
Statistical Challenges in 21st Century Cosmology
Proceedings IAU Symposium No. 306, 2014
A. F. Heavens, J.-L. Starck & A. Krone-Martins, eds.

c© International Astronomical Union 2015
doi:10.1017/S1743921314011016

The potential of likelihood-free inference
of cosmological parameters with

weak lensing data

Michael Vespe
Department of Statistics, Carnegie Mellon University,

Baker Hall 132, Pittsburgh, PA 15232
email: mvespe@andrew.cmu.edu

Abstract. In the statistical framework of likelihood-free inference, the posterior distribution
of model parameters is explored via simulation rather than direct evaluation of the likelihood
function, permitting inference in situations where this function is analytically intractable. We
consider the problem of estimating cosmological parameters using measurements of the weak
gravitational lensing of galaxies; specifically, we propose the use a likelihood-free approach to
investigate the posterior distribution of some parameters in the ΛCDM model upon observing a
large number of sheared galaxies. The choice of summary statistic used when comparing observed
data and simulated data in the likelihood-free inference framework is critical, so we work toward
a principled method of choosing the summary statistic, aiming for dimension reduction while
seeking a statistic that is as close as possible to being sufficient for the parameters of interest.

1. Introduction
Weak gravitational lensing, also known as cosmic shear, is the distortionary effect on

images of distant galaxies by matter in between the galaxy and the observer. The en-
semble behavior of this distortionary effect, which would render a circular object slightly
elliptical, can yield insight into the distribution of dark matter and permit constraint of
the parameters in a cosmological model. However, galaxies are not intrinsically circular;
in fact, the signal from cosmic shear is very faint compared to the intrinsic variability in
the ellipticity of galaxies. Thus, a large number of galaxies must be observed in order to
isolate the shear signal.

Once the galaxies are observed and catalogued, weak lensing analyses traditionally
proceed by summarizing these galaxies via some summary statistic, often referred to
as an observable or a data vector. Common examples of observables include, among
others, estimates of the two-point correlation functions ξ± or power spectrum modes C�

(as in, e.g., Lin et al. 2012), among others. Then, the summary statistic is assumed to
have a multivariate Gaussian distribution, so that the likelihood of a set of values θ̃ for
cosmological parameters is given by

L(θ̃; d̂) =
1√

(2π)p |C|
exp

(
(d̂ − d(θ̃))T C−1(d̂ − d(θ̃))

)
(1.1)

where d̂ is the observable estimated from data, d(θ̃) is the theoretical value of the ob-
servable given parameters θ̃, and C is the covariance matrix of the observable, often
estimated via some simulation approach. This likelihood can be evaluated either as part
of a frequentist maximum likelihood analysis or, in a Bayesian framework, as one step
toward deriving a posterior distribution for cosmological parameter values.
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The quality of any inferences resulting from this procedure hinges on several factors:
the ability of the chosen summary statistic to capture the information in the raw data
relevant to the parameters; the accuracy of the estimated covariance matrix; and the
validity of the assumption that the observable has a multivariate Gaussian distribution.
This last assumption is not equivalent to assuming that the parameters have a Gaussian
distribution, but it does impose some indirect constraints on their distribution.

These concerns motivate our desire to explore likelihood-free inference methods, which
were introduced in contexts where methods exist for simulating data given parameter
values, but evaluation of a likelihood is analytically or computationally intractable.

2. Methodology
Approximate Bayesian computation. We focus on approximate Bayesian computation

(ABC), a particular likelihood-free inference method, introduced by Pritchard et al.
(1999) in the biology literature. For full details, as well as generalizations and improve-
ments, we refer to that paper as well as Blum et al. (2012) and Beaumont et al. (2009).
Thus far, ABC has found limited use in astronomy settings, as in Cameron and Pettitt
(2012) and Weyant et al. (2013).

The algorithm aims to generate a sample from a desired posterior distribution π(θ|x)
given observed data x; in the weak lensing setting, we aim to sample from the posterior
distribution of the cosmological parameters of interest given a catalogue of galaxies with
position and shear.

In its simplest form, it proceeds via the repeated execution of three steps. Step one is to
generate candidate parameter values θ̃ from a prior distribution. Step two is to simulate
a realization x̃ of the data set using θ̃ as input parameters. Step three is to compare the
simulated data x̃ to x and retain θ̃ if and only if x̃ and x match. Formally, we retain θ̃
if and only if ρ(S(x̃), S(x)) � ε, for some distance metric ρ, summary statistic S, and
tolerance threshold ε.

The resulting retained parameter values constitute a sample from an approximation
πε(θ|x) to the posterior π(θ|x). It can be shown that if S is a sufficient statistic for θ,
then πε(θ|x) → π(θ|x) as ε → 0. Any ABC analysis will be sensitive to the choice of ε, ρ,
and S. As in the traditional analysis framework, it is desirable to choose the summary
statistic S so that it captures the information from x relevant for inference on θ while
discarding any useless information. Due to the manner in which ABC algorithms rely
on accepting/rejecting simulated parameter values, there is a particular need to reduce
the dimensionality of the summary statistic to the greatest extent possible, lest the
simulations be burdened by the inefficiency of repeatedly rejecting parameter candidates.

