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OPTIMAL TIME TO EXCHANGE TWO BASKETS
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Abstract

In this paper we present simple extensions of earlier works on the optimal time to exchange
one basket of log Brownian assets for another. A superset and subset of the optimal
stopping region in the case where both baskets consist of multiple assets are obtained. It
is also shown that a conjecture of Hu and Øksendal (1998) is false except in the trivial
case where all the assets in a basket are the same processes.
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1. Introduction

In the real options literature, optimal investment timing is often examined under the assump-
tion that revenue and/or cost processes follow log Brownian motions. As mentioned in [3], this
specification can be justified when the processes represent their present values. Moreover,
revenues and costs may consist of multiple sources in practice, implying that it is important to
analyze the case in which both revenues and costs follow additive log Brownian motions. The
problem to be studied in this paper is the optimal stopping time

sup
τ

E[e−ρτ (X1
τ + · · · + Xn

τ − Xn+1
τ − · · · − Xn+m

τ )], (1.1)

where ρ is the discount rate and (X1, . . . , Xn+m) are log Brownian motions representing the net
present values of revenues and costs. Because of mathematical intractability, only a few studies
investigate problem (1.1) analytically. The possibility that τ = ∞ is allowed, and corresponds
to the situation where the investor never exercises his option to invest in the project. Accordingly,
we make the convention that

e−ρτ (X1
τ + · · · + Xn

τ − Xn+1
τ − · · · − Xn+m

τ ) = 0 if τ = ∞.

Since the agent may postpone his moment of investment for ever if need be, it is clear that he
would never invest at any time when the value of investing was negative, and the value to him
of the option is automatically nonnegative.

The first study on optimal investment timing of this type was by McDonald and Siegel [3].
They considered the n = m = 1 case and showed that the optimal stopping time τ ∗ takes the
form

τ ∗ = inf

{
t ≥ 0 : X1

t ≥ X2
t

z∗

}
,
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where the constant z∗ is determined by the values of the drifts, volatilities, and correlation
coefficient of the two processes.

Olsen and Stensland [4] considered the problem in the case n = 1. They proved that the
optimal stopping region of (1.1) contains the cone

{
x ∈ R

m+1+ : x1 ≥
m+1∑
k=2

xk

z∗
1k

}
, (1.2)

where z∗
1k denotes the barriers for the two-dimensional case of X1 and Xk . They obtained a

similar result for the m = 1 case.
Hu and Øksendal [2] studied the problems in these two papers and provided sufficient

conditions for the stopping region to be equal to (1.2) in the problem of Olsen and Stensland
[4]. We note that Hu and Øksendal insisted that the stopping time τ be finite. This assumption
corresponds to a situation where the investor is compelled to invest at some time, and is different
from our assumption; McDonald and Siegel [3] in effect made the same assumption as we do,
though this slips in implicitly in their account. In the case where the discount rate ρ is greater
than all the growth rates of the Xi , then there is no difference in the solution.

In this paper we study the optimal stopping problem for the general case (1.1) analytically.
Our first results, in Section 2, provide bounds on the stopping set. On the one hand, we prove
that the stopping region for (1.1) contains a cone represented as the convex hull of a union of
simpler sets, and as we shall see, this generalizes the result of Olsen and Stensland [4]. On the
other hand, we obtain a superset that contains the stopping region, extending the result of Hu
and Øksendal [2], proved only for the n = 1 case.

Our second theme, presented in Section 3, is to prove that the stopping region is in general
quite a complicated shape, and the simple cones identified in Section 2 are generally strict
sub/supersets. We prove that in the case in which n = 1 and m = 2, studied by Olsen and
Stensland [4] and Hu and Øksendal [2], the convex cone (1.2) identified as a subset of the
stopping region is strictly contained in the stopping region unless the problem is degenerate.
More precisely, the sufficient conditions for the equivalence that Hu and Øksendal [2] presented
hold only in a degenerate case where the volatility matrix of log Brownian motions is singular.
The result of Section 3 has been independently proved by Christensen and Irle [1], using quite
different techniques.

