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The parity conjecture for elliptic curves at

supersingular reduction primes

Byoung Du (B. D.) Kim

Abstract

In number theory, the Birch and Swinnerton-Dyer (BSD) conjecture for a Selmer group
relates the corank of a Selmer group of an elliptic curve over a number field to the order of
zero of the associated L-function L(E, s) at s = 1. We study its modulo two version called
the parity conjecture. The parity conjecture when a prime number p is a good ordinary
reduction prime was proven by Nekovar. We prove it when a prime number p > 3 is a
good supersingular reduction prime.

1. Introduction

In number theory and arithmetic geometry, we often expect an algebraic aspect and an analytic
aspect to be closely related. A classic example is the Birch and Swinnerton-Dyer (BSD) conjecture.
The BSD conjecture predicts a precise relation between the Mordell–Weil group and the L-function
of an elliptic curve. Its statement is given in the following.

Conjecture 1 (BSD conjecture). Suppose that E/Q is an elliptic curve defined over Q. Then we
expect

rankE(Q) = ords=1L/Q(E, s).

Another conjecture closely related to the BSD conjecture is the BSD conjecture for a Selmer
group. The Selmer group of an elliptic curve is a subgroup of a cohomology group associated to the
torsion points of the elliptic curve, and the Shafarevich–Tate conjecture predicts that its corank is
equal to the rank of E(Q). The BSD conjecture for a Selmer group is stated as follows.

Conjecture 2 (BSD conjecture for a Selmer group). Let p be a prime number and E an elliptic
curve defined over Q. We let Selp(E/Q) denote the p-Selmer group of E over Q, then we expect

corankZpSelp(E/Q) = ords=1L/Q(E, s).

We consider the modulo two version of the BSD conjecture for a Selmer group, namely the parity
conjecture.

Conjecture 3 (Parity conjecture). Let p be a prime number and E an elliptic curve defined
over Q. We expect

corankZpSelp(E/Q) ≡ ords=1L/Q(E, s) (mod 2).

Note that this conjecture depends on the prime number p (as does Conjecture 2). Although we
focus on this conjecture throughout this paper, we can state the BSD conjecture and the parity
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conjecture for any number field F in the same way, which we will call the BSD conjecture for F
and the parity conjecture for F , respectively. The parity conjecture for a good ordinary reduction
prime p was proven by Nekovar (see [Nek01]). He also proved in [Nek06a, ch. 12] that the parity
conjecture for a totally real number field F holds if every prime of F lying above p is a good
ordinary reduction prime under appropriate conditions. It was difficult to apply his method to
prove the conjecture for a good supersingular prime because a p-Selmer group does not behave
nicely in that case. In this paper, we overcome this difficulty and prove the parity conjecture when
p > 3 is a good supersingular reduction prime.

First we generalize norm coherent points of the formal group associated to the elliptic curve.
These points were studied first by Kobayashi in [Kob03] and generalized by Iovita and Pollack [IP06].
We generalize the idea further to a totally ramified Zp-extension of an unramified local field given by
torsion points of a relative Lubin–Tate group of height 1. Then we construct a local condition using
these points and show that this local condition satisfies self-duality under the Tate local pairing.

Once it is proven, the rest of paper follows standard Iwasawa theory techniques and Nekovar’s
idea very closely to prove the parity conjecture.

It is natural to try to apply the same idea to the parity conjecture for a totally real field.
The result in this direction under some strong conditions will be published in a subsequent paper.

Notation 1.1. Throughout this paper, Hom(A,B) denotes a set of Zp-linear continuous homo-
morphisms from A to B unless stated otherwise.

2. Galois cohomology
Let F be a finite Galois extension of a number field K and p be a prime of K. Fix an embedding
K̄ → Cp. This embedding induces a prime P of F lying above p. We choose a subset S of GK =
Gal(K̄/K) such that {Pg}g∈S is the set of all distinct primes of F lying above p.

Let C be a GK -module which is a finite Zp-module. There is a map between H0 groups

CGKp →
⊕
g∈S

C
GFPg

x �→
⊕
g∈S

(g · x).

Then for a GK -module B which is a finite Zp-module, the map above induces the following:

Res : H i(Kp, B)→
⊕
g∈S

H i(FPg , B).

Similarly, a map between H0 groups⊕
g∈S

C
GFPg → CGKp

⊕
g∈S

xg �→
∑
g∈S

NFP/Kp(g
−1 · xg).

induces
Cor :

⊕
g∈S

H i(FPg , B)→ H i(Kp, B).

Since we can check Res ◦Cor = NF/K for H0 groups, we have the following.

Proposition 2.1. We have Res ◦Cor = NF/K on
⊕

g∈S H
i(FgP, B).

Now we study a Shapiro map of cohomology groups.
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Definition 2.2. We always let GK act on Hom(·, ·) by (γ · f)(x) = γ(f(γ−1x)) for γ ∈ GK . If D1

and D2 are Gal(F/K)-modules, we let Gal(F/K) act on Hom(D1,D2) in the same way. On the
other hand, we always let Zp[Gal(F/K)] act on Hom(Zp[Gal(F/K)], ·) by right multiplication on
Zp[Gal(F/K)], i.e. for a ∈ Zp[Gal(F/K)] and f ∈ Hom(Zp[Gal(F/K)], ·),

(a · f)(b) = f(ba).

Let C be a finite GK -module which is a finite Zp-module. We define the following map be-
tween H0:

Hom(Zp[Gal(F/K)], C)GKp →
⊕
g∈S

C
GFPg

ψ �→
⊕
g∈S

(g ◦ ψ)(1).

Then the Shapiro map between H1 groups follows:

Sh : H1(Kp,Hom(Zp[Gal(F/K)], B))→
⊕
g∈S

H1(FPg , B).

From the definition of Galois cohomology we can see that Gal(F/K) acts on
⊕

g∈S H
1(FPg , B) as

well, so we can consider it as a Zp[Gal(F/K)]-module. Then we can check that Sh is a Zp[Gal(F/K)]-
isomorphism.

Remark 2.3. The definition of the Shapiro map differs depending on the source. For example, the
definition of [Rub00, Appendix B.4] uses IndH(·) instead of Hom(Zp[Gal(F/K)], ·). We can check
that it is equivalent to our definition.

Definition 2.4. The map

i :
⊕
g∈S

H1(FPg ,Hom(Zp[Gal(F/K)], B))→ Hom
(

Zp[Gal(F/K)],
⊕
g∈S

H1(FPg , B)
)

is defined in the natural way.
We define a map

j :
⊕
g∈S

H1(FPg , B)→ Hom
(

Zp[Gal(F/K)],
⊕
g∈S

H1(FPg , B)
)

(xg) �→ fx : σ ∈ Gal(F/K) �→ σ · (xg).
We obtain the following.

Proposition 2.5. The diagram

H1(Kp,Hom(Zp[Gal(F/K)], B)) Sh−−−−→
⊕
g∈S

H1(FPg , B)

�Res

�j⊕
g∈S

H1(FPg ,Hom(Zp[Gal(F/K)], B)) i−−−−→ Hom(Zp[Gal(F/K)],
⊕
g∈S

H1(FPg , B))

is commutative. The image of j is

Hom
(

Zp[Gal(F/K)],
⊕
g∈S

H1(FPg , B)
)Gal(F/K)

.
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Proof. The commutativity of the diagram follows from the commutativity for a similar diagram for
H0 groups. The image of j is easy to figure out.

Now we suppose that p is unramified over F/K.

Definition 2.6. The same Shapiro map induces

Sh : H1(Kur
p /Kp,Hom(Zp[Gal(F/K)], BIKp ))→

∏
S

H1(F ur
Pg/FPg , B

IFPg ).

We can check that Sh is an isomorphism.
Although our propositions are stated for a finite extension F/K and a finite module B, they are

true for any profinite extension F/K (for instance, a Zp-extension) and any discrete Zp-module B
by passing them to a direct limit.

3. Plus/minus-local conditions

3.1 ±-Coleman maps
We suppose that p is an odd prime number greater than 3. Assume that E/Q has good supersingular
reduction at p, and let Ê be the formal group over Zp associated with the minimal model of E over
Qp. In this section we assume the following:

(A) k is an unramified extension of Qp of degree d and k∞ is a totally ramified extension of k with
Gal(k∞/k) ∼= Zp.

We let kn denote the subfield of k∞ with Gal(kn/k) ∼= Z/pnZ and write Gn = Gal(kn/k). We let
mn denote the maximal ideal of kn and let m−1 = m0.

Proposition 3.1. For any n, Ê(mn) is torsion-free.

Proof. We can prove this in the same way that [Kob03, Proposition 8.7] is proven.

Suppose that there are given cn,i ∈ Ê(mn) for every i = 0, 1, . . . , d − 1 and n � −1 such that
Trn/n−1cn,i = −cn−2,i for every n � 1.

Define c+0,i = −c0,i, c+1,i = −c0,i, c+2,i = c2,i, c
+
3,i = c2,i, . . . , and c−0,i = c−1,i, c

−
1,i = −c1,i, c−2,i =

−c1,i, c−3,i = c3,i, . . . . Then we can note that for every i = 0, 1, . . . , d− 1 we have

Tr2n/2n−1c
+
2n,i = c+2n−1,i for n � 1,

c+2n−1,i = c+2n−2,i for n � 1,

Tr2n+1/2nc
−
2n+1,i = c−2n,i for n � 0,

c−2n,i = c−2n−1,i for n � 1.

We let T denote the p-adic Tate module of E and A denote E[p∞]. The Kummer map Ê(mn)→
H1(kn, T ) together with the cup product of the Weil pairing induces

(·, ·)n : Ê(mn)×H1(kn, T )→ H2(kn,Zp(1)) ∼= Zp.

For every x = (xi)i=0,...,d−1 ∈ Ê(mn)d we define a homomorphism Px,n : H1(kn, T )→ (Zp[Gn])d

by

Px,n(z) =
( ∑
σ∈Gn

(xσi , z)nσ
)
i=0,...,d−1
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for z ∈ H1(kn, T ). Since (·, ·)n is Gn-equivariant, Px,n is Gn-equivariant as well. As noted in [Kob03]
(also in [IP06]), for every xn ∈ Ê(mn)d and n � 1 the following diagram

H1(kn, T )
Pxn,n−−−−→ (Zp[Gn])d�Cor

�
H1(kn−1, T )

Pxn−1,n−1−−−−−−−→ (Zp[Gn−1])d

is commutative when xn−1 = Trn/n−1xn and the right vertical map is the natural projection.

