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Under slightly supersaturated conditions, bubbles need many minutes to grow due to
the low gas diffusivity in liquids. When coalescence occurs, the fact that the bubbles
have diffusively grown on top of a surface allows for control with precision of the
location and the timing at which the coalescence takes place. Numerous coalescences
of two CO2 microbubbles in water are recorded at a frame rate of ∼65 000 fps.
The evolution of the coalescing process is analysed in detail, differentiating among
three phases: neck formation, wave propagation along the bubble surface and bubble
detachment. First of all, the formation of the collapsing neck between both bubbles
is compared to a capillary–inertial theoretical model. Afterwards, the propagating
deformation along the surface is characterised measuring its evolution, velocity and
dominant wavelength. Once bubbles coalesce, the perturbing waves and the final
shape of the new bubble breaks the equilibrium between buoyancy and capillary
forces. Consequently, the coalesced bubble detaches and rises due to buoyancy,
oscillating with its natural Minnaert frequency. In addition to the experiments, a
boundary integral code has been used to obtain numerical results of the coalescence
under similar conditions, showing excellent agreement with the experimental data.

Key words: breakup/coalescence, bubble dynamics, capillary waves

1. Introduction
For many years, scientists have focused on the study of drop coalescence,

both experimentally (see e.g. Wu, Cubaud & Ho 2004; Case & Nagel 2008) and
numerically (see e.g. Eggers, Lister & Stone 1999), since this process is fundamental
to many applications, such as inkjet printing and foam stability (Andrieu et al. 2002;
Kapur & Gaskell 2007). The research on droplet coalescence driven by surface
tension done by Menchaca-Rocha, Martínez-Dávalos & Núñez (2001) showed that
the coalescence mechanism of droplets is extraordinarily similar to that of bubbles.
Indeed, the study of bubble coalescence has attained more interest as it affects mass
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transfer towards bubbles, i.e. bubble growth is highly affected by the presence of
coalescence events (Stover, Tobias & Denn 1997). Besides, bubble coalescence has
a tremendous influence in the thinning and break-up of liquid films (Marrucci 1969;
Oolman & Blanch 1986) and even alters the flavour of champagne (Liger-Belair, Seon
& Antkowiak 2012). The fact that bubbles emerge in many catalytic reactions with the
purpose of energy conversion (see e.g. Somorjai & Li 2010) and in many electrolytic
processes (Verhaart, de Jonge & van Stralen 1979) intrigues and motivates scientists
to investigate how these bubbles behave in such conditions, and more concretely, how
they interact with surrounding bubbles, including, of course, eventual coalescence and
detachment processes, which in many applications are favoured, as attaching bubbles
can hinder electrolytic and catalytic reactions.

In general, the coalescence of neighbouring growing bubbles is not always granted,
as the presence of electrolytes (Craig, Ninham & Pashley 1993; Boström et al. 2003)
and the viscosity of the surrounding liquid (Crabtree & Bridgwater 1971; Chesters
& Hofman 1982) play a significant role, since the potentially coalescing bubbles
need to push away the liquid layer in between them so that the coalescence event
can occur (Munro et al. 2015). Stover et al. (1997) worked on the coalescence
of 50–600 µm bubbles under a constant velocity flow, focusing on the oscillating
frequency and damping time. Thoroddsen et al. (2005a) also worked on this subject,
using bigger air bubbles in ethyl alcohol with an improved time resolution, allowing
a more precise study of the early evolution and comparison of their results with
their work about droplet coalescence (Thoroddsen, Takehara & Etoh 2005b). On the
other hand, Bremond et al. (2006) studied the growth of two cavitation bubbles and
their coalescence in an inertia-dominated process. In our case, we focus on bubbles
quasi-statically growing by diffusion, such that they take many minutes to grow
and touch each other so that coalescence is dominated by capillarity. We precisely
study the beginning of the coalescence and compare its results to previous research,
improving both the experimental and the theoretical approach. We also study the
capillary waves propagating along the surface of the coalescing bubbles, especially
the velocity and dominant mode of the wave packet. The viscosity of the involved
fluids is of relevance during this propagation, since the higher vibration modes are
damped as the wave propagates along the bubble surface. To conclude, we comment
on the detachment mechanism caused by energy liberation and buoyancy-driven
upwards acceleration, as well as the bubble oscillation with its Minnaert frequency
during its rising.

2. Description of the experiments and computation of the boundary integral code

Bubble coalescence is challenging to record in a well-controlled way; for
example, when bubbles are chemically produced in a fast reaction, some instabilities
in the bubble surroundings are created which hinder the record of their coalescence.
The case of fast-growing bubbles, in which the associated advective liquid flow may
influence the coalescence process, or that of inertial bubbles hitting each other due
to gravity, are also difficult to record. We use the set-up described in Enríquez et al.
(2013) to nucleate and grow bubbles. We can produce CO2 bubbles quasi-statically
growing in a diffusive regime and then study the coalescence with enough spatial
and time accuracy. We use a small rectangular hydrophilic silicon chip with two
hydrophobic pits, which are the bubble nucleation sites, as depicted in figure 1. We
introduce the chip in a sealed tank filled with a CO2-water saturated solution at
pressure P0 and temperature T . Afterwards, we decrease the pressure to Ps < P0 by
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(a) (b)

FIGURE 1. (Colour online) (a) Sketch of two gas bubbles diffusively growing before
coalescence. The attaching geometry is based on the study done by Moreno Soto et al.
(2017). (b) Image recorded from experiments.

opening a control valve, turning the solution supersaturated according to Henry’s
law. Consequently, bubbles start growing until they touch and coalesce. The strong
pinning conditions at the hydrophobic pits and the small ratio between the viscosities
of the gas and the liquid (Munro et al. 2015) grant that the growing bubbles will
push away the liquid layer in between them, guaranteeing coalescence. Finally, the
coalesced bubble detaches from the substrate and a new couple of bubbles start
growing. In every experiment, temperature and pressure are set to T = 20.5± 0.5 ◦C,
P0 = 9.2 ± 0.05 bar and Ps = 7.75 ± 0.05 bar, thus achieving a supersaturation
ζ = (c0 − cs)/cs ≈ 0.18 (where c0 indicates the gas concentration in the liquid at
saturation and cs at supersaturation), which is small enough to neglect advective
effects influencing the bubble growth (as explained in e.g. Enríquez et al. (2014)).

