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CONVEX DUALITY IN CONSTRAINED
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Abstract

We apply conjugate duality to establish the existence of optimal portfolios in an asset-
allocation problem, with the goal of minimizing the variance of the final wealth which
results from trading over a fixed, finite horizon in a continuous-time, complete market,
subject to the constraints that the expected final wealth equal a specified target value and
the portfolio of the investor (defined by the dollar amount invested in each stock) take
values in a given closed, convex set. The asset prices are modelled by Itô processes, for
which the market parameters are random processes adapted to the information filtration
available to the investor. We synthesize a dual optimization problem and establish a set of
optimality relations, similar to the Euler–Lagrange and transversality relations of calculus
of variations, giving necessary and sufficient conditions for the given optimization
problem and its dual to each have a solution, with zero duality gap. We then solve
these relations, to establish the existence of an optimal portfolio.
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1. Introduction

In this work we study an asset-allocation problem the goal of which is to minimize the
variance of the final wealth which results from trading on a fixed, finite horizon in a continuous-
time, complete market with random market parameters, subject to the constraints that the
expected final wealth equal a specified target value and the portfolio of the investor (defined
by the dollar amount in each stock) always take values in a given closed, convex set. This
constraint is general enough to model a prohibition on the short selling of stock, incomplete
markets, limits on the dollar amount allocated to each stock, and other trading restrictions. Our
goal is to establish the existence of an optimal portfolio and then characterize it.

Problems of this kind belong to the general area of mean-variance portfolio selection, and
their financial relevance, as compared with that of the more common problem of maximizing
expected utility, has been discussed by Lim and Zhou [13] and Li et al. [12]. Lim and Zhou [13]
addressed mean-variance portfolio selection with unconstrained portfolios, using the methods
of stochastic linear quadratic control. The follow-up work [12] deals with a similar problem,
but includes a no-short selling constraint; it was postulated that the market coefficients are
nonrandom, and viscosity solutions to the (correspondingly nonrandom) Bellman equation
were used to characterize the constrained optimal portfolio. The problem of interest here
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involves a combination of both random market parameters and general portfolio constraints.
This rules out application of stochastic linear quadratic theory, as in [13] (which relies on
the absence of portfolio constraints), as well as the approach of [12] (for which the market
parameters must be nonrandom).

In light of this, we turn to the use of conjugate duality. The goal is to formulate an associated
‘dual’ optimization problem for which it is (hopefully) easy to establish the existence of a
solution directly, and then to construct an optimal portfolio in terms of the solution to the dual
problem. Our approach is motivated by a recent work of Rogers, [14], in which the central idea
is to regard the dynamical relation satisfied by the wealth and the portfolio as itself defining a
constraint, a point of view which then provides the key for synthesizing a dual optimization
problem. We cannot in fact directly apply the method of [14], since that work does not address
the problem of the existence of optimal portfolios; nevertheless, the fundamental viewpoint of
[14], namely that the wealth equation is a constraint, is essential to us. We shall account for this
constraint in a way which is suggested by a work of Bismut, [2], on stochastic convex control
problems. The basic idea is to remove the portfolio ‘variable’ to obtain a Bolza problem in
(stochastic) calculus of variations which amounts to the minimization of a convex functional
over a set of Itô processes large enough to include all of the possible wealth processes. Bismut [2]
established a powerful duality theory for dealing with such stochastic Bolza problems, and we
shall use it to construct a dual optimization problem together with optimality relations (similar to
the Euler–Lagrange and transversality relations of calculus of variations) which are equivalent
to the primal and dual problems being solvable with zero duality gap. We then use these relations
to establish the existence of an optimal portfolio and the corresponding wealth process.

In Sections 2–4 we introduce the market model and formulate the problem of constrained
mean-variance portfolio selection, and in Sections 5 and 6 we use conjugate duality to construct
the optimal portfolio and wealth process. Finally, in Section 7 we indicate how the approach
to mean-variance minimization that we have used extends easily to problems of utility maxi-
mization.

2. Market model

Throughout the paper, T ∈ (0, ∞) denotes a given constant and {W (t), t ∈ [0, T ]} is a
given R

N -valued standard Brownian motion, with scalar entries Wm(t), m = 1, 2, . . . , N , on
the complete probability space (�, F , P). Let

Ft := σ {W (τ ), τ ∈ [0, t]} ∨ N (P), (2.1)

in which N (P) denotes the collection of all P-null events in (�, F , P). We consider a market
comprising N + 1 assets traded continuously on the interval [0, T ], namely a bond with price
{S0(t)} given by

dS0(t) = r(t)S0(t) dt, 0 ≤ t ≤ T , S0(0) = 1, (2.2)

and N stocks with prices {Sn(t)}, n = 1, 2, . . . , N , given by

dSn(t) = Sn(t)

[
bn(t) dt +

N∑
m=1

σnm(t) dWm(t)

]
, 0 ≤ t ≤ T , (2.3)

the initial values Sn(0) being given strictly positive constants. From now on we shall assume
the following condition.
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Condition 2.1. In (2.2) and (2.3) the interest rate, {r(t)}, the entries {bn(t)} of {b(t)}, the
R

N -valued process of mean rates of return on stocks, and the entries {σnm(t)} of {σ (t)}, the
N ×N matrix-valued volatility process are uniformly bounded and {Ft }-progressively measur-
able scalar processes on �×[0, T ]; furthermore, {r(t)} is nonnegative. There exists a constant
κ ∈ (0, ∞) such that z�σ (ω, t)σ�(ω, t)z ≥ κ‖z‖2 for all (z, ω, t) ∈ R

N × � × [0, T ]. (We
use ‖z‖ to denote the usual Euclidean length of a vector z ∈ R

N .)

Remark 2.1. In view of Condition 2.1 and [8, Problem 5.8.1, p. 372], there exists a constant
κ1 ∈ (0, ∞) such that max{‖σ−1(ω, t)z‖, ‖[σ�]−1(ω, t)z‖} ≤ κ1‖z‖ for all (z, ω, t) ∈ R

N ×
� × [0, T ]. This bound will often be used.

Remark 2.2. Define the usual market price of risk,

θ(t) := σ−1(t)[b(t) − r(t)1],

in which 1 ∈ R
N has all unit entries. From Condition 2.1 and Remark 2.1, we see that {θ(t)}

is uniformly bounded on � × [0, T ].

Given some x0 ∈ R and some {Ft }-progressively measurable process π : �×[0, T ] → R
N

satisfying
∫ T

0 ‖π(t)‖2 dt < ∞ almost surely (a.s.), it follows that there exists a scalar-valued,
continuous, {Ft }-progressively measurable process {Xπ(t), t ∈ [0, T ]} such that

dXπ(t) = {r(t)Xπ(t) + π�(t)σ (t)θ(t)} dt + π�(t)σ (t) dW (t), Xπ(0) = x0. (2.4)

This process is unique (up to indistinguishability) and is given by

Xπ(t) = S0(t)

{
x0 +

∫ t

0
S−1

0 (τ )π�(τ )σ (τ )θ(τ ) dτ +
∫ t

0
S−1

0 (τ )π�(τ )σ (τ ) dW (τ )

}
. (2.5)

From now on we consider a small investor who trades in the market following a self-funded
strategy and has a given initial wealth x0 ∈ (0, ∞). If πn(t), the nth entry of the R

N -valued
vector π(t), is interpreted as the dollar amount invested in the stock with price Sn(t), for
n = 1, 2, . . . , N , then it follows from (2.2), (2.3), and [9, Remark 1.3.3] that Xπ(t) gives the
investor’s wealth at instant t ∈ [0, T ].

3. A class of square-integrable Itô processes

We formulate the optimization problem in this section, but must first define a class of square-
integrable Itô processes which will be essential in all later developments.

We write F ∗ for the {Ft }-progressively measurable σ -algebra on � × [0, T ]. The measure
space (� × [0, T ], F ∗, (P ⊗ λ)), where λ stands for the Lebesgue measure (on the Borel
σ -algebra on [0, T ]), is used extensively, and the qualifier ‘a.e.’ always refers to the measure
(P ⊗ λ) on � × [0, T ]. For example, if π is an R

N -valued, {F ∗}-measurable mapping on
� × [0, T ] and K ⊂ R

N , then π(t) ∈ K a.e. means that π(ω, t) ∈ K for (P ⊗ λ)-almost all
(ω, t). Similarly, the qualifier ‘a.s.’ is always used with reference to the probability measure P
on F . For any mapping ξ on �×[0, T ] with values in some Euclidean space (the dimensionality
of which will be clear from the context) we write ξ ∈ F ∗ to indicate that ξ is {F ∗}-measurable.
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Motivated by [2, p. 386, p. 390], we let

L21 :=
{
v : � × [0, T ] → R such that v ∈ F ∗ and E

[(∫ T

0
|v(t)| dt

)2]
< ∞

}
,

L22 :=
{
ξ : � × [0, T ] → R

N such that ξ ∈ F ∗ and E

[∫ T

0
‖ξ(t)‖2 dt

]
< ∞

}
,

B := R × L21 × L22.

We write X ∈ B to indicate that {(X(t), Ft ), t ∈ [0, T ]} is a continuous semimartingale of the
form

X(t) = X0 +
∫ t

0
Ẋ(τ ) dτ +

∫ t

0
��

X(τ) dW (τ ), (3.1)

for some (X0, Ẋ,�X) ∈ B, and write X ≡ (X0, Ẋ,�X) to indicate that (3.1) holds. In
expansion (3.1) it is clear that the integrands Ẋ and �X are uniquely determined a.e. on � ×
[0, T ]. The set B is essentially the collection of all square-integrable Itô processes with respect
to the Brownian motion {W (t)}. From Doob’s L2-inequality we immediately have

E
[

sup
0≤t≤T

|X(t)|2
]

< ∞ for X ∈ B.

Note from (2.4) that, for any given R
N -valued π ∈ F ∗ for which the stochastic integration

is defined, Xπ is an Itô process with respect to the Brownian motion {W (t)}. The next result
gives conditions on π for membership of Xπ in B. The proof is elementary and is omitted.

Proposition 3.1. Assume that Condition 2.1 is satisfied, and suppose thatπ : �×[0, T ] → R
N

is {F ∗}-measurable and that
∫ T

0 ‖π(t)‖2 dt < ∞ a.s. Then Xπ ∈ B if and only if π ∈ L22.

4. The optimization problem

In order to formulate the optimization problem we impose the following basic conditions.

Condition 4.1. We are given a closed, convex set K ⊂ R
N with 0 ∈ K and an {FT }-measurable

random variable a on (�, F , P) such that 0 < infω∈� a(ω) ≤ supω∈� a(ω) < ∞.

Condition 4.2. We are given a number d ∈ R and {FT }-measurable, square-integrable random
variables c0 and c1 on (�, F , P).

Let
A := {π ∈ L22 : π(t) ∈ K a.e.}, (4.1)

Ĵ (ω, x) := 1
2 [a(ω)x2 + 2c0(ω)x], (ω, x) ∈ � × R, (4.2)

G(π) := E[c1X
π(T )] − d, π ∈ L22, (4.3)

ϑ̂ := inf
π∈A

G(π)=0

E[Ĵ (Xπ(T ))]. (4.4)

We regard A as the set of admissible portfolios, while G(π) = 0 represents a constraint on the
terminal wealth. The problem of interest, which we denote by (P̂ ), is to

determine some π̂ ∈ A such that G(π̂) = 0 and ϑ̂ = E[Ĵ (Xπ̂ (T ))], (4.5)
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in the sense of demonstrating the existence of π̂ and characterizing its dependence on the
market parameters {r(t)}, {b(t)}, and {σ (t)} and {Ft }, the information filtration available to
the investor. We must also postulate that 0 ∈ {G(π) : π ∈ A}, since otherwise the constraints
on π in (4.4) are mutually contradictory and we will have ϑ̂ = ∞, rendering problem (4.5)
meaningless. In fact, we impose the following constraint qualification.

Condition 4.3. The constant d , the set K , and the random variable c1 are such that the set
{G(π) : π ∈ A} ⊂ R has a nonempty interior which includes 0 (see Remark 4.2).

Example 4.1. In (4.1), K = R
N corresponds to there being no constraints on the portfolio.

