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Abelian varieties over Q with bad reduction

in one prime only

René Schoof

Abstract

We show that for the primes l = 2, 3, 5, 7 or 13, there do not exist any non-zero abelian
varieties over Q that have good reduction at every prime different from l and are semi-
stable at l. We show that any semi-stable abelian variety over Q with good reduction
outside l = 11 is isogenous to a power of the Jacobian variety of the modular curve X0(11).
In addition, we show that for l = 2, 3 and 5, there do not exist any non-zero abelian
varieties over Q with good reduction outside l that acquire semi-stable reduction at l over
a tamely ramified extension.

1. Introduction

In this paper we study abelian varieties over Q that have good reduction at all but a single prime.
Denoting this one bad prime by l, our first results are concerned with abelian varieties that have
semi-stable reduction at l.

Theorem 1.1. For the primes l = 2, 3, 5, 7 or 13, there do not exist any non-zero abelian varieties
over Q that have good reduction at every prime different from l and have semi-stable reduction at l.

This result is the best possible, because the Jacobian varieties J0(l) of the modular curves X0(l)
have good reduction at all primes different from l and are semi-stable at l. When l is not one of 2,
3, 5, 7 or 13, these are non-zero abelian varieties.

For the prime l = 11 we show the following.

Theorem 1.2. Every semi-stable abelian variety over Q that has good reduction outside the
prime 11 is isogenous to a power of J0(11).

See [VZ04] for a related result in a geometric context.
Our second result concerns abelian varieties over Q that have good reduction outside l and

acquire semi-stable reduction at l over a tamely ramified extension.

Theorem 1.3. For the primes l = 2, 3 or 5, there do not exist any non-zero abelian varieties over Q

that have good reduction at every prime different from l and acquire semi-stable reduction at l over
an extension of Q that is at most tamely ramified at l.

This result is the best possible, because the Jacobian varieties J(l) of the modular curves X(l)
have good reduction at all primes different from l and acquire semi-stable reduction at l over a
tamely ramified extension [BW04, Corollary 4.4]. When l � 7, these are non-zero abelian varieties.

The curve X(7) has genus three. Its Jacobian J(7) is isogenous (over Q) to a product of the
Jacobian J0(49) of the modular curve X0(49) and a two-dimensional simple abelian variety B.
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The variety B is isogenous to J0(49) × J0(49) over the real subfield of the cyclotomic field Q(ζ7).
Under the assumption of the Generalized Riemann Hypothesis for zeta functions of number fields,
I can show [Sch03a] that any abelian variety over Q with good reduction outside 7 and acquiring
semi-stable reduction over a tamely ramified extension at 7, is necessarily isogenous (over Q) to a
product of copies of the abelian varieties J0(49) and B. The proof follows the lines of the proof of
Theorem 1.2.

Our results are consistent with conditional results obtained by Mestre [Mes86, § III]. Mestre’s
methods are analytic in nature. He assumes that the L-functions associated to abelian varieties
over Q admit analytic continuations to C and he applies Weil’s explicit formulas. Our results do
not depend on any unproved hypotheses. In a recent paper [BK01] Brumer and Kramer prove
Theorem 1.1 for primes l � 7. In this paper we take care of the prime 13. For the primes l = 2, 3
and 5 we prove the somewhat stronger Theorem 1.3. Our proof, like that of Brumer and Kramer,
proceeds by studying, for a suitable small prime p �= l, the pn-torsion points A[pn] of abelian
varieties A that have good reduction at every prime different from l and that either have semi-
stable reduction at l or acquire it over a tamely ramified extension. The way in which the main
result is obtained differs from Brumer and Kramer’s method. Our method is closer to the approach
taken by Fontaine in [Fon85]. When l = 2, 3, 5, 7 or 13 we show for every n � 1 that the group
scheme A[pn] is an extension of a constant group scheme by a diagonalizable one. This leads to a
contradiction when dim(A) > 0.

For l = 11 things are more complicated. In this case there exist group schemes of p-power order
that are not extensions of a constant group scheme by a diagonalizable one. Indeed, for p = 2, the
2-torsion subgroup scheme of J0(11) is an example of such an ‘exotic’ group scheme.

Finally we mention Calegari’s work [Cal04]. Under the assumption of the Generalized Riemann
Hypothesis, he determines all squarefree integers n > 0 for which there do not exist any non-zero
abelian varieties over Q with good reduction at all primes not dividing n while the reduction at the
primes dividing n is semi-stable. These turn out to be the squarefree integers n for which the genus
of X0(n) is zero: n = 1, 2, 3, 5, 6, 7, 10 and 13.

For any pair of distinct primes p and l we introduce in § 2 two categories C and D of finite flat
group schemes of p-power order over the ring Z[1l ]. In terms of these we formulate in § 3 two simple
criteria for Theorem 1.1 or 1.3 to hold. Each criterion has two parts. One involves the extensions of
the group schemes µp by Z/pZ over the ring Z[1l ]. We determine these in § 4. The other is concerned
with the simple objects in the categories D and C, respectively. In §§ 5 and 6 we determine these
for a very short list of pairs of primes (p, l). Theorems 1.1 and 1.3 then follow. We deal with the
prime l = 11 in § 7. Here we prove Theorem 1.2. Section 8 contains a theorem concerning p-divisible
groups that is essential for the proof.

2. Two categories of finite flat group schemes over Z[1
l
]

Let p and l be two distinct primes. By Gr we denote the category of finite flat commutative p-power
order group schemes, or p-group schemes for short, over the ring Z[1l ]. In this section we introduce
two full subcategories of Gr. In terms of these, in the next section, we formulate two criteria for
Theorems 1.1 and 1.3 to hold.

Definition 2.1. Let p and l be two distinct primes.

(i) The category C is the full subcategory of Gr of group schemes G for which the inertia group
of every prime over l acts tamely on the group of points G(Q).

(ii) The category D is the full subcategory of Gr of group schemes G for which we have that
(σ − id)2 = 0 on G(Q) for all σ in the inertia groups of any of the primes lying over l.
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Since every group scheme G in the category D has p-power order, the relation (σ − id)2 = 0
implies that σpn

= id for some n � 0. This implies that every inertia group acts through a finite
p-group on G(Q). Since p �= l, this action is tame and hence D is a full subcategory of C:

D ⊂ C ⊂ Gr.

We now exhibit several objects in the categories C and D. The first example explains why we
are interested in these two categories of group schemes.

2.1 By A. Grothendieck’s semi-stable reduction Theorem [Gro71, Exp. IX, (3.5.3)], the subgroup
schemes A[pn] of pn-torsion points of semi-stable abelian varieties A over Q that have good reduction
outside l are objects of D and hence of C. More generally, the subgroup schemes A[pn] of abelian
varieties A over Q that have good reduction outside l and acquire semi-stable reduction at l over
some tamely ramified extension, are objects of C and need not be objects of D.

2.2 Constant and diagonalizable group schemes of p-power order are objects of D and hence of C.
So are certain twists of these group schemes that are unramified outside l. Let V be a finite-
dimensional vector space over Fp. For any representation � : Gal(Q/Q) −→ GL(V ) we obtain a
Galois module with underlying group V . If � is unramified outside l and infinity, this module is the
group of points of an étale group scheme V (�) over Z[1l ]. If � is at most tamely ramified at l,
the group scheme V (�) is an object of C. If (�(σ) − id)2 = 0 for every σ in an inertia group of any
of the primes lying over l, then V (�) is even an object of D.

For instance, taking V = Fl−1
p and � : Gal(Q(ζl)/Q) −→ GL(V ) as the permutation representa-

tion, the group scheme V (�) is an object of C. Its points generate the field Q(ζl). Another example
is given by V = F2

p where � is a homomorphism,

� : Gal(Q(ζl)/Q) ��
{(

1 x
0 1

)
: x ∈ Fp

}
⊂ GL(V ).

This time the group scheme V (�) is an object in D, because (�(σ) − id)2 = 0 for every σ. For this
twist to be non-trivial, it is necessary that l ≡ 1 (mod p). Taking Cartier duals we obtain unramified
twists of diagonalizable group schemes that are objects in C and D, respectively.

2.3 Cartier duals G∨ of objects G in D are also in D. Any closed flat subgroup scheme and any
quotient by such a group scheme of an object in D is again in D. The product of any two objects
in D is again in D. It follows from the definition of the Baer sum that if G1 and G2 are
objects in D, then the extension classes of G1 by G2 that are themselves objects of D make
up a subgroup Ext1D(G1, G2) of the group Ext1

Z[ 1
l
]
(G1, G2) of all extensions of G1 by G2 in the

category Gr.