Definition 3.2. (i) Following [Kob03] and [IP06] we define

Ê+(mn) := {P ∈ Ê(mn) | Trn/m+1P ∈ Ê(mm) for all 0 � m < n,m even},
Ê−(mn) := {P ∈ Ê(mn) | Trn/m+1P ∈ Ê(mm) for all − 1 � m < n,m odd}.

(ii) We define a subgroup C±(mn) of Ê(mn) as a Zp[Gn]-module generated by c±n,0, c
±
n,1, . . . ,

c±n,d−1.
We also define

D±(mn) := {P ∈ Ê(mn) | pkP ∈ C±(mn) for some integer k}.
From the definition Ê(mn)/D±(mn) is torsion-free. Also it is clear that C±(mn) ⊂ Ê±(mn).

Moreover, we have the following.

Proposition 3.3. We have D±(mn) ⊂ Ê±(mn).

Proof. Let Q be any point in Ê(mn) such that R = pbQ ∈ C−(mn) for some b � 0. Since C−(mn) ⊂
Ê−(mn), we have pbTrn/m+1Q = Trn/m+1R ∈ Ê(mm) for every odd m with −1 � m < n. Thus,
for any σ ∈ Gal(km+1/km), (Trn/m+1Q)σ − (Trn/m+1Q) is a pb-torsion point. Since Ê(mm+1) is
torsion-free by Proposition 3.1, (Trn/m+1Q)σ − (Trn/m+1Q) = 0, i.e. Trn/m+1Q ∈ Ê(mm). Thus,
Q ∈ Ê−(mn). Thus, by the definition of D−(mn), we have D−(mn) ⊂ Ê−(mn). It is similar for
D+(mn). For a similar argument, see [Kob03, Lemma 8.17].

Remark 3.4. Since Ê(mn)/D±(mn) is torsion-free, we can check whether D±(mn) ⊗ Qp/Zp →
Ê(mn)⊗Qp/Zp is injective and D±(mn)⊗Qp/Zp → H1(kn, A) is injective as well.

Define P±
n : H1(kn, T ) → Zp[Gn]d as P±

n := Pc±n ,n for c±n = (c±n,i)i=0,...,d−1 ∈ Ê(mn)d. On the
other hand, define H1±(kn, T ) as the exact annihilator of D±(mn)⊗Qp/Zp with respect to the Tate
local pairing

H1(kn, A)×H1(kn, T )→ Qp/Zp,

(thus, we have H1(kn, T )/H1±(kn, T ) ∼= Hom(D±(mn)⊗Qp/Zp,Qp/Zp)).

Proposition 3.5. We have kerP±
n = H1±(kn, T ).

Proof. By definition kerP±
n = {z ∈ H1(kn, T ) | (x, z)n = 0 for all x ∈ C±(mn)}. If x ∈ Ê(mn)

satisfies pbx ∈ C±(mn) for some integer b, then, for every z ∈ kerP±
n , we have pb(x, z)n =

(pbx, z)n = 0, thus we have (x, z)n = 0. Therefore, we have

kerP±
n ⊂ {z ∈ H1(kn, T ) | (x, z)n = 0 for all x ∈ D±(mn)}.

In fact, this is an equality because the right-hand side is already contained in the left-hand side.
Thus, we have a left exact sequence

0→ kerP±
n → H1(kn, T )→ Hom(D±(mn),Zp) (1)
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where the last arrow is induced by (·, ·)n. By taking the Pontryagin dual and using the Tate local
duality we have

D±(mn)⊗Qp/Zp → H1(kn, A)
(1)−−→ (kerP±

n )∨ → 0
where the left arrow is injective by Remark 3.4. We note that the map (1) is induced from the Tate
local pairing. Thus, we have kerP±

n = H1±(kn, T ).

Remark 3.6. From the proof we also obtain the surjectivity of the map (1). In particular, if
D±(mn) = C±(mn) (as we will assume for n = 0), it implies the exactness of

0→ kerP±
n → H1(kn, T )

(2)−−→ Hom(C±(mn),Zp)→ 0

where the map (2) is induced from (·, ·)n.
Next we study the image of P±

n . Let Φn(X) = 1 +Xpn−1
+X2pn−1

+ · · ·+X(p−1)pn−1
for n � 1

and Φ0(X) = X − 1. We let ωn(X) = (X + 1)p
n − 1 and

ω+
n (X) =

∏
0�m�n, m:even

Φm(X + 1), ω−
n (X) = Φ0(X + 1)

∏
1�m�n, m:odd

Φm(X + 1).

We let ω̃±
n (X) satisfy ωn(X) = ω̃∓

n (X)ω±
n (X). Fix a topological generator γ of Gal(k∞/k) and

let γn be γ|kn . We identify Zp[[Gal(k∞/k)]] with Λ = Zp[[X]] by identifying γ with X + 1. Similarly
we identify Λn = Zp[Gn] with Zp[X]/(ωn(X)). Also define Λ±

n := Zp[X]/(ω±
n (X)). We can observe

that lim←−Λ−
n
∼= Λ.

Proposition 3.7. There exists a unique morphism Col±n which makes the following diagram
commutative.

H1(kn, T )
Col±n−−−−→ (Λ±

n )d� �×ω̃∓
n

H1(kn, T )
H1±(kn, T )

P±
n−−−−→ Λnd

The right vertical map is injective, thus kerCol±n = kerP±
n .

Proof. See [Kob03, Proposition 8.19 and Corollary 8.20].

Proposition 3.8. The even (odd) Coleman maps are compatible for all n � 0:

H1(kn+1, T )
Col±n+1−−−−→ (Λ±

n+1)
d�Cor

�Proj

H1(kn, T )
Col±n−−−−→ (Λ±

n )d

Proof. See [Kob03, Proposition 8.21].

Proposition 3.9. If C−(m0) = Ê(m0), then Col−n is surjective for every n.

Proof. First, by the Hochschild–Serre spectral sequence the kernel of H1(k0, A) → H1(kn, A) is
H1(kn/k0, A

Gkn ), which is trivial by Proposition 3.1. Thus, by the Tate local duality H1(kn, T )→
H1(k0, T ) is surjective.

Second, Remark 3.6 says that the map H1(k0, T ) → Hom(C−(m0),Zp) induced by (·, ·)0 is
surjective. From the assumption of the proposition we can see that {c−0,0, c−0,1, . . . , c−0,d−1} is a
Zp-basis of Ê(m0). Thus, we can choose xi ∈ H1(k0, T ) for each i = 0, . . . , d−1 such that (c−0,i, xi) = 1
and (c−0,j , xi) = 0 for j 
= i.
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We note that Col−0 = P−
0 . We can see that {Col−0 (x0),Col−0 (x1), . . . ,Col−0 (xd−1)} generates (Zp)d.

Thus, Col−0 : H1(k0, T )→ (Zp)d is surjective, thus, by Nakayama’s lemma, so is Col−n for each n.

Let M∨ denote the Pontryagin dual Hom(M,Qp/Zp).

Proposition 3.10. If C−(m0) = Ê(m0), then we have D−(mn) ⊗ Qp/Zp
∨ ∼= (Λ−

n )d. Also
(
⋃∞
n=1D

−(mn)⊗Qp/Zp)∨ ∼= Λd.

Proof. From the definition

H1(kn, T )
H1−(kn, T )

∼= Hom(D−(mn)⊗Qp/Zp,Qp/Zp).

By Proposition 3.5 we have H1−(kn, T ) = kerP−
n (= ker Col−n ) and by Proposition 3.9 we have

ImCol−n = (Λ−
n )d, thus the first statement follows. The second statement follows by taking an

inverse limit.

Proposition 3.11. If C−(m0) = Ê(m0), we have Ê−(mn) = D−(mn).

Proof. We have (D−(mn)⊗Qp/Zp)∨ ∼= (Λ−
n )d, thus rankZpD−(mn) = rankZpÊ−(mn). By definition

Ê−(mn)/D−(mn) is torsion-free, thus Ê−(mn) = D−(mn).

If we assume C+(m0) = Ê(m0), the previous three propositions hold replacing − with +.

3.2 Norm subgroups
In addition to the assumption (A) in the previous section, we assume the following:

(B) k∞/Qp is an abelian extension.

We want to generalize the construction of ±-norm coherent points of [Kob03] and [IP06].
Put L0 = k and Ln+1 = kn(µp) for n � 0. For a local field M we let OM denote the ring of

integers of M and mM the maximal ideal of OM . In particular, let O denote Ok(=OL0) and m
denote mk(=mL0). Let ψ be the Frobenius map of Gal(k/Qp) characterized by xψ = xp (mod pO).

Then L∞ is a totally ramified Z×
p extension of k, k is an unramified extension of Zp, and L∞ is

an abelian extension of Qp. We fix a valuation vp : Q̄×
p → Q such that vp(p) = 1. Then the group of

the universal norms of L∞ in Qp is generated by ξ with vp(ξ) = d.
Let � be any number in k satisfying Nk/Qp(�) = ξ. Let f(X) ∈ O[X] be any Eisenstein

polynomial of degree p such that

f(X) ≡ Xp (mod p),
f(X) ≡ �X (mod deg 2),

coefficient of Xp−1 = ζp for a root of unity ζ of O.

Let f (n)(X) denote fψ
n−1 ◦ fψn−2 ◦ · · · ◦ f(X) for n � 1 and put f (0)(X) = X. From the Lubin–

Tate group theory we can see that any root π of f (n)(X) that is not a root of f (n−1) is a uniformizer
of mLn and also satisfies k(π) = Ln (see [Des87, Proposition 1.8]).

We define

logF (X) :=
∞∑
n=0

(−1)n
f (2n)(X)

pn
.

We can see that log′F (X) ∈ O[[X]] and logF (X) = a1X (mod deg2) for some a1 ∈ O×. We can
check

logψ
2

F (fψ ◦ f(X)) + p logF (X) ≡ 0 (mod p).
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By [Kob03, Lemma 8.1] this implies logψ
2

F (Xp2) + p logF (X) ≡ 0 (mod p). Similarly, logψ
−n

F (X) for
every integer n satisfies (logψ

−n
F )ψ

2
(Xp2) + p logψ

−n
F (X) ≡ 0 (mod p).

By Honda theory (in particular, [Hon70, Theorems 2 and 4, and Propositions 2.6 and 3.5]) we
can see that:

(i) there is a formal group Fn defined overOwhose logarithm is given by logψ
−n

F (we letF denoteF 0);

(ii) for any n, an integral power series sn = expF ◦ logψ
−n

F (X) ∈ O[[X]] is an isomorphism Fn → F ;

(iii) since the Honda type of logÊ(X) is t2 + p, the Artin–Hasse type power series expÊ ◦ logψ
−n

F ∈
O[[X]] is an isomorphism Fn → Ê.