On the other hand, K = [0, ∞)N represents a short selling prohibition on stocks, while the
constraint set K = {π ∈ [0, ∞)N : πn+1 = · · · = πN = 0} represents the same prohibition, but
in an incomplete market for which N , the dimension of the Brownian motion {W (t)}, exceeds
n, the number of stocks available to the investor. Other examples can be similarly formulated.

Remark 4.1. The most important case of problem (4.5) occurs when a = 2, c0 = 0, and
c1 = 1, since then E[Ĵ (Xπ(T ))] − d2 = var(Xπ(T )) (the variance of the terminal wealth) if
G(π) = 0. Problem (4.5) amounts to minimizing this variance subject to the terminal wealth
constraint E[Xπ(T )] = d together with the portfolio constraint π ∈ A. This is the problem of
constrained mean-variance portfolio selection.

Remark 4.2. We observe that Condition 4.3 holds in the case in which c1 ≡ 1 in (4.3), the
market model is ‘interesting’ in the sense that E[Xπ̃(T )] > E[x0S0(T )] for some portfolio
π̃ ∈ A (problem (4.5) would be pointless otherwise, since the best expected terminal wealth
would be attained by simply investing the entire fortune, risk free, in the money market), and
the expected terminal wealth, d , in (4.3) is ‘reasonable’ in a sense to be specified. From (4.1),
the convexity of K ⊂ R

N (see Condition 4.1), and (2.5), it follows that R := {E[Xπ(T )] : π ∈
A} ⊂ R is convex and, hence, an interval. Thus, the interior of R is identical to � :=
(infπ∈A E[Xπ(T )], supπ∈A E[Xπ(T )]), which is nonempty since 0 ∈ K and the market model
is interesting in the above sense. It follows from (4.3) that Condition 4.3 holds provided that d

is specified in the ‘reasonable range’ � , that is, d ∈ � .

5. A partially constrained problem

Here we establish duality relations for a partially constrained optimization problem in which
the terminal wealth condition, G(π) = 0, of (4.5) is discarded. In Section 6 these relations will
be used to establish the existence of a solution to the fully constrained problem. We postulate
the following condition.

Condition 5.1. We are given a constant q ∈ R and an {FT }-measurable, square-integrable
random variable c on (�, F , P).

Recalling the random variable a and the convex set K assumed given in Condition 4.1, and
the set A defined in (4.1), we let

ϑc,q := inf
π∈A

E[J (Xπ(T ))], where J (ω, x) := 1
2 [a(ω)x2 + 2c(ω)x] + q. (5.1)

The partially constrained optimization problem, which we denote by (Pc,q), is to

determine some π̄ ∈ A such that ϑc,q = E[J (Xπ̄ (T ))]. (5.2)
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Remark 5.1. We distinguish between the respective coefficients c0 and c in the linear terms
of Ĵ and J (see (4.2) and (5.1)) because in Section 6 these coefficients will play somewhat
different roles. From the quadratic form of x 
→ J (ω, x) in (5.1), Conditions 4.1 and 5.1, and
Proposition 3.1, it follows immediately that −∞ < ϑc,q < ∞.

5.1. Synthesis of a dual problem and optimality relations

Our goals are to reformulate problem (5.2) as a ‘primal’ optimization problem over the set
B of Section 3 (see (5.11)), synthesize a dual optimization problem and corresponding Euler–
Lagrange–Hamilton optimality relations (see Proposition 5.3) by following an algorithmic
approach motivated in [2], and establish the existence of a solution to the dual problem (see
Proposition 5.4).

Step I. From Proposition 3.1 we know that Xπ ∈ B for each admissible π ∈ A. We
therefore express the quantity in (5.1) as the infimum over the set B of some appropriate mapping

 : B → (−∞, ∞], by introducing ‘penalty terms’ on B which account for the initial-wealth
constraint, X(0) = x0; the portfolio constraint, π(t) ∈ K a.e.; and the ‘dynamical constraint’
implicit in (2.4). These will be defined to give zero penalty when the constraints hold and
infinite penalty otherwise. For each X ≡ (X0, Ẋ,�X) ∈ B, we let

U(X) := {π ∈ A : Ẋ(t) = r(t)X(t) + π�(t)σ (t)θ(t) and �X(t) = σ�(t)π(t) a.e.}. (5.3)

We then see that for each X ≡ (X0, Ẋ,�X) ∈ B we have X(t) = Xπ(t) a.e. for some π ∈ A
if and only if X0 = x0 and U(X) �= ∅; from this equivalence and (5.1), we obtain

ϑc,q = inf
X∈B, X0=x0

U(X) �=∅

E[J (X(T ))]. (5.4)

We now define a penalty function on B giving zero penalty when the constraint U(X) �= ∅ is
satisfied and infinite penalty otherwise. From Remark 2.1, for each X ≡ (X0, Ẋ,�X) ∈ B,

U(X) �= ∅ ⇐⇒ Ẋ(t) = r(t)X(t) +��
X(t)θ(t)

and [σ�]−1(t)�X(t) ∈ K a.e.
(5.5)

Motivated by (5.5), we define the mapping L : � × [0, T ] × R × R × R
N → {0, ∞} by

L(ω, t, x, v, ξ) =
{

0 if v = r(ω, t)x + ξ�θ(ω, t) and [σ�]−1(ω, t)ξ ∈ K ,

∞ otherwise.
(5.6)

It is clear that L(t, X(t), Ẋ(t),�X(t)) is {F ∗}-measurable, and, in view of (5.5) and (5.6),

E

[∫ T

0
L(t, X(t), Ẋ(t),�X(t)) dt

]
=

{
0 if U(X) �= ∅,

∞ otherwise,
(5.7)

for each X ∈ B. We see that (5.7) establishes a penalty for the constraint U(X) �= ∅ in (5.4).
As for the initial-wealth constraint, X0 = x0, we let

l0(x) :=
{

0 if x = x0,

∞ otherwise,
(5.8)
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for each x ∈ R. Now define


(X) := l0(X0) + E[lT (X(T ))] + E

[∫ T

0
L(t, X(t), Ẋ(t),�X(t)) dt

]
(5.9)

for each X ≡ (X0, Ẋ,�X) ∈ B, where, for consistency of notation, we let

lT (ω, x) := J (ω, x), (ω, x) ∈ � × R. (5.10)

Upon combining (5.4) and (5.7)–(5.10), we obtain

ϑc,q = inf
X∈B


(X). (5.11)

Remark 5.2. From (5.7) and (5.8) it is clear that 
(X) exists in (−∞, ∞] for each X ∈ B.

Step II. In this step we synthesize a ‘cost’ functional � : B → (−∞, ∞] for an optimization
problem which is dual to the primal problem (5.11). To this end we define the convex conjugate
functions

m0(y) := l∗0 (y) := sup
x∈R

{xy − l0(x)},
mT (ω, y) := l∗T (ω, −y) := sup

x∈R

{x(−y) − lT (ω, x)},

M(ω, t, y, s, γ ) := L∗(ω, t, s, y, γ ) := sup
x,v∈R

ξ∈R
N

{xs + vy + ξ�γ − L(ω, t, x, v, ξ)},
(5.12)

for each y ∈ R, s ∈ R, γ ∈ R
N , ω ∈ �, and t ∈ [0, T ]. From (5.8), (5.10), and (5.6), it is easy

to calculate these conjugates explicitly: for each (ω, y) ∈ � × R, we have

m0(y) = x0y, mT (ω, y) = (y + c(ω))2

2a(ω)
− q, (5.13)

M(ω, t, y, s, γ ) =
{

δ(−σ (t)[θ(t)y + γ ]) if s + r(t)y = 0,

∞ otherwise,
(5.14)

where δ(·) is the support functional of the set −K , defined by

δ(z) := sup
π∈K

{−π�z}, z ∈ R
N. (5.15)

For each Y ≡ (Y0, Ẏ ,�Y ) ∈ B, define

�(Y) := m0(Y0) + E[mT (Y (T ))] + E

[∫ T

0
M(t, Y (t), Ẏ (t),�Y (t)) dt

]
. (5.16)

Remark 5.3. Since δ(·) is lower semicontinuous on R
N , it is easily seen from (5.14) that

M(t, Y (t), Ẏ (t),�Y (t)) is {F ∗}-measurable for each Y ≡ (Y0, Ẏ ,�Y ) ∈ B, and it is clear that
�(Y) exists in (−∞, ∞] for each Y ∈ B.

Next we require the following result, which is [2, Proposition I-1].

https://doi.org/10.1239/aap/1175266470 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1175266470


84 C. LABBÉ AND A. J. HEUNIS

Proposition 5.1. For members X ≡ (X0, Ẋ,�X) and Y ≡ (Y0, Ẏ ,�Y ) of the set B, define

M(X, Y )(t) := X(t)Y (t) − X0Y0 −
∫ t

0
{X(τ)Ẏ (τ ) + Ẋ(τ )Y (τ) +��

X(τ)�Y (τ )} dτ,

t ∈ [0, T ].
Then {(M(X, Y )(t),Ft ), t ∈ [0, T ]} is a continuous martingale with M(X, Y )(0) = 0.

Proposition 5.2. Assume that Conditions 2.1, 4.1, and 5.1 are satisfied. Then the functions 


and � respectively given in (5.9) and (5.16) are well defined, take values in (−∞, ∞] for each
X ∈ B and Y ∈ B, and satisfy


(X) + �(Y) ≥ 0, (X, Y ) ∈ B × B. (5.17)

Moreover, for arbitrary X̄ ≡ (X̄0,
˙̄X,�X̄) ∈ B and Ȳ ≡ (Ȳ0,

˙̄Y,�Ȳ ) ∈ B, we have 
(X̄) +
�(Ȳ ) = 0 if and only if each of the following conditions hold:

l0(X̄0) + m0(Ȳ0) = X̄0Ȳ0, (5.18)

lT (X̄(T )) + mT (Ȳ (T )) = −X̄(T )Ȳ (T ) a.s., (5.19)

L(t, X̄(t), ˙̄X(t),�X̄(t)) + M(t, Ȳ (t), ˙̄Y (t),�Ȳ (t))

= X̄(t) ˙̄Y (t) + ˙̄X(t)Ȳ (t) +��̄
X
(t)�Ȳ (t) a.e. (5.20)

Proof. Fix X ≡ (X0, Ẋ,�X) ∈ B and Y ≡ (Y0, Ẏ ,�Y ) ∈ B. To establish (5.17), observe
from the convex conjugates in (5.12) that, for each (ω, t) ∈ � × [0, T ],

l0(X0) + m0(Y0) ≥ X0Y0,

lT (X(T )) + mT (Y (T )) ≥ −X(T )Y (T ), (5.21)

L(t, X(t), Ẋ(t),�X(t)) + M(t, Y (t), Ẏ (t),�Y (t))

≥ X(t)Ẏ (t) + Ẋ(t)Y (t) +��
X(t)�Y (t).

By (5.9), (5.16), (5.21), and the definition of M(X, Y ) (see Proposition 5.1),


(X) + �(Y) = l0(X0) + m0(Y0) + E[lT (X(T )) + mT (Y (T ))]

+ E

[∫ T

0
{L(t, X(t), Ẋ(t),�X(t)) + M(t, Y (t), Ẏ (t),�Y (t))} dt

]
≥ X0Y0 + E[−X(T )Y (T )]

+ E

[∫ T

0
{X(t)Ẏ (t) + Ẋ(t)Y (t) +��

X(t)�Y (t)} dt

]
= E[−M(X, Y )(T )]. (5.22)

Moreover, E[−M(X, Y )(T )] = 0 (from Proposition 5.1), which establishes (5.17). Further-
more, for some (X̄, Ȳ ) ∈ B×B the equivalence between 
(X̄)+�(Ȳ ) = 0 and (5.18)–(5.20)
follows at once from (5.22), (5.21), and the fact that E[−M(X, Y )(T )] = 0.