Exponential family approximation. Our proposed approach to approximating sufficient
statistics of low-dimension is built upon the following idea. Suppose summary statistics
s are available that are sufficient for θ but may be high-dimensional and thus contain
some redundant information. For j = 1, 2, . . . , J, we seek a mapping of θ, denoted
ηj (θ), along with a mapping of s, denoted Tj (s), such that E(ηj (θ)|s) = Tj (s). These can
be thought of as compressed versions of the summary statistics E(θ|s) that have been
shown (Fearnhead and Prangle 2012) to be optimal under a reasonable choice for the
loss function.

We refer to this approach as an exponential family approximation. The standard ex-
ponential family form for the distribution of s given parameter θ is

f(s|θ) = h(s) exp

⎛
⎝

J∑
j=1

ηj (θ)Tj (s) − A(θ)

⎞
⎠
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If θ is modeled as a random variable drawn from prior distribution π, the joint distribution
of (s, θ) is given by

f(s, θ) = h(s) exp

⎛
⎝

J∑
j=1

ηj (θ)Tj (s) − A(θ)

⎞
⎠ π(θ)

or, equivalently,

f(s, θ) = exp

⎛
⎝

J∑
j=1

ηj (θ)Tj (s) − A∗(θ) − h∗(s)

⎞
⎠

with h∗(s) = −ln(h(s)) and A∗(θ) = A(θ)− ln(π(θ)). It is assumed that one can simulate
pairs (si , θi) for i = 1, 2, . . . , n. This will be accomplished by drawing θ from a prior
distribution π, simulating x conditional on θ, and then computing the available s(x).
Then, the joint log-likelihood for this synthetic “data set” is given by

f(s, θ) =
n∑

i=1

⎡
⎣

J∑
j=1

ηj (θ)Tj (s) − A∗(θ) − h∗(s)

⎤
⎦ (2.1)

Heuristically, we will seek to maximize this joint log-likelihood over the space of mappings
ηj and Tj . The resulting mapping Tj (s) for j = 1, . . . , J would be an approximately
sufficient statistic of dimension J, where J is chosen intentionally to be closer to the
dimension of the intrinsic parameter space Θ than to that of S, the domain of s.

3. Example application
We present an application of this method in a simple, stylized cosmic shear analysis,

simulating data from known inputs. Specifically, we generate a random realization of
a shear field using input cosmological parameters ΩM = 0.25, σ8 = 0.8, and all other
inputs (including survey redshift distribution) chosen to replicate those in the simulation
exercises of Lin et al. (2012). In this case, we model cosmic shear as a Gaussian random
field (GRF) on a grid of pixels, although future analyses would incorporate more realistic
models (see Kiessling et al. 2011.) We add i.i.d. shape noise (σint = 0.37) to represent
the effect of intrinsic galaxy ellipiticity.

For our ABC analysis, we sample candidate parameter values (Ω̃M , σ̃8) from a uniform
prior distribution on the rectangle [0.1, 8] × [0.5, 1]. In Fig. 1 we compare samples from
the approximate posterior distributions using two summary statistics: at left, estimates
ξ̂±(θ) of the two-point correlation functions – evaluated in eight logarithmically spaced
bins – and, at right, the first two coordinates of T̂ learned via the exponential family
method. In each case, we take ρ to be standard Euclidean distance and we choose ε so
that 5% (blue) and 10% (green) of the candidate samples are retained for each case.

As ΩM and σ8 are known to be degenerate (these data can only distinguish the value
of Ω0.7

M σ8), we display the degeneracy curve corresponding to the input parameters in
orange. Simple inspection suggests that using T̂ as learned via the exponential family
approximation as the summary statistic is preferable to simply using ξ̂±(θ), because the
samples from the former assemble more tightly around the true degeneracy curve than
those from the latter.

4. Discussion and future directions
The exponential family approximation-derived statistic seems to improve upon the

canonical ξ̂±(θ) statistic, even in the simple case where shear is assumed to follow a GRF
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Figure 1. ABC-derived posterior samples using ξ̂±(θ) (left) and T̂1 , T̂2 (right).

model. This is noteworthy because the true correlation function ξ±(θ) is known to be a
sufficient statistic for the GRF, so the improvement likely stems from the act of reducing
the dimension of the data vector to mitigate the effect of noisy discretized estimates. Put
another way, when the observable consists of noisy, somewhat redundant estimators, it
is preferable to have fewer of those provided that no information is being discarded.

Future work will proceed in both theoretical and applied directions. In the former
direction, we aim to better understand the theoretical properties of the summary statistic
resulting from the exponential family approximation method. In addition, we hope to
assess the method’s feasibility under particular circumstances.

Regarding applications, we intend to apply the method in more sophisticated, realistic
settings. One such setting would be that of tomographic weak lensing analysis, as in
Heymans et al. (2013), wherein the data vector consists of auto- and cross-correlation
functions ξ̂i,j

± within or between various bins in redshift. In this setting, where the dimen-
sion of the data vector is inherently much larger, the motivation for principled dimension
reduction is apparent. We also hope to incorporate more complex simulation models,
such as the SUNGLASS pipeline of Kiessling et al. (2011) to better account for non-
Gaussianity of the true shear field.
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