For the coalescence process, we use a Photron SAX high speed camera to record
images at 66 462 fps of 272 × 768 pixel resolution, which corresponds to 15.05 µs
between two images and 5.5 µm per pixel. Figure 2 shows several snapshots of
the coalescence of two 300 µm radius bubbles with a surface tension coefficient of
σ = 58.7 mN m−1 (Lubetkin & Akhtar 1996), mixture density ρ = 1014.5 kg m−3

(Hebach, Oberhof & Dahmen 2004) and viscosity coefficient µ = 0.964 mN s m−2

(Frank, Kuipers & van Swaaij 1996). The radii of the two bubbles at the moment of
coalescence has been considered to be the same, even if they are slightly different
due to small perturbations during their growth. However, the ratio of the two bubbles’
radii is always between 0.95 and 1.05.

To help analyse and compare the experimental results, we also simulate the bubble
coalescence using an axisymmetric boundary integral (BI) code (see e.g. Og̃uz &
Prosperetti 1993; Power & Wrobel 1995; Bergmann et al. 2009; Gekle et al. 2009)
under the assumption of zero viscosity. The simulation obtains information from the
coalescence event in an easy way without the difficulties associated with performing
experiments. Besides, higher-order waves can be studied in more detail. Aiming for
simplification, some assumptions need to be made. We start the simulation when the
bubbles are already connected through a thin neck at the symmetry axis (vertical line
at a distance d/2 from each bubble, i.e. through the contact point at coalescence)
to avoid the initial coalescence singularity (Og̃uz & Prosperetti 1989; Duchemin
et al. 2002; Munro et al. 2015; Zhang et al. 2015; Anthony et al. 2017). Different
initial values of the connecting neck have been used, showing an extremely fast
convergence to the actual initial experimentally measured neck radius (Anthony et al.
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FIGURE 2. Snapshots of the coalescence of two 300 µm radius bubbles pinned to 50 µm
radius pits. The images (a–o) are separated by 75 µs, images (o–t) by 150 µs and images
(t–y) by 300 µs. Three main stages can be identified: neck formation between the two
bubbles, images (a–d); propagation of the capillary waves along the upper and lower
half-surface of the coalescing bubble and their final convergence at its side, images (e–j);
and final detachment, upwards jumping, rising and oscillation with the Minnaert frequency,
images (k–y).

2017). Because we want to keep an axisymmetric configuration for simplicity, the
wall is left out of the numerical configuration. Obviously, this is an oversimplification
of the experimental situation. However, in this way, the simulation provides symmetric
results along a horizontal axis which goes through the centre of the bubbles and along
the symmetry axis. Results are thus accurate on the upper halves of the bubbles, since
the presence of the pinning points in the experiments breaks the symmetry, as can
be detected from image 2(d) on. Other codes, such as the free-surface Navier–Stokes
code developed by Menchaca-Rocha et al. (2001) and the fully implicit arbitrary
Lagrangian–Eulerian (ALE) method developed by Anthony et al. (2017), generated
similar results.

Considering the gas–liquid properties, the liquid flow around the bubble is assumed
to be irrotational, incompressible and inviscid. The gas inside the bubble behaves as an
ideal gas with a polytropic exponent n=1.338 (Moran & Shapiro 2006) corresponding
to the experimental conditions. The initial conditions in the simulation are matched
to those in one of the experiments, i.e. distance between bubbles d = 600 µm,

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

27
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.277


Coalescence of gas bubbles 147

pressure at supersaturated conditions Ps = 7.75 bar, temperature T = 20.5 ◦C, surface
tension coefficient σ = 58.7 mN m−1 and liquid (water) and gas (CO2) densities
ρl= 1012.6 kg m−3 and ρg= 12.8 kg m−3, respectively. The simulation has been run
up to the point where the capillary waves propagating on the upper and lower half of
the bubble converge at the opposite apex from the coalescence point, since we reach
a singularity. Note that both outer (water) and inner (CO2) fluid are independently
modelled in the BI simulations (Gekle et al. 2009). A video which contains the
one-to-one comparison between experiments and simulation can be found in the
supplementary material available at https://doi.org/10.1017/jfm.2018.277.

3. Analysis of results
3.1. Diffusive bubble growth

We use several samples with different distances between the pits (d = 300, 400, 500
and 600 µm) and different pit radii (10 and 50 µm). We record the growth of
successive bubble pairs with a LaVision camera at 2 fps, so that we can confirm
their diffusion-driven growth. The theoretical evolution of the radius R(t) of a single
quasi-statically growing isolated bubble is given by the Epstein–Plesset equation
(Epstein & Plesset 1950):

Ṙ=Dζ
cs

ρg

(
1
R
+

1
√

πDt

)
, (3.1)

where D = 1.76 × 10−9 m2 s−1 (Frank et al. 1996; Diamond & Akinfiev 2003;
Liger-Belair et al. 2003; Cussler 2009; Lu et al. 2013) is the diffusivity of CO2 in
water. Equation (3.1) has been solved and the results agree with the experiments
adding a term which accounts for the effect of the silicon chip on which the bubbles
are growing (Enríquez et al. 2014). The approximate solution for the dimensionless
bubble radius ε = R/Rp reads

ε =

√ ζcs

2πρg
+

(
1
2
+

√
ζcs

2πρg

)1/2
 x≡ S∗x, (3.2)

where Rp is the pit radius and x =
√
((2Dζcs)/(ρgR2

p))t the square root of the
dimensionless time.