We now refine Proposition 5.2, to obtain Proposition 5.3, which gives a set of optimality
relations that will be essential in constructing an optimal portfolio. Let

�Y (t) := −σ (t)[θ(t)Y (t) +�Y (t)] for Y ≡ (Y0, Ẏ ,�Y ) ∈ B. (5.23)
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Proposition 5.3. Assume that Conditions 2.1, 4.1, and 5.1 are satisfied. Then, for an arbitrary
(X̄, Ȳ ) ∈ B × B, we have


(X̄) = ϑc,q = sup
Y∈B

{−�(Y)} = −�(Ȳ ) (5.24)

if and only if

X̄0 = x0, (5.25)

X̄(T ) = − Ȳ (T ) + c

a
a.s., (5.26)

˙̄Y (t) + r(t)Ȳ (t) = 0 a.e., (5.27)

π̄ ∈ U(X̄) and δ(�Ȳ (t)) + π̄�(t)�Ȳ (t) = 0 a.e.

for π̄(t) := [σ�]−1(t)�X̄(t). (5.28)

Proof. From (5.6) and (5.14), for arbitrary (ω, t) ∈ � × [0, T ] and (x, v, ξ), (y, s, γ ) ∈
R × R × R

N we have the equivalence

L(ω, t, x, v, ξ) + M(ω, t, y, s, γ ) = xs + vy + ξ�γ

⇐⇒ v = r(t)x + ξ�θ(t), [σ�]−1(t)ξ ∈ K, s + r(t)y = 0,

and δ(−σ (t)[θ(t)y + γ ]) − ξ�σ−1(t)σ (t)[θ(t)y + γ ] = 0.

(5.29)
Moreover, from (5.1), (5.8), (5.10), and (5.13), for arbitrary x, y ∈ R and ω ∈ � we find that
l0(x) + m0(y) = xy if and only if x = x0 and that lT (ω, x) + mT (ω, y) = −xy if and only if
x = −(y + c(ω))/a(ω). From these equivalences and (5.29), (5.3), and (5.5), it follows that,
for an arbitrary (X̄, Ȳ ) ∈ B×B, (5.25)–(5.28) hold if and only if (5.18)–(5.20) hold. However,
in view of (5.11) and the universal inequality (5.17), we see that the equality 
(X̄)+�(Ȳ ) = 0
is equivalent to (5.24); hence, (5.24) is equivalent to items (5.18)–(5.20). The result follows
from this, given the equivalence of (5.25)–(5.28) and (5.18)–(5.20) just noted.

Remark 5.4. It follows from Proposition 5.3 that the solution of problem (Pc,q) in (5.2) reduces
to the construction of a pair (X̄, Ȳ ) ∈ B × B which satisfies the optimality relations (5.25)–
(5.28), since then the optimal portfolio π̄ is defined by (5.28). Motivated by (5.20), in the
remainder of this subsection we show that there exists a solution to the problem of minimizing
�(·) on B, henceforth referred to as the dual problem. Define

B1 := {Y ≡ (Y0, Ẏ ,�Y ) ∈ B : Ẏ (t) = −r(t)Y (t) a.e.}, (5.30)

and observe from (5.16) and (5.14) that � necessarily takes the value ∞ on B − B1. Then

inf
Y∈B

�(Y) = inf
Y∈B1

�(Y), (5.31)

and the dual problem reduces to the minimization of �(·) over B1. For each t ∈ [0, T ], let

β(t) := exp

[
−

∫ t

0
r(τ ) dτ

]
, I(γ )(t) :=

∫ t

0
β−1(τ )γ�(τ ) dW (τ ), γ ∈ L22, (5.32)

�(y, γ )(t) := β(t)[y + I(γ )(t)], t ∈ [0, T ], (y, γ ) ∈ R × L22. (5.33)
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Remark 5.5. From Section 3, we see that Y ≡ (Y0, Ẏ ,�Y ) ∈ B1 satisfies the relation

Y (t) = Y0 −
∫ t

0
r(τ )Y (τ) dτ +

∫ t

0
��

Y (τ ) dW (τ ). (5.34)

It follows from Itô’s formula and Doob’s L2-inequality that �(·, ·) : R × L22 → B1 is a linear
bijection, and that if Y := �(y, γ ) for some (y, γ ) ∈ R × L22 then (recalling (5.23))

Y0 = y, �Y (t) = γ (t) a.e., �Y (t) = −σ (t)[θ(t)Y (t) + γ (t)] a.e. (5.35)

We then obtain

inf
(y,γ )∈R×L22

�̃(y, γ ) = inf
Y∈B1

�(Y),

where �̃(y, γ ) := �(�(y, γ )), (y, γ ) ∈ R × L22. (5.36)

Moreover, M(t, Y (t), Ẏ (t),�Y (t)) = δ(�Y (t)) a.e. for each Y ∈ B1 (see (5.30) and (5.14))
and, thus, from (5.13) and (5.16), for each (y, γ ) ∈ R × L22 (with Y := �(y, γ )) we have

�̃(y, γ ) = x0y + E

[
(Y (T ) + c)2

2a

]
+ E

[∫ T

0
δ(�Y (t)) dt

]
− q. (5.37)

Remark 5.6. We define the norm ‖·‖L22 on the real vector space L22 by

‖γ ‖2
L22

:= E

[∫ T

0
‖γ (t)‖2 dt

]
,

and the norm ‖(·, ·)‖ on the real vector space R × L22 by ‖(y, γ )‖2 := |y|2 + ‖γ ‖2
L22

. With
this norm, R × L22 is a reflexive Banach space.

Proposition 5.4. Suppose that Conditions 2.1, 4.1, and 5.1 are satisfied. Then

inf
(y,γ )∈R×L22

�̃(y, γ ) = �̃(ȳ, γ̄ ) ∈ R for some (ȳ, γ̄ ) ∈ R × L22. (5.38)

Proof. It is immediate from (5.37), (5.35), and (5.15) that �̃ is convex on R × L22. From
Conditions 4.1 and 5.1 we have both �̃(y, γ ) ≥ x0y−q > −∞, for each (y, γ ) ∈ R×L22, and
�̃(0, 0) = E[c2/(2a)]− q < ∞; hence, �̃ is proper. A routine argument using Fatou’s lemma
and the nonnegativity and lower semicontinuity of δ(·) proves that �̃ is lower semicontinuous on
R×L22 (with respect to the norm ‖(·, ·)‖). We next show that �̃ is coercive (that is, �̃(y, γ ) →
∞ as ‖(y, γ )‖ → ∞). From Conditions 2.1 and 5.1 we know that β−1(T )c is {FT }-measurable
and square integrable and, thus, can be written β−1(T )c = ỹ + ∫ T

0 η�(τ ) dW (τ ) for ỹ =
E[β−1(T )c] and some η ∈ L22 (see [8, Theorem 3.4.15]). From (5.32) and (5.33) we therefore
obtain �(y, γ )(T ) + c = �(y + ỹ, γ + βη)(T ), (y, γ ) ∈ R × L22. Thus, to demonstrate
coercivity, with no loss of generality we can and shall take c ≡ 0 in (5.37). In view of the
nonrandom and strictly positive uniform lower bounds on β(T ) and 1/(2a) (see Conditions 2.1
and 4.1), and the Itô isometry, we find that E[�(y, γ )2(T )/(2a)] → ∞ as ‖(y, γ )‖ → ∞.
Coercivity of �̃ follows from this, (5.37), and the nonnegativity of δ(·). The existence of
a pair (ȳ, γ̄ ) ∈ R × L22 which satisfies (5.38) follows in turn from this, Remark 5.6, and
[7, Proposition II-1.2].

Remark 5.7. Define Ȳ := �(ȳ, γ̄ ) for the pair (ȳ, γ̄ ) ∈ R × L22 given by Proposition 5.4.
From Remark 5.5 we have Ȳ ∈ B1 ⊂ B. Upon combining (5.38), (5.36), and (5.31), we obtain
�(Ȳ ) = infY∈B �(Y); thus, Ȳ solves the dual problem of Remark 5.4.
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5.2. Construction of the optimal portfolio

In this subsection we shall construct an X̄ ∈ B such that the pair (X̄, Ȳ ) with Ȳ as defined in
Remark 5.7 satisfies (5.25)–(5.28). To this end, consider the state price density process given
by (recalling β from (5.32))

H(t) := β(t)E(−θ� •W )(t). (5.39)

Remark 5.8. In (5.39) the notationE(M)(t) := exp[M(t)− 1
2 〈M〉(t)] indicates the exponential

of a continuous local martingale M (with 〈M〉 denoting the quadratic variation of M), and ‘•’
denotes stochastic integration.

Remark 5.9. Fix an arbitrary p ∈ R. Since θ is uniformly bounded (recall Remark 2.2), it
follows that {E(−pθ� •W )(t)} is a continuous {Ft }-martingale (by the Novikov criterion; see
[8, Corollary 3.5.14]). It then easily follows from the uniform boundedness of θ and r (see
Condition 2.1), and Doob’s maximal L2-inequality, that E[supt∈[0,T ] |H(t)|p] < ∞ for each
p ∈ R. Thus, H as defined in (5.39) is a member of B (set p = 2).

Now, {(H(t)Xπ(t), Ft ), t ∈ [0, T ]} is a martingale for each π ∈ L22 (as follows from
(5.39), (2.4), Proposition 5.1, Remark 5.9, and Proposition 3.1). This, together with (5.26),
motivates the following definition of X̄ in terms of Ȳ as defined in Remark 5.7:

X̄(t) := − 1

H(t)
E

[
Ȳ (T ) + c

a
H(T )

∣∣∣∣ Ft

]
. (5.40)

Remark 5.10. The square integrability of Ȳ (T ) (recall that Ȳ ∈ B) and c (see Condition 5.1),
and the strictly positive lower bound on a (see Condition 4.1), ensure that (Ȳ (T ) + c)/a is
square integrable. Together with Remark 5.9, this establishes the existence of the conditional
expectation in (5.40).

Observe that X̄ as defined in (5.40) satisfies the ‘dynamical part’ of (2.4), that is

dX̄(t) = {r(t)X̄(t) + π̄�(t)σ (t)θ(t)} dt + π̄�(t)σ (t) dW (t), (5.41)

for some R
N -valued π̄ ∈ F ∗ such that

∫ T

0 ‖π̄(t)‖2 dt < ∞ a.s. Indeed, from (5.40) and
the martingale representation theorem (see [8, Problem 3.4.16, p. 184]), there exists some
R

N -valued and a.e. unique ψ ∈ F ∗, with
∫ T

0 ‖ψ(t)‖2 dt < ∞ a.s., such that

X̄(t)H(t) = X̄(0) +
∫ t

0
ψ�(τ ) dW (τ ) := ξ0(t). (5.42)

By expanding the quotient X̄(t) := ξ0(t)/H(t) using Itô’s formula, we obtain (5.41) with

π̄(t) := [σ�]−1(t)

[
ψ(t)

H(t)
+ X̄(t)θ(t)

]
(5.43)

(since X̄ as defined in (5.40) is continuous, Remark 2.1 shows that
∫ T

0 ‖π̄(t)‖2 dt < ∞ a.s.).

Remark 5.11. From Remark 5.7 we have seen that Ȳ ∈ B1, meaning that (5.27) holds (recall
(5.30)), and of course (5.26) is immediate from (5.40). In the remainder of this section we shall
establish that X̄ ∈ B (in which case we see from (5.41) that π̄ is given by π̄ = [σ�]−1�X̄

also), and that (5.25) and (5.28) hold. We shall then have verified (5.25)–(5.28) and will be
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able to conclude that (5.24) holds (from Proposition 5.3), which, together with (5.11), implies
that 
(X̄) = ϑc,q . Moreover, from (5.28) we obtain π̄ ∈ A (recall (5.3)), while the dynamical
relation (5.41), together with (5.25), establishes that X̄ = Xπ̄ a.e. (for Xπ as defined in the
wealth equation (2.4)). However, in light of (5.25), (5.28), (5.8), and (5.7), the first and
third terms on the right-hand side of (5.9) equal 0 for X := X̄, implying (from (5.10)) that

(X̄) = E[J (X̄(T ))]. Thus, ϑc,q = E[J (Xπ̄ (T ))] and, hence, π̄ ∈ A solves problem (Pc,q).

Lemma 5.1. Assume that Conditions 2.1, 4.1, and 5.1 are satisfied. Then

E
[

sup
t∈[0,T ]

|X̄(t)|2
]

< ∞

(for X̄ as defined in (5.40)).

