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Several articles in this Journal have discussed this question without settling it. The
results of Williams and Phythian1 can differ from those of Lambert2 (as given by
Hiraiwa3) by 2 km. None of the articles mentioned the formulas given by Sodano,4

Rainsford,5 and Vincenty.6 The latter two claim accuracy to about a millimetre over
distances of 19000+ km. Take one example from Hiraiwa: two points, both at 6o°
geodetic latitude, are separated by ioo° of longitude. Hiraiwa uses Lambert's formula
to get a distance on the Bessel spheroid of 2709-27 geographical miles; Williams and
Phythian say 270812. Lambert's alternative formula, using reduced latitudes, gives
2709-2861. Sodano's standard formula gives 2709-28626; his higher-precision formula
and Rainsford's and Vincenty's formulas all give 2709-2863^6.

The special case of equator-to-equator arcs (discussed by Williams and Phythian7)
greatly simplifies Rainsford's and Vincenty's formulas for the quantity (A — L), enabling
us quickly to find the half-period of a geodesic with any given vertex latitude. Any of
the formulas will then calculate the length of the equator-to-vertex arc, which we then
double. It turns out that the geodesic (on the Bessel spheroid) with vertex at 4j°
geocentric latitude measures 10772-96 geographical miles and 1790 34-^26' of longitude
between each crossing of the equator.
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The Adventures of Leonard

J. B. Parker

This article, though light-hearted, has a serious purpose, which is to attempt to act as an
aperitif to the many distinguished articles about the Kalman filter, some of which are referred
to in the text. Such articles have appeared both in the Journal and in Navigation News.
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Leonard, a leviathan, is a creature whose physiognomy is extremely well adapted to his
needs and purposes. The latter include the ability to travel, possibly at enormous speeds,
through different types of environment with a view to arriving, often with incredibly high
precision and timing, at a preordained destination, doing his job there, and then,
hopefully, being able to navigate back to his wife and family at base. Leonard is a very
conscientious and painstaking creature, although, because his anatomy is so sophisticated,
he may have very little actual decision-making to carry out on his travels.

Leonard, like every other creature, requires food. There is plenty of it around
(plankton), though the cells are small in relation to Leonard's enormous size. So all the
time he swims with his mouth wide open, letting the plankton (which might come in
a number of different shapes and sizes) just drift in. On the whole, his digestive system
copes admirably. In particular, once digested, the remains of the food need no longer
be stored in Leonard's belly, vast though this is.

Equipped with such a powerful physiognomy and with a chassis as tough as old boots,
what has Leonard to fear? Quite a lot, as he is the first to recognize. The structure of
his digestive system depends on very careful and diligent experimentation1 to determine
what are known as his ' variance—covariance' coefficients, a procedure known as
' modelling', and because these have to be determined pretty accurately it is just as well
that Leonard is always given a thorough-going medical before he sets off. The possible
dangers of this procedure are well known to Leonard; he sometimes modifies the
original ' expert' modelling parameters in the light of his own onboard operational
experience2. Leonard is a very intelligent, self-adaptive, leviathan.

For what is the food used? In Leonard's Dad's days, when there was very little of it
around, the answer was simple: determination of position. Nowadays this is not
generally sufficient, for it may be vital to determine much more information — for
example, on velocity and trim. Here, it is relevant to tell a sad story of Leonard's youth.
Frightfully keen, he was able to reach his target with a radial error quite insignificant
when viewed against his enormous dimensions. His ETA was out by only 6 milliseconds
(r2 standard deviations). Alas, when he got to his destination, he was upside down. The
chaps back at base pulled his fin unmercifully but his seniors took a very dim view,
expressing doubts as to whether Leonard had the right attitude for this sort of work.
There followed a short period of hospitalization, during which two or three more rows
and columns (yaw, pitch, roll) were added to his then fairly modest anatomy. Since then,
Leonard has always been the right way up. All this information is embodied in what
Leonard calls his ' state vector '3 and the whole purpose of the intake of plankton (new
information) is to enable him to estimate it, his anatomy consisting of a set of interlocked
linear equations1 connecting the food to the state vector.

In ideal circumstances, all this works swimmingly but the real world may cause
problems. On one mission, for example, Leonard got embroiled with Lolita, a nubile,
albeit enormous, leviathaness and his resulting non-linear behaviour played havoc with
his digestive system. During this encounter, which he survived without losing either his
honour or his sense of purpose, both whales of course continued to have their mouths
wide open, accumulating the necessary plankton. Similar troubles beset Leonard when
he had to take evasive action in order to avoid the attentions of a group of harpoonists.
But, in situations like this, Leonard is able to do a very clever thing. Though his anatomy
is optimum in the sense that the best possible balance between past experience and
current data is struck, he might intervene, using his tuning fork3 to give less weight to
past experience (obtained during a tricky epoch) and more to knowledge based on later
data when the period of hassle is over. Conversely, if he suspects his recent data, the
plankton not being to his taste, he may do the reverse.
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Indeed, the integrity of the plankton is often a matter of concern to Leonard. One
thing that may happen is that the great majority of the food approaches him from more
or less the same direction. Leonard's digestive system does not like this and the poor
creature goes ' out of condition' as a result. Dad had similar problems in the old days,
when the only two position lines he could get intersected at an unsatisfactorily narrow
angle. But palliatives are at hand, for Leonard has learned a bit about Ridge Regression4.
Another serious problem is that some of the plankton may be gritty, if not grotty; a good
leviathan would not want any truck with this sort of food. So the incoming amoebae are
put through a sort of sifting process, called variously ' screening', ' smoothing', or even
'data adjustment'. Also, he may just decide to ignore suspicious food. But Leonard,
though completely confident about the validity of such procedures, is very shy and
extremely reluctant to talk about them.