Because the two neighbouring growing bubbles compete for the dissolved gas,
their growth is influenced by the distance d separating them (Enríquez Paz y Puente
2015). However, the corresponding concentration boundary layers growing around
each bubble as

√
πDt merge in one concentration layer from which both bubbles

absorb gas from the very early stages of the bubbles growth. Therefore, the influence
of the distance d is negligible except for the very beginning of the process. In
figure 3, we represent the evolution of the bubble radii for different distances d
between the pinning holes (which is equal to twice the coalescence radius, d= 2Rcoal)
and compare this to the theoretical radius evolution, equation (3.2). Indeed, the radius
evolution is proportional to the square root of time, as expected for a diffusive
growth: see figure 3(a). However, the nominal value of the slope dε/dx is lower than
the theoretical one (Liger-Belair et al. 2015) and independent of d (Enríquez Paz y
Puente 2015), caused by the influence of each bubble growing next to a neighbouring
one and the rapid merging of the two concentration boundary layers (Zhu et al. 2018).
In figure 3(b), we plot the theoretical dimensionless radius derivative (1/S∗) dε/dx= 1
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FIGURE 3. (Colour online) Temporal evolution of the dimensionless radius ε(t)=R(t)/Rp
for two bubbles growing next to each other. The separation between the pits is indicated
by the length d. Both bubbles show the same evolution and only one is represented
for clarity. (a) Evolution of the dimensionless bubble radius ε before coalescence. The
black line (corresponding to the same black curve in b) represents the theoretical Epstein
and Plesset solution for a single bubble attached to a horizontal wall given by (3.2),
based on Enríquez et al. (2014). (b) Evolution of the derivative of the bubble radius.
The experimental points show a horizontal behaviour, corresponding to the expected
competitive diffusive growth: see The curve corresponding to d = 600 µm differs from
the others because the coalescence occurs in the very early stages of the bubble growth,
thus the mass transfer is settling to diffusion after the explosive initial growth right after
nucleation.

(following the representation depicted in Enríquez et al. (2014)) and compare it
with the experimental derivative. The experimental data fall below the theoretically
predicted diffusive growth for a single bubble growing on a substrate, which agrees
with the expected behaviour for two neighbouring bubbles. Thus we confirm that
the growth of both bubbles is driven by diffusion right before their coalescence.
Note that long-time depletion effects (Moreno Soto et al. 2017) have not been
observed during the diffusive growth of the bubble pairs, since the bubbles coalesce
and detach before the onset of natural convection (Enríquez et al. 2014). The area
around the pits in which the new bubble pair will grow is also refreshed with new
solution as the coalesced bubble detaches and rises. Whereas the damping time of
the originated flow is below one second (Moreno Soto et al. 2017), the new bubble
pair needs approximately 10 s to renucleate afterwards and many minutes to grow
until coalescence occurs, so the mass transfer enhancement caused by the refreshing
flow plays no significant role on their growth.

3.2. Evolution of the neck between bubbles at the beginning of the coalescence
As seen in figure 2(a–d), the early coalescence is characterised by the neck formation
between the bubbles. By integrating the axisymmetric Navier–Stokes equations from
a quiescent point far away up to the neck radius, similar to the derivation of the
Rayleigh–Plesset equation (Plesset & Prosperetti 1977), we can model the evolution
of the neck radius rn, geometrically defined in figure 4(a), as

ρ

(
drn

dt

)2

=µ
1
rn

drn

dt
+ rn1ρg+1P, (3.3)
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(a) (b)

FIGURE 4. Graphical definition of (a) the neck radius rn and (b) the horizontal
spacing between the two bubbles δ(rn) measured in the equivalent configuration before
coalescence.

where 1ρ ≈ ρ is the density difference between the liquid and the gas, g is the
gravitational constant and 1P is the Laplace pressure. We calculate the Reynolds
Re= ṙnd/2ν and Froude Fr=

√
2ṙ2

n/gd numbers, comparing inertia with viscosity and
gravity, respectively. We find that both Re and Fr are larger than 100, thus the inertial
stress ρ(drn/dt)2 is dominant in (3.3), such that we can neglect viscosity and gravity
effects. Besides, surface tension dominates over viscosity, since the Ohnesorge number
Oh = µ/

√
ρσRcoal is always of the order of ∼10−3. It is important to mention that

up to 10 ns after the bubbles touch, the evolution of the neck is ruled by viscosity,
crossing over to an inertia-dominated process, as demonstrated by Paulsen, Burton &
Nagel (2011). The cross-over time is dependent on the viscosity of the liquids and
gases involved in the coalescence, i.e. the higher the viscosity of the fluids involved,
the later the cross-over will occur (Paulsen et al. 2012). Our work focuses however
on the capillary–inertia mechanics of the neck evolution.