All these remarks also hold for the category C. However, an extension G of an object G1 ∈ C
by another object G2 ∈ C is automatically an object of C. In other words, we have Ext1C(G1, G2) =
Ext1

Z[ 1
l
]
(G1, G2). Indeed, there is some exponent e that is prime to l and has the property that, for

all σ in an inertia group of any of the primes lying over l, the automorphism σe acts trivially on
the points of G1 and G2. It follows that (σe − id)2 = 0 on the points of G and hence that σeps

= id
for some s � 0. This implies that every inertia group acts through its tame quotient.

It is, in general, not true that Ext1D(G1, G2) = Ext1
Z[ 1

l
]
(G1, G2). It is true, however, when the

inertia groups of the primes over l act trivially on the points of G1 and G2. We have for instance
that

Ext1D(µp, Z/pZ) = Ext1C(µp, Z/pZ) = Ext1
Z[ 1

l
]
(µp, Z/pZ).
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See § 7 for an example of two group schemes G1, G2 in the category D for which Ext1D(G1, G2) is
strictly smaller than Ext1C(G1, G2) = Ext1

Z[ 1
l
]
(G1, G2).

2.4 Katz and Mazur construct in their book [KM85, Interlude 8.7], certain explicit extensions of
Z/pZ by µp. These are objects in D. We recall the construction in our situation. For any unit
ε ∈ Z[1l ]

∗, Katz and Mazur define a finite flat p-group scheme Gε over Z[1l ] of order p2. It is killed
by p and fits in an exact sequence

0 �� µp �� Gε
�� Z/pZ �� 0.

Two group schemes Gε and Gε′ are isomorphic if and only if ε/ε′ = up for some u ∈ Z[1l ]
∗. The

points of Gε generate the number field Q(ζp, p
√

ε). For p = 2 and ε = −1, we recover the group
scheme D in [Maz76, Proposition 4.2].

3. Two criteria

In this section we formulate criteria for Theorems 1.1 and 1.3 to hold. Let l and p be two distinct
primes. A simple object in any of the categories Gr, C or D of the previous section is an object in
that category that does not admit any non-trivial closed flat subgroup schemes.

Proposition 3.1. Let l be a prime and suppose there exists a prime p �= l for which:

• the only simple objects in the category D are the group schemes Z/pZ and µp;

• we have Ext1
Z[ 1

l
]
(µp, Z/pZ) = 0.

Then there do not exist any non-zero abelian varieties over Q that have good reduction at every
prime different from l and have semi-stable reduction at l.

Proof. The proof is very similar to that in [Fon85, § 3.4.3]. We briefly sketch it. Let A be a
g-dimensional abelian variety over Q that has good reduction at every prime different from l and has
semi-stable reduction at l. Let n � 1 and consider the closed subgroup scheme A[pn] of pn-torsion
points over Z[1l ]. This is an object of the category D. We filter A[pn] with flat closed subgroup
schemes and successive simple subquotients. The simple steps are by assumption isomorphic to
Z/pZ and µp. By the second assumption, any extension

0 �� Z/pZ �� G �� µp �� 0

splits over Z[1l ]. Therefore, we can modify the filtration of A[pn] and obtain for every n � 1 an exact
sequence of finite flat Z[1l ]-group schemes

0 �� Mn
�� A[pn] �� Cn

�� 0

with Mn an extension of group schemes isomorphic to µp and Cn an extension of copies of Z/pZ.
It follows that Cn is étale and that the fundamental group of Z[1l ] acts on its points through a
finite p-group P . Since the maximal abelian p-extension of Q that is unramified outside l · ∞ is
contained in the cyclic extension Q(ζl), the group P/P ′ is cyclic. This implies that P itself is cyclic
and hence that the fundamental group acts through the Galois group of Q(ζl) over Q. It follows
that Cn becomes constant over the ring Z[1l , ζl]. Similarly, it follows from Cartier duality that Mn

becomes diagonalizable over this ring.
Pick a non-zero prime p of Z[1l , ζl] and let kp denote its residue field. The abelian variety A/Mn

has at least #Cn rational points over kp. Since A is isogenous to A/Mn, it has the same number
of points over kp as A/Mn. This implies that #A(kp) � #Cn. Taking Cartier duals of the exact
sequence above, we see that the abelian variety Adual/C∨

n has at least #M∨
n points over kp. Since A is
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isogenous to Adual/C∨
n , we see that #A(kp) � #M∨

n = #Mn. It follows that #A(kp)2 is at least the
product of the orders of Mn and Cn, which is equal to #A[pn] = p2ng. This leads to a contradiction
when n → ∞ unless g = 0. This proves the proposition.

Proposition 3.2. Let l be a prime and suppose that there exists a prime p �= l for which:

• the only simple objects in the category C are the group schemes Z/pZ and µp;

• we have Ext1
Z[ 1

l
]
(µp, Z/pZ) = 0.

Then there do not exist any non-zero abelian varieties over Q that have good reduction at every
prime different from l and acquire semi-stable reduction at l over a tamely ramified extension.

Proof. This time the group scheme A[pn] is an object of the category C. Up to replacing the
category D by C, the proof is identical to the proof of Proposition 3.1.

4. Extensions of µp by Z/pZ over Z[1
l
]

The criteria of the previous section involve the group Ext1
Z[ 1

l
]
(µp, Z/pZ) of extensions of the group

scheme µp by Z/pZ over the ring Z[1l ]. In this section we determine this group for any pair of distinct
primes p and l. For p = 2 see also [Maz76, Proposition 5.1].

For any prime p, let ζp denote a primitive pth root of unity and let ∆ = Gal(Q(ζp)/Q). Let
ω : ∆ −→ F∗

p denote the cyclotomic (or Teichmüller) character defined by σ(ζp) = ζ
ω(σ)
p for every

σ ∈ ∆. By Mωi we denote the ωi-eigenspace of an Fp[∆]-module M .

Proposition 4.1. Let l and p be distinct primes. Then there is a natural exact sequence

0 �� Ext1
Z[ 1

l
]
(µp, Z/pZ) �� (Z[ 1

pl , ζp]∗/(Z[ 1
pl , ζp]∗)p)ω2 −→ (Qp(ζp)

∗/(Qp(ζp)
∗)p)ω2 .

Proof. We work with the following base rings.

Zp

����
��

��
��

Z[1l ]

����������

����
��

��
��

Qp

Z[ 1
pl ]

����������

Since the group scheme µp is connected, while Z/pZ is étale, the group HomZp(µp, Z/pZ) vanishes.
Therefore HomZ[ 1

l
](µp, Z/pZ) is zero as well. The natural homomorphism HomZ[ 1

p
](µp, Z/pZ) −→

HomQp(µp, Z/pZ) is an isomorphism. More precisely, both groups are zero when p is odd, while
they both have order two when p = 2. Finally, the group Ext1Zp

(µp, Z/pZ) is trivial because any
extension of µp by Z/pZ over the ring of p-adic integers Zp is split by the connected component.

Therefore, the Mayer–Vietoris exact sequence of [Sch03b, Proposition 2.4] provides us with the
exact sequence

0 �� Ext1
Z[ 1

l
]
(µp, Z/pZ) �� Ext1

Z[ 1
pl

]
(µp, Z/pZ) �� Ext1Qp

(µp, Z/pZ).

Since the group schemes µp and Z/pZ are étale over the rings Z[ 1
pl ] and Qp, this sequence gives a

description of the group Ext1
Z[ 1

l
]
(µp, Z/pZ) in terms of groups of extensions of Galois modules.
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Next we adjoin the pth roots of unity to the rings Z[ 1
pl ] and Qp. The Galois group ∆, introduced

above, acts naturally on the group Ext1Qp(ζp)(Z/pZ, µp) of extensions of µp by Z/pZ over Q(ζp).
Since ∆ has order prime to p, the extensions that are defined over Qp correspond precisely to the
∆-invariant elements of Ext1Qp(ζp)(Z/pZ, µp).

Since Qp(ζp) contains ζp, the Galois modules µp and Z/pZ are isomorphic! This implies that
Ext1Qp(ζp)(µp, Z/pZ) and Ext1Qp(ζp)(Z/pZ, µp) are also isomorphic. However, under this isomorphism
the ∆-invariant extensions of µp by Z/pZ correspond to the extensions of Z/pZ by µp that are
contained in the ω2-eigenspace of Ext1Qp(ζp)(Z/pZ, µp). Exactly the same occurs for the extension
groups over the ring Z[ 1

pl , ζp] and its subring of ∆-invariants Z[ 1
pl ]. These considerations lead to the

exact sequence

0 �� Ext1
Z[ 1

l
]
(µp, Z/pZ) �� Ext1

Z[ 1
pl

,ζp]
(Z/pZ, µp)ω2 �� Ext1Qp(ζp)(Z/pZ, µp)ω2 .