Proof. Let D := (Ȳ (T ) + c)/a. Then E[|D|2] < ∞ (see Remark 5.10), and it follows
from the integrability of H(t) indicated in Remark 5.9, together with Hölder’s inequality, that
DH(T )H−1(t) is integrable. Thus, from (5.40) we have X̄(t) = − E[DH(T )H−1(t) | Ft ].
Now fix some q ∈ (1, 2) and let p ∈ (2, ∞) be the conjugate constant given by p−1 +q−1 = 1.
Hölder’s inequality for conditional expectations (see [3, Theorem 7.2.4]) then gives

|X̄(t)| ≤ E

[(
H(T )

H(t)

)p ∣∣∣∣ Ft

]1/p

E[|D|q | Ft ]1/q a.s. (5.44)

for each t ∈ [0, T ]. From (5.39) and (5.32), along with the uniform bounds on r and θ (see
Condition 2.1 and Remark 2.2), there exists a constant k ∈ (0, ∞) such that(

H(T )

H(t)

)p

≤ k
E(−pθ� •W )(T )

E(−pθ� •W )(t)
a.s. (5.45)

As noted in Remark 5.9, {E(−pθ� •W )(t)} is an {Ft }-martingale; thus, it follows from (5.45)
that the first conditional expectation on the right-hand side of (5.44) is a.s. bounded from above
by the constant k and, therefore, that

|X̄(t)|q ≤ kq/p E[|D|q | Ft ] a.s. (5.46)

for each t ∈ [0, T ]. Since E[|D|2] < ∞ and q ∈ (1, 2), we have E[|D|q ] < ∞. Thus,
defining N(t) := E[|D|q | Ft ], we find that {N(t)} is an {Ft }-martingale. Let p1 := 2/q > 1,
where the strict inequality follows since q ∈ (1, 2). From Jensen’s inequality we then see that
E[|N(t)|p1 ] ≤ E[|D|2] < ∞ for each t ∈ [0, T ] and, consequently, that

E
[

sup
t∈[0,T ]

|N(t)|p1
]

≤
(

p1

p1 − 1

)p1

E[|N(T )|p1 ] < ∞ (5.47)

(from Doob’s Lp1 -inequality). From (5.46) and the definition of N(t) we have |X̄(t)|2 ≤
k2/p|N(t)|p1 , and the result follows from (5.47).

Lemma 5.2. Suppose that Conditions 2.1, 4.1, and 5.1 are satisfied. For X̄ and π̄ as respec-
tively defined in (5.40) and (5.43), we have X̄ ∈ B and π̄ ∈ L22.

Proof. For each n = 1, 2, . . . , let

τn := inf

{
t ∈ [0, T ] :

∫ t

0
‖π̄(s)‖2 ds ≥ n

}
∧ T .
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Then τn is an {Ft }-stopping time (recall (2.1)) and τn ↑ T a.s. (since
∫ T

0 ‖π̄(s)‖2 ds < ∞ a.s.,
as noted following (5.43)). We have seen that X̄ and π̄ are related by (5.41); using this relation
to expand t 
→ X̄2(t) using Itô’s formula, and evaluating the expansion at t ∧ τn, we obtain

X̄2(t ∧ τn) = X̄2(0) +
∫ t∧τn

0
{2X̄(s)[r(s)X̄(s) + π̄�(s)σ (s)θ(s)] + ‖σ�(s)π̄(s)‖2} ds

+ 2
∫ t∧τn

0
X̄(s)π̄�(s)σ (s) dW (s), t ∈ [0, T ]. (5.48)

It follows from Lemma 5.1 and the definition of τn that the last term on the right-hand side of
(5.48) defines an {Ft }-martingale null at t = 0 and, hence, has zero expectation for all t ; thus,
upon taking expectations on each side of (5.48) for t := T , and using the nonnegativity of r

(see Condition 2.1), we obtain

E[X̄2(τn)] + E

[∫ τn

0
{−2X̄(s)π̄�(s)σ (s)θ(s)} ds

]
≥ E

[∫ τn

0
‖σ�(s)π̄(s)‖2 ds

]
. (5.49)

For arbitrary v1, v2 ∈ R
N , we have v�

1 v2 ≤ 1
2 [‖v1‖2 + ‖v2‖2], from which follows the

inequality −2X̄(s)θ�(s)σ�(s)π̄(s) ≤ 1
2 [4X̄2(s)‖θ(s)‖2 + ‖σ�(s)π̄(s)‖2]. Substituting this

inequality into (5.49) and simplifying then gives

1

2
E

[∫ τn

0
‖σ�(s)π̄(s)‖2 ds

]
≤ (1 + T k1) E

[
sup

t∈[0,T ]
|X̄(t)|2

]
, n = 1, 2, . . . , (5.50)

for some constant k1 ∈ [0, ∞) depending only on the uniform bound on θ (see Remark 2.2).
Since τn ↑ T a.s., we obtain π̄ ∈ L22 from Lemma 5.1 and Remark 2.1 upon letting n → ∞
in (5.50). Finally, from π̄ ∈ L22, (5.41), and an argument identical to that for Proposition 3.1,
we obtain X̄ ∈ B (this proof was motivated by the argument for establishing the existence of
solutions to backward stochastic differential equations; see, for example, [16, p. 352]).

Recalling Remark 5.11, it remains to verify (5.25) and (5.28). To do so we need the following
result.

Lemma 5.3. Assume that Conditions 2.1, 4.1, and 5.1 are satisfied. For an arbitrary (α, η) ∈
R × L22 and R := �(α, η) (see (5.33)), we have

0 ≤ α(x0 − X̄(0)) + lim
ε↘0

E

[∫ T

0

{
δ(�Ȳ (t) + ε�R(t)) − δ(�Ȳ (t))

ε
+ π̄�(t)�R(t)

}
dt

]
.

(5.51)

Remark 5.12. From (5.38), Remark 5.7, and (5.37), we have E[δ(�Ȳ (t)) dt] < ∞. Thus, the
expectation in (5.51) exists in (−∞, ∞]. Since δ(·) is convex, it follows from [7, p. 23] that
the limit on the right-hand side of (5.51) exists (in the extended reals).

Proof of Lemma 5.3. For an arbitrary ε ∈ (0, ∞), define (yε, γ ε) ∈ R × L22 by yε :=
ȳ + εα and γ ε := γ̄ + εη. From (5.38) we have ε−1[�̃(yε, γ ε) − �̃(ȳ, γ̄ )] ≥ 0 for each
ε ∈ (0, ∞). Using (5.26) (which holds in view of (5.40)) and (5.37) to calculate the quantity
limε→0 ε−1[�̃(yε, γ ε) − �̃(ȳ, γ̄ )], we easily obtain

0 ≤ αx0 − E[X̄(T )R(T )] + lim
ε↘0

E

[∫ T

0

δ(�Ȳ (t) + ε�R(t)) − δ(�Ȳ (t))

ε
dt

]
. (5.52)
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Now, from (5.41) and the fact that X̄ ∈ B (see Lemma 5.2), it follows that

˙̄X(t) = r(t)X̄(t) + π̄�(t)σ (t)θ(t) a.e. and �X̄(t) = σ�(t)π̄(t) a.e.

In view of these observations and Remark 5.5 (applied to R = �(α, η)), it follows from
Proposition 5.1 that

M(X̄, R)(t) = X̄(t)R(t) − αX̄(0) +
∫ t

0
π̄�(τ )�R(τ) dτ

is a continuous {Ft }-martingale null at the origin, whence

E[M(X̄, R)(t)] = E[X̄(t)R(t)] − αX̄(0) + E

[∫ t

0
π̄�(τ )�R(τ) dτ

]
= 0.

Combining this with (5.52) gives (5.51).

Lemma 5.4. Assume that Condition 2.1 is satisfied. For each ρ ∈ L22, there exists a unique
ξ ∈ L22 such that ρ(t) = ξ(t) + θ(t)

∫ t

0 ξ
�(τ ) dW (τ ) a.e.

The proof of the preceding result is omitted since it is just a simple modification of the usual
argument for the existence and uniqueness of solutions to linear integral equations. Using
Lemmas 5.3 and 5.4, we can complete the program outlined in Remark 5.11.

Proposition 5.5. Assume that Conditions 2.1, 4.1, and 5.1 are satisfied. Then (5.25) and (5.28)
hold for Ȳ as defined in Remark 5.7 and X̄ as defined in (5.40).

Proof. We first establish (5.25). Fix an arbitrary α ∈ R. Since θ ∈ L22 (being uniformly
bounded according to Remark 2.2) and β is uniformly bounded (see (5.32) and Condition 2.1),
upon setting ρ(t) := −αθ(t) in Lemma 5.4 we see that there is some η ∈ L22 such that
−αθ(t)β(t) = η(t)+θ(t)β(t)

∫ t

0 β−1(τ )η�(τ ) dW (τ ) a.e. From this, together with (5.33) and
(5.32), we obtain η(t)+θ(t)�(α, η)(t) = 0 a.e. Upon defining R := �(α, η), from Remark 5.5
we find that�R(t) = 0 a.e.; thus, Lemma 5.3 gives 0 ≤ α(x0 −X̄(0)). Equation (5.25) follows
since α ∈ R is arbitrary.

It remains to establish (5.28). Since (5.41) holds and π̄ ∈ L22 (see Lemma 5.2), it is enough
to show that π̄(t) ∈ K a.e. to conclude that π̄ ∈ U(X̄) (recall (5.3) and (4.1)). Since δ(·)
is subadditive and positively homogeneous (see [9, p. 206]), we have δ(�Ȳ (t) + ε�R(t)) ≤
δ(�Ȳ (t)) + εδ(�R(t)) for arbitrary ε ∈ (0, ∞) and R ∈ B. Then, since we have shown that
X̄(0) = x0, it follows from Lemma 5.3 that, for each (α, η) ∈ R × L22,

0 ≤ E

[∫ T

0
{δ(�R(t)) + π̄�(t)�R(t)} dt

]
for R := �(α, η). (5.53)

Let B := {(ω, t) ∈ � × [0, T ] : π̄(ω, t) ∈ K}. By [9, Lemma 5.4.2], there exists some
{F ∗}-measurable mapping ν̃ : � × [0, T ] → R

N such that ‖ν̃(t)‖ ≤ 1 and |δ(ν̃(t))| ≤ 1 a.e.,
and

δ(ν̃(t)) + π̄�(t)ν̃(t) = 0 a.e. on B, δ(ν̃(t)) + π̄�(t)ν̃(t) < 0 a.e. on Bc. (5.54)

Now suppose that (P ⊗ λ){(� × [0, T ]) − B} > 0. Then, by (5.54),

0 > E

[∫ T

0
{δ(ν̃(t)) + π̄�(t)ν̃(t)} dt

]
. (5.55)
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Let ρ(t) := −β−1(t)σ−1(t)ν̃(t). Since ‖ν̃(t)‖ is essentially bounded on �×[0, T ], it follows
from the boundedness of β−1 and σ−1 (see Remark 2.1) that ρ ∈ L22. Then, from Lemma 5.4,
there exists some ξ̃ ∈ L22 such that −β−1(t)σ−1(t)ν̃(t) = ξ̃(t) + θ(t)

∫ t

0 ξ̃
�(τ ) dW (τ ) a.e.

Multiply each side of this equation by β(t)σ (t) and let η̃(t) := β(t)ξ̃(t) ∈ L22 and R :=
�(0, η̃) = β(t)I(η̃)(t) (see (5.33)). Then, from (5.32) and Remark 5.5 we obtain ν̃(t) =
−σ (t)[η̃(t) + θ(t)R(t)] = �R(t) a.e. From this and (5.55), we obtain

E

[∫ T

0
{δ(�R(t)) + π̄�(t)�R(t)} dt

]
< 0

(for R := �(0, η̃)). Since η̃ ∈ L22, this inequality contradicts (5.53) and, so,

(P ⊗ λ){(� × [0, T ]) − B} = 0,

that is, π̄(t) ∈ K a.e., as required to establish that π̄ ∈ U(X̄).
We next show that

δ(�Ȳ (t)) + π̄�(t)�Ȳ (t) = 0 a.e. (5.56)

To this end, let R := �(−ȳ, −γ̄ ). Then, in light of the linearity of �(·, ·), and since Ȳ =
�(ȳ, γ̄ ) (see Remark 5.7), we have R = −Ȳ . Thus, �R = −�Ȳ (see (5.23)). Since δ(·) is
positively homogeneous, for each ε ∈ (0, 1) we obtain

δ(�Ȳ (t) + ε�R(t)) = δ((1 − ε)�Ȳ (t)) = (1 − ε)δ(�Ȳ (t)) a.e.

From this, together with X̄(0) = x0 (which we have already shown) and Lemma 5.3, we obtain
the inequality

0 ≥ E

[∫ T

0
{δ(�Ȳ (t)) + π̄�(t)�Ȳ (t)} dt

]
.