Thoroddsen et al. (2005b) suggested a Laplace pressure definition based on the neck
radius rn and the horizontal spacing between the two bubbles δ(rn) measured in the
equivalent non-deformable configuration according to the model in figure 4(b):

1P= σ
(

1
δ(rn)

−
1
rn

)
. (3.4)

Combining equations (3.3) and (3.4), and non-dimensionalising with the half-distance
between pits d/2 and the capillary time τ =

√
ρ(d/2)3/σ , the ordinary differential

equation (ODE) for the dimensionless neck radius r̃n = 2rn/d becomes

dr̃n

dt̃
=C

√(
1

δ̃(r̃n)
−

1
r̃n

)
, (3.5)

where C is a dimensionless fitting constant of order 1, δ̃ = 2δ/d and t̃ = t/τ . From
geometry, we obtain δ̃(r̃n)= 2(1−

√
1− r̃2

n) for the dimensionless horizontal spacing,
which results in a differential equation for r̃n that can be numerically solved. Although
Thoroddsen et al. (2005b) used δ as the length scale estimate in the Laplace pressure
definition (3.4), we find better agreement using the half-spacing between the two
bubbles instead, which actually corresponds to an equivalent radius of curvature of
the evolving neck in the axial direction. With this modification, the ODE for r̃n(t)
becomes

dr̃n

dt̃
=C

√√√√( 1
1−

√
1− r̃2

n

−
1
r̃n

)
. (3.6)
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FIGURE 5. (Colour online) (a) Evolution of the dimensionless neck radius rn/(d/2) for
different bubble radii at the moment of coalescence Rcoal = d/2 and comparison with the
Thoroddsen model (3.6) and Paulsen model (3.7), together with the results from the BI
code. Time has been non-dimensionalised by the capillary time τ . Inset: the same data on
a double logarithmic plot for a better appreciation of the early coalescence. (b) The same
evolution as in (a) but with the vertical axis compensated with the dimensionless time.
Here we can appreciate with higher detail the discrepancies between experiments and the
model with the square root of time, equation (3.7), which no longer agree after t/τ = 0.2,
whereas the model (3.6) is more realistic and precisely fits the experimental data even at
high values of the neck radius. The BI results show excellent agreement with experiments,
despite the initial coalescence singularity.

Another approach with the square root of time is often proposed for the case of
drops (Case & Nagel 2008; Paulsen et al. 2014):

2rn

d
= B

√
t
τ
, (3.7)

where B is a dimensionless fitting parameter. During the early coalescence, δ � rn
and δ� d/2, conditions such that δ can be approximated as δ= 2r2

n/d, and therefore,
1P = σd/2r2

n. Introducing these new definitions into (3.3) after neglecting viscosity
and gravity, we obtain

drn

dt
=

√
σd

2ρr2
n

. (3.8)

When solving this ODE, we recover equation (3.7), which is valid for the early
coalescence and is only a particular case of the general equation (3.6). Indeed,
Thoroddsen et al. (2005a) pointed out that this law is valid for 2rn/d< 0.45.

We measure the evolution of the neck radius for many coalescences with different
values of the bubble radius. To compare the experimental results, we use the measured
values for the upper part of the neck formed between the bubbles. Results for the
lower neck are only considered for the very early coalescence, since the presence
of the pits to which the bubbles attach breaks the symmetric neck evolution and
impedes a free propagation of the deforming wave. The experimental results are
compared to the theoretical models (3.6) and (3.7) in figure 5, as well as to the
results obtained from the BI code. As expected, the square root scaling law (3.7)
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FIGURE 6. (Colour online) (a) Evolution of the neck and its best-fit circle. The cross
markers correspond to the contour of the top part of the coalescing bubble. Each contour
from the bottom to the top of the figure is separated by 15 µs and the first contour on
the bottom corresponds to the first recorded shape of the coalescing bubbles. The radius
of the best-fit circle corresponds to the neck curvature. (b) Time evolution of the top and
bottom radii of curvature for 300 µm radius bubbles. The time when the two necks start
growing differently corresponds approximately to figure 2(c).

no longer accurately fits to the experimental data after 2rn/d ≈ 0.45. Nevertheless,
the capillary–inertial model, equation (3.6), precisely matches the experimental data
at all times for a best fitting constant C = 0.85. In the literature, a fitting value of
C = 1.06 in (3.5) for bubbles can be found (Thoroddsen et al. 2005a), whereas a
value C= 0.80 follows for the case of drops (Thoroddsen et al. 2005b). The difficulty
in matching the experimental data to the theory originates from the choice of the
initial time. Indeed, the first snapshot where we can see the bubble surface moving
does not correspond to the exact beginning of the coalescence, which actually starts
shortly before. To find time zero, we solved the ODE (3.6) with r̃n(t̃= 0)= 0. Then,
we shift the time of the experimental plot so that both theory and experiments agree.
The results from the BI code precisely agree with the experimental data and with
the theoretical model given by (3.6), which corroborates both our modifications of
the original model proposed by Thoroddsen et al. (2005b) and the results from our
experiments.

In addition, we measure the time evolution of the neck radius of curvature in the
axial direction Rc(t): see figure 6. For the calculation of this radius of curvature, we fit
a circle at the bridge formed between the bubbles at the position rn, whose radius is by
definition the neck curvature (Thoroddsen et al. 2005a), as represented in figure 6(a).
We investigate that the radius of curvature is also affected by the presence of the
pinning points: see figure 6(b). As expected, the early evolution is similar for both
curves, but after t≈ 0.1 ms, the upper radius of curvature grows much faster than the
bottom one due to the presence of the substrate and the pinning spots, which do not
let the lower half-surface freely deform. As mentioned before, the same phenomenon
occurs for the evolution of the neck radius.