We express the rightmost extension group in terms of Galois cohomology. In order to do this we
apply the functor HomQp(ζp)(−, µp) to the exact sequence 0 → Z → Z → Z/pZ → 0 and compute
the long exact sequence of Ext-groups. Proceeding in the same way with the extension group in the
middle, we obtain the following diagram of Fp[∆]-modules.

0 �� µp �� Ext1
Z[ 1

pl
,ζp]

(Z/pZ, µp)

��

�� H1(GZ[ 1
pl

,ζp], µp) �� 0

0 �� µp �� Ext1Qp(ζp)(Z/pZ, µp) �� H1(GQp(ζp), µp) �� 0

The rows of this diagram are exact, and GQp(ζp) denotes the absolute Galois group of Qp(ζp) and
GZ[ 1

pl
,ζp] is the fundamental group of Z[ 1

pl , ζp]. By the Snake Lemma there is an exact sequence of

Fp[∆]-modules,

0 �� Ext1
Z[ 1

l
]
(µp, Z/pZ) �� H1(GZ[ 1

pl
,ζp], µp)ω2 �� H1(GQp(ζp), µp)ω2 .

The Kummer sequences over the rings Z[ 1
pl , ζp] and Qp(ζp) give rise to the following commutative

diagram of Fp[∆]-modules with exact rows.

0 �� Z[ 1
pl , ζp]∗/(Z[ 1

pl , ζp]∗)p

��

�� H1(GZ[ 1
pl

,ζp], µp)

��

�� Cl(Z[ 1
pl , ζp])[p] �� 0

Qp(ζp)∗/(Qp(ζp)∗)p
∼= �� H1(GQp(ζp), µp)

Here Cl(Z[ 1
pl , ζp]) denotes the ideal class group of the ring Z[ 1

pl , ζp]). It is naturally isomorphic to
the ideal class group of Z[ζp] modulo the ideal classes supported in the primes lying over l. We take
ω2-eigenspaces. By Herbrand’s Theorem [Was82, Theorem 6.17], the ω2-eigenspace of the p-part of
the class group of the ring Z[ζp] vanishes. This implies that the ω2-eigenspace of Cl(Z[ 1

pl , ζp]) is also
trivial. A second application of the Snake Lemma then leads to the required exact sequence.

Corollary 4.2. Let l and p be distinct primes. We have that

dimFp
Ext1

Z[ 1
l
]
(µp, Z/pZ) =

{
1, if (l2 − 1)/24 ≡ 0 (mod p);
0, otherwise.

Proof. Note that (l2 − 1)/24 is p-integral since p �= l. The condition (l2 − 1)/24 ≡ 0 (mod p) is just
a compact way of saying that l ≡ ±1 (mod p) when p � 5, that l ≡ ±1 (mod 9) when p = 3 and
that l ≡ ±1 (mod 8) when p = 2.
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When p = 2, the group ∆ is trivial and ω = 1. The middle and rightmost groups in the exact
sequence of Proposition 4.1 are each of dimension three over F2. The middle one is generated by 2,
−1 and l while the rightmost group is generated by 2, −1 and 5. This implies that the extension
group on the left is cyclic of order two when ±l is a 2-adic square, i.e. when l ≡ ±1 (mod 8), while
it is trivial otherwise.

When p = 3, the group ∆ has order two, so that ω2 = 1 and the ω2-eigenspace is simply the
group of ∆-invariants. The middle and rightmost groups in the exact sequence of Proposition 4.1.
are each of dimension two over F3. The middle one is generated by 3 and l, while the rightmost one
is generated by 3 and the unit 4. This implies that the group Ext1

Z[ 1
l
]
(µ3, Z/3Z) is a one-dimensional

F3-vector space when l is a 3-adic cube, i.e. when l ≡ ±1 (mod 9), while it is zero otherwise.
When p � 5, we first compute the group in the middle of the exact sequence of Proposition 4.1.

Consider the natural exact sequence

0 �� Z[1p , ζp]∗ �� Z[ 1
pl , ζp]∗ v ��

⊕
l|l

Z �� Cl(Z[1p , ζp]) �� Cl(Z[ 1
pl , ζp]) −→ 0.

Here v is the map that sends a unit ε ∈ Z[ 1
pl , ζp]∗ to its valuations at the primes l of Z[ζp] that lie

over l. We tensor with Zp and take ω2-eigenspaces. By Herbrand’s Theorem, the ω2-eigenspace of
the p-part of the class group of Z[1p , ζp] is trivial. Therefore, we obtain a three-term exact sequence.
It is Zp-split, because the rightmost term is free over Zp. Taking quotients by pth powers, we obtain
therefore the following exact sequence of ω2-eigenspaces,

0 �� (Z[1p , ζp]∗/(Z[1p , ζp]∗)p)ω2 �� (Z[ 1
pl , ζp]∗/(Z[ 1

pl , ζp]∗)p)ω2
v ��

(⊕
l|l

Fp

)
ω2

�� 0.

We identify the Galois group ∆ with F∗
p via the cyclotomic character ω. By [Was82, Proposition 8.13]

the Fp[∆]-module Z[1p , ζp]∗/(Z[1p , ζp]∗)p is isomorphic to µp × Fp[∆/〈−1〉]. So, its ω2-eigenspace
has Fp-dimension one. The module

⊕
l|l Fp is a permutation module isomorphic to Fp[∆/〈l〉]. Its

χ-eigenspaces are trivial for the characters χ of ∆ for which χ(l) �= 1. They have dimension one if
χ(l) = 1. Since ω generates the group of characters, the ω2-eigenspace is one-dimensional precisely
when l ≡ ±1 (mod p). This shows that the group in the middle of the exact sequence has dimension
two or one over Fp depending on whether l ≡ ±1 (mod p) or not.

Since p � 5, the ω2-eigenspace of Qp(ζp)∗/(Qp(ζp)∗)p has dimension one. This follows from a
short computation. By [Was82, Theorem 8.25], the ω2-eigenspace of the cyclotomic units in Z[1p , ζp]∗

maps surjectively onto it. It follows that the rightmost arrow in the exact sequence of Proposition 4.1
is surjective and hence that Ext1

Z[ 1
l
]
(µp, Z/pZ) has Fp-dimension one or zero depending on whether

l ≡ ±1 (mod p) or not. This proves the proposition.

5. Simple objects in the categories C and D

Let l and p be distinct primes. In § 2 we introduced the categories C and D of p-group schemes over
Z[1l ]. In this section we give two criteria for the group schemes Z/pZ and µp to be the only simple
objects in C or D. For any prime q, the q-adic valuation vq is normalized by putting vq(q) = 1.

Proposition 5.1. Let l and p be distinct primes. When p divides l− 1, we let F denote the degree
p subfield F of Q(ζl). When not, we put F = Q. Suppose that any Galois extension L of Q for
which each of the following three conditions hold:

• the field F (ζ2p,
p
√

l) is contained in L,

• the extension F (ζ2p,
p
√

l) ⊂ L is unramified at all primes not lying over p,

• the p-adic valuation of the root discriminant δL of L is strictly smaller than 1 + [1/(p − 1)],
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has the property that the degree [L : Q(ζp)] is a power of p. Then the only simple objects in the
category D are the group schemes Z/pZ and µp.

Proof. Let G be a simple object of D. When p = 2, we put G′ = G × Gl × G−1. Here Gl and G−1

denote the Katz–Mazur group schemes of § 2 associated to the units ε = l and −1, respectively.
When p �= 2 we put G′ = G×Gl ×V (�). Here V (�) is the twisted constant group scheme introduced
in § 2 with V = F2

p and

� : Gal(Q(ζl)/Q) ��
{(

1 x
0 1

)
: x ∈ Fp

}
⊂ GL(V )

is any non-trivial representation when l ≡ 1 (mod p), but is trivial otherwise. The points of V (�)
generate the field F . Let L be the extension of Q generated by the points of G′. It is a Galois
extension of Q that is unramified outside pl and ∞. By construction, the first condition of the
proposition is satisfied.

Since the group scheme G′ is a product of objects in D, it is itself an object in D. Therefore,
we know that (σ − id)2 = 0 on G′(Q) for every σ in the inertia subgroup Il of any of the primes l

over l. Since G is simple, it is killed by p. Therefore, G′ is also killed by p and we have that σp = id
on G′(Q). Since tame ramification groups are cyclic, it follows that the ramification indices of the
primes over l divide p. Since the ramification indices of the primes over l in the subfield F (ζ2p,

p
√

l)
are actually equal to p, the field L must be unramified over F (ζ2p,

p
√

l) at the primes lying over l.
Therefore, the second condition is satisfied. The estimates of Abraškin [Abr87] and Fontaine [Fon85]
for the ramification at the prime p imply that the third condition is satisfied. Therefore, [L : Q(ζp)]
is a power of p.

