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1. Introduction

Let R be a ring with identity. We will use J(R) and P(R) to denote the
Jacobson and prime radicals of R, respectively. If G is a group, the group ring
of G over R will be denoted by RG.

In this paper, we will prove the following results:

THEOREM 1. If R is a left Goldie ring (with identity) and G the infinite
cyclic group, then P(RG) is nilpotent and

P(RG) = J(RG) = P(R)G = NG,

where N = J(K[A:]) O R.

THEOREM 2. / / R is left Noetherian and G is torsion-free abelian, then
P(RG) is nilpotent and P(RG) = P(R)G.

The first result is an analogue of a theorem of Amitsur on polynomial rings
[1, page 358, Theorem 1]:

If R is a ring, then J(K[X]) = N[X], where iV = J(R[XJ) O R is nil.
Furthermore, JV contains the locally nilpotent radical a(R) of R, that is, the largest
ideal of R whose finitely generated subrings are nilpotent.

In fact, we will make use of this result to prove Theorem 1.

2. Proof of the theorems

In this section, unless otherwise stated, R will always denote a left Goldie
ring and G the infinite cyclic group.

LEMMA 1. P(R) = a(R) = JV.

PROOF. By the result of Amitsur quoted above, a(R) c JV and JV is nil, hence
N is nilpotent, since R is left Goldie. Trivially, every finitely generated subring
of JV is nilpotent, thus o(R) — N by the maximality of a(R) with respect to the
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property that finitely generated subrings be nilpotent. Similarly, P(R) is nil, so
it is nilpotent and one infers in like manner that P(R) = a(R) = N. This proves
Lemma 1.

LEMMA 2. J(RG) = NG.

PROOF: Since N is nilpotent, so is NG. Therefore NG £ J(RG).
To show the reverse inclusion, let a eJ(RG), a ^ 0. Let g be a generator of

G. Then
a = 9nf(g)

for some integer n and for some f(g) e R[g^\, the polynomial ring of g considered
as a variable over R, and the constant term of f(g) is not zero. Then

gf(g)eJ(RG).

We want to show that gf(g)eJ(R\_gJ). To this end, it suffices to show that
gf(g)R[g] is a right quasi regular right ideal of R\_g]. Let h(g) e J?[#], then

gf(g)h(g)eJ(RG).

Hence there exists grk(g) e RG such that

gf(g)Ks) + 9rKg) +

where r is an integer and k{g) e R[cf\ has non-zero constant term. We claim that
r ^ 0. For if r < 0, then

+ Kg) + gf(g)k(g) = 0.

It would follow that the constant term of k(g) is zero, a contradiction. Thus

g'k(g)eR[gl

This shows that gf(g)R[g] is right quasi regular, so it is contained in J(R[gJ)
= N[g]. It follows that the coefficients of gf(g) and hence of f{g) are in N. This
proves the reverse inclusion.

We remark that J(RG) £ NG is always valid for any ring with identity.

LEMMA 3. P(RG) = P(R)G = JVC

PROOF: Since P(R) is nilpotent, so is P(R)G. Thus P(R)G £ P(RG) £ J(RG)
= NG = P(R)G by Lemma 2 and Lemma 1. Hence they are all equal.

This also completes the proof of Theorem 1.
We now prove Theorem 2. Let R be left Noetherian (with identity) and G be

torsion-free abelian.
We first note that P(R) is nilpotent, since R is left Noetherian. Hence P(R)G

is nilpotent, thus
P(R)G £ P(RG).
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We now assume that G is free abelian of finite rank n.Ifn = 1, then we have
nothing to prove by Theorem 1. Let n > 1. Assume that the assertion is valid
for all free abelian groups of ranks less than n. Let G = HK, where H is free
abelian of rank n — 1 and K is infinite cyclic. Then RH is Noetherian, hence

= P(RH)K.

Also, by induction hypothesis,

P(RH) = P(R)H.

However, since

RG = R(HK) = (RH)K,
we have

P(RG) = P[(RH)K]

= [P(RH)]K = [P(R)H]K = P(R)(HK) = P(R)G.

This proves the assertion for the case G is of finite rank.
Now let G be arbitrary. We are left to prove that P(RG) £ P(R)G. Let

x e P(RG). Write

x = xtgt + ••• + xngn

where x{ =£ 0 for all i and gf; ^ g7- for i ^ _/. Let Go be the subgroup of G generated
by Q\,---,9n- Then Go is free abelian of finite rank and xeRG0. By the previous
paragraph,

P(RG0) = P(R)G0.

However, x e P(RG) implies that x is strongly nilpotent in RG, in particular, x is
strongly nilpotent in RG0 ([3], page 55). Hence xeP(RG0). Thus xeP(R)G0

£ P(R)G. This completes the proof of Theorem 2.

3. Some related questions

It is not known to the author whether Theorem 2 is true for left Goldie rings.
The answer would be affirmative if we know that R is left Goldie and G is infinite
cyclic imply that RG is left Goldie.

In the sequel, unless otherwise stated, R will denote an arbitrary ring with
identity, G the infinite cyclic group, M = J(RG) n R and N = J(R[X]) n R.

As we noted before, J{RG) £ NG. Since N is nil, so N £ J(R), it follows
that NG s J(R)G. Trivially, M £ J(KG), thus MG £ J(RG). In summary, we
have

PROPOSITION 4. MG £ ./(KG) £ NG £
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COROLLARY 5. / / J(R) = (0) and G is torsion-free abelian, then J(RG) = (0).

PROOF: We may assume that G is finitely generated. Then G is of finite rank,
say n. If n = 1, then the claim is obvious by Proposition 4. We may now complete
the proof by induction on n.

We would like to know when will

MG = J(RG) = NG.

We note that if J(RG) = NG, then N £ J(RG). Thus

N = N nRc J(RG) n R = M.

Hence M = N and so MG = J(RG) = NG. We further note that if JV = a(R),
then NG is nil, therefore NG s J(RG), and so MG = J(RG) = NG. For instance
if R is commutative or left Goldie, then <r(R) = N. Thus we have proved the
following interesting

PROPOSITION 6. IfR is commutative or left Goldie, then MG = J(RG) = NG.

The author is unaware of any ring for which the three ideals above are not
identical.

We now consider an example. Let p be a fixed prime and R the ring of all
rational numbers whose denominators are not divisible by p. Then J(R)
= pR T£ (0), since pR is the set of all non-units of R and it forms the
unique maximal ideal of R. However, J(R\_XJ) = (0), so N = (0). Thus,
(0) = NG p J(R)G.
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