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A HARDY-DAVIES-PETERSEN INEQUALITY FOR
A CLASS OF MATRICES

P. D. JOHNSON, JR. AND R. N. MOHAPATRA

1. Let w be the set of all real sequences « = {a,},zo. Unless otherwise indi-
cated operations on sequences will be coordinatewise. If any component of a
has the entry « the corresponding component of «~! has entry zero. The
convolution of two sequences s and ¢ is given by s ¥ ¢ = {> k= $r ¢u—sr}. The
Toeplitz martix associated with sequence s is the lower triangular matrix
Ty = {tytwr=o defined by ty = s,mp (2 k), by = 0 (n < k). It can be seen
that 7,(g) = s* ¢ for each sequence ¢ and that 7' is invertible if and only if
so # 0. We shall denote a diagonal matrix with diagonal sequence s by D..

Let /, and ¢, be sequence spaces with their usual significance. || ||, would
denote the [, norm 1 < p < . If a sequence u ¢ [, we shall take ||u||, = .
If some of the entries of # are 4200 we shall also take ||u«||, = c0. Throughout
K will be a positive constant.

IFor any matrix B = (b,;) (n, R =0, 1, ...) and two sequences u and v
of real numbers we shall call an inequality of the form

(1) [Bull, = Klfoul],

and HPD inequality (see [5, § 0] for nomenclature).

A non-negative sequence s which satisfies s, < K s,, (m = n) will be called
an essentially non-increasing sequence with K (e.n.i. with K for brevity). It
should be noted that a non-negative sequence is e.n.i. if and only if it is
equivalent to a non-increasing, non-negative sequence.

Unless otherwise mentioned 4 = («,,;) will be a lower triangular matrix with
non-negative entries and positive entries on the main diagonal. If for some K
all the columns of 4 starting from the main diagonal and scanning downward
are e.n.i. with X then 4 will be called admissible with K. As in [5], if [ is a
positive sequence we shall cail the pair (4, f) an MDP matrix with K if and
only if D;4 is an admissible matrix with constant K.

2. Introduction. Davies and Petersen [2, Theorem 2], generalized Hardy's
inequality [3, pp. 239-242] which can be put in the following form (sece |5,
Theorem 5.5]):

THEOREM A ([5, Theorem 5.5; 2, Theorem 2]). Suppose 1 < p < 0 and
(4, f) is an MDP matrix with K. Then for any non-negative sequence i

@) [A(Tetd )], = p KPflull,
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where d 1s the diagonal sequence of A and b, = Y 3y fi7?. (If f71 & I, then b7}
15 the zero sequence).

As a supplement to Theorem A the following theorem was established:

THEOREM B (5, Theorem 5.8]. Suppose A is admissible with K, b is the se-
quence of 1y norms of the columns of A and 1 < p < 00. Then for any non-
negative sequence 1t

B) MA@, = p K27 ull,.
The following result is central to the concerns of this paper.

THEOREM 1. Suppose s is positive e.n.i. with K and the infinite matrix A 1is
given by A = D1’ where « is a positive sequence, D is a diagonal matrix and 1°
is « Toeplitz matrix. Then for 1 < p < 0, and any non-negative sequence 1,

) Al = p K2 fael |,

where ¢ 1s the sequence defined by

@

[ee]
4 — - A ?
(')) Cxp = Z Sn—rly = Z Snlnyr -
n=>k n=0
Remarks. The entries of ¢ are allowed to be co. Also ¢ depends on p as well
as on a and s.

In § 3 we shall prove Theorem 1. In § 4 and § 5 we shall compare Theorem 1
with similar HPD inequalities which are obtained by setting 4 = D,7 in
Theorem A and Theorem B respectively. In § 6 we shall apply Theorem 1 to
generalized Norlund matrix introduced by Borwein (1). In § 7 we construct
two sequence spaces and with the help of Theorem 1 we shall show that both
the sequence spaces contain /, as a linear subspace.