Let π0 = 0. By Propositions 1.5, and 1.7 and the discussion before Proposition 1.7 of [Des87],

we can see that {roots of (f (n))ψ
−n} fψ

−n
−−−→ {roots of (f (n−1))ψ

−n+1} is surjective. Thus, we can
inductively choose a uniformizer πn of mLn satisfying fψ

−n
(πn) = πn−1 for n � 1.

On the other hand, for each n � 0 put

λn : = ζψ
−(n+2)

p− ζψ−(n+4)
p2 + ζψ

−(n+6)
p3 − · · ·

=
∞∑
j=1

(−1)j−1ζψ
−(n+2j)

pj ∈ m.

Since logψ
−n

F : Fn(m) → m is an isomorphism, there is εn ∈ Fn(m) such that logψ
−n

F (εn) = λn.
Define bn ∈ F (mLn) by

bn = sn(εn[+]Fnπn).
Then we have

logF (bn) = logψ
−n

F (εn[+]Fnπn)

= λn + πn − πn−2

p
+
πn−4

p2
− · · · .

For n � 2

TrLn/Ln−1
(logF (bn)) = pλn − ζψ−n

p−
[
πn−2 − πn−4

p
+ · · ·

]

= −λn−2 −
[
πn−2 − πn−4

p
+ · · ·

]

= −logF (bn−2).

We note that Gal(Ln+1/k) ∼= Gal(Ln+1/kn) × Gal(kn/k) and Gal(Ln+1/kn) ∼= Gal(L∞/k∞)
(we denote this by ∆). For n � −1 let en = Tr∆(bn+1) ∈ F (mkn). Since F and Ê are isomorphic
over O, F (mkn) is torsion-free by Proposition 3.1 and logF is injective on F (mkn) for every n � 0.
Thus, it follows that

Trkn/kn−1
(en) = −en−2

for n � 1. In particular, e−1 = [p− 1](b0), thus logF (e−1) = (p − 1)λ0.
Let cn ∈ Ê(mkn) be the image of en under the isomorphism expÊ ◦ logF (X). We obtain the

following.

Proposition 3.12. We assume that assumptions (A) and (B) hold. For any root of unity ζ of k,
there is cn ∈ Ê(mkn) for each n � −1 (let k−1 = k0) satisfying:

(i) Trkn/kn−1
(cn) = −cn−2 for n � 1;

(ii) logÊ(c−1) = (p− 1)(ζψ
−2
p− ζψ−4

p2 + ζψ
−6
p3 − · · · ).
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Fix a generator ζ0 of the group of roots of unity in k. Since k is unramified over Qp, we have
O = Zp[ζ0] and m = pZp[ζ0]. In other words, m is generated over Zp by {p, pζ0, pζ2

0 , . . . , pζ
d−1
0 }.

By Proposition 3.12 we can find cn,i ∈ Ê(mkn) for each n � −1 and i = 0, 1, . . . , d−1 such that:

(i) Trkn/kn−1
(cn,i) = −cn−2,i for n � 1;

(ii) logÊ(c−1,i) = (p − 1)(ζi0p− (ζi0)
ψ−2

p2 + (ζi0)
ψ−4

p3 − · · · ).
Then using Nakayama’s lemma we can see that {logÊ(c−1,i)}i=0,...,d−1 generates m over Zp.
Since logÊ is an isomorphism from Ê(m) to m, {c−1,i}i=0,...,d−1 generates Ê(m).

Define c−n,i for n � −1, i = 0, . . . , d − 1, as in the previous section. Propositions 3.9, 3.10, and
3.11 hold for these c−n,i, thus we can say the following.

Proposition 3.13. We have ( ∞⋃
n=1

Ê−(mkn)⊗Qp/Zp

)∨
∼= Λd.

3.3 Self-duality of minus formal groups
We continue to assume that assumptions (A) and (B) hold for k∞. Let mn denote the maximal
ideal of kn. We note that the earlier identification of Zp[X] with Zp[[Γ]] gives

Φ0(X + 1) = γ − 1,

Φm(X + 1) = 1 + γp
m−1

+ γ2pm−1
+ · · ·+ γ(p−1)pm−1

for 1 � m,

ω−
n (X) = (γ − 1)

∏
1�m�n, m:odd

(1 + γp
m−1

+ γ2pm−1
+ · · ·+ γ(p−1)pm−1

).

We denote them by Φm and ω−
n . We define (Φm)ι and (ω−

n )ι as the images of Φm and ω−
n each under

the involution on Zp[Gn] given by γ �→ γ−1 and identity on Zp. First we prove the following.

Proposition 3.14. We have (ω−
n )ιÊ−(mn) = 0 and ω−

n Ê
−(mn) = 0.

Proof. First we want to prove that if n is odd, Trn/n−1(Ê−(mn)) ⊂ Ê−(mn−2), and if n is even,
Ê−(mn) = Ê−(mn−1).

Suppose that n is odd. Let y = Trn/n−1x for x ∈ Ê−(mn). By the definition of Ê−, y ∈ Ê(mn−2).
For an odd m with −1 � m < n− 2 we have

p · Trn−2/m+1y = Trn/m+1x ∈ Ê(mm).

Using an argument similar to the proof of Proposition 3.3 we can prove that Ê(mm+1)/Ê(mm) is
torsion-free. Thus, we have Trn−2/m+1y ∈ Ê(mm). Thus, y ∈ Ê−(mn−2).

Now suppose that n is even. From the definition Ê−(mn) ⊂ Ê(mn−1). Let x ∈ Ê−(mn).
For odd m with −1 � m < n − 1, p · Trn−1/m+1x = Trn/m+1x ∈ Ê(mm). Similarly we can
prove Trn−1/m+1x ∈ Ê(mm), thus x ∈ Ê−(mn−1) follows.

Now we prove our proposition, first for odd n, then for even n.
Suppose that n is odd. Let xn ∈ Ê−(mn). Since (γ|−1

kn
)p
n−1

generates Gal(kn/kn−1), (Φn)ι =
1 + (γ−1)p

n−1
+ · · · + (γ−1)(p−1)pn−1

acts as Trn/n−1 on Ê(mn). Thus, we have

xn−2 := (Φn)ιxn ∈ Ê−(mn−2).

Similarly
xn−4 := (Φn−2)ιxn−2 ∈ Ê−(mn−4), . . . , x−1 := (Φ1)ιx1 ∈ E−(m−1),

and, finally, Φι
0x−1 = 0.
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When n > 0 is even, Ê−(mn) = Ê−(mn−1) and (ω−
n )ι = (ω−

n−1)
ι, thus this case is reduced

to the case where n is odd, which we have done. When n = 0, it is clear. Similarly we can prove
(ω−
n )Ê−(mn) = 0 as well.

Let H− =
⋃∞
n=1 Ê

−(mn)⊗Qp/Zp and H−
n = (H−)Gal(k∞/kn). We note that since H−∨ ∼= Λd, we

have H−
n
∨ ∼= Λdn. By the Hochschild–Serre spectral sequence the kernel of H1(kn, A) → H1(k∞, A)

is H1(k∞/kn, AGk∞ ), which is trivial by Proposition 3.1. Thus, we consider H−
n as a subgroup of

H1(kn, A). Let a subgroup Mn of H1(kn, T ) be the exact annihilator of H−
n under the Tate local

pairing

〈·, ·〉n : H1(kn, A)×H1(kn, T )→ Qp/Zp.

Since H−
n is divisible,H1(kn, T )/Mn is torsion-free. Thus, we can see that for any integer j,Mn/p

jMn

is the exact annihilator of H−
n [pj] under the Tate local pairing

〈·, ·〉n : H1(kn, T/pjT )×H1(kn, T/pjT )→ Z/pjZ.

We want to give hearty thanks to Rubin for suggesting an idea to simplify the proof of the
following proposition.

Proposition 3.15. For every integer j we have Mn/p
jMn = H−

n [pj].

Proof. We note that H−
n
∼= Hom(Λn,Qp/Zp)d. Since H−

n [ω−
n ] ∼= Hom(Λn/(ω−

n )ι,Qp/Zp)d and
H−
n [ω̃+

n ] ∼= Hom(Λn/(ω̃+
n )ι,Qp/Zp)d, we know that corankZpH−

n [ω−
n ] = d · deg(ω−

n ) and corankZp
H−
n [ω̃+

n ] = d · deg(ω̃+
n ). Since ω−

n (X) and ω̃+
n (X) are prime to each other, H−

n [ω−
n ] ∩ H−

n [ω̃+
n ] ∼=

Hom(Λn/((ω−
n )ι + (ω̃+

n )ι),Qp/Zp) is finite. Thus, we obtain H−
n = H−

n [ω−
n ] + H−

n [ω̃+
n ].

By Proposition 3.14 we have ω−
n Ê

−(mn) = 0, thus we have Ê−(mn)⊗Qp/Zp ⊂ H−
n [ω−

n ]. Also we
have corankZpÊ−(mn) ⊗ Qp/Zp = corankZpH−

n [ω−
n ] by Propositions 3.10 and 3.11 and both are

divisible, thus we obtain Ê−(mn)⊗Qp/Zp = H−
n [ω−

n ]. Thus, by the Tate local duality it follows that
we have

〈H−
n [ω−

n ], Ê−(mn)〉n = 〈Ê−(mn)⊗Qp/Zp, Ê
−(mn)〉n = 0.

On the other hand, we naturally have ω−
n H−

n ⊂ H−
n [ω̃+

n ]. Since the kernel of H−
n

ω−
n−−→ H−

n

is H−
n [ω−

n ], we obtain corankZpω−
n H−

n = d(pn − deg(ω−
n (X))) = corankZpH−

n [ω̃+
n ]. Since both are

divisible, it follows that we have ω−
n H−

n = H−
n [ω̃+

n ], thus it follows that we have

〈H−
n [ω̃+

n ], Ê−(mn)〉n = 〈ω−
n H−

n , Ê
−(mn)〉n

= 〈H−
n , (ω

−
n )ιÊ−(mn)〉n

= 〈H−
n , 0〉n (by Proposition 3.14)

= 0.

Thus, Ê−(mn) is contained in the annihilator of H−
n , i.e. Ê−(mn) ⊂Mn for every n. Thus, we have

Ê−(mn)/pjÊ−(mn) ⊂Mn/p
jMn.