The subgroup Gal(Q/Q(ζp)) of Gal(Q/Q) acts on the group of points G(Q) through the finite
p-group Gal(L/Q(ζp)). Since G(Q) is a simple Galois module of p-power order, it is fixed by the
p-group Gal(L/Q(ζp)). Therefore, Gal(Q/Q) acts on G(Q) through the group ∆ = Gal(Q(ζp)/Q) of
order p − 1. The group G(Q) is a product of eigenspaces. Since G is simple and since the (p − 1)th
roots of unity are in Fp, the group G(Q) is itself equal to one of the eigenspaces and has dimension
one over Fp. It follows that G has order p. Since p is prime in the ring Z[1l ], the classification of Tate
and Oort [TO70] implies that G ∼= Z/pZ or µp possibly twisted by a character χ that is unramified
outside l∞. Such a character necessarily has order dividing p−1. However, since G is an object of D,
the ramification index at l of the field cut out by χ must be a power of p. Therefore, χ is a character
of Q that is only ramified at ∞. This implies that it is trivial. This proves the proposition.

The following proposition is a variant of Proposition 5.1. Although the conditions have the
appearance of being similar to those of Proposition 5.1, they are actually much stronger. In the
course of the proof we will see that they imply that either l or p is equal to 2. In § 6 we apply
Proposition 5.2 only to the pairs (l, p) = (2, 3), (3, 2) and (5, 2).

Proposition 5.2. Let l and p be distinct primes. Suppose that any Galois extension L of Q for
which the following four conditions hold:

• the field L is unramified outside pl and ∞,

• the field Q(ζ2p, ζl,
p
√

l) is contained in L,

• the l-adic valuation of the root discriminant δL of L is strictly smaller than 1,

• the p-adic valuation of δL of L is strictly smaller than 1 + [1/(p − 1)],

has the property that the degree [L : Q(ζp)] is power of p. Then the only simple objects in the
category C are the group schemes Z/pZ and µp.
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Proof. Let G be a simple object of C. As a first approximation, let G′ be as in the proof of
Proposition 5.1, but then multiply G′ by the étale group scheme corresponding to the Galois module
V = (Fp)l−1 twisted by the permutation representation � : Gal(Q(ζl)/Q) −→ GL(V ). The points
of V (�) generate the field Q(ζl). The group scheme G′ is an object of C that is killed by p.

Since G′ is a finite flat p-group scheme over Z[1l ], the field L generated by the points of G′

satisfies the first condition. By construction it satisfies the second condition. The third condition
is satisfied because the inertia groups Il of the primes l over l act tamely on the points of G′, so
that the l-adic contribution to the root discriminant of L is of the form l(e−1)/e, where e is the
ramification index e of any of the primes over l. The fourth condition is verified by the theorem
of Abraškina and Fontaine. Since the four conditions are satisfied, the degree [L : Q(ζp)] must
be a power of p. Arguing as in the proof of the previous proposition, one shows that any simple
object of the category C is isomorphic to Z/pZ or µp possibly twisted by a character χ that is
unramified outside l∞. The order of such a character necessarily divides l − 1 = [Q(ζl) : Q] as well
as p−1 = #Aut(Z/pZ). Since ζl ∈ L, the degree l−1 = [Q(ζp, ζl) : Q(ζp)] is a power of p. It follows
that gcd(l − 1, p − 1) = 1, so that there are no non-trivial twists of Z/pZ or µp by characters that
are unramified outside l∞. More precisely, we have that either l = 2 or that p = 2 and l is a Fermat
prime.

This proves the proposition.

6. Odlyzko bounds and class field theory

In this section we prove Theorems 1.1 and 1.3. We first deal with Theorem 1.3.

Proof of Theorem 1.3. It suffices to check the two conditions of Proposition 3.2. For each of the pairs
of primes (l, p) = (2, 3), (3, 2) and (5, 2) we have that (l2 − 1)/24 �≡ 0 (mod p) and Corollary 4.2
implies that all extensions of µp by Z/pZ over Z[1l ] are trivial. Therefore, one of the conditions is
satisfied. It remains to show that the other condition is satisfied as well: the only simple objects
in the category C are Z/pZ and µp. We do this by checking, case by case, that the conditions of
Proposition 5.2 are satisfied.

We recall that the root discriminant of a number field K of degree n is the nth root of the
absolute value of its discriminant. The first, third and fourth properties of the number field L that
occurs in Proposition 5.2 imply that the root discriminant δL satisfies

δL < lp1+[1/(p−1)].

Indeed, since the primes of L that lie over l are at most tamely ramified, the l-adic contribution to
the root discriminant of L is of the form l(e−1)/e < l where e is the ramification index e of any of
the primes over l.

We proceed case by case.

Case l = 2, p = 3. The root discriminant δL of the field L of Proposition 5.2 satisfies δL < 2 · 33/2 =
10.49 . . . . Odlyzko’s bounds [Mar81, p. 187] or [Odl76] imply that [L : Q] < 24. Therefore, the
degree of L over K = Q(ζ3,

3
√

2) is at most three. Since the prime over 2 is tamely ramified, if
[L : K] were 2, the extension K ⊂ L would be unramified at 2 and hence unramified outside 3.
However, the class number of K is 1 and the multiplicative group F∗

3 of the residue field of the
unique prime over 3 is generated by the global unit −1. Therefore, class field theory implies that
the field K does not admit any quadratic extension that is unramified outside 3.

This proves that [L : Q(ζ3)] is a power of 3 as required.

Case l = 3, p = 2. The root discriminant δL of the field L of Proposition 5.2 satisfies δL < 3·22 = 12.
Odlyzko’s bounds imply that [L : Q] < 32. Therefore, the degree of L over Q(i,

√−3) = Q(ζ12) is
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at most 7. Let π = Gal(L/Q). Since the 2-adic valuation of the root discriminant of Q(ζ24) is not
strictly smaller than 2, the fourth condition of Proposition 5.2 implies that the field Q(ζ12) is the
largest abelian extension of Q inside L. It is the fixed field of the commutator subgroup π′ of π.
Since its class number is 1 (see [Was82, Ch. 11]), the field Q(ζ12) admits no non-trivial everywhere
unramified extension inside L. In addition, ζ3 generates the multiplicative group F∗

4 of the residue
field of the unique prime over 2 and the multiplicative group F∗

9 of the residue field of the unique
prime over 3 is a 2-group. Since the prime over 3 is at most tamely ramified in L, it follows from class
field theory that Q(ζ12) admits no non-trivial odd degree abelian extensions inside L. Therefore,
π′/π′′ is a 2-group.

We conclude the proof by showing that π′′ is trivial. We have #π′ � 7. Therefore, we are done
when [π′ : π′′] = 1 or 4. When [π′ : π′′] = 2, the group π′′ has order at most three and is cyclic.
Therefore, Aut(π′′) is abelian and π′ is in the kernel of the homomorphism π −→ Aut(π′′) induced
by conjugation. This implies that π′′ is contained in the center of π′. Since π′/π′′ is cyclic, this
implies that π′ is abelian and hence that π′′ is trivial, as required.

Case l = 5, p = 2. Let π = Gal(L/Q). The root discriminant δL of the field L of Proposition 5.2
satisfies δL < 5 · 22 = 20. Odlyzko’s bounds imply that [L : Q] < 480 so that the degree of L over
Q(i, ζ5) = Q(ζ20) is less than 60. This implies that π = Gal(L/Q) is a solvable group. Since the
2-adic valuation of the root discriminant of Q(ζ40) is not strictly smaller than 2, the fourth condition
of Proposition 5.2 implies that the field Q(ζ20) is the largest abelian extension of Q inside L. It is
the fixed field of π′. Next we study the maximal abelian extension K of Q(ζ20) inside L. This is the
fixed field of π′′.

Step 1. The field K is contained in the ray class field F2(1−ζ5) of Q(ζ20) of conductor 2(1 − ζ5).

Proof. By [Was82, Ch. 11] the class number of Q(ζ20) is 1, the multiplicative group F∗
16 of the

residue field of the unique prime over 2 is generated by the global unit 1−ζ20 and the multiplicative
groups of the residue fields of the two primes over 5 both have order four. By class field theory the
field Q(ζ20) admits, therefore, no non-trivial odd degree abelian extensions inside L. It follows that
the group π′/π′′ = Gal(K/Q(ζ20)) and all its characters have 2-power order. By the first condition
of Proposition 5.2, the conductors of the characters divide (1− ζ5)(1− i)a for some a � 0. Since the
2-adic valuation of δL is strictly smaller than 2, it follows from the conductor discriminant formula
that a � 3. Since the multiplicative group (Z[ζ20]/(1− ζ5))∗ ∼= F∗

5 ×F∗
5 is generated by the units ζ20

and 1 − ζ20, the ray class field of Q(ζ20) of conductor (1 − ζ5) is equal to Q(ζ20) and there are no
characters of conductor (1−ζ5). Since the primes over 2 are wildly ramified, this implies that a � 2.