Finally, concluding remarks are given in Section 4.

2. Problem formulation and basic results

We first present the simplest form of the problem, which is a one-dimensional problem
solvable in closed form. Though very simple, this is the key result (due to McDonald and
Siegel [3]); all subsequent results in this paper use this by suitable comparison with the basic
one-dimensional problem.

The problem is to find the optimum

v(z) ≡ sup
τ

Ez[e−ρτ (1 − Zτ )],
where Z is a log Brownian motion

dZt = Zt(σ dWt + µ dt), Z0 = z > 0,

ρ > 0 is fixed, and τ ≥ 0 is a stopping time.
The solution is easy to determine.
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Proposition 2.1. The value function v has the form

v(z) =
⎧⎨
⎩

1 − z, z ≤ z∗,

(1 − z∗)
(

z

z∗

)−α

, z ≥ z∗,
(2.1)

where −α < 0 is the negative root of the quadratic

Q(t) ≡ 1
2σ 2t (t − 1) + µt − ρ

and
z∗ = α

1 + α
.

The optimal stopping time is to take

τ = inf{t : Zt ≤ z∗}.

Proof. Let L be the operator given by

L = σ 2

2
z2 ∂2

∂z2 + µz
∂

∂z
.

The following properties of the function v defined by (2.1) are easy to verify:

(P1) v(z) ≥ 1 − z for all z > 0;

(P2) v is C1;

(P3) (L − ρ)v(z) ≤ 0 for all z > 0 with equality for z > z∗.

Hence, by Itô’s formula,

e−ρtv(Zt ) = v(Z0) +
∫ t

0
e−ρsv′(Zs)σZs dWs +

∫ t

0
e−ρs(L − ρ)v(Zs) ds. (2.2)

(The C1 property is used here; if there was a discontinuity of the gradient of v at z∗, there would
also be a term involving the local time of Z at z∗.) Since the payoff function is bounded, the
local martingale term on the right-hand side of (2.2) is also bounded (all the other terms in (2.2)
are clearly bounded), implying that it is in fact a martingale. Hence, by the optional sampling
theorem we have, for any stopping time T ,

E[e−ρT (1 − ZT )] ≤ E[e−ρT v(ZT )]

= v(Z0) + E
∫ T

0
e−ρs(L − ρ)v(Zs) ds

≤ v(Z0),

using properties (P1) and (P3). Thus, v(Z0) is an upper bound for the value starting from Z0.
This bound is seen to be achieved when T = τ because (a) v(Zτ ) = 1 − Zτ and (b) up until τ ,
(L − ρ)v(Zs) = 0.
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Remark 2.1. Theorem 3.2 of Hu and Øksendal [2] states only that (2.1) holds when µ ≤ σ 2/2,
and it is unclear whether the equation holds when µ > σ 2/2. (In this setting, the condition
µ ≤ σ 2/2 is equivalent to P{τ < ∞} = 1. The discrepancy is due to the assumption in [2]
that the stopping time must be finite.) Proposition 2.1 ensures that the value function is given
by (2.1) under any parameter values. Note also that the value function v constructed is C1, but
fails to be C2 at z∗.

To formulate the multidimensional analogue of this problem, we suppose that W is a standard
Brownian motion in R

N , and that log Brownian motions Xi
t , i = 1, . . . , n + m, are defined as

the solutions to the equations

dXi
t = Xi

t (σi · dWt + µi dt), Xi
0 = xi. (2.3)

Here, the σi are fixed vectors in R
N and the µi are fixed scalars.