Results concerning this radius of curvature are presented in figure 7. Figure 7(a)
shows the time evolution of the radius of curvature. For the early coalescence,
the curvature seems to follow a linear evolution if the radius of curvature is
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FIGURE 7. (Colour online) (a) Time evolution of the dimensionless radius of curvature
Rc/(d/2) for different bubble radii at coalescence Rcoal. Inset: the same data on a double
logarithmic scale, for a better appreciation of the early coalescence. (b) Evolution of the
radius of curvature Rc(t) against that of the neck radius rn(t). It can be observed that the
non-deformable model, in which any point on the bubble surface remains unaltered until
it is reached by the perturbation, does not follow the experimental data. For both panels
(a) and (b), the prediction given by the BI code accurately matches the experiments.

non-dimensionalised by the bubble radius at the start of the coalescence, accounting
for any geometrical effect that may originate from the different Rcoal = d/2
(Hernández-Sánchez et al. 2012). The radius of curvature also shows a linear
dependence with the neck radius (Thoroddsen et al. 2005a) during the early stages
of the coalescence process (figure 7b), increasing drastically as the neck radius
approaches the value of the bubble radius. Both curves collapse into one universal
behaviour, i.e. the capillary time τ is still relevant for the curvature evolution.
Again, the BI code accurately matches the experimental results. The precision in the
calculation of the radius of curvature is strongly affected by the bubble radius, with
the last experimental values being extremely dependent on the selected points in the
neck to which the curvature circle is fitted. Thus, the higher 2Rc/d, the higher the
inaccuracy in the calculation of the curvature radius.

If we assume that any point on the bubble surface remains unaltered until the
perturbing wave reaches it, we can relate the radius of curvature to the neck radius
as follows:

Rc =
r2

n

d−
rn

2

. (3.9)

However, the discrepancies between this limit and the experiments observed in
figure 7(b) show that, indeed, the bubble surface at a certain point is deformed by
the perturbing wave even before it reaches that spot. However, once more, the BI
code provides an extremely good prediction of the radius of curvature related to the
neck radius.

3.3. Propagation of the deformation wave
After the neck is formed between the two bubbles, the deformation travels along the
bubble surface until the upper and lower waves converge at the opposite apex of
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the bubbles from the coalescence point, a shape reminiscent of a lemon, as shown
in figure 2(g). We note that even though the lower deforming wave travels through
the pits (figure 2c–e), the coalescing bubble does not detach. Indeed, detachment
occurs once the deformation moves backwards and goes through the pit position
once more (figure 2k,l). Despite surface tension dominating over viscosity during
the wave propagation, Oh ∼ 10−3, a satellite pinch-off after the perturbing upper
and lower waves meet at the side of the coalescing bubbles has not been observed,
in contrast to the results documented by Zhang & Thoroddsen (2008) and Zhang
et al. (2015). We associate the differences with the geometrical configuration of our
system: the presence of the pits alters the perturbing wave propagation along the
lower half-surface of the bubbles and breaks the axisymmetry of the process.

We focus on the surface deformation and how the collapsing waves travel along
the bubble surface. Some results about capillary waves on a water–gas interface
were discussed in Liberzon, Shemer & Barnea (2006) and Gekle et al. (2008),
but with different geometries. Capillary waves have also been reported during the
partial coalescence of droplets (Gilet et al. 2007). For a plane surface, the general
dispersion relation for a single surface wave is (see e.g. Rayleigh (1879) and Lamb
(1895, pp. 448–451))

ω2
=

(
gk+

σ

ρ
k3

)
, (3.10)

with ω the angular frequency and k the wavenumber. Capillarity is dominant over
gravity if (σ/gρ) · k2

� 1, i.e. the wavelength λ � 15.5 mm for CO2 bubbles in
water. Our case fulfils this condition, since the wavelength we measure is smaller
than 0.2 mm. We can thus neglect the gravity term in (3.10). Besides, for a spherical
bubble, the angular wave vector has to be a natural number because of the periodic
geometry. As shown in Lamb (1895, pp. 468–469), the dispersion relation for the n
mode of an air bubble in a liquid follows

ω2
n =

(n− 1)(n+ 1)(n+ 2)
τ 2

, (3.11)

with capillary time τ =
√
ρ(d/2)3/σ , and the angular phase velocity

cθ =
1
τ

√
(n− 1)(n+ 1)(n+ 2)

n2
. (3.12)

The propagation of the surface deformation is a wave packet composed of many
angular frequencies moving with different velocities, since the phase velocity increases
with n. To account for the wave packet main velocity, we measure the time 1t
between the beginning of the coalescence and the moment in which the upper and
lower waves meet each other at the sides of the bubble. Figure 8(a) shows the
influence of the bubble radius at detachment Rcoal on this time 1t for many different
coalescence events. It is observed that the time the waves need to travel along the
bubble surface and meet each other at the opposite apex from the coalescence point
follows the power law 1t∝R3/2

coal. Therefore, it is straightforward to plot the measured
time 1t against the capillary time τ . Clearly the plot in figure 8(b) reveals a linear
dependency with a slope that corresponds to 1t/τ = 0.67. Defining cθ =1θ/1t, with
1θ being the angle θ (graphically defined in figure 9a) travelled by the wave packet
during 1t, we can calculate a theoretical expression for the wave travelling time:

1t= τ
n1θ

√
(n− 1)(n+ 1)(n+ 2)

. (3.13)
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FIGURE 8. (Colour online) Time difference 1t between the beginning of the coalescence
and the convergence of the upper and lower waves at the opposite side of the coalescing
bubbles (a) as a function of the bubble radius at coalescence (Rcoal = d/2) on a logarithmic
scale and (b) as a function of the capillary time τ =

√
ρ(d/2)3/σ . The panels contain

many different coalescence events. The red lines correspond to the best fit following (a)
a power law and (b) a linear law.
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FIGURE 9. (Colour online) (a) Definition of the angular position θ as calculated from
experiments. (b) Angular position θ of the travelling deformation as a function of the
dimensionless time. It has been measured for 15 coalescing bubbles of different radii. The
plot is on double logarithmic scale, showing convergence to a power law with exponent
1/2. The red line corresponds to the results given by the (axisymmetric) BI code, showing
the very precise agreement between the experiments and the simulation.

