcinomas was reduced in a dose-dependent manner in those mice fed a diet supplemented with genistein (0, 250 and 500 mg/kg) in comparison with controls (Mentor-Marcel et al. 2001).

Genistin and daidzin have been shown to reduce the incidence of ventral prostate carcinomas in F344 rats induced by 3,2'-dimethyl-4-aminobiphenyl (Kato et al. 2000). However, invasive carcinomas which developed in the anterior prostate and seminal vesicles with testosterone propionate were unaffected by the isoflavones suggesting that phyto-oestrogens offer protection only during the early stages of prostate cancer development. This theory is supported by the work of Bylund et al. (2000) who reported that in mice, in which LNCaP cells were transplanted subcutaneously, feeding a rye-bran or soya-protein diet decreased tumour development in comparison with those mice fed control diets. Similar findings have been reported by others (Landstrom et al. 1998). In the study of Bylund et al. (2000), tumours that grew to a palpable size were smaller and secreted less PSA than in control groups. Once tumours became palpable however, their growth rates were similar in all groups, suggesting that the beneficial effects of consuming a rye or soya diet are exerted during the early stages of tumour development.

In rats, genistein failed to inhibit significantly the growth of subcutaneously implanted MAT-LyLu cells, a hormone-refractory prostate cancer cell line (Naik et al. 1994). It is improbable that phyto-oestrogens only protect against androgen-responsive prostate cancer as Kato et al. (2000) have shown that genistein and daidzin inhibit the growth of the androgen-independent rat prostate cell line PLS10 in vitro; however, a few rat prostate studies have implicated the involvement of endogenous hormones and receptors in response to phyto-oestrogens. Fritz et al. (2002) have demonstrated that genistein administered in the diet of Sprague–Dawley rats (from conception or in adults) down regulated the expression of the AR, ER-α and ER-β in the dorsolateral prostate at concentrations similar to that of human subjects consuming a soya diet. Furthermore, Weber et al. (2001) have shown that plasma testosterone and androstenedione levels were significantly lower in rats fed a phyto-oestrogen-rich diet for 5 weeks in comparison with those rats fed a phyto-oestrogen-free diet. In addition, prostate weight was also reduced. These findings suggest that human consumers eating a phyto-oestrogen-rich diet may be protected against prostate cancer due to the down regulation of sex steroid receptor expression.

In vitro studies

Proliferation. Studies have shown that both isoflavones and lignans inhibit the growth of androgen-dependent and -independent prostate cancer cell lines (Table 5). With the exception of one study (Mitchell et al. 2000) however, the concentration required for growth inhibition exceeds that which would be achieved from dietary intake. Unlike the biphasic effects which phyto-oestrogens exert on breast cancer cell growth, most studies have reported the growth inhibition of prostate cancer cells by phyto-oestrogens to be dose dependent. In addition, the presence of the AR does not appear to influence growth inhibition; however phyto-oestrogens may act via this pathway to invoke other effects on prostate cell growth such as stimulation. In LNCaP cells the AR is mutated which relieves the specificity of the AR and allows other ligands, such as phyto-oestrogens, to bind (Schuurmans et al. 1990). Maggiolini et al. (2002) have reported that genistein and quercetin can activate the AR mutant T877A in LNCaP cells inducing growth stimulation. At high concentrations, however, the compounds exert a cytotoxic effect on cell growth independent of AR expression. Indeed, most in vitro studies show that phyto-oestrogens exert similar effects on androgen-dependent and -independent cell lines (Davis et al. 2000; Mitchell et al. 2000); for example, Mitchell et al. (2000) reported similar effects on growth inhibition exerted by genistein (100 μM) on LNCaP and PC-3 cells. Furthermore, the inhibition of prostate cancer cell growth by genistein in vitro appears to occur in an oestrogen-independent manner (Kyle et al. 1997). The finding that the inhibition of prostate cancer cell growth occurs regardless of hormone responsiveness is of particular importance when identifying possible chemotherapeutic agents, as a major clinical problem in prostate cancer treatment is the conversion of androgen-sensitive tumours to a hormone-refractory state. Hempstock et al. (1998) investigated the effects of combined phyto-oestrogens (biochanin A, genistein, daidzein, genistin and nordihydroguaiaretic acid) on prostate cancer cell proliferation, as this best mimics exposure through diet. No marked synergism among the five compounds was evident in inhibiting cell proliferation; however a synergistic effect on cell metabolic activity was observed.