The multidimensional problem is to find the value function

V (x) ≡ sup
τ

Ex

[
e−ρτ

( n∑
j=1

Xj
τ −

n+m∑
k=n+1

Xk
τ

)]
(2.4)

and the optimal stopping region in R
n+m. We make the notational convention that an index j

is assumed to be in {1, . . . , n}, and an index k is assumed to be in {n + 1, . . . , n + m} unless
stated explicitly to the contrary. We also make the notational convention that

∑
j ≡ ∑n

j=1 and∑
k ≡ ∑n+m

k=n+1. We shall assume that

ρ > µj for all j = 1, . . . , n,

otherwise the problem may fail to be well posed.
This problem will not in general be explicitly solvable except in the trivial case where all

the log Brownian motions are the same, but we will be able to find out some useful information
about the stopping region. We are however able to find the solution explicitly in the case where
n = m = 1 by reducing the problem to the one-dimensional problem solved in Proposition 2.1.
To see how this works, consider

vjk(x) ≡ vjk(xj , xk) ≡ sup
τ

E[e−ρτ (Xj
τ − Xk

τ ) | X0 = x].

By the change of probability measures, we have

vjk(x) = sup
τ

xj Ẽ[e−(ρ−µj )τ (1 − Zτ ) | X0 = x], (2.5)

where we have written

Zt ≡ Xk
t

X
j
t

, (2.6)

a log Brownian motion, and we write Ẽ for expectation with respect to the probability P̃ defined
by

dP̃

dP

∣∣∣∣
Ft

= x−1
j e−µj tX

j
t .
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As is well known, the effect of changing the measure to P̃ is to introduce a drift into the Brownian
motion W :

W̃t ≡ Wt − σj t

is a P̃-Brownian motion. Thus, under the probability measure P̃, Z is also a log Brownian
motion (explicitly, dZt = Zt {(σk − σj ) · dW̃t + (µk − µj ) dt}), and the value function vjk has
the form given by Proposition 2.1. The stopping region for this problem is the region where

Zt ≡ Xk
t

X
j
t

≤ z∗
jk, (2.7)

where the constant z∗
jk is calculated analogously.

Returning to the multidimensional problem (2.4), we write

g(x) ≡
∑
j

xj −
∑

k

xk

for the stopping value, and we note that V ≥ g. As Olsen and Stensland [4] observed, for any
stopping time τ , the function x �→ Ex e−ρτ g(Xτ ) is clearly linear, so the value function V ,
which is the supremum of all such functions as τ varies, must be convex. This implies that the
function V − g ≥ 0 is convex, and, hence, the stopping region

S ≡ {x : V (x) = g(x)}
must be convex. For any 1 ≤ j ≤ n and n < k ≤ n + m, we know from (2.7) that all points of
the set

�jk ≡ {x : xk ≤ xj z
∗
jk, xi = 0 for all i 
= j, k}

are points of S, so

S ⊇ S− ≡ Co

(⋃
j,k

�jk

)
,

where Co(A) denotes the convex hull of A. In the case in which n = 1, it is not hard to see
that we recover the result of Olsen and Stensland [4]:

S ⊇
{
x : x1 ≥

∑
k

xk

z∗
1k

}
. (2.8)

We shall now find a superset of the stopping set by a different comparison with the simple
case n = m = 1. We introduce log Brownian motions X0 and XK , solving the corresponding
stochastic differential equation (2.3) for vectors σ0, σK and scalars µ0, µK < ρ yet to be
specified, and with the initial conditions X0

0 = XK
0 = 1. We shall, for concreteness, assume

that K = n + m + 1, so that we are considering a sequence X0, . . . , XK of log Brownian
motions, the first and last of which are for comparison. The idea of this comparison is due to
Hu and Øksendal [2].

Proposition 2.2. The stopping set S is contained in the set

S+ ≡
{
x : z∗

0K

∑
j

xj

z∗
0j

≥
∑

k

xkz
∗
kK

}
, (2.9)

whatever σ0, σK and µ0, µK < ρ.
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Remark 2.2. Note that the set S+ depends on the dynamics of X0 and XK ; if we allow σ0,
σK , µ0, and µK to vary, we find that the stopping region is contained in the convex hull of an
intersection of half-spaces of the form (2.9).

Proof of Proposition 2.2. For any stopping time τ and any positive ξi, i = 1, . . . , n + m,
we have

E e−ρτ (Xj
τ − ξjX

0
τ ) ≥ −v0j (ξj , xj ), E e−ρτ (Xk

τ − ξkX
K
τ ) ≤ vkK(xk, ξk).