We claim that for every m � n we have

(Ê−(mm)/pjÊ−(mm))Gal(km/kn) ⊂Mn/p
jMn.

Let m,n be integers with m � n. First we claim Cormn (H−
m[pj]) = H−

n [pj].
We identify H−

m[pj] with Hom(Λm,Z/pjZ)d and Resmn with an injection Hom(Λn,Z/pjZ)d to
Hom(Λm,Z/pjZ)d induced by the natural projection proj:Λm → Λn. Since Resmn ◦Cormn = Trm/n
by Proposition 2.1, we can identify Cormn as follows. First we define h : Λn → Λm as follows.
For x ∈ Λn, we choose a lift x′ of x in Λm, and take h(x) =

∏
n+1�n′�m Φn′(X + 1)x′.
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When x′ is any lift of 0, x′ ∈ (ωn), thus
∏
n+1�n′�m Φn′(X + 1)x′ = 0 in Λm. Thus, h is well

defined. Let h∗ : Hom(Λm,Z/piZ)d → Hom(Λn,Z/piZ)d be induced by h.
We can verify that proj∗ ◦h∗ = Trm/n on Hom(Λm,Z/pjZ)d. Since proj∗ is the natural injection

and equal to Resmn , we can see that h∗ = Cormn on H−
m[pj].

The cokernel of h is Zp[x]/
∏
n+1�n′�m Φn′(X + 1), and this is a free Zp-module, thus h∗ is

surjective. It implies Cormn (H−
m[pj]) = H−

n [pj].
Now let y ∈ (Ê−(mm)/pjÊ−(mm))Gal(km/kn). Since Ê−(mm)/pjÊ−(mm) ⊂ Mm/p

jMm,
we have 〈H−

m[pj ], y〉m = 0. Consider y as being in H1(kn, T/pjT ) because H1(kn, T/pjT ) →
H1(km, T/pjT )Gal(km/kn) is an isomorphism. Since 〈x,Resmn y〉m = 〈Cormn x, y〉n and Cormn (H−

m[pj]) =
H−
n [pj], we have 〈H−

n [pj], y〉n = 0, thus y ∈Mn/p
jMn.

Since this is true for every m � n, we have

H−
n [pj ] =

( ∞⋃
m=n

Ê−(mm)/pjÊ−(mm)
)Gal(k∞/kn)

⊂Mn/p
jMn.

An explicit computation shows that H−
n [pj] ∼= (Z/pjZ)dp

n
and using Tate’s Euler characteristic

formula, we can check Mn/p
jMn

∼= (Z/pjZ)dp
n
. Thus, H−

n [pj ] = Mn/p
jMn.

3.4 The minus local condition of a ramified Zp-extension of Qp

We assume that L∞ is a Zp-extension of Qp and let Λ denote Zp[[Gal(L∞/Qp)]]. Unlike previous
sections, we assume that L∞/Qp is only ramified. In other words, we assume that there is LN such
that LN/Qp is unramified and L∞/LN is totally ramified.

We let mn denote the maximal ideal of Ln. In particular, we let m denote the maximal ideal
of Qp. Let kn = Ln+N for n � 0, then we can see that k∞ satisfies assumptions (A) and (B). We let
H− =

⋃
Ê−(mkn) ⊗ Qp/Zp. Since k∞ satisfies assumptions (A) and (B), by Proposition 3.13 we

have

H−∨ ∼= Zp[[Gal(k∞/k0)]]p
N

= Zp[[Gal(L∞/LN )]]p
N
.

This implies that we have (H−)Gal(L∞/LN ) ∼= (Qp/Zp)p
N

. Since Ê−(mN ) = Ê(mN ), we have
Ê(mN ) ⊗ Qp/Zp ⊂ (H−)Gal(L∞/LN ). By comparing the coranks and considering they are divisible
we can see that (H−)Gal(L∞/LN ) = Ê(mN )⊗Qp/Zp.

Since LN/Qp is unramified, we have TrN/0(Ê(mN )) = Ê(m). By the Tate local duality, it is
equivalent to the fact that there is an injection

H1(Qp, A)
Ê(m)⊗Qp/Zp

→ H1(LN , A)
Ê(mN )⊗Qp/Zp

.

Since H1(Qp, A) = H1(LN , A)Gal(LN/Qp) by the Hochschild–Serre spectral sequence, this injection
implies that we have

Ê(m)⊗Qp/Zp = (Ê(mN )⊗Qp/Zp)Gal(LN/Qp),

which, in turn, implies (H−)Gal(L∞/Qp) = Ê(m)⊗Qp/Zp. Thus, the next proposition follows.

Proposition 3.16. We have (H−)Gal(L∞/Qp) = Ê(m)⊗Qp/Zp.

Since each Ê−(mn) is a Zp[Gal(Ln/Qp)]-module, (H−)∨ is a Λ-module. When γ is a topological
generator of Gal(L∞/Qp), Proposition 3.16 implies (H−)∨/(γ − 1)(H−)∨ ∼= Zp, which implies that
(H−)∨ is generated by one element as a Λ-module by Nakayama’s lemma. Since the corank of
(H−)Gal(L∞/Ln) increases as n increases, we can see that (H−)∨ is a free Λ-module of rank one.
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Proposition 3.17. We have

H−∨ ∼= Λ.

We also have the following.

Proposition 3.18. For every integer j, H−
n [pj ] is the exact annihilator of itself with respect to the

Tate local pairing

H1(Ln, T/pjT )×H1(Ln, T/pjT )→ Z/pjZ.

Proof. For n � N our claim follows from Proposition 3.15.
For n where 0 � n � N , using Proposition 3.17 we obtain (H−)Gal(L∞/Ln) = Ê(mn) ⊗ Qp/Zp

(the proof is similar to how we obtained (H−)Gal(L∞/LN ) = Ê(mN )⊗Qp/Zp). The rest follows from
the Tate local duality.

4. The parity conjecture

Throughout this section, we fix a prime p > 3 and let E be an elliptic curve defined over Q such
that E has good supersingular reduction at p. As before, we let T be the p-adic Tate module of E
and A be the set of all p-power torsions of E.

We let K be an imaginary quadratic field extension of Q such that p splits completely in K.
There are two Zp-extensions K∞ of K that are Galois extensions over Q. One of them has a
property that K∞/Qp is not an abelian extension. We call such an extension the anti-cyclotomic
Zp-extension of K. Let τ ∈ GQ be a lift of the nontrivial map of Gal(K/Q). If K∞ is the anti-
cyclotomic extension of K, we have τστ−1 = σ−1 for any σ ∈ Gal(K∞/K). Throughout this section
we let K∞ be the anti-cyclotomic Zp-extension of K.

We let Kn be the subfield of K∞ with Gal(Kn/K) ∼= Z/pnZ, which we denote by Gn. We let
Γ denote Gal(K∞/K), Γn denote Gal(K∞/Kn), and Λ denote Zp[[Γ]]. Once and for all, we fix a
topological generator γ of Γ.

4.1 Notation and hypotheses
Let P be a prime ideal of Λ generated by an irreducible element not divisible by p. Note that Λ/P is
an integral domain and finitely generated Zp-module. We let OP denote the integral closure of Λ/P
and let SP denote a Galois module whose underlying group is OP and on which GK acts through
the canonical map GK → Γ. We let DP := Frac(OP )/OP . Let mP denote the maximal ideal of OP
and choose a uniformizer πP of mP . We observe that GK acts trivially on SP/mPSP .

We let TP denote T ⊗SP and AP denote A⊗SP . We fix an embedding Q̄→ C and let τ denote
the corresponding complex conjugation.

Definition 4.1. Define a pairing [·, ·] : SP × SP → OP as follows:

[s, t] = s · t.
With the pairing [·, ·] we construct an OP -bilinear pairing

(·, ·) : TP ×AP → DP (1)

(t⊗ s1, a⊗ s2)→ [s1, s2] · e(t, aτ−1
).

Here e(·, ·) is the Weil pairing.

Lemma 4.2. The first pairing in Definition 4.1 is an OP -bilinear pairing which satisfies [sσ, tτστ
−1

] =
[s, t] for every σ ∈ GK .
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The pairing (·, ·) is a perfect OP -bilinear pairing and for every σ ∈ GK it satisfies

((t⊗ s1)σ , (a⊗ s2)τστ−1
) = (t⊗ s1, a⊗ s2)σ. (2)

Proof. For s, t ∈ SP [sσ, tτστ
−1

] = [s, t] because (τστ−1)|Γ = σ|−1
Γ . Then our claim follows from the

property of the Weil pairing.

For any integer k > 0 we consider the perfect OP -bilinear pairing

TP /m
k
PTP ×AP [mk

P ]→ DP (1)[mk
P ]. (3)

induced by (·, ·).
We can identify AP with TP ⊗ Frac(SP )/SP , thus we have

AP [mk
P ] ∼= TP /m

k
PTP

given by multiplication by πkP .

Lemma 4.3. The pairing in (3) is symmetric when we identify AP [mk
P ] with TP /m

k
PTP .

Proof. Since the Weil pairing is skew-symmetric and Galois-equivariant, this lemma is immediate.

For convenience let T denote TP /m
k
PTP and T̄ denote the residual representation T/mPT.

Let Tw(T) denote the GK module whose underlying set is T and on which GK acts as follows:
for σ ∈ GK and x ∈ TwT, σ · x = (τστ−1)x (the action on the right-hand side is that of GK on T).

Let Σ denote a finite set of places of K including primes lying above p, all infinite places, and
all primes at which T is ramified. For v ∈ Σ we consider a certain subgroup H1

F (Kv ,T/m
i
PT) of

H1(Kv ,T/m
i
PT) for every integer 0 � i � k. We call it a local condition at v for T/mi

PT, or simply a
local condition at v for T if i = k. In this section and the next few sections we define local conditions
for T and show that T and its local conditions satisfy the following three hypotheses (for similar
hypotheses see [MR04, § 3.5] and, in particular, [How04, § 1.3]).
(H1) The residual representation T̄ is an absolutely irreducible representation of GK , i.e. T̄⊗OP /mP

is a GK -irreducible representation where OP /mP denotes the algebraic closure of OP /mP .
(H2) For every 0 � i � k we have

H1
F(Kv ,T/m

i
PT) = im(H1

F (Kv,T)→ H1(Kv,T/m
i
PT))

= ker(H1(Kv ,T/m
i
PT)→ H1(Kv ,T)/H1

F (Kv ,T))

(in this case we say that local conditions are cartesian).
(H3) By Lemmas 4.2 and 4.3 we have the following symmetric Galois equivariant OP -bilinear perfect

pairing
T× Tw(T)→ R = OP /m

k
POP .