Genistein (1.25–10 μg/ml) has also been found to inhibit the growth of both benign prostatic hypertrophy and prostate cancer tissue in histoculture in a dose-dependent manner as measured by the inhibition of [3H]thymidine incorporation. Geller et al. (1998) obtained specimens from transurethral resection and radical retropubic prostatectomy
Table 5. Effect of phyto-oestrogens on prostate cancer cell proliferation in vitro

<table>
<thead>
<tr>
<th>Phyto-oestrogen tested</th>
<th>Concentration</th>
<th>Cell line</th>
<th>Effect on proliferation</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Genistein</td>
<td>0–50 μM</td>
<td>PC-3, LNCaP, DU-145</td>
<td>↓</td>
<td>Santibanez et al. (1997)</td>
</tr>
<tr>
<td>Daidzein, biochanin A, genistein, genestin, nordihydroguaiaretic acid</td>
<td>IC50 19– > 100 μM</td>
<td>PC-3, DU-145</td>
<td>↓</td>
<td>Hempstock et al. (1998)</td>
</tr>
<tr>
<td>Genistein, daidzein, coumestrol, equol</td>
<td>0.01–100 μM</td>
<td>PC-3, LNCaP</td>
<td>↓</td>
<td>Mitchell et al. (2000)</td>
</tr>
<tr>
<td>Genistein, daidzein,</td>
<td>3–1–100 μM</td>
<td>PLS10</td>
<td>↓</td>
<td>Kato et al. (2000)</td>
</tr>
<tr>
<td>Genistein</td>
<td>0.0001–1 mg/ml</td>
<td>MAT-LyLu, PC-3</td>
<td>↓</td>
<td>Naik et al. (1994)</td>
</tr>
<tr>
<td>Enterolactone</td>
<td>10–100 μM</td>
<td>DU-145, PC-3, LNCaP</td>
<td>↓</td>
<td>Lin et al. (2001)</td>
</tr>
<tr>
<td>Enterodiol</td>
<td>0–50 nm</td>
<td>PC-3, LNCaP</td>
<td>↓</td>
<td>Davis et al. (2000)</td>
</tr>
<tr>
<td>Genistein</td>
<td>0–50 nm</td>
<td>LNCaP, VeCaP</td>
<td>↓</td>
<td>Davis et al. (2000)</td>
</tr>
</tbody>
</table>

| | Decreased proliferation; EGF, epidermal growth factor. |

and compared genistein-treated histocultures with 5α-dihydrotestosterone-treated controls. [3H]thymidine incorporation in benign prostatic hyperplasia and cancer histocultures from the same specimens were similarly inhibited by genistein.

Few studies have investigated the effects of lignans on prostate cancer. Lin et al. (2001) investigated the effects of enterolactone and enterodiol on the growth of PC-3, DU-145 and LNCaP cells. Enterolactone significantly inhibited the growth of all cell lines (IC50 for LNCaP cells, 57 μM) whereas enterodiol, which was a less potent inhibitor, only inhibited PC-3 and LNCaP (IC50 100 μM) cell growth.

Invasion. To our knowledge only one study has investigated the effects of genistein on the invasive capacity of prostate cancer cell lines in vitro. Santibanez et al. (1997) found that genistein (30 μM) was able to inhibit (3-fold) the invasion of PC-3 cells through matrigel. This inhibition of invasion did not result as a secondary effect of genistein on cell proliferation. These findings agree with those of Naik et al. (1994) who showed that genistein inhibits cell proliferation of the hormone-refractory prostate cell line MAT-LyLu in vitro, but had only a modest anti-invasive effect in vivo. Rather, Santibanez et al. (1997) have postulated that invasion is inhibited via genistein inhibiting the tyrosine phosphorylation of membrane-bound proteins in transformed cells, preventing the formation of invadopodia which permit cellular contact and degradation of the extracellular matrix (Mueller et al. 1992).