The wave travels an angle 1θ =π when it reaches the opposite apex of the bubble
from the coalescence point. Thus, assuming only one single mode n and knowing that
1t/τ = 0.67, we find that the average mode n= 20 governs the wave propagation.

After having corroborated that the capillary time is the proper time scale, it is
interesting to study the time evolution of the wave packet while it propagates along the
bubble surface. More specifically, we analyse the evolution of the angular position of
the deformation from the very beginning of the coalescence until the upper and lower
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FIGURE 10. (Colour online) (a) Time evolution of the dominant mode of the wave
packet during its propagation along the bubble surface, corresponding to the same
experimental angular positions θ from figure 9; n is calculated for an equivalent single
wave which would excite the same dominant mode as the wave packet, equation (3.14).
(b) Logarithmic representation of the dominant mode, which suggests that its evolution
follows a power law with an approximate exponent of −1. For both panels (a) and (b),
the red curve stands for the BI code results, which again accurately match the experiments.
A small deviation can be detected when the waves propagating along the upper and
lower half-surface of the coalescing bubbles start approaching the opposite apex from
the coalescence point. Even though the simulation results are within the spread of the
experimental data, this deviation presumably originates from the simplifications employed
in the BI code, i.e. the simulations neither account for viscous damping of the vibration
modes (which becomes more relevant for the higher modes) nor for the presence of the
pits which impede the free propagation of the lower wave. The small discrepancy can be
better appreciated in figure 11.

waves reach the sides of the coalescing bubbles. After that, the coalescing bubble
starts to fold inward (figure 2h), and the measurement of the angular position using
the centre of the initial bubbles no longer applies.

For a better understanding of the evolution of the wave packet as it moves along
the coalescing bubble surface, we define an equivalent single wave with mode n at
the angular position θ that will excite the same dominant mode of the wave packet at
that same position. This dominant mode is obtained equalling the expression (3.12) to
the corresponding definition of angular wave velocity cθ = θ/t. Thus, assuming n� 1,
we conclude that

n=
(
θ

t
τ

)2

. (3.14)

An equivalent relation can be found for the case of partial coalescence (Gilet
et al. 2007). Results are shown in figures 9(b) and 10, in which the results from
different experiments with different R and d collapse when scaled with the capillary
time (Zhang et al. 2015). We observe that the angular position does not change
linearly with time because of the velocity dependence on n. The dominant mode
is extremely high at the beginning of the coalescence, decreasing afterwards very
rapidly to a value n≈ 20, as also appreciated by Zhang & Thoroddsen (2008) and
our results from (3.13). The logarithmic plots in figures 9(b) and 10(b) suggest that
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FIGURE 11. (Colour online) Comparison between the experiments and the (axisymmetric)
BI simulation (green line) for 300 µm radius bubbles. We notice the influence of the
pits on the free propagation of the lower half-wave, thus the code only provides accurate
results for the upper half-wave, which indeed freely propagates. Thus the final moments
at which the two waves meet at the bubble sides cannot be simulated with the desired
precision. Besides, the wave packet contains more oscillation modes in the simulation,
since viscosity damps the higher modes in experiments, which is not accounted for in
the simulation.

(a) (b)

FIGURE 12. (Colour online) Snapshots of the coalescing bubble (a) before the
convergence of the upper and lower wave and (b) after. The red arrows point to the
position of the peaks whose distance in between corresponds to the wavelength.

the time evolution of the angular position and dominant mode follow a power law
with an exponent of approximately 1/2 and −1, respectively, which is consistent with
equation (3.14). The BI simulation precisely matches the experimental data except
for the final points, where the deforming waves reach the bubble sides: see figure 11.
Besides, although viscosity can be neglected in the neck dynamics, it affects the
highest vibration modes, damping the high frequencies in the wave packet. Indeed,
the viscous time for an n mode is defined as

τν(n)=
λ(n)2

ν
=

4π2R2

ν

1
n2
, (3.15)

where ν is the water kinematic viscosity. If we compare the capillary time τ with
the viscous time τν for Rcoal = 300 µm and ν = 9.64 × 10−7 m2 s−1 (Frank et al.
1996), we obtain τν(n= 500)= 0.02τ , τν(n= 100)= 0.54τ , τν(n= 50)= 2.2τ and
τν(n= 20)= 13.5τ . Figure 8(b) shows that the average time scale of the propagation
is 1t/τ = 0.67, therefore the higher modes are quickly damped during the propagation.
This further explains the differences with the BI simulations, which do not take
viscosity into account.