Now, we have already seen that π̄(t) ∈ K a.e.; thus, δ(�Ȳ (t)) + π̄�(t)�Ȳ (t) ≥ 0 a.e. (see
(5.15)). This, together with the inequality just noted, establishes (5.56). Finally, we see from
(5.41) that π̄ as defined in (5.43) is also given by π̄(t) := [σ�]−1(t)�X̄(t). This establishes
(5.28).

For easy reference, we summarize the main result of the present section as follows.

Proposition 5.6. Suppose that Conditions 2.1, 4.1, and 5.1 are satisfied. Then there exists
a pair (ȳ, γ̄ ) ∈ R × L22 minimizing the proper convex functional �̃(·, ·) (see (5.37)) over
R × L22. Define Ȳ := �(ȳ, γ̄ ) (with � as given in (5.33) and (5.32)) and H as in (5.39), and
let

X̄(t) := − 1

H(t)
E

[
Ȳ (T ) + c

a
H(T )

∣∣∣∣ Ft

]
, π̄(t) := [σ�]−1(t)

[
ψ(t)

H(t)
+ X̄(t)θ(t)

]
.

(Here ψ ∈ F ∗ is the R
N -valued, a.e. unique process on � × [0, T ] such that

∫ T

0 ‖ψ(t)‖2 dt <

∞ a.s., and X̄(t)H(t) = X̄(0) + ∫ t

0 ψ
�(τ ) dW (τ ), given by the martingale representation

theorem.) Then π̄ ∈ A and X̄(t) = Xπ̄(t) a.e. (for Xπ as defined in (2.5)), and

inf
π∈A

E[J (Xπ(T ))] = E[J (Xπ̄ (T ))] = − inf
(y,γ )∈R×L22

�̃(y, γ ) = −�̃(ȳ, γ̄ ) ∈ R.

In particular, π̄ solves the partially constrained problem (Pc,q), given in (5.2).
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6. The fully constrained optimization problem

In this section we return to the main goal of the paper, namely the solution of the fully
constrained problem (4.5). Our approach relies on Proposition 5.6, together with results from
Lagrange duality for convex optimization as set forth in [1, Chapter 2, Section 6].

Throughout this section we postulate Conditions 2.1, 4.1, 4.2, and 4.3. Then

(i) A is a convex subset of L22 (as follows from the convexity of K in Condition 4.1),

(ii) G is an affine functional on L22 (as follows from (2.5) and (4.3)), and

(iii) π 
→ E[Ĵ (Xπ(T ))] defines an R-valued convex mapping on A (as follows from Propo-
sition 3.1 and Conditions 4.1 and 4.2).

We now define the Lagrangian function for the optimization problem (P̂ ) (see (4.5)), as follows:

L(µ;π) := E[Ĵ (Xπ(T ))] + µG(π), π ∈ L22, µ ∈ R. (6.1)

From [1, Proposition 2.6.1], Condition 4.3, and [1, Theorem 2.6.1], there exists some ‘Lagrange
multiplier’ µ̄ ∈ R such that (recalling (4.4))

ϑ̂ = sup
µ∈R

inf
π∈A

L(µ;π) = inf
π∈A

L(µ̄;π). (6.2)

For each (µ, ω, x) ∈ R × � × R, let

J1(µ; ω, x) := 1
2 [a(ω)x2 + 2cµ(ω)x] − µd with cµ(ω) := c0(ω) + µc1(ω), (6.3)

where a, c0, and c1 are as given in Conditions 4.1 and 4.2, and observe, from (4.2), (4.3), and
(6.1), that

L(µ;π) = E[J1(µ; Xπ(T ))], π ∈ L22, µ ∈ R. (6.4)

Remark 6.1. For each fixed µ ∈ R, the function J1(µ; ·, ·) is identical to the function J (·, ·)
in (5.1) with cµ in place of c and −µd in place of q. In view of Condition 4.2, we see that
E[c2

µ] < ∞, that is, Condition 5.1 holds with cµ in place of c for each µ ∈ R, and the infima
in (6.2) therefore correspond to optimization problems (Pc,q) of the form (5.2) (with c := cµ

and q := −µd), which are addressed in Proposition 5.6.

Motivated by (5.37) and Remark 6.1, for each (µ, y, γ ) ∈ R × R × L22 and Y := �(y, γ )

we let

�̃1(µ; y, γ ) := x0y + E

[
(Y (T ) + cµ)2

2a

]
+ E

[∫ T

0
δ(�Y (t)) dt

]
+ µd. (6.5)

Remark 6.2. Proposition 5.6 asserts the existence of a minimizer, (ȳ(µ), γ̄ (µ)) ∈ R × L22,
of �̃1(µ; ·, ·) over R × L22 for each µ ∈ R; motivated by Proposition 5.6, we define

Ȳ (µ; t) := �(ȳ(µ), γ̄ (µ))(t), (6.6)

X̄(µ; t) := − 1

H(t)
E

[
Ȳ (µ; T ) + cµ

a
H(T )

∣∣∣∣ Ft

]
, (6.7)

π̄(µ; t) := [σ�]−1(t)

[
ψ(µ; t)

H(t)
+ X̄(µ; t)θ(t)

]
, (6.8)
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for each µ ∈ R. From (6.7) and the martingale representation theorem, there exists some
a.e. unique, R

N -valued, {Ft }-progressively measurable process ψ(µ; ·) on � × [0, T ] such
that

∫ T

0 ‖ψ(µ; t)‖2 dt < ∞ a.s. and X̄(µ; t)H(t) = X̄(µ; 0) + ∫ t

0 ψ
�(µ; τ) dW (τ ) for all

t ∈ [0, T ]; it is this process which appears on the right-hand side of (6.8). Finally, note from
Proposition 5.6 that π̄(µ) ∈ A and X̄(µ; t) = Xπ̄(µ)(t) a.e. for each µ ∈ R (with Xπ̄(µ) as
given in (2.5)).

It remains to show that π̄(µ̄; ·) solves problem (P̂ ). From Proposition 5.6 and (6.4), for
each µ ∈ R we have

inf
π∈A

L(µ;π) = L(µ, π̄(µ)) = − inf
(y,γ )∈R×L22

�̃1(µ; y, γ ) = −�̃1(µ; ȳ(µ), γ̄ (µ)) ∈ R.

(6.9)
Since π̄(µ̄) ∈ A (by Remark 6.2), it is enough to show that

G(π̄(µ̄)) = 0, (6.10)

because then [1, Proposition 2] together with the second equality in (6.2) and the first equality
in (6.9) establish that π̄(µ̄) solves (P̂ ). To prove (6.10), we use variational analysis on the
optimality of µ̄; from (6.2) and (6.9) we find that

−ϑ̂ = inf
(µ,y,γ )∈R×R×L22

�̃1(µ; y, γ ) = �̃1(µ̄; ȳ(µ̄), γ̄ (µ̄)). (6.11)

Now let µε := µ̄ + ερ for ρ ∈ R and ε ∈ (0, ∞). Then, from (6.11), we have

0 ≤ �̃1(µ
ε; ȳ(µ̄), γ̄ (µ̄)) − �̃1(µ̄; ȳ(µ̄), γ̄ (µ̄))

ε
, ε ∈ (0, ∞). (6.12)

From the definition of cµ in (6.3), we have cµε = cµ̄ + ερc1; hence, from (6.12) and (6.5) we
obtain 0 ≤ ρ E[{(Ȳ (µ̄; T ) + cµ̄)c1}/a] + ερ2 E[c2

1/(2a)] + ρd for all ε ∈ (0, ∞). Letting
ε → 0 and using the arbitrary choice of ρ ∈ R then gives E[{(Ȳ (µ̄; T ) + cµ̄)c1}/a] + d = 0,
which, in view of (6.7), establishes that E[c1X̄(µ̄; T )] = d. Equation (6.10) follows from this
together with X̄(µ̄; T ) = Xπ̄(µ̄)(T ) (recall Remark 6.2) and (4.3).

Remark 6.3. We now assemble the preceding results and state the main result of this section.
Define h(µ) := inf(y,γ )∈R×L22 �̃1(µ; y, γ ), µ ∈ R, and note, from (6.9), that the second
equality of (6.2) gives infµ∈R h(µ) = h(µ̄).

Proposition 6.1. Suppose that Conditions 2.1, 4.1, 4.2, and 4.3 are satisfied. For each µ ∈ R,
there exists a pair (ȳ(µ), γ̄ (µ)) ∈ R × L22 which minimizes the functional �̃1(µ; ·, ·) over
R × L22 (recall (6.5)) and hence satisfies h(µ) = �̃1(µ; ȳ(µ), γ̄ (µ)). Moreover, there exists
some µ̄ ∈ R which minimizes h(·) on R, and π̂ := π̄(µ̄) (as given in Remark 6.2 with µ := µ̄)
is the optimal portfolio for the problem (P̂ ) (see (4.5)).

Example 6.1. Take K := R
N in Condition 4.1 for the unconstrained case. From (5.15) we

see that δ(0) = 0 and that δ(z) = ∞ for z �= 0. Thus, we need minimize �̃1(µ; ·, ·) only over
pairs (y, γ ) ∈ R × L22 such that �Y (t) = 0 a.e. (for Y := �(y, γ )). From Remark 5.5 and
the nonsingularity of σ (t) (see Condition 2.1), we obtain Y0 = y and �Y (t) = −Y (t)θ(t) a.e.
Inserting these into (5.34) then shows that Y (t) = yH(t) a.e. and γ ∈ L22 necessarily has the
form γ (t) = −yH(t)θ(t) a.e. for some y ∈ R (recall (5.39)). Determination of the optimal
portfolio reduces to the following: (i) for each µ ∈ R, locate the minimizer, ȳ(µ) ∈ R, of
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the functional y 
→ �̃2(µ; y) := �̃1(µ; y, −yHθ) (which is quadratic); and (ii) use ȳ(µ) to
minimize the functional h(µ) := �̃2(µ; ȳ(µ)), µ ∈ R (which is also quadratic). In the special
case of the mean-variance problem of Remark 4.1, where a = 2, c0 = 0, and c1 = 1, we have
cµ = µ (by (6.3)), and (i) and (ii) lead to the (unique) minimizers

ȳ(µ) = −2x0 + µ E[H(T )]
E[H 2(T )] and µ̄ = 2

x0 E[H(T )] − d E[H 2(T )]
var(H(T ))

.

Then Ȳ (µ̄; t) = ȳ(µ̄)H(t) and X̄(µ̄; T ) = − 1
2 [Ȳ (µ̄; T ) + µ̄] (by (6.7)), the optimal portfolio

π̄(µ̄) is given by (6.8) with µ := µ̄ (by Proposition 6.1), and the least variance (or efficient
frontier) is given by

inf
π∈L22

E[Xπ(T )]=d

var(Xπ(T )) = var(X̄(µ̄; T )) = 1

4
var(Ȳ (µ̄; T )) = (x0 − d E[H(T )])2

var(H(T ))
.

Example 6.2. We suppose that K ⊂ R
N in Condition 4.1 is a closed, convex cone, that the

market coefficients r , b, and σ in Condition 2.1 are nonrandom continuous functions on [0, T ],
and that c0, c1, and a in Conditions 4.1 and 4.2 are also nonrandom. In this case the dual problem
of minimizing �̃1(µ; y, γ ) over the pairs (y, γ ) ∈ R × L22 (recall (6.5)) is particularly well
suited to the application of dynamic programming and leads to an essentially explicit formula
for the optimal portfolio π̄(µ) in (6.8). Since K is a convex cone, from (5.15) we have δ ≡ 0
on K̃ := {z : δ(z) < ∞} (the ‘barrier cone’ of −K). Thus, the third term on the right-hand side
of (6.5) takes values in the two-point set {0, ∞} according to whether or not �Y (t) ∈ K̃ a.e.
We can therefore regard u(t) := �Y (t) (rather than γ ) as the ‘control’ in the dual problem, and
it then follows from (5.34) and (5.35) that the dual process Y satisfies

dY (t) = −r(t)Y (t) dt − [θ(t)Y (t) + σ−1(t)u(t)]� dW (t) (6.13)

with u(t) ∈ K̃ a.e.
For each (y,u) ∈ R × L22, let {�̃(y,u)(t), t ∈ [0, T ]} denote the process Y given in

(6.13) with the initial condition Y (0) = y. Then, for an arbitrary µ ∈ R, the dual problem of
mininimizing �̃1(µ; y, γ ) in (6.5) over pairs (y, γ ) ∈ R×L22 is equivalent to the minimization
of

�̃3(µ; y,u) := x0y + E

[
(�̃(y,u)(T ) + cµ)2

2a

]
+ µd (6.14)

over (y,u) ∈ R × L22 with u(t) ∈ K̃ a.e. (a straightforward application of Gronwall’s
inequality yields �̃(y,u) ∈ B for each (y,u) ∈ R × L22). We now minimize the second
term of (6.14) over u ∈ L22 for arbitrary y ∈ R. Keeping µ ∈ R fixed, define the value
function

V (µ; y) := inf
u∈L22

u(t)∈K̃a.e.

