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1. Introduction

The purpose of this paper is to generalize some results in a recent paper
by Tomiuk and the author ([11]).

In section 3, we study the Arens product, weakly completely continuous
(w.c.c.) and annihilator Banach algebras. We show that if A is a semi-simple
Banach algebra which is a dense two-sided ideal of a semi-simple annihilator
Banach algebra B, then A is w.c.c. This result greatly generalizes [11, page 56,
Theorem 6.1]. We also obtain that if A is a semi-simple Banach algebra which
is a dense two-sided ideal of a B*-algebra B, then A is an annihilator algebra
if and only if A is w.c.c. and A2 is dense in A. This is a generalization of [11,
page 57, Theorem 6.2].

Section 4 is devoted to the study of complementors on Banach algebras.
Let A be a semi-simple annihilator Banach algebra which is a dense subalgebra
of a B*-algebra B. We show that if x e c l^x^) for all x in A and A is a two-sided
ideal of B, then every complementer p on B induces a complementor q on A.
Conversely, of j • | majorizes • on A and the constant M in (4.3) is not zero,
then we get that every complementor q on A can be extended to a complementor
p on B. These two results improve [11, page 60, Theorem 8.2] and [11, page 63,
Theorem 8.8].

2. Notation and preliminaries

Definitions not explicitly given are taken from Rickart's book [9].
For any subset £ of a Banach algebra A, let lA(E) and rA(E) denote the left

and right annihilators of E in A, respectively. Then A is called a modular anni-
hilator algebra if, for every maximal modular left ideal / and for every maximal
modular right ideal L, we have rA(I) = (0) if and only if / = A and lA(J) = (0)
if and only if J = A.
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An element x in a Banach algebra A is said to be weakly completely con-
tinuous (w.c.c.) if the left and right multiplication operators of x are weakly
completely continuous. It is known that the set of all w.c.c. elements of A forms
a closed two-sided ideal in A (see [8]). If each element of A is w.c.c, then A is
called w.c.c.

Let A be a Banach algebra, A* and A** the conjugate and second conjugate
spaces of A, respectively. The mapping nA will denote the canonical mapping
of A into ^4**. The Arens product on A** is defined in stages according to the
following rules (see [2]). Let x,yeA, fe A* and F,Ge A**.

(a) Define / o x by ( /o x)(y) = f(xy). Then / o xeA*.
(b) Define G o / by (Go/)(x) = G(/o x). Then GofeA*.
(c) Define F o G by (F o G)(/) = F(Gof). Then £ Y GeA**.
A** with the Arens product o is denoted by (A**, o).
Let A be a Banach algebra and let Lr be the set of all closed right ideals

of A. Following [10], we shall say that A is a (right) complemented Banach
algebra if there exists a mapping p: R -> R" of Lr into itself having the following
properties:

(Cl)RnR' = (0) (RsLr);
(c2)R + Rp = A (ReLr);
(c3)(R"Y = R (ReLr);
(c4) if R^Ri, then Rp

2=> Rp(Ri,R2eLr).
The mapping p is called a (right) complementer on A.

Let ^ be a Banach algebra which is a subalgebra of a Banach algebra B.
For each subset £ of A, cl(£) (resp. cl^(£)) will denote the closure of E in B
(resp. A). /(£) (resp. lA(E)) will denote the left annihilator of £ in B (resp. A).
We write | • || for the norm on A and | • | for the norm on B.

An idempotent e in a Banach algebra A is said to be minimal if eAe is a di-
vision algebra. In case A is semi-simple, this is equivalent to saying that Ae(eA)
is a minimal left (right) ideal of A.

In this paper, all algebras and linear spaces under consideration are over
the field C of complex numbers.

3. The Arens product and w.c.c. algebras

Let A be a semi-simple Banach algebra which is a dense two-sided ideal of
a semi-simple Banach algebra B, Then by [5, page 3, Proposition 2.2], there
exists a constant K> 0 such that

(3.1) . K I a I ^ \a\ (aeA)

and hence by [5, p. 3, Theorem 2.3], there exists a constant D such that

(3.2) I a b I ^ D I a \\ \ b \ a n d \ \ b a \ \ g D || a \\ \ b \

for all a in A and Z> in B.
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LEMMA 3.1. Let A be a semi-simple Baanch algebra which is a dense
two-sided ideal of a semi-simple annihilator Banach algebra B. Then nA(A)
is a two-sided ideal of (A**, o) .

PROOF. This is Theorem 3.1 in [15].