For any non-archimedean v, this pairing combined with the cup product induces a perfect
local pairing:

H1(Kv ,T)×H1(Kv,Tw(T))→ H2(Kv , R(1)) inv−−→ R.

Put v̄ := vτ . Combined with a map

H1(Kv,Tw(T))→ H1(Kv̄,T)

φ→ φ̃ : σ �→ c(τ−1στ)

the local pairing induces a pairing

H1(Kv,T)×H1(Kv̄ ,T)→ R.
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When we say the local condition at v satisfies hypothesis (H3), we mean that H1
F (Kv ,T) is the

exact annihilator of H1
F (Kv̄,T) with respect to this pairing.

In the next proposition we show that hypothesis (H1) holds.

Proposition 4.4. When p is a prime of K lying over p, T̄ is an absolutely irreducible GKp-
representation, thus an absolutely irreducible GK -representation.

Proof. Since our elliptic curve has a supersingular reduction at p > 3, by Remark 5.3 or Proposi-
tion 8.6 of [Kob03] T/pT is the p-torsion subgroup of the Lubin–Tate group of height 2, thus the
action of GQp is completely determined as follows: let L denote the unramified quadratic extension
of Qp, and OL its ring of integers. We let T̄ denote T/pT and for a ∈ (OL/pOL)× let [a] denote the
Artin map (a,L(T̄ )/L). By Lubin–Tate group theory we can identify T̄ with OL/pOL such that [a]
acts on T̄ as multiplication by a−1. Let σ ∈ Gal(L(T̄ )/Qp) denote a lift of the nontrivial map of
Gal(L/Qp). Then σ[a]σ−1 = [aσ].

We can check that T̄⊗OP /mP OP /mP
∼= T̄ ⊗Fp F̄p, which we denote by T̄ ⊗ F̄p. Assume there is

a one-dimensional subspace of T̄ ⊗ F̄p invariant under the action of GQp . Then there is an action of
Gal(L(T̄ )/Qp) given by a multiplicative character χ whose values are in F̄×

p .
Since for any a ∈ (OL/pOL)× we have σ[a]σ−1 = [aσ] = [ap], the value of χ([a]) is in F×

p . That is
a contradiction because [a] acts on T̄ as multiplication by a−1.

Let KΣ be the maximal extension of K unramified outside Σ. Then we define

H1
F (K,T) := ker

(
H1(KΣ/K,T)→

∏
v∈Σ

H1(Kv ,T)
H1

F(Kv ,T)

)
.

When the local conditions at all the places in Σ satisfy hypotheses (H1), (H2), and (H3), the
following theorem of Howard holds.

Theorem 4.5 [How04, Theorem 1.4.2]. There is an OP /m
k
POP -module M and an integer ε such

that we have H1
F (K,T) ∼= OP /m

k
PO

ε
P ⊕M ⊕M .

Remark 4.6. Howard [How04] assumes more hypotheses throughout the paper; however, if we check
the proof of Theorem 4.5, we can see that only hypotheses (H1), (H2), and (H3) are necessary.

4.2 Duality of local conditions at the primes lying above p

Let p be a prime of K lying above p (thus, the other prime lying above p would be p̄ = pτ ). There are
integers N1, N2 (0 � N1 � N2) such that p splits completely in KN1/K, the primes Q1, . . . , QpN1

of KN1 lying above p are inert and unramified in KN2/KN1 , and the primes Q′
1, . . . , Q

′
pN1

of KN2

lying above Q1, . . . , QpN1 are totally ramified in K∞/KN2 .
For n � N1 let Qn,i be the unique prime of Kn lying above Qi and, for notational convenience,

let Kn,Qi denote Kn,Qn,i . Put Qi := Qτi , Qn,i := Qτn,i and let Kn,Qi
denote Kn,Qn,i

.

Fix Qi for now and put Ln := KN1+n,Qi. Then L∞ is a Zp-extension of Qp, L∞/LN2−N1 is totally
ramified, and LN2−N1/Qp is unramified.

Definition 4.7. We put kn := KN2+n,Qi. For any n � 0, we define

Ê−(Kn+N2,Qi) := Ê−(mkn),

HQi :=
∞⋃
n=0

Ê−(Kn+N2,Qi)⊗Qp/Zp.

By Proposition 3.17, we have
H∨
Qi
∼= Zp[[ΓN1 ]].
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We apply this definition to every Qi and Qi for i = 1, . . . , pN1 .

Definition 4.8. We define a subgroup of
⊕pN1

i=1 H
1(K∞,Qi, A)

Hp :=
pN1⊕
i=1

HQi.

Fix a prime ideal P ⊂ Λ generated by an irreducible element not divisible by p. We define a
subgroup of

⊕pN1

i=1 H
1(K∞,Qi , AP )

Hp,P := Hp ⊗ SP ,
and, for n � 0, define

Hn
p,P := (Hp,P )Γn .

Assume n � N1. Since we have (A ⊗ SP )GK∞ = AGK∞ ⊗ SP = 0, by the Hochschild–Serre
spectral sequence H1(Kn,Qi , AP ) → H1(K∞,Qi , AP )Γn is an isomorphism. Thus, we can consider
Hn
p,P as a subgroup of

⊕pN

i=1H
1(Kn,Qi , AP ).

Now we show that, for 0 � n � N1,

pn⊕
i=1

H1(Kn,pi , AP )→
(pN1⊕
i=1

H1(KN1,Qi, AP )
)Gal(KN1

/Kn)

is an isomorphism so that we can consider Hn
p,P as a subgroup of

⊕pn

i=1H
1(Kn,pi , AP ). First fix

gi ∈ Gal(K∞/K) for each i such that giQn,1 = Qn,i for all n. Without loss of generality we can
assume n = 0 (other cases can be proven similarly). Fix an embedding Q̄→ Cp such that the prime
of KN1 induced by this embedding is QN1,1. This embedding identifies Kp with KN1,Q1 and this
induces a restriction map Res1 : H1(Kp, AP ) → H1(KN1,Q1, AP ) (indeed, this is an isomorphism).
Then other restriction maps Resi : H1(Kp, AP ) → H1(KN1,Qi , AP ) are equal to gi ◦ Res1, and we
can check

Res : H1(Kp, AP )→
(pN1⊕
i=1

H1(KN1,Qi, AP )
)Gal(KN/K)

(Res is given by (Resi)i=1,...,pN1 ) is an isomorphism.

On the other hand, for any n � N2, the action gi|Kn : H1(Kn,Q1, A) → H1(Kn,Qi , A) gives
gi|KnÊ−(Kn,Q1)⊗Qp/Zp = Ê−(Kn,Qi)⊗Qp/Zp, thus we have giHQ1 = HQi .

Proposition 4.9. We have

Hp ∼=
pN1⊕
i=1

gi Hom(Zp[[ΓN1 ]],Qp/Zp)

∼= Hom(Zp[[Γ]],Qp/Zp).

Proof. All we need to show is that

pN1⊕
i=1

g−1
i Zp[[ΓN1 ]]→ Zp[[Γ]]

is an isomorphism. This is clear.

Since multiplication by π−kP gives an isomorphism H1(Kp, TP /mk
PTP ) ∼= H1(Kp, AP )[mk

P ], we
can consider H0

p,P [mk
P ] as a subgroup of H1(Kp, TP /mk

PTP ). We want to study this group further.
First we check the following.
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Lemma 4.10. For every n � N1 and integer j, (HQi [p
j ])Γn is the exact annihilator of (HQi

[pj])Γn
with respect to the pairing

H1(Kn,Qi , T/p
jT )×H1(Kn,Qi

, T/pjT )→ Z/pjZ.

Proof. The construction of the pairing illustrated in § 4.1 has the following equivalent construction:
for any m � N1, we have the local Tate pairing induced from the Weil pairing

H1(Km,Qi , T/p
jT )×H1(Km,Qi , T/p

jT )→ Z/pjZ.

This pairing combined with the following map given by the action of τ

τ : H1(Km,Qi , T/p
jT )→ H1(Km,Qi

, T/pjT )

φ �→ φ̃ : γ �→ τ · φ(τ−1γτ)

gives the same pairing given in hypothesis (H3) of § 4.1.
For allm we have τ ·Ê−(Km,Qi)⊗Z/pjZ = Ê−(Km,Qi

)⊗Z/pjZ, thus we have τ ·HQi [p
j] = HQi

[pj].
Then we can see that (HQi [p

j ])Γn is the exact annihilator of (HQi
[pj])Γn with respect to the pairing

in our lemma.

Proposition 4.11. For any k � 0,H0
p,P [mk

P ] is the exact annihilator of H0
p̄,P [mk

P ] with respect to
the pairing

(·, ·)0 : H1(Kp, TP /mk
PTP )×H1(Kp̄, TP /mk

PTP )→ OP /m
k
P .

Proof. First fix n � 0 such that Gal(K∞/Kn) acts trivially on SP/mk
PSP and fix j � 0 that mk

P | pj.
For every i = 1, . . . , pN1, by Lemma 4.10 (HQi [p

j])Γn is the exact annihilator of (HQi
[pj])Γn with

respect to
H1(Kn,Qi , T/p

jT )×H1(Kn,Qi
, T/pjT )→ Z/pjZ.

Since GKn,Qi and GKn,Qi act trivially on SP/mk
PSP , by taking tensor with SP/mk

PSP we can check
that (HQi [p

j])Γn ⊗ SP/mk
PSP is the exact annihilator of (HQi

[pj ])Γn ⊗ SP /mk
PSP with respect to

H1(Kn,Qi , TP /m
k
PTP )×H1(Kn,Qi

, TP /m
k
PTP )→ OP /m

k
POP . (4)

As the multiplication by π−k identifies H1(Kn,Qi , T/p
jT ⊗ SP /m

k
PSP ) with H1(Kn,Qi , A ⊗

SP )[mk
P ], we can check that this multiplication identifies (HQi [p

j])Γn ⊗ SP /m
k
PSP (considered

to be in the first group) with (HQi ⊗ SP )Γn [mk
P ] (considered to be in the second group). Thus,

(HQi ⊗ SP )Γn [mk
P ] is the exact annihilator of (HQi

⊗ SP )Γn [mk
P ] under the pairing (4).