E

[
(�̃(y,u)(T ) + cµ)2

2a

]
, y ∈ R, (6.15)

and consider the Bellman equation associated with (6.13) and (6.15), namely

ṽs(s, y) − r(s)yṽy(s, y) + 1
2 inf

η∈K̃

{‖σ−1(s)η + θ(s)y‖2ṽyy(s, y)} = 0, (6.16)

ṽ(T , y) = (y + cµ)2

2a
, (6.17)
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for each (s, y) ∈ [0, T ] × R. This is a particularly tractable equation because the infimum in
(6.16) is easily expressible in terms of y ∈ R. Indeed, for s ∈ [0, T ] and i = 1, 2, let

ζi (s) := arg min
η∈K̃

‖σ−1(s)η − (−1)iθ(s)‖2 = σ (s) proj((−1)iθ(s) | σ−1(s)K̃), (6.18)

where proj(z | C) is the (uniquely determined) projection of a vector z ∈ R
N on a closed

convex set C ⊂ R
N . Then, for each s ∈ [0, T ], it follows that

û(s, y) := arg min
η∈K̃

‖σ−1(s)η + θ(s)y‖2 =
{

yζ1(s) if y ≥ 0,

−yζ2(s) if y < 0.
(6.19)

In light of (6.19), we can easily write down an explicit solution to (6.16) and (6.17). To this
end, for (s, y) ∈ [0, T ] × R and i = 1, 2 (recalling β from (5.32) and cµ from (6.3)), define

Ai(s) := exp

[∫ T

s

‖θ(τ ) − (−1)iσ−1(τ )ζi (τ )‖2 dτ

]
, (6.20)

Pi(s) := 1

a

(
β(T )

β(s)

)2

Ai(s), χ(µ; s) := cµ

a

β(T )

β(s)
, α(µ) := c2

µ

2a
,

ṽ(µ; s, y) :=

⎧⎪⎪⎨
⎪⎪⎩

P1(s)
y2

2
+ χ(µ; s)y + α(µ) if (s, y) ∈ [0, T ] × [0, ∞),

P2(s)
y2

2
+ χ(µ; s)y + α(µ) if (s, y) ∈ [0, T ] × (−∞, 0).

(6.21)

Then ṽ(µ; ·, ·) is of class C1,1 over [0, T ] × R and of class C1,2 over [0, T ] × (R \ {0}), and a
simple, direct verification establishes that it satisfies the Bellman equation (6.16) in the classical
sense for each (s, y) ∈ [0, T ]×(R\{0}), as well as the boundary condition (6.17). Moreover, the
second-order parabolic sub- and superdifferentials of ṽ(µ; s, y) at (s, y) ∈ [0, T ]×{0} are easily
computed to show that ṽ(µ; ·, ·) defines a viscosity solution to (6.16) and (6.17) on [0, T ]× R.
It now follows from the verification theorem for dynamic programming [16, Theorem 5.3] that
û in (6.19) is the optimal feedback control for the problem (6.15) with arbitrary y ∈ R, and
V (µ; y) = ṽ(µ; 0, y) for all y ∈ R. In particular, the function y 
→ V (µ; y) = ṽ(µ; 0, y)

is the ‘asymmetric quadratic’ given in (6.21). Substituting û(t, Y (t)) for u(t) in (6.13), it
follows that the resulting stochastic differential equation has pathwise uniqueness (since û(t, ·)
as given in (6.19) is globally Lipschitz continuous on R) and solution (for the initial condition
Y (0) = y ∈ R)

Ŷ (y; t) :=
{

yβ(t)E(−[θ + σ−1ζ1]� •W )(t) if y ≥ 0,

yβ(t)E(−[θ − σ−1ζ2]� •W )(t) if y < 0.
(6.22)

(recall Remark 5.8). We are now able to minimize �̃3(µ; ·, ·) in (6.14) (still keeping µ ∈ R

fixed). Let ȳ(µ) ∈ R be the (unique) minimizer (with respect to y ∈ R) of the ‘asymmetric
quadratic’

�̃4(µ; y) := x0y + V (µ; y) + µd = x0y + ṽ(µ; 0, y) + µd, y ∈ R, (6.23)

given by (6.21), and let ū(µ; t) := û(t, Ŷ (ȳ(µ); t)), t ∈ [0, T ]. Then ū(µ; t) ∈ K̃ a.e.
(see (6.19)) and the pair (ȳ(µ), ū(µ)) ∈ R × L22 is the minimizer of the dual cost functional
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�̃3(µ; ·, ·) defined in (6.14). Comparison of (6.13) with relations (5.34) and (5.35) then shows
that, for γ̄ (µ) ∈ L22 defined by γ̄ (µ; t) := −[θ(t)�̃(ȳ(µ), ū(µ))(t)+σ−1(t)ū(µ; t)], the pair
(ȳ(µ), γ̄ (µ)) minimizes the functional �̃1(µ; ·, ·) (see (6.5)) over R×L22, and (see (6.6)–(6.8))
the corresponding optimal dual process, Ȳ (µ), is given by Ȳ (µ; t) = Ŷ (ȳ(µ); t), t ∈ [0, T ].
Using this representation for Ȳ (µ) it is easy to obtain explicit formulae for the portfolio π̄(µ)

and the corresponding wealth, X̄(µ) (see (6.7) and (6.8)). Indeed, upon substituting Ŷ (ȳ(µ); T )

(given in (6.22)) for Ȳ (µ; T ) in (6.7), and using (5.39), the fact that the coefficients r , b, and
σ are deterministic, and the independent increments of W , we obtain

−X̄(µ; t) = Ŷ (ȳ(µ); t)

a
exp

[∫ T

t

{−2r(τ ) + θ�(τ )[θ(τ ) + σ−1(τ )ζ1(τ )]} dτ

]
+ cµβ(T )

aβ(t)
(6.24)

for ȳ(µ) ≥ 0 (just replace ζ1 by −ζ2 to obtain X̄(µ) for ȳ(µ) < 0). Finally, using (6.22) and
Itô’s product formula to expand the right-hand side of (6.24) (and its analogue for ȳ(µ) < 0),
and comparing the result with (2.4), we obtain π̄(µ) such that X̄(µ) = Xπ̄(µ) as the following
feedback policy on the wealth X̄(µ):

π̄(µ; t) := −[X̄(µ; t) + a−1β−1(t)cµβ(T )][σ�]−1(t)[θ(t) + σ−1(t)ζ1(t)] for ȳ(µ) > 0
(6.25)

(π̄(µ, t) is given by (6.25) with −ζ2(t) in place of ζ1(t) for ȳ(µ) < 0, and π̄(µ, t) = 0 for
ȳ(µ) = 0).

We now determine the optimal portfolio and minimum variance in the special case of
Remark 4.1, for which a = 2, c0 = 0, and c1 = 1. To this end we first characterize the
set R in Remark 4.2. Define the set

F := {t ∈ [0, T ] : ‖θ(t) + σ−1(t)ζ1(t)‖ > 0} = {t ∈ [0, T ] : − σ (t)θ(t) �∈ K̃},
where the equality follows from (6.18). Since K̃ = {z ∈ R

N : − π�z ≤ 0 for all π ∈ K},
we then have F = {t ∈ [0, T ] : �(t) �= ∅}, where �(t) := {π ∈ K : π�σ (t)θ(t) > 0}.
Now suppose that A1(0) > 1; then λ(F ) > 0 (by (6.20)), and by the Aumann selection
theorem [15, Theorem 2.3.12] there exists a measurable selection π1(·) of �(·) on F . Let
π2(t) := 0 for t �∈ F and π2(t) := π1(t)/‖π1(t)‖ for t ∈ F . Then π2 ∈ A (since K is a
cone) and π�

2 (t)σ (t)θ(t) > 0, t ∈ F . Hence, from (2.5) we have E[Xπ2(T )] > x0S0(T ),
which establishes that [x0S0(T ), ∞) ⊂ R for A1(0) > 1. Now, if A1(0) = 1 then λ(F ) = 0
(by (6.20)); thus, for each π ∈ A we have π�(t)σ (t)θ(t) ≤ 0 a.e. and, hence, E[Xπ(T )] ≤
x0S0(T ) (by (2.5)) and R ⊂ (−∞, x0S0(T )]. In this case the market model is not interesting
(in the sense of Remark 4.2), so we shall suppose that A1(0) > 1 and fix some d > x0S0(T ).
From Remark 6.3, (6.14), (6.15), and (6.23), we have h(µ) = �̃4(µ, ȳ(µ)), µ ∈ R. Using
(6.21), it is then easy (although tedious) to calculate that h(·) has the unique minimizer given
by

µ̄ = 2β−1(T )[A1(0) − 1]−1[x0 − β(T )A1(0)d],
and that

ȳ(µ̄) = 2β−2(T )[A1(0) − 1]−1[β(T )d − x0] > 0.

From this together with (6.22) and the fact that var(X̄(µ̄; T )) = var(Ŷ (ȳ(µ̄); T ))/4 (see (6.24)
with a = 2), we compute the minimum variance, or efficient frontier, namely

inf
π∈A

E[Xπ(T )]=d

var(Xπ(T )) = var(X̄(µ̄; T )) = 1

4
var(Ŷ (ȳ(µ̄); T )) = [x0 − β(T )d]2

[A1(0) − 1]β2(T )
.
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The optimal feedback policy is given by (6.25) with µ := µ̄ (since we have seen that
ȳ(µ̄) > 0), and is easy to implement, since only ζ1(·), given in (6.18), need be ‘precalculated
off-line’ using the known deterministic coefficients r , b, and σ . The simplicity with which
dynamic programming applies to the dual problem (for general conical constraints on the
portfolio) should be contrasted with the technical complexity involved in applying dynamic
programming directly to the primal problem, as in [12], for which the resulting Bellman equation
is substantially more involved. As a consequence, the analysis in [12] is very specific to
the no-short selling constraint (where K is the positive orthant) and relies on the restriction
bn(t) > r(t), t ∈ [0, T ], n = 1, . . . , N (see the text following [12, Equation (2.2)]). This
restriction excludes the very natural possibility that interest rates may increase at some point in
the investment interval, exceeding – one hopes only temporarily – the mean rates of return on
some stocks, and also excludes the all-too-real possibility that some stocks might temporarily
underperform over part of the investment horizon (in the sense that the mean return rate, bn(t),
is less than the interest rate, r(t), for some values of t), but perform well in the remainder of
the trading interval. The preceding duality analysis removes these restrictions and works for
completely general conical constraints.

7. Utility maximization

In this section we put aside the problem of mean-variance minimization considered in
the previous sections and turn our attention to problems of utility maximization with convex
portfolio constraints. Our goal is to demonstrate that the approach used for mean-variance
minimization applies equally well to utility maximization, and thus constitutes a unified method
of solving both of these problems. From now on we assume the following condition.

Condition 7.1. We are given

(i) a market with information filtration (2.1), a bond with price {S0(t)}, and N stocks with
prices {Sn(t)}, n = 1, 2, . . . , N , modelled as in Section 2 by the relations (2.2) and (2.3)
and subject to Condition 2.1;

(ii) a closed, convex portfolio constraint set K ⊂ R
N with 0 ∈ K;

(iii) an initial fortune x0 ∈ (0, ∞); and

(iv) a utility function U : (0, ∞) → R which is of class C1, strictly increasing, strictly
concave, and satisfies

(a) limx→∞ U(x) = ∞,

(b) limx→∞ U(1)(x) = 0,

(c) limx↓0 U(1)(x) = ∞, and

(d) limx↓0 U(x) > −∞.