LEMMA 3.2. Let A be a Banach algebra, Then nA(A) is a two-sided ideal
of (A**, o) if and only if A is wcc.

PROOF. Suppose that nA(A) is a two-sided ideal of A**. Let {xa} be a bounded
net in A. Then by Alaoglu's Theorem [6, page 424, Theorem 2], we can assume
that nA(xa) -*• F weakly for some F in A**. Since nA(x)o FenA(A) for all x
in A, it follows that rtA(xxa) -» nA(x) o F weakly in nA(A). Hence A is w.c.c.

Conversely suppose that A is w.c.c. Let xeA and FeA** with \\F\\ = 1.
By Goldstine's Theorem [6, page 424, Theorem 5], there exists a net {xa} c A
with I x, I g 1 such that nA(xa) -» F weakly. Since x is w.c.c, we can assume
that xxa -» y weakly for some y in A. It follows that nA(x) o F = nA(y)enA(A).
Consequently nA(A) is a two-sided ideal of A** and this completes the proof.

REMARK. Lemma 3.2 was obtained for 5*-algebra in the proof of [7, page
84, Theorem].

THEOREM 3.3. Let A be a semi-simple Banach algebra which is a dense
two-sided ideal of a semi-simple annihilator Banach algebra B. Then A is w.c.c.
and, in particular, B is w.c.c.

PROOF. The is follows from Lemmas 3.1 and 3.2.
Theorem 3.3 is a generalization of [11, page 56, Theorem 6.1].

THEOREM 3.4. Let A be a semi-simple Banach algebra which is a dense
two-sided ideal of a B*-algebra B. Then the following statements are equiv-
alent.

(i) A is a modular annihilator algebra.
(ii) nA(A) is a two-sided ideal of (A**, o) .

PROOF, (i) => (ii). Suppose that A is a modular annihilator algebra. Let x
be a positive element in B. Then x = h2, where h is a hermitian element in B.
Let hn e A be such that hn-+ h in | • | . Then hnh* -» h2 = x in ] • |; clearly
hnh* G A. Now by the proof of [4, page 287, Lemma 2.6], the socle of B is dense
in B, because any element of B is a linear combination of positive elements.
Hence by [17, page 41, Lemma 3.11] and [17, page 42, Theorem 4.1], B is a dual
B*-algebra. Therefore nA(A) is a two-sided ideal of (A**,o) by Lemma 3.1 and
this proves (ii).

(ii) => (i). Suppose (ii) holds. Then by Lemma 3.2, A is w.c.c. Since B2 = B,
by (3.1), (3.2) and the proof of [8, page 29, Lemma 9], B is w.c.c. and so is dual.
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([8, page 21, Theorem 6]). Therefore by [17, page 40, Theorem 3.7], A is a
modular annihilator algebra. This completes the proof.

Theorem 3.4 generalizes [13, page 830, Theorem 5.2] and [14, page 112,
Theorem 2.2].

THEOREM 3.5. Let A be a semi-simple Banach algebra which is a dense
two-sided ideal of a B*-algebra B. Then A is an annihilator algebra if and
only if A is w.c.c. and A2 is dense in A.

PROOF. Suppose A is w.c.c. and A2 is sense in A. Then by the proof of
Theorem 3.4, B is a dual algebra and A is a modular annihilator algebra. Let e
be a minimal idempotent of B. Since eAe = eBe = Ce, it is easy to see that
e e A and consequently, A and B have the same socle S. Since Be = Ae, it fol-
lows easily from (3.1) and the Closed Graph Theorem that | • | and | • | are equiv-
alent on Ae. Let x and y be elements in A. Since S is dense in B, there exists
a sequence {xn} in S such that xn -> x in | • |. It follows from (3.2) that xny -* xy
in || • ||. Therefore A2 <= clA(S). Since A2 is dense in A, clA(S) = A.

Let / be a minimal closed two-sided ideal of A and J = cl(J). By [17, page
37, Lemma 3.1], / contains a minimal idempotent e. Therefore / = c\(AeA)
and consequently J = cl(BeB). Hence J is a minimal closed two-sided ideal
of B. By [9, page 100, Theorem (2.18.14)] and [9, 249, Theorem (4.9.2)], J is
a simple dual B*-algebra. Clearly / is a dense two-sided ideal of J and they have
the same socle. Let L be a minimal left ideal of / . Then L is a minimal left ideal
of J . By [9, page 261, Theorem (4.10.3)] and [9, page 263, Theorem (4.10.(9)]
Lis a Hilbert space in J • |. It is well known that J can be considered as the algebra
of all completely continuous linear operators on L. Since / is a dense two-sided
ideal of J and they have the same socle, / contains all operators of finite rank
on L. Since | • || and | • | are equivalent on L, it follows easily from [9, page 104,
Theorem (2.8.23)] that / is an annihilator algebra. Therefore by [17, page 42,
Theorem 3.12] and [9, page 106, Theorem (2.8.29)], A is an annihilator algebra.
The converse of the theorem follows immediately from Theorem 3.3 and [9,
page 100, Cotrollary (2.8.16)].