Since Hn
p,P =

⊕pN1

i=1 (HQi ⊗ SP )Γn , Hn
p,P [mk

P ] is the exact annihilator of Hn
p̄,P [mk

P ] with respect
to the pairing

(·, ·)n :
pN1⊕
i=1

H1(Kn,Qi , TP /m
k
PTP )×

pN1⊕
i=1

H1(Kn,Qi
, TP /m

k
PTP )→ OP /m

k
P

(this pairing is given by the summation of all pairings for i = 1, . . . , pN1).
To show that H0

p,P [mk
P ] is the exact annihilator of H0

p̄,P [mk
P ], we consider the following commu-

tative diagram.
pN1⊕
i=1

H1(Kn,Qi , TP /m
k
PTP )×

pN1⊕
i=1

H1(Kn,Qi
, TP /m

k
PTP ) −−−−→ OP /m

k
P

�Corp

�Resp̄

�
H1(Kp, TP /mk

PTP ) × H1(Kp̄, TP /mk
PTP ) −−−−→ OP /m

k
P

The construction of Corp and Resp̄ is given in § 2.
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Recall that by definition we have Hp,P [mk
P ] ∼= HomOP (OP [[Γ]], SP /mk

PSP ). We want to show
Corp(Hn

p,P [mk
P ]) = H0

p,P [mk
P ] following the argument in the proof of Proposition 3.15. To do so, it

might be convenient to have Hp,P [mk
P ] ∼= HomOP (OP [[Γ]], OP /mk

P ). There is α ∈ O×
P such that a

generator γ of Γ acts on SP as multiplication by α. Then we can give the following homomorphism:

φ : HomOP (OP [[Γ]], SP /mk
PSP )→ HomOP (OP [[Γ]], OP /mk

P )

f �→ f̃ : γi �→ f(γi)/αi.

(i in the last line runs over all integers). We can check that this is a well-defined OP -isomorphism
and also Γ-equivariant.

Thus we can show Corp(Hn
p,P [mk

P ]) = H0
p,P [mk

P ]. Again using an argument in the proof of
Proposition 3.15 combined with the commutativity of the diagram above, this implies that H0

p̄,P [mk
P ]

is contained in the exact annihilator of H0
p,P [mk

P ]. We can check

|H0
p̄,P [mk

P ]| = |OP /mk
P |,

and using Tate’s Euler characteristic formula, we can check that the size of the exact annihilator of
H0
p,P [mk

P ] is

|H1(Kp, TP /mk
PTP )|

|H0
p,P [mk

P ]| =
∣∣∣∣O

2
P /m

k
PO

2
P

OP /m
k
P

∣∣∣∣ = |OP /mk
P |.

Thus, we can conclude that H0
p̄,P [mk

P ] is the exact annihilator of H0
p,P [mk

P ].

4.3 Iwasawa theory techniques
Let VP = TP ⊗OP Frac(OP ).

Definition 4.12. For a finite place v of K not lying over p, we define the local conditions at v as
follows (see [Rub00, Definition 1.3.4]; for the definition of H1

ur, see [Rub00, Definition 1.3.1]):

H1
F(Kv , AP ) := im(H1

ur(Kv, VP )→ H1(Kv , AP )),

H1
F (Kv, TP ) := ker

(
H1(Kv, TP )→ H1(Kv, VP )

H1
ur(Kv, VP )

)
,

H1
F (Kv , TP /m

k
PTP ) = im(H1

F (Kv , TP )→ H1(Kv , TP /m
k
PTP )).

As we identify AP [mk
P ] with TP /m

k
PTP by multiplication by πkP , we identify H1

F (Kv, AP [mk
P ])

with H1
F (Kv, TP /m

k
PTP ).

Remark 4.13. Note that we have H1
ur(Kv , VP ) = 0, hence we have H1

F (Kv , AP ) = 0.

Rubin [Rub00, Lemma 1.3.8(i)] stated that H1
F (Kv, AP [mk

P ]) is the inverse image of H1
F (Kv, AP )

under the natural map

H1(Kv , AP [mk
P ])→ H1(Kv , AP ).

This implies that for any two integers 0 � k < k′, we have

H1
F (Kv, AP [mk

P ]) = ker(H1(Kv , AP [mk
P ])→ H1(Kv , AP [mk′

P ])/H1
F (Kv, AP [mk′

P ])).

On the other hand, Definition 4.12 implies that we naturally have

H1
F (Kv, AP [mk

P ]) = im(H1
F (Kv, AP [mk′

P ])→ H1(Kv , AP [mk
P ])).

Thus, the local condition at v for AP [mk
P ] satisfies hypothesis (H2) for any k. If we define

H1
F (Kv, Tw(AP [mk

P ])) in the same way, we can check that H1
F (Kv̄, AP [mk

P ]) is the image of
H1

F (Kv, Tw(AP [mk
P ])) under the map H1(Kv, Tw(AP [mk

P ])) → H1(Kv̄ , AP [mk
P ]) defined in
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hypothesis (H3). Then, by [Rub00, Proposition 1.4.3(ii)], we can see that the local condition at
v satisfies hypothesis (H3) as well.

Definition 4.14. For a prime p of K lying over p, we define

H1
F (Kp, AP ) := H0

p,P ,

H1
F (Kp, AP [mk

P ]) := H0
p,P [mk

P ].

Since H1(Kp, AP [mk
P ])→ H1(Kp, AP [mk′

P ])[mk
P ] is an isomorphism, we can easily check one part

of hypothesis (H2). To check the other part of hypothesis (H2), consider the following map:

H1(Kp, AP )
πk

′−k
P−−−→ H1(Kp, AP ).

This map induces H0
p,P

πk
′−k
P−−−→ H0

p,P , which is surjective because H0
p,P
∼= HomOP (OP ,DP ) is divisible.

Thus, we have a surjective map H1
F (Kp, AP [mk′

P ])
πk

′−k
P−−−→ H1

F (Kp, AP [mk
P ]).

In the previous section we checked that this local condition satisfies hypothesis (H3).
BecauseK∞ = C, we do not have to discuss local conditions at infinite places. Using Theorem 4.5,

we obtain the following proposition.

Proposition 4.15. We have

H1
F (K,AP [mk

P ]) ∼= (OP /mk
POP )ε ⊕M2

for an OP /m
k
POP -module M and an integer ε.

We define H1
F (K,AP ) as

H1
F (K,AP ) := ker

(
H1(KΣ/K,AP )→

∏
w∈Σ

H1(Kw, AP )/H1
F (Kw, AP )

)
.

Then we have the following.

Proposition 4.16. There is an integer rP and a finite OP -module M(P ) such that we have

H1
F (K,AP ) ∼= (DP )rP ⊕M(P )2.

Proof. As mentioned after Definitions 4.12 and 4.14, for any integer k and any finite place v,
H1

F(Kv , AP [mk
P ]) is the inverse image of H1

F (Kv , AP ) under the natural map

H1(Kv , AP [mk
P ])→ H1(Kv , AP ).

Also we have H1(K,AP [mk
P ]) ∼= H1(K,AP )[mk

P ], thus we have

H1
F(K,AP [mk

P ]) ∼= H1
F (K,AP )[mk

P ];

therefore, by Proposition 4.15 we obtain our claim.

Proposition 2.5 gives a Λ-isomorphism

Shp : H1(Kp,Hom(Λ, A)) ∼−→
pN1∏
i=1

H1(K∞,Qi , A).

Definition 4.17. For a prime p of K lying above p, we define H1
F(Kp,Hom(Λ, A)) as the inverse

image of Hp under Shp.
For any other finite place v, we define

H1
F(Kv ,Hom(Λ, A)) := H1

ur(Kv ,Hom(Λ, A)).
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In addition, we define

H1
F (K,Hom(Λ, A)) = ker

(
H1(KΣ/K,Hom(Λ, A))→

∏
v∈Σ

H1(Kv,Hom(Λ, A))
H1

F (Kv,Hom(Λ, A))

)
.

Recall that P is a prime ideal generated by an irreducible element not divisible by p. We let
xP denote this element. Note that xP is (possibly) different from πP , a uniformizer of the maximal
ideal mP of OP . For the fixed generator γ of Γ, we let ι : Λ → Λ be the involution map given by
γ → γ−1 and identity on Zp. Let P ι := ι(P ). We identify SP with HomOPι (SP ι , OP ι) asGK -modules.
We construct the following map

SP = HomOPι (SP ι , OP ι)
trace−−−→ HomZp(SP ι ,Zp)→ HomZp(Λ/P

ι,Zp).

This map is injective, and the cokernel is finite. This map tensored by A gives

AP = A⊗ SP → Hom(Λ/P ι, A) ∼= Hom(Λ, A)[P ι]

(the last group is the kernel of the multiplication by xιP ). This map is surjective and its kernel is
finite.

For n � 1, let Pn be an ideal of Λ generated by xPn = xP + pn, which is irreducible if n is large
enough. In § 2 we defined a map

j :
pN1⊕
i=1

H1(K∞,Qi, A) ∼−→ Hom
(

Λ,
pN1⊕
i=1

H1(K∞,Qi , A)
)Γ

,

and, by Proposition 2.5, j ◦ Shp is equal to the following natural map

H1(Kp,Hom(Λ, A)) ∼−→
(pN1⊕
i=1

H1(K∞,Qi ,Hom(Λ, A))
)Γ ∼−→ Hom

(
Λ,

pN1⊕
i=1

H1(K∞,Qi , A)
)Γ

.

Therefore, the image of H1
F (Kp,Hom(Λ, A)) under this map is j(Hp) = Hom(Λ,Hp)Γ.

We consider the following commutative diagram whose vertical maps are isomorphisms.

H1(Kp, APn) −−−−→ H1(Kp,Hom(Λ/P ιn, A)) ∼= H1(Kp,Hom(Λ, A))[P ιn]� �
(
SPn ⊗

pN1⊕
i=1

H1(K∞,Qi , A)
)Γ

−−−−→ Hom
(

Λ/P ιn,
pN1⊕
i=1

H1(K∞,Qi, A)
)Γ

By our discussion, the map H1
F (Kp, APn)→ H1

F (Kp,Hom(Λ, A))[P ιn] in the top is equal to a natural
map (SPn ⊗Hp)Γ → Hom(Λ/P ιn,Hp)Γ in the bottom. We can check that as n � 0 varies this map
has finite kernel and cokernel whose orders are bounded. We have the following proposition.

Proposition 4.18. The kernel and cokernel of

fF : H1
F (K,APn)→ H1

F (K,Hom(Λ, A))[P ιn]

are finite and bounded as n varies.
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Proof. We consider the following commutative diagram.