For an {Ft }-progressively measurable process π : � × [0, T ] → R
N such that

∫ T

0
‖π(t)‖2 dt < ∞ a.s.,

https://doi.org/10.1239/aap/1175266470 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1175266470


98 C. LABBÉ AND A. J. HEUNIS

let {Xπ(t), t ∈ [0, T ]} be the unique R-valued, continuous, {Ft }-progressively measurable
process determined by

dXπ(t) = Xπ(t){r(t) + π�(t)σ (t)θ(t)} dt + Xπ(t)π�(t)σ (t) dW (t), Xπ(0) = x0.

(7.1)
Then Xπ is P-strictly positive, that is, inf t∈[0,T ] Xπ(t) > 0 a.s., and if πn(t), the nth entry of
π(t), is interpreted as the fraction of a small investor’s total wealth put into the stock with price
Sn(t) (as is customary in problems of constrained utility maximization), then Xπ(t) gives the
investor’s total wealth at instant t , provided that the investor follows a self-funded strategy (see
[5, p. 770]). Define the set of admissible portfolios,

A′ :=
{
π : � × [0, T ] → R

N such that

π ∈ F ∗, π(t) ∈ K a.e., and
∫ T

0
‖π(t)‖2 dt < ∞ a.s.

}
(7.2)

(recall F ∗ as defined in Section 3), and the value of the portfolio optimization problem,

ϑ := sup
π∈A′

E[U(Xπ(T ))]. (7.3)

To avoid trivialities, assume that ϑ ∈ R. The utility maximization problem is to

establish the existence of some π̄ ∈ A′ such that ϑ = E[U(Xπ̄ (T ))]. (7.4)

Remark 7.1. In contrast to the problem of mean-variance minimization considered in the
preceding sections, the optimal wealth process for the utility maximization problem is generally
not square integrable when π ∈ A′; hence, the set B of Section 3 is not the appropriate one
in which to embed the utility maximization problem. Instead, we introduce the set I of all
{Ft }-Itô processes {X(t), t ∈ [0, T ]} of the form (3.1) for some (a.e. unique) {Ft }-progressively
measurable mappings Ẋ : �×[0, T ] → R and�X : �×[0, T ] → R

N such that
∫ T

0 |Ẋ(t)| dt <

∞ and
∫ T

0 ‖�X(t)‖2 dt < ∞ a.s., and write X ≡ (X0, Ẋ,�X) ∈ I to indicate that X0 ∈ R, Ẋ,
and �X satisfy these a.s. bounds and that (3.1) holds.

By analogy with (5.3), and recalling (7.1) and (7.2), let

C(X) := {π ∈ A′ : Ẋ(t) = X(t){r(t) + π�(t)σ (t)θ(t)}
and �X(t) = X(t)σ�(t)π(t) a.e.} (7.5)

for each X ≡ (X0, Ẋ,�X) ∈ I. Then, by an argument identical to that yielding (5.4), we have

ϑ = sup
X∈I, X0=x0
C(X) �=∅

E[U(X(T ))]. (7.6)

We now introduce penalty functions for the constraints in (7.6) (much as we did for those in
(5.4)). From Remark 2.1, (7.2), and (7.5) we see that, for each X ≡ (X0, Ẋ,�X) ∈ I with
X0 > 0,

C(X) �= ∅ ⇐⇒ inf
t∈[0,T ] X(t) > 0 a.s., Ẋ(t) = r(t)X(t) +��

X(t)θ(t),

and X−1(t)[σ�]−1(t)�X(t) ∈ K a.e. (7.7)
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Remark 7.2. If C(X) �= ∅ for X ≡ (X0, Ẋ,�X) ∈ I with X0 > 0, then X−1[σ�]−1�X ∈
C(X).

Motivated by (7.7), we define the mapping L : � × [0, T ] × R × R × R
N → {0, ∞} by

L(ω, t, x, v, ξ) :=
{

0 if x > 0, v = r(ω, t)x + ξ�θ(ω, t), and x−1[σ�]−1(ω, t)ξ ∈ K,

∞ otherwise
(7.8)

(cf. (5.6)). Next, define l0(x) as in (5.8), let

lT (x) :=
{

−U(x) if x ∈ (0, ∞),

∞ otherwise,
(7.9)

and define the mappings m0(·), mT (·), and M(·) as in (5.12) (with l0(·), lT (·), and L(·) as given
in (5.8), (7.9), and (7.8), suppressing ω in the second relation of (5.12)). Then

m0(y) = x0y, mT (y) = Ũ (y) := sup
x>0

{U(x) − xy}, y ∈ R, (7.10)

and an easy calculation based on (7.8), (5.15), and (5.12) shows that

M(ω, t, y, s, γ ) =
{

0 for s + r(ω, t)y + δ(−σ (ω, t)[θ(ω, t)y + γ ]) ≤ 0,

∞ otherwise,
(7.11)

for each (ω, t, y, s, γ ) ∈ � × [0, T ] × R × R × R
N .

Remark 7.3. For X ≡ (X0, Ẋ,�X) ∈ I and Y ≡ (Y0, Ẏ ,�Y ) ∈ I, we shall continue
to use the notation M(X, Y )(t) introduced in the statement of Proposition 5.1 and the no-
tation �Y (t) introduced in (5.23). In this case, it follows at once from Itô’s formula that
{(M(X, Y )(t),Ft ), t ∈ [0, T ]} is a continuous local martingale with M(X, Y )(0) = 0 but
is not necessarily a genuine martingale. It follows that we can no longer avail ourselves of
Proposition 5.1 in constructing the dual problem (as we did in Proposition 5.2). In order to deal
with this we define

I1 := {X ∈ I : X0 = x0, C(X) �= ∅}, (7.12)

I2 := {Y ∈ I : Ẏ (t) + r(t)Y (t) + δ(�Y (t)) ≤ 0, Y (t) ≥ 0 a.e.}; (7.13)

from (5.8), (7.7), (7.8), and (7.11), for each (X, Y ) ∈ I1 × I2 we then have

l0(X0) = 0, L(t, X(t), Ẋ(t),�X(t)) = 0, and M(t, Y (t), Ẏ (t),�Y (t)) = 0 a.e.
(7.14)

This, together with the third relation of (5.12), ensures that, for each (X, Y ) ∈ I1 × I2,

0 = L(t, X(t), Ẋ(t),�X(t)) + M(t, Y (t), Ẏ (t),�Y (t))

≥ X(t)Ẏ (t) + Ẋ(t)Y (t) +��
X(t)�Y (t) a.e., (7.15)

and we thus find that M(X, Y )(t) ≥ X(t)Y (t) − X0Y0 a.e. for each (X, Y ) ∈ I1 × I2. Since
X(t)Y (t) ≥ 0 a.e. for each (X, Y ) ∈ I1 × I2 (by (7.7), (7.12), and (7.13)), it follows that
M(X, Y )(t) ≥ −X0Y0 a.e. and, thus, from Remark 7.3 and Fatou’s lemma, that

{(M(X, Y )(t),Ft ), t ∈ [0, T ]} is a supermartingale with M(X, Y )(0) = 0,

for each (X, Y ) ∈ I1 × I2. (7.16)
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Remark 7.4. We now define 
(X) for each X ∈ I1 and �(Y) for each Y ∈ I2 as in (5.9) and
(5.16), respectively, with l0, lT , and L as given in (5.8), (7.9), and (7.8), respectively, and with
m0, mT , and M as given in (7.10) and (7.11), respectively. Then, from (7.14), we have


(X) = − E[U(X(T ))], �(Y ) = x0Y0 + E[Ũ (Y (T ))], (X, Y ) ∈ I1 × I2. (7.17)

Proposition 7.1. Assume that Condition 7.1 is satisfied and that ϑ ∈ R (see (7.3)). Then

(X) > −∞ and �(Y) > −∞ for each (X, Y ) ∈ I1 × I2 (recall Remark 7.4), and


(X) + �(Y) ≥ 0, (X, Y ) ∈ I1 × I2. (7.18)

Moreover, for arbitrary X̄ ≡ (X̄0,
˙̄X,�X̄) ∈ I1 and Ȳ ≡ (Ȳ0,

˙̄Y,�Ȳ ) ∈ I2, we have 
(X̄) +
�(Ȳ ) = 0 if and only if each of the following conditions hold:

l0(X̄0) + m0(Ȳ0) = X̄0Ȳ0, (7.19)

lT (X̄(T )) + mT (Ȳ (T )) = −X̄(T )Ȳ (T ) a.s., (7.20)

L(t, X̄(t), ˙̄X(t),�X̄(t)) + M(t, Ȳ (t), ˙̄Y (t),�Ȳ (t))

= X̄(t) ˙̄Y (t) + ˙̄X(t)Ȳ (t) +��̄
X
(t)�Ȳ (t) a.e., (7.21)

{X̄(t)Ȳ (t), t ∈ [0, T ]} is an {Ft }-martingale. (7.22)

Proof. Fix a pair (X, Y ) ∈ I1 × I2. That 
(X) > −∞ and �(Y) > −∞ is an immediate
consequence of Condition 7.1(iv) and that fact that ϑ ∈ R. From the definitions of 
(X) and
�(Y) in Remark 7.4, we see that the chain of equalities and inequalities in (5.22) continues
to hold. Moreover, E[−M(X, Y )(T )] ≥ 0 (from (7.16)), and (7.18) follows from this and
(5.22). Next suppose that 
(X̄) + �(Ȳ ) = 0 for some (X̄, Ȳ ) ∈ I1 × I2. Then, since
E[−M(X̄, Ȳ )(T )] ≥ 0 (again from (7.16)), the inequality in (5.22) must be an equality (with
(X̄, Ȳ ) in place of (X, Y )) and we must have E[M(X̄, Ȳ )(T )] = 0. Equations (7.19)–(7.21)
follow from this and the general relations in (5.21), and it follows from (7.16) that {M(X̄, Ȳ )(t)}
is actually an {Ft }-martingale (being a supermartingale with constant expectation). However,
(7.21) together with (7.14) give M(X̄, Ȳ )(t) = X̄(t)Ȳ (t) − X̄0Ȳ0, which establishes (7.22).
The converse, that (7.19)–(7.22) imply that 
(X̄) + �(Ȳ ) = 0, is immediate from (7.14) and
(5.22).

Remark 7.5. Condition 7.1 ensures that Ũ (·) is smooth, and the derivative U(1)(·) has a
continuous, strictly decreasing inverse I : (0, ∞) → (0, ∞) with I (y) = −Ũ (1)(y), y ∈
(0, ∞) (see [9, Lemma 3.4.3]). From (7.9) and (7.10), for eachx, y ∈ R we have the equivalence

lT (x) + mT (y) = −xy ⇐⇒ y ∈ (0, ∞), x = I (y) ∈ (0, ∞).

Similarly, from (5.8) and (7.10), for each x, y ∈ R we have l0(x) + m0(y) = xy if and only if
x = x0.

Proposition 7.2. Suppose that the conditions of Proposition 7.1 are satisfied. Then, for an
arbitrary (X̄, Ȳ ) ∈ I1 × I2, we have (recalling �Y (·), ϑ , and δ(·) as respectively defined in
Remark 7.3, (7.3), and (5.15))

E[U(X̄(T ))] = ϑ = inf
Y∈I2

�(Y) = �(Ȳ ) (7.23)
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if and only if

X̄0 = x0, (7.24)

Ȳ (T ) > 0 and X̄(T ) = I (Ȳ (T )) > 0 a.s., (7.25)

˙̄Y (t) + r(t)Ȳ (t) + δ(�Ȳ (t)) = 0 a.e., (7.26)

π̄ ∈ C(X̄) and δ(�Ȳ (t)) + π̄�(t)�Ȳ (t) = 0 a.e.

for π̄(t) := X̄−1(t)[σ�]−1(t)�X̄(t), (7.27)

{X̄(t)Ȳ (t), t ∈ [0, T ]} is an {Ft }-martingale. (7.28)

Proof. In view of (5.15), (7.8), and (7.11), we have the following equivalence: for arbitrary
(ω, t) ∈ � × [0, T ], x, y, v, s ∈ R, and ξ , γ ∈ R

N ,

L(ω, t, x, v, ξ) + M(ω, t, y, s, γ ) = xs + yv + ξ�γ
⇐⇒ x > 0, v = r(t)x + ξ�θ(t), x−1[σ�]−1(t)ξ ∈ K,

s + yr(t) + δ(−σ (t)[θ(t)y + γ ]) = 0, and

δ(−σ (t)[θ(t)y + γ ]) + x−1ξ�σ−1(t)(−σ (t)[θ(t)y + γ ]) = 0.