After the convergence of the waves at both bubble sides, we clearly see two peaks
on the bubble surface instead of a single one: see figure 12. We measure the velocity
of those peaks and the distance between them, concluding that they remain quasi-
constant with time. This suggests that the distance between the two peaks corresponds
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Experimental data
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FIGURE 13. (Colour online) (a) Distance between the two peaks on the bubble surface
for different bubble radii after the convergence of the upper and lower wave. We use the
radius of the new bubble Rb, which is equal to 3

√
2(d/2) by conservation of volume. The

dominant mode is thus directly proportional to the radius of the final coalesced bubble,
as plotted in red. (b) Wave angular velocity after the top and bottom waves have met
at the bubble side. The red curve corresponds to the theoretical phase velocity calculated
using (3.12) and the fit in (a) for the distance between the experimental peaks, defined
as the wavelength.

to the wavelength of the capillary wave, and therefore, it has now been reduced to a
packet with a clearly dominant mode. Figure 13(a,b) shows the influence of the bubble
radius after the coalescence, Rb =

3
√

2(d/2), on this wavelength and phase velocity.
As expected, the wavelength seems to be proportional to the final coalesced bubble
radius Rb with a coefficient a= 0.48: see figure 13(a). Since the wavelength is equal
to 2πRb/n, we find the value n= 13 for the dominant mode, which is smaller than the
mode n = 20 governing the early propagation of the upper and lower wave towards
the bubble sides. We surmise that viscosity continues to play a role, damping the
higher vibration modes of the bubble more and more, as also occurred in Zhang &
Thoroddsen (2008). Partial coalescence, as shown by Gilet et al. (2007), seems to
follow the same mechanics regarding wave propagation.

3.4. Bubble detachment and rising
When the deforming wave passes again on its way back through the location of the
pinning pits, the coalesced bubble typically detaches. Similarly to the case of droplets
(Wisdom et al. 2013; Liu et al. 2014), once the two bubbles coalesce, there is a
liberation of surface energy 1Eσ =2πσ(d/2)2−πσ(d/ 3

√
4)2 which is transformed into

potential energy 1P = ρgπd3h/6, where h is the height reached during the vertical
jump that occurs as a result of this energy liberation. Energy conservation results
in a jump of height h = 6(1/2− 1/ 3

√
16)σ/ρgd. Afterwards, the bubble rises due to

the effect of buoyancy. The equilibrium of forces on the bubble surface (Lohse &
Prosperetti 2003) can be expressed as follows:

(mb +madd)ḧ= (ρ − ρg)Vbg− Fd, (3.16)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

27
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.277


158 Á. Moreno Soto, T. Maddalena, A. Fraters, D. van der Meer and D. Lohse

Energy jump
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FIGURE 14. (Colour online) Rising position of the bubble after detachment versus
time. It can be appreciated that the actual rising of the bubble lies between the curves
corresponding to the energy jump by the liberation of surface energy and the trajectory
obtained by the equilibrium of forces on the bubble, equation (3.18). This implies that the
coalesced bubble suffers from a small jump due to a partial energy liberation (which is
much smaller than the calculated one) and is afterwards accelerated upwards by buoyancy.

where Vb=πd3/3 is the bubble volume after coalescence, mb=ρgVb and madd=ρVb/2
are the bubble and added masses and Fd = 4πµ(d/ 3

√
4)ḣ is the drag force, which

corresponds to the well-known Stokes’ law on a clean bubble. This equation can be
simplified considering that ρg� ρ, resulting in the following ODE:

ḧ= 2g− αḣ. (3.17)

This equation with α = 24µ/ 3
√

4ρd2 can be readily solved with initial conditions
h(0)= 0 and ḣ(0)= 0 to obtain

h(t)=
2g
α

t+
2g
α2
(e−αt
− 1). (3.18)

The jump height and the buoyancy-driven rising position of the bubble are plotted
in figure 14 in comparison to the experimental data. It can be noticed that the
energy jump is barely influential in this case, due to the high drag which the
environmental liquid causes on the bubble and the energy loss due to the depinning
from the substrate. However, experiments show that the actual bubble trajectory lies
in between the region delimited by the energy conservation jump and the trajectory
obtained by equilibrium of forces on the bubble. This fact implies that the bubble
at detachment jumps instantaneously to a certain height by liberation of energy,
being afterwards accelerated upwards by buoyancy with the corresponding resistance
caused by the Stokes’ law term. Note again that Stokes’ law is defined for a clean
bubble, i.e. the slightest contamination will increase Fd and thus α. We have varied
the value of Fd up to a maximum of Fd = 6πµ(d/ 3

√
4)ḣ corresponding to a small

sphere, verifying that the theoretical curve (3.18) in figure 14 barely changes. This
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FIGURE 15. (Colour online) (a) Time evolution of the radial position of different points
on the surface of the coalesced bubble after detachment. (b) Definition of the angles used
for the curves in (a).

fact implies that the drag force caused by the liquid viscosity does not play a major
role in the equilibrium of forces after bubble detachment, i.e. the upward rising is
mainly dominated by buoyancy. Consequently, after the initial jump, the tendencies
of both the experimental data and the theoretical curve (3.18) run quasi-parallel at all
times.

After detachment, the new bubble surface oscillates, flattening first vertically and
then horizontally (figure 2p–y). This surface waving can be perfectly appreciated in
the experimental data plotted in figure 14. The travelling waves are still deforming the
surface even after detachment. The oscillation continues and is progressively damped
while the bubble is rising, leaving its place for the next couple of bubbles to grow.
In Lamb (1895) and Versluis et al. (2010), it is shown that for a single oscillating
bubble, the natural period of a given n mode can be written as

Tn = τ
2π

√
(n− 1)(n+ 1)(n+ 2)

. (3.19)

This expression is directly associated with the well-known Minnaert frequency
(Minnaert 1933). Figure 15 shows the radial position of different points on the
bubble surface during the oscillation after detachment. We notice that the oscillation
amplitude is maximal at the angles θ = 0 and θ =π, and minimal at the angles
θ =π/2 and θ =−π/2 (by symmetry). Figure 16 shows the radial position of the
point θ = 0 for different bubble radii. We directly conclude that the oscillation period
is proportional to τb =

√
ρlR3

b/σ , experimentally obtaining Texp/τb = 1.88± 0.25,
which corresponds to the mode n= 2 according to (3.19). Again, we see the effect of
the energy loss at detachment and the viscosity in the damping of the higher modes
of vibration.