Suppose that χ is a character of Gal(K/Q(ζ20)) of conductor (1 − ζ5)(1 − i)3 or (1 − i)3. Then
χ has order four. Since χ2 has conductor divisible by (1 − i)2, the conductor discriminant formula
implies that the 2-adic valuation of the root discriminant of the field cut out by χ is at least 2.
This is impossible by the fourth condition. Therefore, a = 2 and K is contained in F2(1−ζ5) as
required.

Step 2. The ray class field F2(1−ζ5) is a biquadratic extension of Q(ζ20). Its root discriminant is

equal to 57/827/4.

Proof. We already saw in Step 1 that the ray class field of Q(ζ20) of conductor 1 − ζ5 is equal
to Q(ζ20) itself. The unit group of Z[ζ20] is generated by ζ20 and by 1 − ζa

20 for a ∈ (Z/20Z)∗.
They generate a subgroup of (Z[ζ20]/(2))

∗ of index 2. This implies that the ray class field F2 of
Q(ζ20) of conductor 2 has degree two. It is not difficult to see that one has F2 = Q(ζ20,

√
η) where

η = (1 +
√

5)/2. Similarly, one shows that (Z[ζ20]/(2(1− ζ5)))∗ modulo the image of the unit group
Z[ζ20]

∗ is a group of type 2× 2. It follows that the ray class field F2(1−ζ5) of conductor 2(1− ζ5) is a
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biquadratic extension of Q(ζ20). Since the three quadratic characters have conductors 2, 2(1 − ζ5)
and 2(1 − ζ5), respectively, the root discriminant of F2(1−ζ5) is equal to 57/827/4 = 13.75 . . . as
required.

Step 3. The group π′′/π′′′ is a 2-group.

Proof. The Odlyzko bounds imply that the absolute degree of the Hilbert class field of F2(1−ζ5) is
at most 46. Since F2(1−ζ5) has degree 32 over Q, the field F2(1−ζ5) admits no everywhere unramified
extension inside L. Since the prime over 2 is totally ramified in F2(1−ζ5), the same is true for the three
quadratic extensions of Q(ζ20) contained in F2(1−ζ5). Since F2 = Q(ζ20,

√
η) where η = (1 +

√
5)/2,

the prime over 5 is inert in the subfield F2. It follows that the residue fields of the primes in F2

lying over 2 and 5 are isomorphic to F16, F25 and F25, respectively. The same is true for F2(1−ζ5).
A computation shows that the units 1−ζ20 and i±√

η of the field F2 together with their conjugates
generate a subgroup of the multiplicative group F∗

16 ×F∗
25 ×F∗

25 of index a power of 2. Therefore, by
class field theory neither F2(1−ζ5) nor any of the three quadratic extensions of Q(ζ20) contained in
it, admit an odd degree extension inside L. We conclude that π′′/π′′′ is a 2-group as required.

Step 4. The group π′′′ is trivial.

Proof. By Step 2, the index [π′ : π′′] divides 4. When π′/π′′ is trivial, we are done. If it has order two,
then the order of π′′/π′′′ is odd by the Burnside basis theorem. It follows from Step 3 that π′′/π′′′ is
trivial. This implies that π′′ is trivial and we are done. When π′/π′′ has order four, it is of type 2×2
and the order of π′′ is at most 14. By Step 3 and Taussky’s theorem [Tau37], the group π′′/π′′′ is a
cyclic 2-group. If it is trivial we are done. If not, then #(π′′′/π′′′′) is odd and at most 7. It follows
that π′′′/π′′′′ is cyclic and hence has an abelian automorphism group. Therefore, π′′ is in the kernel
of the homomorphism π′ −→ Aut(π′′′/π′′′′) that is induced by conjugation. It follows that π′′′/π′′′′

is contained in the center of π′′/π′′′′, so that π′′/π′′′′ modulo its center is cyclic. This implies that
π′′/π′′′′ is abelian and hence that π′′′ is trivial, as required.

This completes the proof of Theorem 1.3.

Next we prove Theorem 1.1.

Proof of Theorem 1.1. The primes l = 2, 3 and 5 are taken care of by the stronger Theorem 1.3.
We deal with the primes 7 and 13 by checking the conditions of Proposition 5.1 for the pairs
(l, p) = (7, 3) and (13, 2). Since in each case we have that (l2 − 1)/24 �≡ 0 (mod p), Corollary 4.2
implies that all extensions of µp by Z/pZ over Z[1l ] are trivial. It remains to show that the other
condition is verified as well: the only simple objects in the category C are Z/pZ and µp. We do this
by checking in both cases that the conditions of Proposition 5.1 are satisfied.

The three conditions of Proposition 5.1 imply that the number field L that occurs there has the
property that the ramification index of any of the primes over l in L is at most p and that the root
discriminant δL satisfies

δL < l1−(1/p)p1+[1/(p−1)].

We show that the field L is necessarily of p-power degree over Q(ζp).

Case l = 7, p = 3. In this case the field F of Proposition 5.1 is equal to Q(ζ7 + ζ−1
7 ). The root

discriminant δL of the field L satisfies δL < 33/2 · 72/3 = 19.01 . . . . Odlyzko’s bounds imply that
[L : Q] < 270 so that the degree of L over K = Q(ζ3, ζ7 + ζ−1

7 , 3
√

7) is at most 14. In particular,
π = Gal(L/K) is a solvable group. Since 7 ≡ 1 (mod 3), the field Q(ζ3,

3
√

7) is a cubic extension
of conductor 3 · 7 of Q(ζ3). It follows from the conductor discriminant formula and the relative
discriminant formula that the root discriminant of K is equal to 37/672/3 = 13.18 . . . . By Odlyzko’s
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bounds, any unramified extension of K has relative degree at most 42/18. This implies that K
admits at most an unramified quadratic extension H. By group theory such a field H would be
the composite of K with an unramified quadratic extension of Q(ζ3). Since the field Q(ζ3) does not
admit any non-trivial unramified extensions, this implies that K = H. There lies only one prime
p over 3 in K. Its residue field has 27 elements. It is easily seen that its unit group is generated
by the global units −1 and ζ7 + ζ−1

7 . It follows, therefore, from class field theory that there is no
abelian extension of K inside L that is unramified outside 3 and at most tamely ramified at the
prime over 3. This implies that π/π′ is a 3-group.

We have [π : π′] � 14. If [π : π′] = 1 or 9, the group π is a 3-group and we are done. Suppose
that [π : π′] = 3. Let p denote the unique prime over 3 in K and let pa be the conductor of the cor-
responding cubic extension K ′ of K. By the conductor discriminant formula, the root discriminant
of K ′ is equal to 3a/9+7/672/3. Since δK ′ is at most δL < 33/272/3, we must have that a = 2. This
implies that the root discriminant of K ′ is at most 325/1872/3 = 16.82 . . . . Odlyzko’s bounds imply
that any unramified extension of K ′ has relative degree smaller than 120/36 < 4. If K ′ admitted
an everywhere unramified quadratic extension, then this would be the composite of K ′ and an un-
ramified quadratic extension of Q(ζ3). We have already seen that this is impossible. Similarly, any
abelian extension of K ′ that is unramified at 3 and at most tamely ramified at the unique prime
over 3 is cyclic and is the composite of K ′ and a cyclic extension of Q(ζ3) that is at most tamely
ramified at 3. This is impossible and hence [L : Q(ζ3)] is a power of 3, as required.

Case l = 13, p = 2. The root discriminant δL of the extension L satisfies δL < 22 ·131/2 = 14.422 . . . .
Odlyzko’s bounds imply that [L : Q] < 60 so that the degree of L over Q(i,

√
13) is at most 14.

Let π = Gal(L/Q). Since the root discriminant of Q(ζ8,
√

13) is equal to 4
√

13 > δL, the strict
inequality of the fourth condition of Proposition 5.1 implies that the largest abelian extension of Q

inside L is the field Q(i,
√

13). This implies that Q(i,
√

13) is the fixed field of π′. The class number
of Q(i,

√
13) is 1 and, since F∗

4 is generated by the global unit η = (3 +
√

13)/2, the ray class field
of Q(i,

√
13) of conductor (1 + i) is trivial. It follows from class field theory that π′/π′′ is a 2-group.

Suppose that χ is a quadratic character of π′/π′′. Then cond(χ) = (1 + i)a for some a � 2. Since
v2(δL) < 2, we have a � 3. Since the unique prime over 2 is wildly ramified and since there are no
quadratic characters of conductor (1+i)3, we must have that a = 2. Since the unit i is not congruent
to 1 modulo (1+ i)2, the ray class field of conductor (1+ i)2 has degree two over Q(i,

√
13). It is the

field generated by
√

η. Any larger abelian extension of Q(i,
√

13) inside L has relative discriminant
at least (i + 1)2+3+3 and hence root discriminant at least 4

√
13. This is impossible and hence π′/π′′

has order at most two.