(7.29)

Fix an arbitrary (X̄, Ȳ ) ∈ I1 × I2. In view of (7.29), (7.12), (7.7), Remark 7.5 and Remark 7.2,
we find that (7.19)–(7.22) are equivalent to (7.24)–(7.28). Moreover, from (7.6), (7.12), and
Remark 7.4 we have ϑ = supX∈I1

{−
(X)}, and, thus, the condition 
(X̄) + �(Ȳ ) = 0 is
equivalent to (7.23), as follows from the weak duality (7.18). The equivalence of (7.23) and
(7.24)–(7.28) now follows from Proposition 7.1.

Remark 7.6. It follows from Proposition 7.2 that solving problem (7.4) requires constructing a
pair (X̄, Ȳ ) ∈ I1 ×I2 which satisfies the relations (7.24)–(7.28), since then the optimal portfolio
π̄ is given in terms of X̄ by (7.27). To this end we make the following observations.

(a) If (X̄, Ȳ ) ∈ I1 × I2 is a pair satisfying (7.24)–(7.28), then Ȳ is necessarily P-strictly
positive (since (7.25) ensures that X̄(T )Ȳ (T ) > 0 a.s. and it thus follows from (7.28) and
[8, Problem 1.3.29, p. 21] that X̄Ȳ is a P-strictly positive process, while (7.27) and (7.7) ensure
that the process X̄ is P-strictly positive). This, together with (7.26), shows that we need minimize
�(·), not over all of I2, but instead over the smaller set I3 ⊂ I2 defined by

I3 :=
{
Y ∈ I : inf

t∈[0,T ] Y (t) > 0 a.s. and Ẏ (t) + r(t)Y (t) + δ(�Y (t)) = 0 a.e.
}
. (7.30)

The advantage of minimizing over I3 is that the Y ∈ I3 are exponential semimartingales. In
fact, with

Q :=
{
ν : � × [0, T ] → R

N such that ν ∈ F ∗ and
∫ T

0
{‖ν(t)‖2 + δ(ν(t))} dt < ∞ a.s.

}

and

Hν(t) := exp

[
−

∫ t

0
{r(τ ) + δ(ν(τ ))} dτ

]
E(−[θ + σ−1ν]� •W )(t), ν ∈ Q (7.31)

(see Remark 5.8), it follows easily from Itô’s formula that I3 = {yHν : y ∈ (0, ∞), ν ∈ Q}.
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(b) Minimization of �(·) over I3 is still difficult, because the set Q is ‘very large’. Accord-
ingly, we restrict our attention to ν ∈ D := {ν ∈ Q : E[∫ T

0 ‖ν(t)‖2 dt] < ∞} (that is, square-
integrable members of Q) and minimize �(·) over I4 := {yHν : y ∈ (0, ∞), ν ∈ D} ⊂ I3.
That is, we shall establish that �(Ȳ ) = infY∈I4 �(Y) for some Ȳ ∈ I4. To this end, in addition
to Condition 7.1 we must assume that

• x 
→ xU(1)(x) is nondecreasing on (0, ∞),

• there exist γ ∈ (1, ∞) and α ∈ (0, 1) such that αU(1)(x) ≥ U(1)(γ x) for all x ∈ (0, ∞),
and,

• for each y ∈ (0, ∞), there exists some ν ∈ D such that E[Ũ (yHν(T ))] < ∞.

Using these conditions and [7, Proposition II.1.2] (which relies on the square integrability of
ν ∈ D), together with a trivial variant of the proof of [5, Proposition 13.2], we see that there
exists a pair (ȳ, ν̄) ∈ (0, ∞) × D such that infY∈I4 �(Y) = �(Ȳ ) for Ȳ := ȳHν̄ ∈ I4 (this is
analogous to Proposition 5.4). It remains to construct an X̄ ∈ I1 in terms of this Ȳ such that
(7.24)–(7.28) hold. Motivated by (7.25) and (7.28), we define

X̄(t) := Ȳ−1(t) E[Ȳ (T )I (Ȳ (T )) | Ft ] = H−1
ν̄ (t) E[Hν̄(T )I (ȳHν̄(T )) | Ft ]. (7.32)

From (7.32) we have X̄(t)Hν̄(t) = X̄(0) + ∫ t

0 ψ̄
�(τ ) dW (τ ) =: ξ0(t), for some R

N -valued,
a.e. unique ψ̄ ∈ F ∗ with

∫ T

0 ‖ψ̄(t)‖2 dt < ∞ a.s. (by the martingale representation theorem).
Using this, together with (7.31), to expand the quotient X̄(t) = ξ0(t)/Hν̄(t) using Itô’s formula
then gives X̄ ∈ I (recall Remark 7.1) with { ˙̄X(t)} and {�X̄(t)} given by

dX̄(t) = X̄(t){r(t) + π̄�(t)σ (t)θ(t) + δ(ν̄(t)) + π̄�(t)ν̄(t)} dt + X̄(t)π̄�(t)σ (t) dW (t)

(7.33)
for

π̄(t) := [σ�]−1(t)[H−1
ν̄ (t)X̄−1(t)ψ̄(t) + θ(t) + σ−1(t)ν̄(t)]

(cf. (5.41), (5.42), and (5.43)).

(c) From (7.32) and (7.30) we see that the pair (X̄, Ȳ ) ∈ I×I4 satisfies (7.25), (7.26), and (7.28).
It remains to show that X̄ ∈ I1 and that (7.24) and (7.27) hold. To this end we use necessary
conditions resulting from the optimality of Ȳ ≡ ȳHν̄ established in (b). From this optimality,
together with (7.17), we find that x0y+E[Ũ (yHν(T ))] ≥ x0ȳ+E[Ũ (ȳHν̄(T ))] for all (y, ν) ∈
(0, ∞) × D . In particular, ȳ minimizes the function y 
→ x0y + E[Ũ (yHν̄(T ))], and, upon
taking the derivative in y and using the identity Ũ (1)(y) = −I (y) (see Remark 7.5), we obtain
x0 = E[Hν̄(T )I (ȳHν̄(T ))] = X̄(0), where the second equality follows from (7.32); this
verifies (7.24). Again from the optimality established in (b), we also obtain E[Ũ (ȳHν(T ))] ≥
E[Ũ (ȳHν̄(T ))] for all ν ∈ D , that is, (1/ε) E[Ũ (ȳHν̄+εη(T )) − Ũ (ȳHν̄(T ))] ≥ 0 for each
ε ∈ (0, 1) and η ∈ D . Evaluating the limit as ε → 0 for suitable choices of η ∈ D
(which is a calculation essentially identical to that in [5, pp. 781–783], we obtain π̄(t) ∈ K

and δ(ν̄(t)) + π̄�(t)ν̄(t) = 0 a.e. It follows from this, together with (7.33) and (7.5), that
π̄ ∈ C(X̄); thus, X̄ ∈ I1. Moreover, it is clear that �Ȳ (t) = Ȳ (t)ν̄(t) for Ȳ = ȳHν̄ and, thus,
δ(�Ȳ (t)) + π̄�(t)�Ȳ (t) = 0 a.e. (since Ȳ (t) > 0 and δ(·) is positively homogeneous), as
required to verify (7.27).

Remark 7.7. In order to focus on just the essential ideas, we have considered maximization
of utility from terminal wealth only, without utility from consumption. Only a straightforward
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modification of the the preceding approach is necessary to include intertemporal consumption
(see [11]).

Remark 7.8. The approach to problems of constrained utility maximization used in this section
contrasts with those of [4], [5], and [10], which rely on the a-priori introduction of a complete
fictitious market in which the money market rate and mean return rate on stocks are such
that unconstrained utility maximization in the fictitious market amounts to constrained utility
maximization in the given market. The approach of this section avoids fictitious markets
(the formulation of which is not at all simple) and proceeds algorithmically by relying on
elementary convex analysis to synthesize optimality relations (see (7.24)–(7.28)) the solution
of which yields the optimal portfolio. The same approach establishes the existence of optimal
portfolios for problems of mean-variance minimization. In cases of genuine practical interest
this optimal portfolio is explicitly computable (see Example 6.2). Finally, while methods based
on the introduction of a complete fictitious market are undoubtedly effective for problems
of constrained utility maximization, provided that one can find the ‘correct’ fictitious market
(always a significant challenge), this approach does not appear to adapt easily to constrained
mean-variance minimization. On the other hand, methods of stochastic Riccati equations
and stochastic linear quadratic control, which are the preferred mathematical technology in
problems of mean-variance minimization, are unlikely to be appropriate for preferences based
on utility maximization, relying as they do in an essential way on the quadratic form of the
loss function. In contrast, the approach of this work applies with equal facility to both of the
two main preference structures of utility maximization and mean-variance reduction, and deals
easily with portfolio constraints.

Example 7.1. We add an induced constraint on the terminal wealth to the problem (7.4). Fix
some α ∈ [0, 1), define ζ := αx0S0(T ), and let A∗ := {π ∈ A′ : Xπ(T ) ≥ ζ a.s.} (recall
(7.2)) and ϑ1 := supπ∈A∗ E[U(Xπ(T ))]. The problem of utility maximization that we study is
to establish the existence of some π̄ ∈ A∗ such that ϑ1 = E[U(Xπ̄ (T ))]. This problem could
represent the preference of a cautious investor whose goal is to maximize expected utility from
terminal wealth subject to the usual portfolio constraints while also insisting that the terminal
wealth not be less than the fortune, ζ , that would have been obtained by just investing some
fraction α of the initial wealth, x0, in a money market account. While it is difficult to use the
method of fictitious markets to establish optimality relations for this problem, we shall see that
the approach of this section applies quite easily. Define a modified utility by U1(ω, x) := U(x)

for x ≥ ζ(ω) and U1(ω, x) := −∞ otherwise, and let Ũ1(ω, y) := supx>0{U1(ω, x) − xy}
and I1(ω, y) := −Ũ

(1)
1 (ω, y) for all (ω, y) ∈ � × (0, ∞). Then, exactly as in (7.6), we

find that ϑ1 = sup{E[U1(X(T ))] : X ∈ I, X0 = x0, C(X) �= ∅}. Finally, by analogy with
(7.17), let 
1(X) := − E[U1(X(T ))] for each X ∈ I1 and �1(Y ) := x0Y0 + E[Ũ1(Y (T ))]
for each Y ∈ I2,1 := {Y ∈ I2 : E[Y (T )] < ∞}. We can now repeat the analysis which led
to Proposition 7.2, but using the utility function U1 in place of U , to show that, for arbitrary
(X̄, Ȳ ) ∈ I1 × I2,1, we have E[U1(X̄(T ))] = ϑ1 = infY∈I2,1 �1(Y ) = �1(Ȳ ) if and only if the
Euler–Lagrange and transversality relations (7.24), (7.26)–(7.28), and

Ȳ (T ) > 0 and X̄(T ) = I1(ω, Ȳ (T )) a.s. (7.34)

hold (that is, we have (7.34) in place of the transversality relation (7.25)). It is now necessary
to solve these relations, exactly as in Remark 7.6. For the sake of simplicity we look at the
special case in which K = R

N . Then, just as in Example 6.1, the dual problem reduces to
the minimization of the functional y 
→ �1(yH) : (0, ∞) → R (recall (5.39)). It is clear
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from the definition of Ũ that limy↓0 �1(yH) = ∞ and, since α < 1, it is easily verified
that limy→∞ �1(yH) = ∞, so the existence of a minimizing ȳ ∈ (0, ∞) follows. Now
define Ȳ (t) := ȳH(T ) and X̄(t) := H−1(t) E[H(T )I1(ȳH(T )) | Ft ]. Then it is clear that
(X̄, Ȳ ) ∈ I1 × I2,1, and, just as in Remark 7.6, it can be established that this pair satisfies the
relations (7.24), (7.26)–(7.28), and (7.34). It now follows that π̄ defined in terms of X̄ by (7.27)
is the optimal portfolio. When the constraint on the terminal wealth binds, we can use the fact
that α < 1 to relax the dual problem (by essentially following the approach of [6]) in order
to establish the existence of a Lagrange multiplier in L∞(�, F , P)∗ (the topological dual of
L∞(�, F , P)) which enforces the terminal wealth constraint.
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