4. Conclusions
Quasi-static, slow diffusive growth of two bubbles pinned to nearby pre-designed

sites results in a well-controlled bubble coalescence without any instabilities caused by
refreshing flows around the bubbles, spurious velocities, impact vibrations, chemical
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FIGURE 16. (Colour online) Evolution of the dimensionless radial length rθ=0/Rb with the
dimensionless time t/τb after bubble detachment, where τb is the capillary time using the
reference radius Rb.

reactions or gas-feeding needles. Moreover, and contrary to drops, gravity and
viscosity have no influence on the cause of the coalescence process in our current
configuration, i.e. bubbles do not deform, reaching a perfect spherical shape, and
coalescence is granted thanks to the low viscosity of the gas compared to that
of the liquid and the presence of the pinning points on the substrate. The whole
coalescence is only driven by capillary–inertia, with viscosity only playing a role
in the damping of the vibration modes in the coalescing wave packet later in time.
The capillary–inertial model (3.6) with the corrected term accounting for half of
the horizontal spacing between bubbles accurately describes the evolution of the
neck that bounds the two bubbles in the early coalescence. This evolution has been
found to be universal, no matter which method triggers the coalescence, i.e. bubbles
growing by diffusion have the same neck evolution while coalescing as bubbles in
flows, bubbles coalescing by impact or bubbles generated by chemical reactions.
On the other hand, the neck radius of curvature is hard to express in a theoretical
way since it is very dependent on the deformation caused by the surface wave
originated at the beginning of the coalescence. This deformation has been proved
to be due to a pure capillary wave. The wave packet which propagates along the
bubble surface can be approximately modelled by a single mode wave as the rest
of the deformation spectrum (i.e. the vibration modes) is progressively damped, and
therefore the propagating wave reaches a constant velocity in the end. The damping
of the wave packet may be determinant for the potential detachment event to occur.
Comparing the experimental data with the results of a BI code, we find an extremely
similar coalescence evolution, except for the moment in which the capillary waves
approach the opposite apex of the bubbles from the coalescence point, since the code
does not account either for the presence of the two pinning spots or the role of
viscosity in the damping of high modes in the wave packet. The deviations could be
perfectly appreciated in figure 11. However, we proved that BI code and experiments
can be compared one-to-one in the modelling of the upper half-bubble coalescence
process, since this surface is not affected by the presence of the pits and can thus

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

27
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.277


Coalescence of gas bubbles 161

(1) (2) (3) (4)

(5) (6) (7) (8)

(11) (12)(9) (10)

(15) (16)(13) (14)

FIGURE 17. Snapshots of a coalescence event in which the final bubble does not detach
from the sample, with pit radius of 50 µm and pit separation of d = 150 µm. The first
eight images are separated by 75 µs (including the interval between snapshots (8) and (9)),
whereas the last eight images are spaced by 600 µs. Note that the resulting bubble will
continue growing diffusively on a much larger time scale until it reaches its detachment
radius or coalesces with a new growing bubble from the other pit.

evolve freely. After detachment, the jump generated by surface energy liberation is
barely influential compared to the buoyancy effect, equation (3.18), which makes the
bubble rise rapidly. The fact that we achieved bubble detachment before the bubbles
reach their theoretical detachment radius (≈450 µs for a Rp = 10 µs and ≈750 µs
for a Rp = 50 µs) provides a good starting point for many applications which need
to enhance bubble detachment for transporting gas away from a surface. While rising,
the bubble keeps oscillating with a viscous-caused lower wave mode according to its
Minnaert frequency. All the coalescence events occur in an extremely reproducible
way, with no apparent influence of gas depletion caused by bubble detachment.
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FIGURE 18. Snapshots of two different coalescence events when one bubble is much
bigger than the other one. The images in the same row are separated by 75 µs. This
configuration is obtained by letting bubbles grow and coalesce without detaching. The
bubble that remains pinned to the pit keeps growing while a new one grows from the other
pit. After several coalescences have occurred, the difference in the radii of the bubble pair
is more than noticeable.

Appendix. Bubble coalescence without detachment
In one of our experimental designs, the distance d between the pits where the

bubbles attach during their growth is chosen in such a way that the final bubble
after coalescence does not reach the maximum volume which surface tension can
exert (see e.g. Fritz 1935; Og̃uz & Prosperetti 1993; Moreno Soto et al. 2017). If
the pit radii are 50 µm and the distance between them is 150 µm, we observe that
the coalesced bubble does not detach from the sample. Snapshots of this case are
shown in figure 17. The early coalescence is similar to that in figure 2. However, in
this case, since the touching bubbles do not have exactly the same radius, there is
no symmetry in the wave propagation on the different bubbles. Whereas the smaller
bubble detaches from the pit and merges into the bigger one due to its higher Laplace
pressure, the bigger bubble stays on the substrate since the capillary force is strong
enough to keep the coalesced bubble pinned to the surface. This event is followed by
new bubble growth from the pit where the now absorbed bubble was before, while the
absorbing bubble keeps growing on the other pit until it reaches its detachment radius
or coalesces with the much smaller new growing bubble. If the bubbles touched one
more time, they would also collapse, but their radii would be significantly different,
as shown in figure 18. The perturbation wave which is produced would also be
considerably smaller than for the first coalescence, barely perturbing the absorbing
bubble.
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