0→ H1
F (K,APn) −−−−→ H1(KΣ/K,APn) −−−−→

∏
v∈Σ

H1(Kv , APn)
H1

F(Kv , APn)�fF
� �

0→ H1
F (K,Hom(Λ, A))[P ιn] −−−−→ H1(KΣ/K,Hom(Λ, A))[P ιn] −−−−→

∏
v∈Σ

H1(Kv ,Hom(Λ, A))
H1

F(Kv ,Hom(Λ, A))

It is proven in the proof of [MR04, Proposition 5.3.14] that the center vertical arrow has kernel
and cokernel whose orders are finite and bounded as n � 0 varies. Hence, we only need to show
that the right vertical arrow has a finite kernel whose order is bounded as n� 0 varies.

For any place v we consider the following diagram.

0→ H1
F (Kv , APn) −−−−→ H1(Kv , APn) −−−−→ H1(Kv, APn)

H1
F (Kv, APn)� � �fv

0→ H1
F (Kv ,Hom(Λ, A))[P ιn] −−−−→ H1(Kv ,Hom(Λ, A))[P ιn] −−−−→

H1(Kv,Hom(Λ, A))
H1

F (Kv,Hom(Λ, A))

To show that the right vertical map fv has a finite kernel whose order is bounded as n� 0 varies,
we want to show that the orders of the cokernel of the left vertical map and the kernel of the middle
vertical map are finite and bounded as n� 0 varies.

Let v be a non-archimedean place such that v � p. A short exact sequence

0→ Hom(Λ/P ιn, A)→ Hom(Λ, A)
xιPn−−→ H1(Λ, A)→ 0

induces (from the long exact sequence of H•(Kv, ) groups)

0→ Hom(Λ, A)GKv

Pn
ιHom(Λ, A)GKv

→ H1(Kv ,Hom(Λ/P ιn, A))→ H1(Kv,Hom(Λ, A))[Pnι]→ 0. (5)

On the other hand, we consider a short exact sequence

0→ Hom(Λ/P ιn, A
IKv )→ Hom(Λ, AIKv )

xιPn−−→ Hom(Λ, AIKv )→ 0

(we have the right exactness because Λ/P ιn is a free Zp-module). This induces (from the long exact
sequence of H•(Kur

v /Kv , ) groups)

0→ Hom(Λ, AIKv )Gal(Kur
v /Kv)

Pn
ιHom(Λ, AIKv )Gal(Kur

v /Kv)
→ H1(Kur

v /Kv ,Hom(Λ/P ιn, A
IKv ))

→ H1(Kur
v /Kv ,Hom(Λ, AIKv ))[Pnι]→ 0. (6)

Since v is unramified over K∞/K, we have Hom(Λ, AIKv )Gal(Kur
v /Kv) = Hom(Λ, A)GKv .
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Thus, as we consider the following diagram:
Ker1 Ker2 Ker3� � �

0→ H1
ur(Kv,Hom(Λ/P ι

n, A)) −−−−→ H1(Kv,Hom(Λ/P ι
n, A)) −−−−→ H1(Kv,Hom(Λ/P ι

n, A))
H1

ur(Kv,Hom(Λ/P ι
n, A))

→ 0
�

�
�

0→ H1
ur(Kv,Hom(Λ, A))[P ι

n] −−−−→ H1(Kv,Hom(Λ, A))[P ι
n] −−−−→ H1(Kv,Hom(Λ, A))

H1
ur(Kv,Hom(Λ, A))�

Cok1

we can see that Ker1 = Ker2 from (5) and (6), and Cok1 = 0 from (6). Therefore, Ker3 is trivial.
It is not hard to see that the order of the kernel of

H1(Kv , APn)
H1
ur(Kv , APn)

→ H1(Kv,Hom(Λ/P ιn, A))
H1
ur(Kv,Hom(Λ/P ιn, A))

is finite and bounded as n� 0 varies. From [Rub00, Lemma 1.3.5] we can see that H1
ur(Kv, APn)/

H1
F (Kv, APn) is finite and its order is bounded as n� 0 varies. Thus, we can see that fv has a finite

kernel whose order is bounded as n� 0 varies.
As discussed before this proposition, the map H1

F(Kp, APn) → H1
F (Kp,Hom(Λ, A))[P ιn] has

a finite cokernel whose order is finite and bounded as n � 0 varies. We can easily check that
H1(Kp, APn)→ H1(Kp,Hom(Λ, A))[P ιn] has finite kernel and cokernel whose orders are bounded as
n� 0 varies. Thus, fp has a finite kernel whose order is bounded as n� 0 varies.

Thus, fF has finite kernel and cokernel whose orders are bounded as n� 0 varies.

Write X for H1
F (K,Hom(Λ, A))∨.

Consider the following:

H1
F (K,APn)→ H1

F(K,Hom(Λ, A))[P ιn]→ H1
F (K,Hom(Λ, A))[P ιn]⊗OPn .

(The tensor product in the last term is over Λ/P ιn. Also note that OPn is a Λ/P ιn-module through
Λ/P ιn

ι−→ Λ/Pn → OPn .) Proposition 4.18 states that this map has kernel and cokernel whose orders
are finite and bounded as n� 0 varies.

Then, by taking a Pontryagin dual, we can see that

(X/P ιnX)tor ⊗OPn → Hom(H1
F (K,APn),DPn)tor (7)

has kernel and cokernel whose orders are bounded as n varies. By Proposition 4.16, the last group
is isomorphic to M(Pn)2 for a finite OPn-module M(Pn).

Similar to [How04, Theorem 2.2.10(b)] we can prove the following.

Proposition 4.19. Suppose that K is an imaginary quadratic field where p splits completely, and
let K∞ is the anti-cyclotomic Zp-extension of K. Then there are an integer r and a Λ-torsion module
Y such that we have

H1
F(K,Hom(Λ, A))∨ ∼ Λr ⊕ Y 2

where ∼ is a pseudo-isomorphism.

4.4 The corank of Selmer groups
We let Σ be the set of bad reduction primes for E of K, primes of K lying above p, and infinite
places, and containing none else. We borrow the notation p, p̄, Qi, and Qi from § 4.2.
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Definition 4.20. Let n � N2 and let Ê−(Kn,Qi) denote Ê−(mKn,Qi
).

For i = 1, . . . , pN1 we define H1
f (Kn,Qi , A) := Ê−(Kn,Qi) ⊗ Qp/Zp and define H1

f (Kn,Qi
, A)

similarly. For a place v of Kn not lying above p, we define H1
f (Kn,v, A) := E(Kn,v)⊗Qp/Zp.

We define minus-Selmer groups over Kn (n � N2) as

Sel−p (E/Kn) = ker
(
H1(KΣ/Kn, A)→

∏
v|l for l∈Σ

H1(Kn,v, A)
H1
f (Kn,v, A)

)
,

and Sel−p (E/K∞) as the direct limit of them over n.

We define a Selmer group over Kn as

Selp(E/Kn) = ker
(
H1(KΣ/Kn, A)→

∏
v|l for l∈Σ

H1(Kn,v, A)
E(Kn,v)⊗Qp/Zp

)
,

and define Selp(E/K∞) as the direct limit of them over n.

When χ is a character of Gal(Kn/KN2), we let Zp[χ] := Zp[χ(γp
N2 )] and for a Gn-module M let

Mχ := (M ⊗ Zp[χ])χ. We say that χ is a primitive character of Gal(Kn/KN2) if χ(Gal(Kn/Kn−1))
is not 1.

Lemma 4.21. Assume that n is larger than N2. If n −N2 is odd and χ is a primitive character of
Gal(Kn/KN2), we have

corankZp[χ](Selp(E/Kn)χ) = corankZp[χ](Sel−p (E/K∞)Γn)χ.

Proof. From the definition we can check that the cokernel of Sel−p (E/Kn)χ → Selp(E/Kn)χ is
contained in

pN1∏
i=1

(
Ê(Kn,Qi)⊗Qp/Zp

Ê−(Kn,Qi)⊗Qp/Zp

)χ

·
pN1∏
i=1

(
Ê(Kn,Qi

)⊗Qp/Zp

Ê−(Kn,Qi
)⊗Qp/Zp

)χ

.

We can easily check

Ê(Kn,Qi)⊗Qp/Zp

Ê−(Kn,Qi)⊗Qp/Zp

∼= Ê(Kn,Qi)

Ê−(Kn,Qi)
⊗Qp/Zp.

We have

corankZp[χ]

(
Ê(Kn,Qi)

Ê−(Kn,Qi)
⊗Qp/Zp

)χ
= rankZp[χ]

(
Ê(Kn,Qi)

Ê−(Kn,Qi)

)χ

= rankQp[χ](Ê(Kn,Qi)⊗Qp)χ − rankQp[χ](Ê
−(Kn,Qi)⊗Qp)χ

= pN2−N1 − pN2−N1 = 0.

Thus, we can conclude that corankZp[χ]Sel−p (E/Kn)χ = corankZp[χ]Selp(E/Kn)χ.

On the other hand, consider the following diagram.

0 −−−−→ Sel−p (E/Kn) −−−−→ H1(KΣ/Kn, A) −−−−→
∏

v|l,l∈Σ

H1(Kn,v, A)/H1
f (Kn,v, A)

� � �
0 −−−−→ Sel−p (E/K∞)Γn −−−−→ H1(KΣ/K∞, A)Γn −−−−→

∏
w|l,l∈Σ

H1(K∞,w, A)/H1
f (K∞,w, A)
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The middle vertical map has trivial kernel and cokernel. For a place v � p of Kn, the kernel of

H1(Kn,v, A)
E(Kn,v)⊗Qp/Zp

→
∏
w|v

H1(K∞,w, A)
E(K∞,w)⊗Qp/Zp

is finite by [Gre99, Lemma 3.3].
The kernel of (

H1(Kn,Qi , A)

Ê−(Kn,Qi)⊗Qp/Zp

)χ
→

(
H1(K∞,Qi , A)

Ê−(K∞,Qi)⊗Qp/Zp

)χ

is (
(Ê−(K∞,Qi)⊗Qp/Zp)Γn

E−(Kn,Qi)⊗Qp/Zp

)χ
.

Because we have Ê−(K∞,Qi) ⊗ Qp/Zp
∨ ∼= Zp[[Gal(K∞/KN2)]], the χ-parts of the numerator and

the denominator of this group have the same corank. Thus, this group is finite.
Therefore, the cokernel of Sel−p (E/Kn)χ → (Sel−p (E/K∞)Γn)χ is finite as well.