3. We shall need the following lemma for the proof of Theorem 1.

LemMa 1 (2, Lemma?2]. If 1 < p < © and 2, 1, . . ., 2, ure non-negative reul
numbers, then

n P n k p—1
(6) (Z‘o zk) <p Z:o zk(Z;Ozm) :

Since the proof of Theorem 1 uses ideas similar to that used by Davies and
Petersen (2, Theorem 2], we briefly sketch the proof for the sake of complete-
ness.

Proof of Theorem 1. By Lemma 1 and the definition of the matrix 4 = D,T
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we have for any natural number N,

N n 4
4 . -1 p-1
Z Ay Z Sn—kCr Qg Ug

n=0 k=0
N n K p—1
» . -1 p—1 -1 p-1
=9 Z ay, Z Su—rCr (U Uy Z Sn—mCm U Uy
n=>0 k=0 m=0

N

n
p—1 4 -1 p-1
= pK Z Uy ;:o Sn—iCr Uy, uk(

n=0

k p—1
. -1 p-1
Sk—mCm  Un U

0

m=

N k p—1 N
— p—1 . -1 p-1 -1 p-1 . »
- PK Z Z Sk—mCm Uy Um [ ”k Z Sn—xn
n==k

k=0 m=0
N n p—1
—1 —1 —1
S PK"P YD Naw o seme @l ) i
n=0 k=0

Now taking p’ to be such that p~! 4+ p’~' = 1 and using Hoélder’s inequality
and dividing both sides of the resulting inequality by

N n L L 2\ 1/p'
) (Z (a,, D Selr @ ltk) ) .
k=0

n=0
‘we obtain
N n 2\ 1/p N 1/p
—1 —1 —1
(8) Dol 2D swoxerwl < pK"N Y W) .
n=0 k=0 n=0

It must be pointed out that the division by (7) in above requires that N be
sufficiently large so that ¢,'u;, > 0 for some k¥ < n = N. If ¢,~'u;, = 0 for all
k, the inequality to be proven is trivial.

Now on letting N — o0 in (8) we obtain the required result.

CoROLLARY 2.3. If 0 < ¢, < oo for all k, then
©) (4w, = p K*7Y|caPull, (1 <p <o)
for any non-negative sequence 1.

Proof. Replace # in the theorem by ca'=u.

4. Setting A = D,T"; in Theorem A we obtain the following corollary.

COROLLARY 1. If s is e.n.d. with K, « is positive, 4 = D15, and 1 < p < 0,
then for any non-negative sequence i,

(10) (|4 (@~ w)ll, = p K?sof|ull,,
with

00
by = 2, al.
k=n
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We observe that if s is e.n.i. with K then
w0 [ee)
= 2, Sutayi’ S Kso 2, a,f = Kbso
n=0 n==k

and consequently sup,(c,/b,) < 0. Thus Theorem 1 implies Corollary 1. To
show that Theorem 1 is in fact an improvement over Corollary 1 we furnish
the following example where sup,(c,/b,) < © but sup,(b,/c,) is not finite.

Example 1. Let « be any positive sequence such that ¢ € [ \U,>o¢/, and s

be any decreasing positive sequence in /;. Then b~!is the zero sequence. Hence
sup,(¢,/b,) < o although sup,(b,/c,) is not finite.
5.Setting the matrix 4 = D,1";in Theorem B we have the following corollary.
COROLLARY 2. If «, s are positive sequences such that
USneie £ K Sy (B = m = n),
1 < p < w0, und the matrix A = D1, then for non-negative 1,
(1) [A@ ), = p K7 (ull,,

where

(12) bk - Z AnSp—r-
n==k

Even though the hypothesis of Corollary 2 is different from that of Theorem
1 it is interesting to know how the inequality (4) compares with the inequality
(11) for sequences « and s which satisfy the hypotheses of both Corollary 2
and Theorem 1.

The following example illustrates that for some choices of ¢« and s, inequality
(4) is better than that of (11).

Example 2. Les s, = 1 for all w and ¢, = (n + 1)~% Then

while

p—1 -1 _  p-—1 {( = . ﬂ)——ll.
" c T =a Z Sp—in j
n=~k k

isnotso for1 < p < .