If #π′/π′′ = 1, it follows that π′ = 1 and hence that π is a 2-group. If #π′/π′′ = 2, we know that
K = Q(i,

√
13,

√
η) is the fixed field of π′′ and that π′′/π′′′ has odd order. However, K admits no odd

degree abelian extensions inside L. Indeed, δK is equal to 23/2
√

13 = 10.198 . . . so that Odlyzko’s
bounds imply that the absolute degree of its Hilbert class field is at most 22. Since [K : Q] = 8, this
implies that the class number of K is at most 2. Since the residue field of the unique prime p over 2
in K is equal to the residue field F4 of the prime i + 1 in Q(i,

√
13), its unit group is generated by

the global unit η and hence the ray class field of K of conductor p is equal to K itself. This implies
that K = L and that [L : Q] is a power of 2 as required.

7. The case l = 11

In this section we prove Theorem 1.2. The modular curve X0(11) has genus 1 and is given by the
equation

Y 2 + Y = X3 − X2 − 10X − 20.
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Its Jacobian E = J0(11) has good reduction at every prime except at l = 11, where the reduction
is semi-stable. We take p = 2 and study p-group schemes over Z[ 1

11 ] in the category D introduced
in § 2. The 2-torsion points E[2] of E form a 2-group scheme that is an object in D. The natural
map Gal(Q/Q) −→ Aut(E[2](Q)) is surjective. Indeed, the points in E[2] generate the sextic field
F = Q(

√−11, α) where α satisfies the equation α3 + α2 + α − 1 = 0. This implies that E[2] is a
simple object of D. It is isomorphic to its Cartier dual. Since the elliptic curve E is supersingular
modulo 2, the group scheme E[2] is local over Z2.

Proposition 7.1. The simple objects in the category D are the group schemes Z/2Z, µ2 and E[2].

Proof. We modify the proof of Proposition 5.1. Let G be simple and let G′ be the product of G
by E[2] and by the Katz–Mazur group schemes Gε for the units ε = −1 and 11 of Z[ 1

11 ]. Then
G′ is killed by 2 and is again an object of D. Therefore, the root discriminant δL of the extension
L generated by the points of G′ satisfies δL < 4

√
11 = 13.266 . . . . Odlyzko’s bounds imply that

[L : Q] < 44. We have the inclusions

Q ⊂
4

Q(i,
√−11) ⊂

3
F (i) ⊂

�3
L.

It follows that [L : F (i)] � 3. If [L : F (i)] = 3, the field L is abelian over Q(i,
√−11). Since the

class number of Q(i,
√−11) is 1 and since the ray class field of conductor 2 of Q(i,

√−11) is F (i),
class field theory implies that [L : F (i)] cannot be equal to 3 and must therefore be 1 or 2. In
either case, Gal(L/F (i)) and hence Gal(L/F ) is a 2-group and hence fixes the points of the simple
2-group scheme G. Therefore, Gal(Q/Q) acts on G(Q) through Gal(F/Q) ∼= S3. It follows from the
structure of simple F2[S3]-modules that the Galois module G(Q) is either a group of order two with
trivial action or is isomorphic to E[2](Q).

If G has order two, it follows from the Tate and Oort classification [TO70] that G ∼= Z/2Z

or µ2. If G(Q) ∼= E[2](Q), the inertia group I2 of the prime over 2 acts irreducibly, so G is local
and has local Cartier dual. By Raynaud’s theorem [Ray74, § 3.3.5], the group scheme G is therefore
determined by its Galois module and hence we have that G ∼= E[2] as group schemes over Z2.
This leads to an isomorphism of local Galois modules G(Q2) ∼= E(Q2). Since the only Galois
equivariant automorphism of E[2] is the identity morphism, the isomorphisms G(Q) ∼= E[2](Q) and
G(Q2) ∼= E[2](Q2) are unique and therefore compatible. It follows from the equivalence of categories
of [Sch03b, Proposition 2.4], that G ∼= E[2] over the ring Z[ 1

11 ]. This proves the proposition.

Next we study extensions of the simple group schemes with one another. Note that the group
scheme E[4] fits in the non-split exact sequence

0 �� E[2] �� E[4] �� E[2] �� 0

and is an object of D, because E has semi-stable reduction at 11.

Proposition 7.2. Over the ring Z[ 1
11 ] we have the following.

(i) The groups Ext1
Z[ 1

11
]
(µ2, Z/2Z), Ext1

Z[ 1
11

]
(E[2], Z/2Z) and Ext1

Z[ 1
11

]
(µ2, E[2]) are all trivial.

(ii) The group of extensions Ext1D(E[2], E[2]) has dimension one over F2. It is generated by the
extension E[4] above.

Proof. (i) Any extension

0 �� Z/2Z �� G �� µ2 �� 0
is split over Z2 by the connected component. Therefore, G is killed by 2 and its 2-adic Galois
representation is trivial. It follows that Gal(Q/Q) acts on G(Q) through a quadratic character χ
that is at most ramified at 11·∞. There is exactly one such χ that is non-trivial. The prime 2 is inert
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in the corresponding field Q(
√−11). Therefore, χ = 1 and G is generically split. The Mayer–Vietoris

sequence [Sch03b, Corollary 2.4] implies then that G is split over Z[ 1
11 ], as required.

The proof that every extension 0 −→ Z/2Z −→ G −→ E[2] −→ 0 splits, is similar. Over Z2 the
extension is split by the connected component. So G is killed by 2 and its 2-adic Galois representation
is trivial. Therefore, the points of G generate a Galois extension K of the field F that is unramified
outside 11. The field K is a composite of at most two quadratic extensions. There are three primes
lying over 11 in F . A computation shows that the global units −1 and α generate the unit group
(OF /(

√−11))∗ modulo squares as a Gal(F/Q)-module. Using Odlyzko’s bounds one shows that the
class number of F is 1. Therefore, class field theory implies that K is actually equal to F . Therefore,
G is split as a Galois module. The Mayer–Vietoris sequence [Sch03b, Corollary 2.4] implies then
that G is split over Z[ 1

11 ], as required.
The fact that Ext1

Z[ 1
11

]
(µ2, E[2]) vanishes follows by Cartier duality.

(ii) Since the Galois representation Gal(Q/Q) −→ Aut(E[2](Q)) is surjective, the only Galois
equivariant endomorphisms of the group scheme E[2] are scalar multiplications. This is true over
any of the rings Z2, Q2, Z[ 1

11 ] and Z[ 1
22 ].

It follows from the Mayer–Vietoris sequence that there is an exact sequence

0 �� Ext1
Z[ 1

11
]
(E[2], E[2]) �� Ext1Z2

(E[2], E[2]) × Ext1
Z[ 1

22
]
(E[2], E[2]) �� Ext1Q2

(E[2], E[2]).

The proof now proceeds in two steps.

Step 1. The group Ext1
Z[ 1

11
]
(E[2], E[2]) is generated by E[4] and by the extensions of E[2] by itself

that are killed by 2.
Let Γ = Gal(Q/Q) and let Extqab and ExtqQ denote the qth Ext-groups in the category of abelian

groups and Gal(Q/Q)-modules respectively. From the spectral sequence

Hp(Γ,Extqab(E[2], E[2])) =⇒ Extp+q
Q (E[2], E[2])

we deduce the following commutative diagram with exact rows.

0 �� Ext1
Z[ 1

11
],2

(E[2], E[2])

��

�� Ext1
Z[ 1

11
]
(E[2], E[2])

��

�� cok ��

��

0

0 �� Ext1Q,2(E[2], E[2]) �� Ext1Q(E[2], E[2]) �� Ext1ab(E[2], E[2])Γ

By Ext1
Z[ 1

11
],2

(E[2], E[2]) and Ext1Q,2(E[2], E[2]) we indicate the subgroups of the groups

Ext1
Z[ 1

11
]
(E[2], E[2]) and Ext1Q(E[2], E[2]), respectively, of extensions of E[2] by E[2] that are anni-

hilated by 2.
Any extension G of E[2] by E[2] over Z[ 1

11 ] that is killed by 2 over Q is itself killed by 2.
Therefore, the left-hand square is Cartesian. It follows that the rightmost vertical arrow is injective.
Since the Γ-modules Ext1ab(E[2], E[2]) and Homab(E[2], E[2]) are dual to one another, the orders
of Ext1ab(E[2], E[2])Γ and Homab(E[2], E[2])Γ = HomΓ(E[2], E[2]) are equal. Since the Galois rep-
resentation on the points of E[2] is surjective, the latter group consists of the scalar matrices and
has order two. It follows that the index of Ext1

Z[ 1
11

],2
(E[2], E[2]) in Ext1

Z[ 1
11

]
(E[2], E[2]) is at most 2.