Effects on prostate-specific antigen production. PSA is a 33 kDa protein produced mainly by the prostatic epithelium and the epithelial lining of the perirethral glands (Polascik et al. 1999). Serum PSA is the only accepted biomarker used to detect and monitor prostate cancer. Davis et al. (2000) have demonstrated that genistein (0.1–5 μM) decreases PSA secretion in LNCaP cells. Much higher concentrations (10–50 μM), however, are required to inhibit secretion in VeCaP cells, which express PSA in an androgen-independent manner. Therefore the effects of genistein on PSA expression and prostate cancer cell growth may be regulated via differential mechanisms. The effect of genistein on intracellular PSA protein levels was also investigated and levels correlated with decreased levels of secreted PSA. This reduction in PSA protein expression also correlated with decreased PSA mRNA levels. Furthermore Rosenberg Zand et al. (2002) found that seventeen flavonoids, including genistein and biochanin A, inhibited dihydrotestosterone-induced PSA production in PC-3 cells transfected with the human AR cDNA, PC-3(AR)+. Biochanin A has also been shown to inhibit PSA production in LNCaP cells, a finding associated with the induction of UDP-glucuronyl transferase, an enzyme responsible for metabolising testosterone to inactive products (Sun et al. 1998).

Cell-cycle and apoptosis. Shen et al. (2000) have reported that genistein, at physiological concentrations (<20 μM), induces a G1 cell-cycle block in LNCaP cells and increases expression of the cell-cycle regulators p27^Kip1 and p21WAF1 (mRNA and protein). Apoptosis, however, was only induced when genistein was present at high concentrations (>20 μM). Interestingly, expression of the apoptotic regulators bel-2 and bax were unaffected by genistein (0–40 μM), as assessed by PCR analysis. Davis et al. (1998) also reported that genistein (50 μM) increased p21WAF1 protein levels in LNCaP cells as determined by Western blotting. Genistein (60 μM) has also been found to arrest the cell cycle at the G2/M phase in LNCaP cells (Kobayashi et al. 2002), a finding which was associated with the suppression of cyclin B expression. Furthermore, genistein induced the cyclin-dependent kinase inhibitor p21 in a p53-independent manner. Zhou et al. (1999) also reported that genistein, at 50 μM, but not 10 μM, significantly affected cell-cycle progression by arresting LNCaP cells at the G2/M phase. Furthermore, genistein (50 μM) induced a 2-fold increase in DNA fragmentation, a marker of apoptosis. Kyle et al. (1997) found that genistein (50 μM) induced apoptosis in PC3-M prostate cancer cells without affecting cell-cycle transition.
Furthermore, apoptosis was preceded by the suppression of the PTK, focal adhesion kinase.

Angiogenesis

Zhou et al. (1999) have reported that soya phytochemicals exert anti-angiogenic effects on human prostate cancer cells implanted in mice. LNCaP cells were subcutaneously inoculated in severe combined immune deficient (SCID) mice who were then fed either a control diet (containing no isoflavones) or a diet containing various amounts of isoflavones (341–2120 mg/kg diet) for 21 d. An in vivo assessment of prostate tumour microvessel density as a biomarker of tumour angiogenesis showed a reduced vascularity in the mice fed soya products. A significant increase in tumour apoptosis was also reported. A more potent effect was demonstrated with a soya phytochemical concentrate (which contained more isoflavones) compared with a soya-protein isolate. Insulin-like growth factor-1 is associated with enhanced angiogenesis (Nakao-Hayashi et al. 1998) and is positively associated with prostate cancer risk in man (Chan et al. 1998; Wolk et al. 1998). In Zhou’s study (1999), in mice fed a diet containing 20 % soya-protein isolate with 1 % soya-phytochemical concentrate, serum insulin-like growth-1 levels were significantly lower than in the control group. These findings suggest that soya isoflavones may, in part, inhibit angiogenesis by reducing circulating concentrations of critical growth factors.