Remark 1. 1t is possible to construct sequences ¢ and s such that 0! is not
the zero sequence but still sup, (b,~/¢,~'¢,»~') < o although

sup, (¢, a1 /0,71)

is not finite.
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Remark 2. When s = ¢, the sequence whose every entry is 1, the inequality
(4) and inequality (10) are identical. Hence Example 2 shows that inequality
(10) can be an improvement over (11) for matrices I = D, 7', satisfying the
hypotheses required for the validity of (10) and (11).

Our next example would show that for some choices of « and s satisfying the
hypotheses of Theorem 1 and Corollary 2 the inequality (11) can be better
than (4).

Example 3. Let s, = 7 (0 <r < 1) and «, = r"(n + 1)~ (@ > 1). Then
{r'a,} is decreasing and Y r"«, < 00 which implies that the sequence ) as
defined in (12) is such that 0=' has no zero entries while ¢=' = {0} for each
p > 1. Thus sup, (¢, '«,’~1/b,~1) < o while sup,(b,”'/¢,”'¢,”~') is not finite.

Remark 3. In view of Examples 2 and 3 we observe that there exist sequences
« and s satisfying the requirements of Theorem 1 and Corollary 2 for which
one of Theorem 1 or Corollary 2 gives an inequality better than the other.
This leads us to the following.

CoNjrcTURE, There exist sequences « and s satisfying the requirements of
Theorem 1 and Corollury 2 for which the inequalities (4) and (11) are incom-
parable in the sense that neither sup, («,” ¢, /0,~") < o0 nor

sup, (b,7Y/a,"71e,7t) < 0
for all p > 1.

6. For sequences s and ¢, Borwein [1] defined the generalized Norlund method
(N, s, q) with the help of the matrix N = (n,) given by n, = S,0qi/7n
(k < n) and 7, =0 (k> n) where 7, = (s*q),. Clearly the matrix N =
D,-1 7D, Inwhat follows we shall assume s and ¢ to be positive sequences.

If in Theorem 1 and Corollary 1 we take the matrix N in place of 1 we
obtain the following corollaries.

COROLLARY 3. If s 15 e.n.t. with constunt K, 1 < p < 0, then
(13) [[N(c'r=rg= )], = p K'Y |ull,

for non-negative u, with

e

. -p
Cr = Sn—t¥n -

YZ:dk
COROLLARY 4. If s 15 e.n.1. with constant K, 1 < p < o0, then

(14) [INQO=ri=Pg )], = p KPsof|ul],,

with
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Since the inequalities (13) and (14) hold with 7, s, ¢ being any positive
sequences not necessarily related by » = s * ¢, we observe that, in view of
Example 1 with the sequence « replaced by 7!, inequality (13) is an improve-
ment over (14) when 7, s, ¢ are not related. A natural question which arises
at this stage is the following:

Is (13) an improvement over (14) even for the more restricted class of
(N, s, g) matrices?

To show that the answer is in the affirmative we are required to provide
examples of sequences b and ¢ such that sup,(c,/b,) < oo while sup,(b,/c,) is
not finite under the requirement that ¢ = 7°;"'(r) be a positive sequence. We
shall need the following result.

LeEmMMmA 2. If 7, s are positive sequences, v is non-decreasing, and s is non-
increasing, then 1= (r) 1s non-negative. If either r or s is strictly monotone, then
1°=1(r) is positive.

Proof. Let g = 1T'~1(r). Clearly gy = ros¢~* > 0. Assuming that go, . . ., Gt
= 0, we have

G = S0 (7 = (gu151 + - .. + qosi))
g 50_1(7’71 - (Qn—ISO + LR + 90571—1))
= SO_I (1’,, - 771—1) g 0
If either  or s is strictly monotone, we assume inductively that qgo, . . ., g1
> 0, and then either the first or the second inequality in the preceding argu-

ment is strict.
This completes the proof.

The following example answers the question raised.