Hence, for any stopping time τ ,

V (x) ≥ E

[
e−ρτ

(∑
j

Xj
τ −

∑
k

Xk
τ

)]

≥ E

[
e−ρτ

(
X0

τ

∑
j

ξj − XK
τ

∑
k

ξk

)]
−

∑
j

v0j (ξj , xj ) −
∑

k

vkK(xk, ξk).

Now taking the supremum over all stopping times, we obtain the inequality

V (x) ≥ v0K

(∑
j

ξj ,
∑

k

ξk

)
−

∑
j

v0j (ξj , xj ) −
∑

k

vkK(xk, ξk). (2.10)

Since the choices of ξi , σ0, σK , µ0, and µK are arbitrary, we could obtain a lower bound for
V (x) by taking the supremum on the right-hand side of (2.10) over all these variables. However,
the dependence on these variables is sufficiently complicated that it is very hard to see what
may result. Nevertheless, we may exploit (2.10) by choosing the ξi at the critical values, i.e.

ξj = xj

z∗
0j

, ξk = xkz
∗
kK,

which ensures that∑
j

v0j (ξj , xj ) =
∑
j

(ξj − xj ),
∑

k

vkK(xk, ξk) =
∑

k

(xk − ξk).

We will be able to deduce that V (x) > g(x) if

v0K

(∑
j

ξj ,
∑

k

ξk

)
>

∑
j

ξj −
∑

k

ξk,

which is ensured if

z∗
0K

∑
j

ξj = z∗
0K

∑
j

xj

z∗
0j

<
∑

k

ξk =
∑

k

xkz
∗
kK.

If this inequality is satisfied then we know that it is optimal to continue at x; hence, the stopping
region is contained in the set

S+ ≡
{
x : z∗

0K

∑
j

xj

z∗
0j

≥
∑

k

xkz
∗
kK

}
,

as claimed.
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3. Strict inclusion of the stopping region

Hu and Øksendal [2] conjectured that inclusion (2.8), found for the stopping region in the
n = 1 case, might in fact hold in wide generality. However, as we shall show next, it holds
only in degenerate cases.

Proposition 3.1. Suppose that m ≥ 2 or n ≥ 2. When the volatility vectors are linearly
independent, the convex hull is strictly included by the optimal stopping region.

Proof. To prove the proposition, we study only the situation in which n = 1 and m = 2. As
at (2.5), we shall rephrase the problem as

sup
τ

Ex[e−ρτ (X1
τ − X2

τ − X3
τ )] = sup

τ
x1Ẽx[e−(ρ−µ1)τ (1 − Z2

τ − Z3
τ )],

where Zk ≡ Xk/X1, as at (2.6). Since the Zk are log Brownian motions, we lose no generality
in seeking the value function

V (x) ≡ sup
τ

Ex[e−ρτ (1 − X1
τ − X2

τ )
]
,

where X1 and X2 satisfy (2.3). Our proof rests on the elementary inequality valid for all
x, y > 0, and p ≡ 1 − q ∈ [0, 1]:

x + y = p
x

p
+ q

y

q
≥

(
x

p

)p(
y

q

)q

.

This holds with equality if and only if qx = py (Young’s inequality). Thus, if we define a new
log Brownian motion

Xt(p) ≡
(

X1
t

p

)p(
X2

t

q

)q

for p ∈ [0, 1], the associated value function

Vp(x) ≡ sup
τ

Ex[e−ρτ (1 − Xτ (p))]

is an upper bound for V . Calculating the value function Vp is simply an application of
Proposition 2.1; we find that it is optimal to stop whenever (x1/p)p(x2/q)q ≤ z∗(p), where

z∗(p) ≡ α(p)

1 + α(p)
, (3.1)

and −α(p) < 0 solves the quadratic

1
2σ(p)2t2 + m(p)t − ρ = 0. (3.2)