Theorem 3.5 is a generalization of [11, page 57, Theorem 6.2]. Also see [3,
page 9, Theorem 3.5(2)].

LEMMA 3.6. Let e be an idempotent is a semi-simple Banach algebra A.
Then e is a w.c.c. element if and only if eA and Ae are reflexive.

PROOF. Let (eA)** have the Arens product o and let n be the canonical
mapping of eA into (eA)**. Suppose e is a w.c.c. element in A. Let Fe(eA)**
with I F I = 1. Then by Goldstine's Theorem [6, page 424, Theorem 5], there
exists a net {xa} in eA such that | xa | ^ 1 for all a and n(xa) -> F weakly in
(eA)**. Therefore n(xj = n(exa) -* n(e) o F weakly in (eA)**.
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Hence F = n(e) o F. Since e is w.c.c, there exists a subset {xXk} c {xa} and
ye A such that exXk -* y weakly in A. Consequently F = n(y) e n(eA). Hence
eA is reflexive. Similarly Ae is reflexive.

Conversely, suppose that eA and Ae are reflexive. Let {xa} be a net in A
with | |xa| | g 1. Since || exa || <| | |e | | , by [6, page 425, Theorem 7]. We can
assume that there exists some y in eA such that f(exj -*f(y) for all/e(e.4)*.
Therefore it follows that e is w.c.c. and this completes the proof.

THEOREM 3.7. Let A be semi-simple complemented Banach *-algebra.
Then A is w.c.c.

PROOF. By [10, page 655, Lemma 5], the socle S of A is dense in A. Let e
be a minimal idempotent of A. Then by [10, page 656, Theorem 5], Ae is a
Hilbert space and so it is reflexive. By [11, page 51, Lemma 4.1] and the above
argument, eA is also reflexive. Now it follows from Lemma 3.6 that e is w.c.c.
Consequently S is w.c.c. and so is A.

4. Induced complementers

Let A be a Banach algebra with a complementor p. A minimal idempotent
/ in A is called a p-projection if (fA)p = ( —f)A. If A is a semi-simple annihi-
lator complemented Banach algebra, then every non-zero right ideal contains
a p-projection and A contains a maximal orthogonal family of p-projections
(see [10, page 654]).

THEOREM 4.1. Let Abe a semi-simple annihilator Banach algebra in which
xeclA(xA) for all x in A. If A is a dense two-sided ideal of a B*-algebra B,
then for every complementor p on B, the mapping q: I -* cl(/)p n A on the
closed right ideals I of A is a complementor on A.

PROOF. By the proof of Theorem 3.4, B is a dual algebra and A and B have
the socle S. Let {/ , :ae V} be a maximal orthogonal family of ^-projections
in B. Then / „ e 5 c A for all oceV. In order that q be a complementor on A,
by Lemma 1.1 and Theorem 3.2 in [16], it is sufficient to show that x = S J«x
in || • I for all x in A. Since p is a complementor on B, by Theorem 3.2 in [16],
b = I a / a fc in | • | for all 6 in fi. Let x, j> e .4 anda,-eV(; = 1, ••-,«). Since by (3.2)

2f=i/«,*>i ^ D I £."=i f«ix\ \y\> h f o I l o w s t h a t Z«/«x^ is summable in
• I]. Since xeclA(xA), for any given e > 0, there exists some z in A such that
x - xz II < e. Therefore by (3.2)

Since B is a B*-algebra, it follows from Corollary 3.5 in [16] and the proof of
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[12, page 259, Theorem 4] that {| Z- = t /„, |: at, e V} is bounded. Since I Jaxz)
is summable in • || and e is arbitrary, by (4.1) I a / , x is summable in || • ||.
Since x = E J^-x in | • |, by (3.1) we have x = Z <,LX in | • | j . This completes
the proof.

REMARK 1. Theorem 4.1 is a generalization of [11, page 60, Theorem 8.2],
Some arguments in the proof of Theorem 4.1 are similar to those in the proof
of [8, page 30, Theorem 16].