Example 4. Set s, = r,”! = (n + 1)~ for all n = 0. Clearly s is decreasing.
Forl1 < p<ow,b, =25, rn"=0((n+1)"").ByLemma?2, g= 1,"r)
is a positive sequence. Choose any m > 1. Then for 1/m + 1/m’ = 1 we have

o @ \ 1/m’
(15) /by = O((n + 1! Z; skr,”k_”) = O((n + 1)""(2 k—'"’)
k=0

k=1

< (5 #)™") = ot + v,

k=n+1

Thus b='/c' € ¢, while sup,(c,/b,) is not finite.

7. We shall apply Theorem 1 to two sequence spaces which we construct in
this section.

7.1. Let us write

Nu) =

Uy
(n-l-"); — k41
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Let H, = {u € «|N(lu|) € 1,}. Since in [4] it is shown that for any lower
triangular matrix 4, finite sequence u, A (|u|) € [, if and only if the columns of
the matrix lie in /,, we observe that the sequence space H, is non-trivial for
1 < p < 0. One can norm the sequence space H, by specifying

(16)  [[ullw, = (i (log WD) 2 > " _‘1;;'+ 1),,)1/,, (1<p<®)

=0 =0

Since

@ 1 2k @
§ (n —k + D(log (n + 2)) ~ (2 +2§1)

1
(n —k 4+ 1)(log (n + 2))”

sequence ¢ of Corollary 3 is of order Of{ (log(k + 2))=7*!}, (1 < p < ). On
taking ¢, = 1 for all k in Corollary 3, we obtain the inequality

X = O((log (k +2))7"*),

[es) k.——-‘—‘]; - n ‘“L{Ek;}—~__ »
X (log n ) & (n—k+1)) P Il (<p<m),

n=0

where C(p) is a constant depending only on p.

In view of the inequality (17), and (16), we can conclude that H, contains
[, (1 < p < ) asa linear subspace and the injection is continuous. Questions
with regard to continuity of coordinate linear functionals on H,, its complete-
ness and separability etc. can be investigated along the lines of [4] with
appropriate modifications.

7.2. Let

o, () = ———Z o Tl (@> —1)

where 4,2 is defined by the identity,

E:j = (1 —x)"" (x| <1).

Let cese, = {1 € wla(|u]) € 1,}. It is easy to show for 1 < p < 00, ces,., is
non-trivial and can be normed by prescribing for each « € ces, ,,

© 1 n . 7\ 1l/p
it || cesa,n = (z(:) (A - ; Any luk) ) (1< p<w).

n=|

By taking ¢, = 1, s, = 4, !in Corollary 3 we conclude that for 0 < o < 1
and a constant B(p, a) depending upon p and «,

@ 1 n o y4d @
as) 2 (Anakglo A ‘lukl) s Bp) 2 |l

n=0

https://doi.org/10.4153/CJM-1978-040-9 Published online by Cambridge University Press


file:///p/Hp
https://doi.org/10.4153/CJM-1978-040-9

A MATRIX INEQUALITY 465

),, Z A (f1 ! —x)“dx)"

f (1 — )" Ydx

ap Z R f A — )
n=0 0
ap/(a(p — 1)A4,5777).

In view of (18), ces,, (0 <a =1, 1 < p <o0) contains [, as a linear
subspace. Apart from the constant, the case @« = 1 of our inequality is essen-
tially Hardy's inequality and the sequence space ces;, is the well-known
ces, (see [6]). P’roperties of the sequence space ces,, will be investigated

elsewhere.

since

Cp, =

[\/]8 ﬁl\/je

IA
|;|

i
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Added in proof. M. Izumi, S. Izumi and 5. M. Petersen (Tohoku Math. J.,
21 (1969), p. 611) have obtained the following inequality:

(19) i (l—o—g—(—;jr—ﬁ Z (n—k+ 1)_1|uk|)

n=1 k=1

= A(p) Z (0,/7" /log (n 4+ 1)) (p > 1)

I't can be seen that our inequality (17) is sharper than (19). Also we would like
to remark that our inequality (18) is contained in (. H. Hardy, A#n inequality
for Hausdor(f means, J. London Math. Soc. (1943), p. 49 where the best possible
constant is also given.
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