Here, σ(p)2 = |pσ1 + qσ2|2 and m is the linear function

m(p) = pµ1 + qµ2 − 1
2p|σ1|2 − 1

2q|σ2|2.
If we consider the line Lp ≡ {(λp, λq) : λ ≥ 0} (see Figure 1) then at all points of this line
where λ ≤ z∗(p) the optimal rule for Vp is to stop. Thus, at all points of the line Lp for
λ ≤ z∗(p), we shall have Vp(λp, λq) = 1 −λ; what we require to prove is that the point z∗(p)
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z*(1)

z*(0)

z*(p)

Figure 1: Critical region in the (x1, x2)-plane.

on this line where the rule changes lies strictly outside the triangle defined by the origin and
the points (0, z∗(0)) and (z∗(1), 0). If this is the case, since Vp ≥ V , we know that it will also
be optimal to stop for V all along Lp as far as z∗(p), and, hence, the stopping region for V

extends strictly outside the triangle. Routine coordinate geometry gives us that the point where
Lp reaches the edge of the triangle is where

λ = z∗(0)z∗(1)

pz∗(0) + qz∗(1)
,

which we want to be strictly smaller than z∗(p). Equivalently stated, we require, for 0 < p < 1,
that

1

z∗(p)
<

p

z∗(1)
+ q

z∗(0)
;

or again, using (3.1), this is the statement that p �→ 1/α(p) is strictly convex. It is easy to see
from (3.2) that 1/α(p) is the positive root of the quadratic

ρt2 + m(p)t − 1
2σ(p)2 = 0.

This positive root is
1

α(p)
= −m(p) + √

ξ(p)

2ρ
,

where
ξ(p) ≡ m(p)2 + 2ρσ(p)2 ≡ ap2 + bp + c

is quadratic in p. Since m is linear, the convexity of 1/α(p) is equivalent to the convexity of√
ξ(p). Differentiating twice, after some calculations we discover that

d2

dp2

√
ξ(p) ≥ 0 ⇐⇒ 4ac − b2 ≥ 0.

However, we observe that the quadratic ξ is nonnegative, so cannot have two distinct real roots.
Hence, b2 − 4ac ≤ 0, as required.

The theorem immediately holds for general n and m since the stopping region is strictly
contained by the convex hull on the three-dimensional plane.
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x
1

x
2

z*(p)
Convex hull

Stopping region

z*(1)

z*(0)

Figure 2: Convex hull and the subset obtained by z∗ in the (x1, x2)-plane.

Remark 3.1. Christensen and Irle [1] independently proved the same result. Their proof is
based on a good choice of measure transform to estimate the optimal stopping value, and is
an application of a general method. The proof we give here is simpler in that it requires only
an elementary inequality and comparisons with the known solution to the one-dimensional
problem, but is not capable of generalization.

Figure 2 presents an illustrative example of the convex hull and the subset of stopping regions
described by z∗(p). The subset induced by {z∗(p); p ∈ [0, 1]} is strictly greater than the convex
hull. Note that the maximum subset of the optimal stopping region derived analytically in the
previous studies is the convex hull of the stopping regions for the two-dimensional cases. In the
proof of Proposition 3.1, we obtained a subset that is strictly greater than the convex hull. This
observation helps us understand the optimal stopping region for the exchange of two baskets
that contain multiple log Brownian motions.

4. Conclusions

In this paper we have generalized the results of Olsen and Stensland [4] and Hu and Øksendal
[2], and studied the optimal stopping problem in which both positive and negative baskets are
made up of linearly additive log Brownian motions.

The two main contributions of this paper are as follows. Firstly, we obtained results that
included the results of Olsen and Stensland [4] and Hu and Øksendal [2] as special cases. That
is, the stopping region for the original problem contains the convex hull of the stopping regions
for all two-dimensional cases. In addition, we presented a superset that contains the stopping
region in the general case where both baskets consist of multiple log Brownian motions.

Secondly, we showed that Hu and Øksendal’s sufficient conditions for the equivalence of the
stopping region and the convex hull only hold for a degenerate setting. More specifically, if we
assume a regular volatility matrix, the optimal stopping region is strictly larger than the convex
hull. Contrary to Christensen and Irle [1], our proof is based on an elementary inequality and
so helps us understand how we optimally stop and exchange the two baskets.
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