Possible mechanisms of action of phyto-oestrogens in prostate cancer

Many of the mechanisms of action postulated for the role of phyto-oestrogens in prostate cancer are shared with those of breast cancer (see earlier; pp. 518–520) and will therefore not be discussed again. Some differential mechanisms of action of phyto-oestrogens on breast and prostate cancer may in part be due to the down regulation of sex steroid receptor expression.

Hormone-dependent mechanisms. 5α-Dihydrotestosterone, the main prostatic androgen, is synthesised by the 5α-reductase enzyme from testosterone. The prostate is unable to develop, grow or function in its absence (Griffiths et al. 1991). It has been postulated that phyto-oestrogens may offer protection against prostate cancer due to their effects on androgen activity. Information on the effects of phyto-oestrogens on male hormone levels is however limited.

In a randomised cross-over study in which forty-two men consumed 150 g lean meat or 290 g tofu (about 70 mg isoflavones) daily for 4 weeks, Habito et al. (2000) found no difference in the blood levels of oestradiol, testosterone, dihydrotestosterone and androstanediol glucuronide between the two diets. A slight reduction in androgen activity was, however, reported following the consumption of tofu. Nagata et al. (2001) performed a parallel-arm study in which thirty-four men consumed soya milk (about 48 mg isoflavones) daily for 2 months. Although oestrone levels tended to decrease in the soya-milk group, no differences in the blood levels of oestradiol, total and free testosterone and SHBG were found. Furthermore, Allen et al. (2001) found no association between soya-milk intake and the serum concentrations of testosterone, free testosterone, androstanediol glucuronide, SHBG or LH in British men. These findings were supported by those of Mitchell et al. (2001) who reported that an isoflavone supplement (40 mg/d) did not affect serum levels of testosterone, follicle-stimulating hormone, LH or oestradiol. One cross-sectional study has investigated the relationship between soya-product intake and reproductive hormones in Japanese men (Nagata et al. 2000). An inverse association was found between soya-food consumption and serum oestradiol concentrations. Furthermore, significant associations were reported for serum oestrone and total testosterone levels.

In a pilot study in men with prostate cancer awaiting prostatectomy, a low-fat (<20 % energy), flaxseed-supplemented (30 g/d) diet resulted in a significant decrease in total testosterone and free androgen index levels (Demark-Wahnefried et al. 2001). Total serum cholesterol levels were also significantly reduced. In rats fed an isoflavone-rich diet (600 µg/g), plasma levels of testosterone and androstenedione were significantly reduced compared with animals fed a phyto-oestrogen-free diet. No significant differences were, however, found between plasma LH and oestradiol levels or prostate 5α-reductase enzyme activity. In contrast Evans et al. (1995) demonstrated that biochanin A, genistein and enterolactone inhibited 5α-reductase activity in prostate tissue homogenates. These compounds were also found to be potent inhibitors of 17β-HSD isoenzyme activity which converts testosterone to androstenedione (see Fig. 4). Sun et al. (1998) reported that biochanin A significantly decreased testosterone-stimulated PSA release in LNCaP cells, possibly due to an increase in UDP-glucuronosyltransferase activity, resulting in the stimulation of the intracellular glucuronidation of testosterone.

In rats, exposure to dietary genistein (25–1000 mg/kg diet) from conception resulted in the down regulation of the AR and ER-α and ER-β mRNA expression in the dorsolateral prostate in a dose-dependent manner (Fritz et al. 2002). Furthermore, AR, ER-α and ER-β mRNA expression were reduced in adult rats who were fed genistein (250 or 1000 mg/kg diet) for 2 weeks. These findings suggest that the lower incidence of prostate cancer in populations consuming high levels of dietary phyto-oestrogens may in part be due to the down regulation of sex steroid receptor expression.