It is exactly 2, because of the existence of the group scheme E[4].

Step 2. Any extension in the category D of E[2] by E[2] over Z[ 1
11 ] that is annihilated by 2, is

trivial.
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We have already seen that the field F = Q(
√−11, α) has class number 1. Let π ∈ F be a prime

over 2. We have that (π)3 = (2). Let G be an extension of E[2] by E[2] that is an object in D and
that is annihilated by 2. The field extension L generated by the points of G is of exponent 2 over F
and is at most ramified at the primes over 2 and 11. Since G is an object in D of exponent 2, the
inertia groups in Gal(L/Q) of the primes over 11, have order at most two. Since the ramification
index is equal to 2 in the extension F of Q, this implies that L is actually unramified over F at the
primes over 11. By [Sch03b, Proposition 6.4], the field L is a biquadratic extension of F of conductor
dividing π2. Since the global unit α generates the group (1 + (π))/(1 + (π2)) and since F admits no
non-trivial unramified extensions, class field theory implies that F = L. Therefore, the extension
G is split as an extension of Galois modules. It follows from [Sch03b, Proposition 6.4] (or rather
the proof of its part (ii)) that the extension is then necessarily locally trivial. The Mayer–Vietoris
sequence then implies that G is split, as required.

Part (ii) now follows. Indeed, since Ext1D,2(E[2], E[2]) is precisely the intersection of
Ext1D(E[2], E[2]) and Ext1

Z[ 1
11

],2
(E[2], E[2]), Step 1 implies that the group Ext1D(E[2], E[2]) is gen-

erated by E[4] and by the subgroup extensions in D of E[2] by itself that are killed by 2. By Step 2
the latter subgroup is trivial.

Note that the space Ext1
Z[ 1

11
]
(E[2], E[2]) of all extensions of E[2] by E[2] does not have dimension

one. Indeed, consider the elliptic curve E′ given by the Weierstrass equation Y 2 + Y = X3 − X2 −
7X + 10. It is the curve 121D in [BK75, p. 97] of conductor 112. Over the ring Z[ 1

11 ] the subgroup
scheme E′[2] of 2-torsion points is isomorphic to the subgroup scheme of 2-torsion points of the
semi-stable abelian variety E = J0(11). This follows from the fact that the points of each of the two
group schemes generate the field F = Q(

√−11, α) with α3+α2+α−1 = 0. A theorem of Raynaud’s
[Ray74, § 3.3.5] then implies that E′[2] ∼= E[2] over Z2 and it follows [Sch03b, Proposition 2.4] that
the same is true over Z[ 1

11 ]. Therefore, E′[2] ∼= E[2] is an object in D.

p 2 3 5 7

a(p) −2 −1 1 −2
b(p) 0 −1 −3 0

This is in agreement with the fact that in the short table above [BK75, Table 3], the coefficients
a(p) and b(p) of the L-functions of E′ and E are congruent modulo 2. The coefficients are visibly
not congruent modulo 4. This implies that the group scheme E′[4] is not isomorphic to E[4]. Since
Ext1D(E[2], E[2]) is one-dimensional, we conclude that E′[4] is not an object of D and hence that
the dimension of Ext1

Z[ 1
11

]
(E[2], E[2]) is at least two. Of course, the group scheme E′[4] is an object

of the category C.
The Baer sum of E[4] and E′[4] is a non-trivial extension of E[2] by E[2] that is killed by 2. By

Proposition 7.2 it is not an object of D.

Proof of Theorem 1.1. Let A be a semi-stable abelian variety over Q with good reduction outside 11.
We show that the subgroup scheme A[2] of 2-torsion points admits a filtration with successive
subquotients isomorphic to E[2]. Consider an arbitrary filtration of A[2] with simple subquotients.
By Proposition 7.2(i) we may modify the filtration and obtain a filtration of the form

0 ⊂ G1 ⊂ G2 ⊂ A[2]

with G1 an extension of group schemes isomorphic to µ2, with A[2]/G2 an extension of copies of
Z/2Z and G2/G1 admitting a filtration with copies of E[2]. We claim that, actually, there are no
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subquotients isomorphic to Z/2Z or µ2 in this filtration. Indeed, suppose that there is a subquotient
isomorphic to Z/2Z. Using Proposition 7.2(i) to ‘move the subquotients that are isomorphic to Z/2Z

to the right’, we find that for each n � 1 there is an exact sequence

0 �� Hn
�� A[2n] �� Cn

�� 0

with Cn admitting a filtration of length n with subquotients isomorphic to Z/2Z. Then Cn is étale
and the fundamental group of Z[ 1

11 ] acts on Cn(Q) through a 2-group P . Since the maximal abelian
2-extension of Q that is unramified outside 11 is the quadratic field Q(

√−11), the groups P/P ′ and
hence P are cyclic and the group schemes Cn become constant over the ring Z[1+

√−11
2 , 1

11 ]. Now
choose a non-zero prime p of the ring Z[1+

√−11
2 , 1

11 ]. The abelian varieties A/Hn are all isogenous
to A and have, therefore, the same number of points modulo p. On the other hand, they have
at least 2n rational points. This leads to a contradiction when n → ∞. Therefore, there are no
subquotients isomorphic to Z/2Z in the filtration. By Cartier duality there are none isomorphic to
µ2 either. It follows that A[2n] is filtered with group schemes isomorphic to E[2].

The endomorphism ring of the 2-divisible group G of E is isomorphic to Z2. Indeed, the Z2-
algebra generated by the image of Gal(Q/Q) inside the ring EndZ2(T2E) of endomorphisms of the
Tate module T2E is equal to the full ring EndZ2(T2E), since it is so modulo 2. Therefore, the image
of the injective homomorphism Z2 ↪→ End(G) ↪→ EndGal(T2E) is precisely the subalgebra Z2 of
scalar matrices.

An application of Theorem 8.3 of the next section to the 2-divisible group H of A over the ring
O = Z[ 1

11 ] shows that the 2-divisible groups of A and Eg are isomorphic. By Faltings’ Theorem
[Fal83, § 5] this implies that A is isogenous to Eg as required.

8. p-divisible groups

The main result of this section is Theorem 8.3. It is a general result about p-divisible groups, used
in § 7 of this paper. See [Oor02, Sch01] for related statements.

Let O be a Noetherian domain of characteristic 0, let p be a prime and let D be a full subcategory
of the category of p-group schemes over O that is closed under taking products, closed flat subgroup
schemes and quotients by closed flat subgroup schemes.

There is for every short exact sequence 0 → G1 → G2 → G3 → 0 in D and any object H ∈ D a
six-term exact sequence

0 �� HomO(H,G1) �� HomO(H,G2) �� HomO(H,G3)
δ ��

δ �� Ext1D(H,G1) �� Ext1D(H,G2) �� Ext1D(H,G3).

Indeed, there is a functorial exact sequence of this type involving extension groups classifying
extensions in the abelian category of sheaves for the flat topology over the ring O. Since every
extension class is represented by a finite flat group scheme over O, this leads to a six-term exact
sequence involving extension groups Ext1O(H,Gi) rather than Ext1D(H,Gi).

Since the category D is closed under the formation of products, closed subgroup schemes and
quotients by closed flat subgroup schemes, one easily obtains the exact sequence above. For instance,
the extension δ(g) of H by G1 corresponding to a homomorphism g ∈ HomO(H,G3) is a closed
subgroup scheme of the product G2 × H and is therefore an object of D. We leave the other
verifications to the reader.

We first prove a lemma.
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Lemma 8.1. Let G = {Gn} be a p-divisible group over O. Suppose that R = End(G) is a discrete
valuation ring with uniformizer π and residue field k = R/πR. Suppose that:

• every group scheme Gn is an object in the category D;

• the map

HomO(G[π], G[π]) δ �� Ext1D(G[π], G[π])

associated above to the exact sequence 0 → G[π] → G[π2] → G[π] → 0 is an isomorphism of
one-dimensional k-vector spaces.

Then

(i) for all m,m′ � 1 the canonical map

(R/πm′
R)[πm] �� HomO(G[πm′

], G[πm])

is an isomorphism;

(ii) for every m � 1 the group Ext1D(G[π], G[πm]) is generated by the class of the extension

0 �� G[πm] �� G[πm+1] πm
�� G[π] �� 0.

Proof. First suppose that f ∈ R restricts to the zero morphism on G[pk] for some k � 0. This means
that the image of the endomorphism Tpf of the Tate module TpG of G induced by f is contained
in pkTpG. Since the Galois module pkTpG is isomorphic to TpG, it follows that there exists a Galois
equivariant Zp-linear homomorphism γ : TpG −→ TpG for which Tpf = pn · γ. By Tate’s Theorem
[Tat67, Theorem 4], the homomorphism γ is induced by a morphism g : G −→ G of p-divisible
groups. We have that f = pn · g.