The thought occurs to some of Leonard's friends that, however careful the modelling
carried out for a particular whale (or else for a subset of whales) may be, the results may
not necessarily be valid for the population of leviathans at large.5 Thus Lolita, for one,
is equipped with several non-linear facilities that our honest, if strait-laced, Leonard
would be much too bashful to recognize. Dad had a similar problem at his navigation
school during World War II, finding it was no good just swinging the compass on one
or two aircraft and calling it a day; each one had to be dealt with individually.

Leonard's son is rather an awkward brat with a tendency to challenge some of Dad's
views. Perhaps with his tongue in his cheek, Ludovic even goes so far as to snipe at what
he calls 'Dad's sacred cows', citing not only the difficulties of the modelling concept
but also Dad's preoccupation with optimum procedures, on the grounds that the real
world is far from being an optimal world. In his wilder moments he even queries the
sanctity of the least squares principle. If Ludovic gets his PhD, he is thinking about
setting pen to paper about all this. Leonard is aghast but puts it all down to growing
pains. His wife, Leonora, is pig in the middle, but has strong views about the need to
make the operational application of her husband's ideas, as opposed to a mere description
of them, available to her many friends.

Finally, a sad story about Leonard's cousin Lothario, now in the doghouse after a
disgraceful incident involving Lolita. Lacking his relative's moral rectitude, Lothario's
contact with Lolita caused an enormous tidal wave (Lolita weights seven and a half tons)
resulting in environmental damage running to millions of pounds. Lothario's mission was
abortive and a very tired, shame-faced leviathan only just managed to make it back to
base. But every cloud has a silver lining and Lothario's mentors, some of whom are
Operational Research specialists, accumulated some valuable, and much needed, system
failure data.

Leonard, however, was not amused.
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An Interesting Problem in Spherical Trigonometry

Olay Oztan, Ufuk Ozerman and Zafer Kizilsu

(Istanbul Technical University, Maslak, Istanbul, Turkey)
This paper provides an example of the versatility of mathematics and how it can be applied

to the formulation of navigation methods which are more elegant and efficient than those
traditionally used. For example, there is little use currently made of the calculus or the
techniques of differential geometry. A difficulty in applying general mathematical methods is
the inconsistency of navigation coordinate systems, which could usefully be changed so that
longitude and GHA, for instance, could be measured eastwards in the range o°— 3600.

The problem considered below is of little importance in itself, either in terms of
mathematics or navigation, but it illustrates how alternatives to traditional approaches to
navigational requirements can lead to more attractive solutions. This particular problem has
been inspired by the book Theory and Problems of Differential and Integral Calculus in SI Units.1

1. PROBLEM. A ship at the point P, {xjri = \jr north, A, = A) is starting to move from
north to south on the meridian A with a constant velocity v/cos^f. At the same moment
another ship at point P2 {rjf2 = i/r north, A2 = A + i/r) is starting to move from east to west
on parallel of latitude ijr with constant velocity v. What is the minimum distance
between these ships? (In order to make the problem significant, the angular velocities
of the ships have been selected to be equal. Here A2 > A, and o° ^ \[r < 900.)

2. S O L U T I O N . The angular velocity of the ships is,

v.p
(0 = — . (1)

R c o s ^ V '

At a time t, the longitude difference AX between the coordinates of points P\(\jr — <j)t, A)
and P'2(i/r,A + iJr-tot) is

A\ = i]f—u>t, (2)

(Figure 1). If we use the edge cosine theorem for the triangle NP[ P'2, it can be written
as follows2: ,

cosS = sin(\/-wt).sin^ + cos (i/r — o)t).cosyr. (3)

The minimum value of S is obtained by setting, the derivative of equation (3), equal
to zero. Thus from (3), we get equation (4)

cos(ijr —<i>t).[l. cos ijr. sin (i/r—(ot) —sin ifr] = 0. (4)

If the first multiplier cos (^—tot) of the equation is set equal to zero then, from
equation (3) we obtain, Smln = 9 0 ° - ^ . (s)

In that case a minimum of equation (3) arises when the ship is at the North Pole.
Another minimum of equation (3) is obtained when the second multiplier of equation
(4) is set equal to zero. Thus we obtain,

sin(^r—u)i) = jtan^r. (6)
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