REMARK 2. If B is not a B*-algebra, then Theorem 4.1 is not true. In fact,
let G be an infinite compact group with the Haar measure and let A be the algebra
of all continuous functions on G, normed by the maximum of the absolute
value. It is well known that A is a dual /l*-algebra which is a dense two-sided
ideal of L2(G). The mapping p:R -* /(/?)* is a complementor on L2(G), but the
mapping q:/-»lA(I)* is not a complementor on A (see [15] and [16]).

REMARK 3. If A is not an ideal of B, then Theorem 4.1 is not true. In fact,
let A = L^G) and B the completion of A in an auxiliary norm. Then the mapping
q:I -> lA(I)* is not a complementor on A, but the mapping p: R -» 1(R)* is a
complementor on B (see [16]).

We establish a converse to Theorem 4.1. Although [11, page 63, Theorem
8.8] is a result in this direction, its condition is very restricted. We shall show
that a similar result holds for a much larger class of algebras.

In the rest of this section, A will be a semi-simple annihilator Banach algebra
such that x e dA(xA) for all x e A which is a dense subalgebra of a B*-algebra B.
Suppose there exists a constant K such that ĴT J| JSC jj ^ |.x| for all x in A. Then
B is a dual algebra and A and B have the same socle S (see Lemma 5.1 in [15]).
Let {/,: X e A} be the family of all minimal closed two-sided ideals of A. Then
A is the topological direct sum of {Ix: XeA}. For each XeA, let Bx = c\{Ix).
Since B is a dual B*-algebra, B = ( I ; 5 J 0 , the B*(oo)-sum of {Bx:XeA}.
Let Lx be a minimal left ideal of /,,. Since A and B have the same socle, Lx is also
a minimal left ideal of Bx. As shown in the proof of Theorem 3.5, Lx is a Hilbert
space and Bx can be considered as the algebra of all completely continuous linear
operators on Lx. Also | • and | • | are equivalent on Lx, i.e., there exists a con-
stant Mx > 0 such that

(4.2) Mx\\x\\^\x\^K\\x\\ (xeLx,XeA).

Put

(4.3) M = inf{Mx:AeA}.

Of course, M may be zero. We give some examples for which JV is not zero.
Clearly if A is finite, then M # 0. Another example is the algebra A = (Zj
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given in [11, page 64]. By [9, page 261, Lemma (4.10.1)], there exists a hermitian
minimal idempotent ex in A such that Lx = Aex. Then for all x in
I x || = I xex I 5S | x | I ex ||. Since
(see [9, page 289]). Therefore || x

is a cross norm on tc(Hx),\ex\ = | ex | = 1
^ | x | for all x in LX(A e A). Hence M = 1.

THEOREM 4.2. Lef A be a semi-simple annihilator Banach algebra with
a complementer q which is a dense subalgebra of a B*-algebra B. Suppose
| • I majorizes \ • | on A and the constant M in (4.3) is not zero. Then the mapping

p: R -> cl((R O A)q on the closed right ideals R of B is a complementor on B.

PROOF. By [1,page39, Lemma 3], xeclA(xA) for all x in A. Let {/a:aeV}
be a maximal orthogonal family of ^-projections in A. In order that p be a com-
plementor on B, it is sufficient to show that y = E afay in | • | for all y in B by
Lemma 2.2 and Theorem 3.2 in [16]. Since M > 0, by (4.2) we have

(4.4) M | x

Let Vo be a finite subset of V and write Vo = Vj u ••• U Vn, where {/„: a e VJ <=• IXl

(A,e V, i = l , - - , n ) . Let veB and xeL X ( . Then yx e L ,̂ <= IXi <= / I . Since q is
a complementor on A, by Theorem 3.2 in [16], a = L a/aa in | - j for all a
in A and so by Corollary 3.5 in [16], there exists a constant D such that
|| I ae Al/,a I ^ D I a I. Therefore by (4.4) we have

fayx ^ K\\ | yx || ^

where N = KDM~l. Since 1 , , ^ / j e B i , , we have

a ey <
=sup

a eyf

:x€LX(and

Since B is a B*-algebra, by [9, page 258, Lemma (4.9.21)]

= max

Since Vo is an arbitrary finite subset of V, it follows from the proof of Theorem 5.2
in [15] that Z afay is summable in | • |. Now by the proof of Theorem 3.2 in
[16], y = £ afay in | • | and this completes the proof.

REMARK. Theorem 4.2 is a generalization of [11, page 63, Theorem 8.8].
We omit the proof of this implication, because this is not that important.
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