Insufficient studies have been performed to allow a conclusion to be reached as to the effects of phyto-oestrogens on hormones involved in prostate cancer. Results from current studies are inconsistent, although the possibility that phyto-oestrogens may exert protective effects on prostate cancer partly by altering hormone activity cannot be ruled out.

Hormone-independent mechanisms. Phyto-oestrogens appear to exert their effects on prostate cell growth via differing mechanisms of action; for example, Mitchell et al. (2000) reported that genistein (<10 µM) induced DNA strand breakage in LNCaP and PC-3 cells whereas daidzein, which like genistein inhibited the growth of LNCaP and PC-3 cells, had no effect on DNA damage at concentrations up to 500 µM. Zhou et al. (1999) also reported that daidzein exerted a less potent effect on the inhibition of the proliferation of LNCaP and DU145 cells.
than genistein. Hempstock et al. (1998) have implicated that
growth inhibition may occur via a cytostatic mechanism of
action rather than a cytotoxic mechanism due to their find-
ings that phyto-oestrogens had a more marked effect on
the growth inhibition of four prostate cell lines (including
two derived from normal epithelium) than on the inhibition
of cell metabolic activity. Peterson & Barnes (1993) have
reported that although genistein and biochanin A inhibited
the growth of both serum and epidermal growth factor-
stimulated LNCaP and DU-145 cells, neither compound
(10 μg/ml) inhibited tyrosine autophosphorylation of the
epidermal growth factor receptor. Therefore the mechanism
of action of biochanin A and genistein is not dependent on
the inhibition of epidermal growth factor receptor activ-
ation. Rather, these authors have postulated that inhibition
is dependent on a more distal event in the epidermal growth
factor receptor-mediated signal transduction cascade. Indeed
genistein has been shown to inhibit other cyto-
plasmic tyrosine kinases such as src (Akiyama et al. 1987)
and p210 B (Honma et al. 1990), demonstrating that
genistein can inhibit tyrosine phosphorylation events distal
to membrane-bound growth factor receptors.

Apoptosis is only induced in prostate cancer cells when
phyto-oestrogens are present at supraphysiological concen-
trations (> 20 μM). A variety of factors appear to contrib-
ute to the induction of apoptosis by phyto-oestrogens in
prostate cancer; for example, genistein induced apoptosis
in LNCaP and PC-3 cells by inactivating the transcription
factor, NF-κB (Davis et al. 1999) whereas Kyle et al.
(1997) reported a suppression of the PTK, focal adhesion
kinase, before apoptosis. Davis et al. (1999) also reported
that genistein had the ability to abrogate NF-κB activation
by DNA-damaging agents (H₂O₂, TNF-α).

p21WAF1 protein expression has been associated with
prostate cancer cell proliferation and patient survival (Aalto-
tomaa et al. 1999). The findings of Shen et al. (2000) and
Davis et al. (1998) that genistein can induce p21WAF1
expression in prostate cancer cells therefore supports gen-
istein’s potential role as a chemopreventive agent.

Bergan et al. (1996) have demonstrated that genistein
can increase prostate cancer cell adhesion to solid matrix
supports at low micromolar levels. Thus genistein could
protect against prostate cancer by increasing cell adhesion,
thereby preventing cellular detachment, a significant step
in the process of metastasis.

Hormone-independent mechanisms: microarray analysis.
The effects of phyto-oestrogens on gene expression in
prostate cancer can be assessed using cDNA microarray
analysis. Of the few studies that have been conducted
using this relatively novel technique, it is evident that
phyto-oestrogens affect the expression of genes involved
in tumour biology and this method may provide an inval-
uable insight into the effects of phyto-oestrogens at the
molecular level. Li & Sarkar (2002) have investigated
the effects of genistein on the expression of 12,558
known genes in PC-3 prostate cancer cells. In total, 832
genes were affected by genistein treatment. Of the genes
implicated in tumour angiogenesis, invasion and meta-
stasy, eleven were found to be down regulated and two
were up regulated. Biochanin A has also been shown to
alter gene expression in LNCaP cells (Rice et al. 2002).