To prove the injectivity of the homomorphisms in part (i), we assume that f ∈ R restricts to
the zero morphism on G[πm′

]. Let a � 0 be such that πm′+a is equal to pbu for some b � 0 and
some unit in R. Then f · πa ∈ R restricts to the zero morphism on G[pb]. By the discussion above,
we have that f · πa = pb · g for some g ∈ R. Dividing by πa, we see that f is divisible by πm′

as
required. This shows that the maps in part (i) are injective.

To prove surjectivity of the maps in part (i), we observe that both sides are finite groups and
we count their orders. The left-hand side has order qmin(m,m′) where q = #k. It follows from the
multiplicativity of orders in exact sequences that

#HomO(G[πm], G[πm′
]) �

{
#HomO(G[π], G[πm′

])m,

#HomO(G[πm], G[π])m
′
.

Therefore, it suffices to show that HomO(G[π], G[πm]) and HomO(G[πm], G[π]) are both one-
dimensional k-vector spaces for all m � 1. By assumption, this is so for m = 1. It is not clear for
m > 1, because we do not know a priori that an arbitrary morphism of group schemes
f : G[π] −→ G[πm] commutes with π. We show contemporarily that the natural maps
HomO(G[π], G[π]) −→ HomO(G[π], G[πm]) are isomorphisms and that the natural maps Ext1D(G[π],
G[πm+1]) −→ Ext1D(G[π], G[πm]) are injections. Since, by assumption, Ext1D(G[π], G[π]) has dimen-
sion one, this shows that dimExt1D(G[π], G[πm+1]) = 1 for all m � 1. The fact that the natural
homomorphisms HomO(G[πm], G[π]) −→ HomO(G[π], G[π]) are isomorphisms follows in a similar
way. It can also be deduced from Cartier duality.
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Consider the infinite commutative diagram with exact columns.

0

��

0

��

0

��
G[π]

��

G[π]

��

G[π]

��

· · ·

G[π2]

π

��

� � �� G[π3]

π

��

� � �� G[π4]

π

��

� � �� · · ·

G[π]

��

� � �� G[π2]

��

� � �� G[π3]

��

� � �� · · ·

0 0 0

Apply the functor HomO(G[π],−) and form the associated long sequences of Ext1D-groups. The
resulting diagram has exact columns. The isomorphisms and zero maps in the exact first column
are a direct consequence of the assumptions. The statement for m = 2 follows at once. The map g2

is the same map as the first morphism in the first column. So g2 is an isomorphism and it follows
at once that f3 is an isomorphism as well. This implies that f2 and f4 are both zero and that f1

is an isomorphism. Finally, f5 is injective and g1 is an isomorphism. This implies the statement
for m = 3. Note that the map g3 is the same map as g1. Now one proceeds inductively.

0

��

0

��

0

��
HomO(G[π], G[π])

∼=
��

HomO(G[π], G[π])

f1

��

HomO(G[π], G[π])

��

· · ·

HomO(G[π], G[π2])

0
��

g1 �� HomO(G[π], G[π3]) ��

f2

��

HomO(G[π], G[π4]) ��

��

· · ·

HomO(G[π], G[π])
g2 ��

∼=
��

HomO(G[π], G[π2])
g3 ��

f3

��

HomO(G[π], G[π3]) ��

��

· · ·

Ext1D(G[π], G[π])

0
��

Ext1D(G[π], G[π])

f4

��

Ext1D(G[π], G[π])

��

· · ·

Ext1D(G[π], G[π2]) ��

��

Ext1D(G[π], G[π3]) ��

f5

��

Ext1D(G[π], G[π4]) ��

��

· · ·

Ext1D(G[π], G[π]) �� Ext1D(G[π], G[π2]) �� Ext1D(G[π], G[π3]) �� · · ·

This proves the lemma.

Corollary 8.2. Let the ring O and the category D be as above and let G = {Gn} be a p-divisible
group over O. Suppose that R = End(G) is a discrete valuation ring with uniformizer π and residue
field k = R/πR. Suppose that the conditions of Lemma 8.1 are satisfied. Then every p-group
scheme in D that admits a filtration with closed flat subgroup schemes and successive subquotients
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isomorphic to G[π] is isomorphic to a group scheme of the shape

r⊕
i=1

G[πni ].

Proof. Let J be a such a group scheme. Proceeding by induction we may assume that there is an
exact sequence

0 ��
r⊕

i=1

G[πni ] �� J �� G[π] �� 0.

The class of this extension is an element in the group

Ext1D

(
G[π],

r⊕
i=1

G[πni ]
)

∼=
r⊕

i=1

Ext1D(G[π], G[πni ]) ∼= Fr
2.

The second isomorphism follows from Lemma 8.1(ii). The extensions of the form

0 �� G[πnj ] × W �� G[πnj+1] × W �� G[π] �� 0

with W =
⊕

i�=j G[πni ] form a basis for the vector space Fr
2. These extensions have the required

shape. Therefore, if we show that the Baer sum of two extensions of the right shape is again of
the right shape, we are done. The Baer sum of two extensions 0 → G1 → E → G2 → 0 and
0 → G1 → E′ → G2 → 0 is the kernel of a morphism E ×E′ −→ G2 modulo a closed flat subgroup
scheme isomorphic to G1. Therefore, it suffices to show that kernels and cokernels of morphisms
between group schemes of the shape

⊕r
i=1 G[πni ] are again of that shape. By duality, it is enough

to show this for kernels.
Therefore, let

r⊕
i=1

G[πni ] g ��
s⊕

j=1

G[πmj ]

be a homomorphism of group schemes. By Lemma 8.1(i) there are endomorphisms fij ∈ R =
EndO(G) that induce g. Hence the kernel K of g is isomorphic to the kernel of the restriction of the
homomorphism 


f11 · · · fr1
...

...
f1s · · · frs


 : Gr �� Gs

to the subgroup scheme
⊕r

i=1 G[πni ] of G. Consider the following commutative diagram.

0

��

0

��
K

��

K1

��
0 ��

r⊕
i=1

G[πni ]

g

��

�� Gr
(πni ) ��

A

��

Gr �� 0

0 �� Gs �� Gs × Gr �� Gr �� 0
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Here (πni) and A denote the homomorphisms




πn1 · · · 0
...

. . .
...

0 · · · πnr


 and




f11 · · · fr1
...

...
f1s · · · frs

πn1 · · · 0
...

. . .
...

0 · · · πnr




,

respectively. The diagram has exact rows and columns and, working in the abelian category of
sheaves for the flat topology, we deduce that

K ∼= K1 = ker(GrA �� Gr+s).

Since the ring R is a principal ideal domain, there exist an invertible (r × r) matrix B and an
invertible (r + s) × (r + s) matrix B′ both with entries in R so that

B′AB =




g1 · · · 0
...

. . .
...

0 · · · gr

0 · · · 0
...

...
0 · · · 0




for certain gi ∈ R. This shows that K is isomorphic to the kernel of the map


g1 · · · 0
...

. . .
...

0 · · · gr


 : Gr �� Gr.

This proves the corollary.

Theorem 8.3. Let the ring O and the category D be as above and let G = {Gn} be a p-divisible
group over O. Suppose that R = End(G) is a discrete valuation ring with uniformizer π and residue
field k = R/πR. Suppose that:

• every group scheme Gn is an object in the category D;

• the map

HomO(G[π], G[π]) δ �� Ext1D(G[π], G[π])

associated to the exact sequence 0 → G[π] → G[π2] → G[π] → 0 is an isomorphism of one-
dimensional k-vector spaces.

Let H = {Hn} be a p-divisible group over O for which the following hold:

• every group scheme Hn is an object in D;

• each Hn admits a filtration with flat closed subgroup schemes and successive quotients isomor-
phic to G[π].

Then H is isomorphic to Gg for some g � 0.

Proof. By Corollary 8.2 the group scheme H[pn] is, for each n � 1, isomorphic to a group scheme
of the shape

⊕r
i=1 G[πni ]. Let F be an algebraic closure of the quotient field F of O. The F -points
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of H[pn] form a group isomorphic to (Z/pnZ)g where g = dimH. Therefore, every direct summand of
H[pn](F ) is isomorphic to Z/pnZ. This implies that

H[pn] ∼=
r⊕

i=1

G[πen] ∼= Gr[pn].

Here e denotes the ramification index of R over Zp and we have r edim G[π](F ) = g. Since the groups
HomO(H[pn], Gg [pn]) are finite, a compactness argument shows that there is a cofinal projective
system of such isomorphisms and hence an isomorphism H −→ Gg as required.
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