We let N denote the conductor of E. For the rest of this section we assume that K is an
imaginary quadratic field such that every prime l dividing N splits completely in K (the so-called
‘Heegner hypothesis’). In addition, we assume that p splits completely in K. We define Heegner
points of E over the ring class field extensions of K of conductor pn as follows (see [Gro84]).

Definition 4.22 (Heegner points). Let OK be the ring of integers of K. We may choose an ideal
N of OK such that OK/N ∼= Z/NZ. For an integer c � 1, we let Oc = Z + cOK denote the unique
order of OK of conductor c. It is known that Hc = K(j(Oc)) is the ring class field of conductor c
over K. If (c,N) = 1, then Nc = Oc ∩ N is an invertible ideal in Oc satisfying Oc/Nc ∼= Z/NZ.
The cyclic N -isogeny

[C/Oc → C/N−1
c ]

defines a non-cuspidal point on the modular curve X0(N), which is defined over Hc. The image of
this point under the modular parametrization

π : X0(N)→ E

is denoted by x̄c ∈ E(Hc) and called a Heegner point of conductor c on E.
The union of the ring class fields of conductor pn for n � 0 Hp∞ =

⋃
Hpn contains the anti-

cyclotomic Zp-extension K∞ of K, and its Galois group has decomposition

Gal(Hp∞/K) ∼= G0 ×Gal(K∞/K)

where G0 is the finite torsion subgroup of Gal(Hp∞/K). For n � 0 we have

Gal(Hpn+1/K) ∼= G0 ×Gal(Kn+n0/K),

for some fixed number n0. We define a Heegner point for Kn+n0 by

xn+n0 = TrHpn+1/Kn+n0
(x̄pn+1) ∈ E(Kn+n0).

The Heegner points xn satisfy the following distribution property

TrKn+1/Kn(xn+1) = apxn − xn−1

for n � n0 + 1 where the local Euler factor of E at p is 1− apX + pX2. Since p is a supersingular
reduction prime and p > 3, we have ap = 0.

Theorem 4.23 [Vat03, Theorem 1.4]. The χ-component of xn is non-torsion for all but finitely
many primitive characters χ of Gal(Kn/K) as n > n0 varies.
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Proof. We recall that we have the decomposition

Gal(Hp∞/K) ∼= G0 ×Gal(K∞/K).

Let χ′ be a character of Gal(Hpn+1/K). When p is a good supersingular reduction prime, Vatsal
[Vat03] proved that the χ′-component of x̄pn+1 is non-torsion if the order of the character χ′ on
the tame part (= G0) is prime to p and n is large enough (the condition on G0 is not stated in
[Vat03, Theorem 1.4], but it is used in the proof). In our case the character χ on the tame part is
trivial, therefore our claim follows. Cornut and Vatsal have produced a much more general result
on CM-points of Shimura varieties [CV05, CV07].

Because we assume the Heegner hypothesis, the discriminant of K is prime to the conductor of
E, hence E does not have CM by K. Then we have the following.

Theorem 4.24 (see [Nek06b]). Let χ′ be a character of Gal(Hpn+1/K). If χ′-component of x̄pn+1 is
non-torsion, then the corank of χ′-part of Selp(E/Hpn+1) is 1.

Combining all of the discussed results, we obtain the following.

Proposition 4.25. We have

corankΛSel
−
p (E/K∞) = 1.

Proof. For an integer n > N2, let χ be a primitive character of Gal(Kn/KN2). The χ-part of
Selp(E/Kn) is the sum of χ′-parts of Selp(E/Kn) when χ′ runs over all characters of Gal(Kn/K)
whose restriction on Gal(Kn/KN2) are equal to χ (and these characters are certainly primitive
for Gal(Kn/K)). Thus, if n is large enough, by Theorems 4.23 and 4.24 we obtain
corankZp[χ]Selp(E/Kn)χ = pN2. Combined with Lemma 4.21, this implies that the Λ-corank of
Sel−p (E/K∞) is equal to 1.

Now we want to relate Sel−p (E/K∞) with H1
F (K,Hom(Λ, A)).

Proposition 4.26. We have

H1
F (K,Hom(Λ, A)) ∼= Sel−p (E/K∞).

Proof. Since a prime in Σ− {p} splits completely in K by assumption and Hpn+1 is the ring class
field for Z+pn+1OK , that prime does not split completely over K∞/K (without this property we will
get a homomorphism with a cokernel whose exponent is finite, although its order might be infinite;
this is not a huge problem for proving the parity conjecture, but it certainly is a technicality we
want to avoid). Thus, when a prime w of K∞ lies above such a prime v, K∞,w/Kv is a Zp-extension.

The maps in § 2 give isomorphisms

Sh : H1(KΣ/K,Hom(Λ, A))→ H1(KΣ/K∞, A),

Shp : H1(Kp,Hom(Λ, A))→
pN1∏
i=1

H1(K∞,Qi, A)

Shv : H1(Kv ,Hom(Λ, A))→
∏
w|v

H1(K∞,w, A).

By definition Shp(H1
F (Kp,Hom(Λ, A)))=H−

p,∞ and, discussed in § 2, Shv(H1
ur(Kv ,Hom(Λ, A)))

=
∏
w|vH

1
ur(K∞,w, A).

By [Rub87, Lemma B.3.3], H1
ur(K∞,w, A) = 0. Since v � p, E(K∞,w) ⊗ Qp/Zp = 0. Our claim

follows.
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Combining Propositions 4.19, 4.25, and 4.26, we obtain the following.

Corollary 4.27. We have

Sel−p (E/K∞)∨ ∼ Λ⊕ Y 2,

for a Λ-torsion module Y .

4.5 Main result
The proof of this section follows [Nek01] very closely. We assume the underlying hypothesis on K
stated before Definition 4.22.

Proposition 4.28. We have that corankZpSelp(E/K) is odd.

Proof. First we examine the kernel and cokernel of Selp(E/K) → Sel−p (E/K∞)Γ. For a place v � p
and a place w|v of K∞ we check that ker(H1(Kv, A)→ H1(K∞,w, A)) = H1

ur(Kv , A) is finite.

The kernel of H1(Kp, A)/E(Kp)⊗Qp/Zp →
∏pN2

i=1 H
1(K∞,Qi, A)/Hp is (Hp)Γ/E(Kp)⊗ Qp/Zp.

It is 0, since (Hp)Γ ∼= Qp/Zp and E(Kp) ⊗ Qp/Zp is divisible and of corank 1. Since H1(K,A) →
H1(K∞, A)Γ is an isomorphism, Selp(E/K)→ Sel−p (E/K∞)Γ has finite kernel and cokernel.

From Corollary 4.27 it follows that the Zp-corank of (Sel−p (E/K∞))Γ is odd, thus we obtain our
claim.

Theorem 4.29. We have

corankZpSelp(E/K) ≡ ords=1L/K(E, s) ≡ 1 (mod 2).

Proof. On the algebraic side we have

corankZpSelp(E/K) ≡ 1 (mod 2)

by Proposition 4.28. On the analytic side, K satisfies the Heegner hypothesis, which implies that
the root number of the functional equation is −1. Therefore, we have

ords=1L/K(E, s) ≡ 1 (mod 2).

When D is a negative square-free integer, let ED be the quadratic twist of E by the nontrivial
character of Gal(Q(

√
D)/Q). Then we have

corankZpSelp(E/Q(
√
D)) = corankZpSelp(E/Q) + corankZpSelp(ED/Q), (8)

ords=1L/Q(
√
D)(E, s) = ords=1L/Q(E, s) + ords=1L/Q(ED, s). (9)

We can finally obtain our main result.

Theorem 4.30. Let E be an elliptic curve over Q with good supersingular reduction at p > 3.
Then we have

corankZpSelp(E/Q) ≡ ords=1L/Q(E, s) (mod 2).

Proof. When ords=1L/Q(E, s) is odd, by [Wal84] there are infinitely many negative square-free
integers D such that the Heegner hypothesis holds for Q(

√
D), p splits completely in Q(

√
D), and

ords=1L/Q(ED, s) = 0. By the results of Kolyvagin [Kol90], we have

corankZpSelp(ED/Q) = 0;

thus, from Theorem 4.29 and (8), it follows that corankZpSelp(E/Q) is odd.
When ords=1L/Q(E, s) is even, choose a negative square-free integer D such that the Heegner

hypothesis holds for Q(
√
D), p splits completely in Q(

√
D), and p � D. Then ED has obviously good

supersingular reduction at p, and from (9) it follows that ords=1L/Q(ED, s) is odd. Previously we
showed that if ords=1LQ(ED, s) is odd, then corankZpSelp(ED/Q) is odd. From Theorem 4.29 and
(8) it follows that corankZpSelp(E/Q) is even.
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Nek06b J. Nekovář, The Euler system method for CM points on Shimura curves, in L-functions and Galois

representations, Proc. LMS Durham Symposium, 2004, to appear.
Rub87 K. Rubin, Local units, elliptic units, Heegner points and elliptic curves, Invent. Math. 88 (1987),

405–422.
Rub00 K. Rubin, Euler systems, in Hermann Weyl Lectures, Annals of Mathematics Studies, vol. 147

(The Institute for Advanced Study and Princeton University Press, Princeton, NJ, 2000).
Vat03 V. Vatsal, Special values of anticyclotomic L-functions, Duke Math. J. 116 (2003), 219–261.
Wal84 J.-L. Waldspurger, Correspondences de Shimura, in Proceedings of the International Congress of

Mathematicians, Warsaw, 1983, vols 1, 2 (PWN, Warsaw, 1984), 525–531.

Byoung Du (B. D.) Kim bdkim@math.mcmaster.ca
Department of Mathematics and Statistics, McMaster University, 1280 Main Street West, Hamilton,
Ontario L8S 4K1, Canada

72

https://doi.org/10.1112/S0010437X06002569 Published online by Cambridge University Press

mailto:bdkim@math.mcmaster.ca
https://doi.org/10.1112/S0010437X06002569

	1 Introduction
	2 Galois cohomology
	3 Plus/minus-local conditions
	3.1 -Coleman maps
	3.2 Norm subgroups
	3.3 Self-duality of minus formal groups
	3.4 The minus local condition of a ramified $\mathbb{Z}_p$-extension of $\mathbb{Q}_p$

	4 The parity conjecture
	4.1 Notation and hypotheses
	4.2 Duality of local conditions at the primes lying above $p$
	4.3 Iwasawa theory techniques
	4.4 The corank of Selmer groups
	4.5 Main result

	References