Following treatment, twenty-nine genes were down
regulated and eleven were up regulated suggesting that
multiple pathways of action are involved. Furthermore,
genistein down regulated many genes in LNCaP cells
including apoptosis inhibitor (survivin), DNA topo-isomer-
ase II, cell division cycle 6 and mitogen-activated protein
kinase 6 (Suzuki et al. 2002). The glutathione peroxy-
dase-1 gene expression level was the most up regulated
implicating its involvement in the mechanism of action
of genistein in prostate cancer cells.

Conclusion

What is apparent from phyto-oestrogen research is that
these compounds do not appear to act via a single mechan-
ism of action; rather their effects are pleiotropic in nature.
Structurally related phyto-oestrogens have discrete target
sites and mechanisms of action in inhibiting the growth
of cancer cells and phyto-oestrogens with similar structures
may not produce an identical biological response. It is
therefore import to assess phyto-oestrogens on an indi-
vidual basis in addition to investigating their synergistic
effects, as exposure to multiple phyto-oestrogenic com-
ounds would occur following the consumption of a
phyto-oestrogen-enriched diet. A further factor complicat-
ing the assessment of the role of phyto-oestrogens in
cancer aetiology is the different biological activities of var-
ious metabolites and the individual variation in metabolic
profile.

Genistein has been the most studied compound to date,
probably due to its well-documented chemopreventive
properties; however it is evident that many of the other iso-
flavones and lignans possess similar anticancer properties
and so deserve further study.

It is extremely difficult to draw any definite conclusions
as to the effects of phyto-oestrogens on breast and prostate
cancer risk. Low levels of phyto-oestrogenic compounds
would appear to exert oestrogenic effects, thus stimulating
the growth of cancer cells, and perhaps tumours already
undergoing treatment. This is evident from a study demon-
strating that low-dose genistein was able to inhibit the
therapeutic effects of tamoxifen in a post-menopausal
model of breast cancer (Jones et al. 2002). Furthermore,
the high levels of phyto-oestrogens needed to inhibit
cancer cell growth would rarely be achieved in the UK
diet. Some of the serum phyto-oestrogen levels reported
for Japanese men and women would also appear to be
tumour stimulatory suggesting that the timing of exposure
to phyto-oestrogenic compounds may be of the utmost
importance. The low incidence of breast and prostate
cancer in Asian populations may be attributed to their life-
time exposure to phyto-oestrogens. Furthermore, phyto-
oestrogen concentrations in cell-culture media, to a
certain extent, would mimic those found in the plasma. It
is probable that cells in media have better access to
phyto-oestrogens in the culture media in comparison with
in vivo cells in plasma. This would suggest that even
higher plasma levels would be required to inhibit breast
tumour cell growth in vivo. In addition, tissue phyto-oestro-
gen concentrations are unknown and may differ markedly
between Asian and Western populations. Inter-individual
variation in gut microflora may also be implicated in cancer risk as evidenced by the inability of certain individuals to produce active phyto-oestrogenic metabolites.

It is also possible that phyto-oestrogens are acting in synergy with other compounds to exert their overall effects. For example, there are many other components of soya, in addition to isoflavones, which may contribute to an anticancer effect: a low content of methionine, and a high content of phytic acid, saponins and sterols.

Clearly more research is needed before a definite conclusion concerning the chemoprotective properties of phyto-oestrogens can be drawn. With developing technology such as DNA microarrays and proteomics the precise mechanisms of action and target sites of phyto-oestrogens, along with their specific role in tumour development, may be elucidated.

References

Honnma Y, Okabe-Kado J, Kasauake T, Hozumi M & Umezawa K (1990) Inhibition of abl oncogene tyrosine kinase

Phyto-oestrogens in breast and prostate cancer

529

https://www.cambridge.org/core/terms. https://doi.org/10.1079/BJN20031075

Phyto-oestrogens in breast and prostate cancer

