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Abstract. The genus spectrum of a finite group G is the set of all g such that G
acts faithfully on a compact Riemann surface of genus g. It is an open problem to
find a general description of the genus spectrum of the groups in interesting classes,
such as the Abelian p-groups. Motivated by earlier work of Talu for odd primes, we
develop a general combinatorial method, for arbitrary primes, to obtain a structured
description of the so-called reduced genus spectrum of Abelian p-groups, including the
reduced minimum genus. In particular, we determine the complete genus spectrum for
a large subclass, namely, those having ‘large’ defining invariants. With our method we
construct infinitely many counterexamples to a conjecture of Talu, which states that
an Abelian p-group is recoverable from its genus spectrum. Finally, we give a series of
examples of our method, in the course of which we prove, for example, that almost
all elementary Abelian p-groups are uniquely determined by their minimum genus,
and that almost all Abelian p-groups of exponent p2 are uniquely determined by their
minimum genus and Kulkarni invariant.
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1. Introduction.

1.1. Genus spectrum. Given a compact Riemann surface X of genus g ≥ 0, a
finite group G is said to act on X , if G can be embedded into the group Aut(X) of
biholomorphic maps on X . While Aut(X) is infinite as long as g ≤ 1, by the Hurwitz
theorem [5] we have |Aut(X)| ≤ 84 · (g − 1) as soon as g ≥ 2. Thus, in the latter case,
there are only finitely many groups G, up to isomorphism, acting on X .

But conversely, given a finite group G there always is an infinite set sp(G) of integers
g ≥ 0, called the (genus) spectrum of G, such that there is a Riemann surface X of
genus g being acted on by G; in this case, g is called a genus of G. Note that we are
in particular including the cases g ≤ 1. In [10], the problem of determining sp(G) is
called the Hurwitz problem associated with G, and the problem of finding the minimum
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genus min sp(G) of G, also called its strong symmetric genus, has stimulated particular
interest. For more details we refer the reader to [1, 12], and the references given there.

To attack the Hurwitz problem, let �(G) := |G|
exp(G) , where exp(G) denotes the

exponent of G, that is the least common multiple of the orders of its elements. Then,
let the reduced (genus) spectrum of G be defined by

sp0(G) :=
{

g − 1
�(G)

∈ � : g ∈ sp(G)
}

,

where the number g−1
�(G) is called the reduced genus associated with g. It follows from

[6], together with a special consideration of the case g = 0, that

sp0(G) ⊆ � := 1
ε(G)

· ({−1} ∪ �0)

is a co-finite subset, where ε(G) divides gcd(2, |G|) and can be determined from the
structure of G, as is recalled in (2.2). A word of caution is in order here: In [6] the
notion of reduced genus is defined differently, by taking ε(G) into account as well,
while our choice leads to fewer case distinctions.

The reduced minimum genus of G, that is the reduced genus associated with the
minimum genus of G, equals μ0(G) := min sp0(G). Moreover, following [7], the reduced
stable upper genus σ0(G) of G is the smallest element of � such that all elements of
� \ sp0(G) are less than σ0(G); the genus σ (G) associated with σ0(G) is called the stable
upper genus of G. The elements of � \ sp0(G) exceeding μ0(G) are called the reduced
spectral gap of G; the associated genera form the spectral gap of G. Hence, solving
the Hurwitz problem for G amounts to determining μ0(G) and σ0(G) and the reduced
spectral gap of G.

1.2. Our approach to Abelian p-groups. We now restrict ourselves to p-groups,
where p is a prime. Not too much is known about the genus spectrum of groups within
this class, even if we only look at interesting subclasses, for example, those given by
bounding a certain invariant, such as rank, exponent, nilpotency class, or co-class; see
[12].

This still holds if we restrict further to the class of Abelian p-groups, which are the
groups we are interested in from now on, their general form being

G ∼= �r1
p ⊕ �

r2

p2 ⊕ · · · ⊕ �
re
pe ,

where e ≥ 1, ri ≥ 0 for 1 ≤ i ≤ e − 1, and re ≥ 1. We point out that, in particular,
contrary to [9, 13], we are allowing for arbitrary primes p ≥ 2 throughout.

We give an outline of the paper: In Section 2 we recall a few facts about Riemann
surfaces and their automorphism groups.

Section 3 is devoted to prepare the combinatorial tools featuring prominently later
on: Given a prime p, and a non-increasing sequence a := (a1, . . . , ae) of non-negative
integers, the associated p-mainline integer is defined as ℘(a) := ∑e

i=1 aipe−i. Moreover,
given any non-increasing sequence s := (s1, . . . , se) of non-negative integers, let P(s)
be the set of all p-mainline integers ℘(a), where a is bounded below component-wise
by s. The connection to Abelian p-groups with defining invariants (r1, . . . , re) is given
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by letting the sequence s be defined as

si := 1 +
e∑

j=i

rj for 1 ≤ i ≤ e.

We are interested in the structure of P(s), whose minimum obviously equals ℘(s). It
can be shown that P(s) is a co-finite subset of the non-negative integers, and thus the
combinatorial problems arising are to determine the smallest m such that all integers
from m on actually are elements of P(s), and to describe the gap consisting of the
non-mainline integers between ℘(s) and m.

Having these preliminaries in place we turn our attention to Abelian p-groups
and their genus spectrum: Our starting point in Section 4 is Talu’s approach [13]
towards a general description of the genus spectrum of Abelian p-groups, in the case
where p is odd. Building on these ideas, we describe the smooth epimorphisms, in
the sense of (2.1), onto a given Abelian p-group, where p is arbitrary. The resulting
general necessary and sufficient arithmetic condition for their existence, which we still
refer to as Talu’s theorem, is given in Theorems 3 and 4; in proving the latter, we in
particular close a gap in the proof of [13, Theorem 3.3]. In Section 5, this is translated
into a combinatorial description of the domain of the reduced genus map, yielding
a structured description of the reduced spectrum of G, which is presented in Section
5.3, and leading to a method of computing the reduced minimum genus μ0(G) of
G culminating in Theorem 5, which says that μ0(G) is given as the minimum of at
most e + 1 numbers, given explicitly in terms of the defining invariants (r1, . . . , re). In
particular, in Section 5.6, we obtain an independent proof and an improved version of
Maclachlan’s method [8, Theorem 4] for the special case of Abelian p-groups.

Having these combinatorial tools in place, in Section 6, we turn to Abelian p-
groups with ‘large’ invariants, by assuming that

ri ≥ p − 1 for 1 ≤ i ≤ e − 1, and re ≥ max{p − 2, 1}.

In these cases, we are able to determine both the reduced minimum genus μ0(G) as well
as the reduced stable upper genus σ0(G) in terms of the defining invariants (r1, . . . , re)
of G. More precisely, our main result says the following.

MAIN THEOREM. Let G have ‘large’ invariants as specified above. Then, the reduced
minimum and stable upper genus of G is given as

μ0(G) = σ0(G) = 1
2

·
(

− 1 − pe +
e∑

i=1

(pe − pe−i) · ri

)
.

In particular, the reduced spectral gap is empty.
We point out that, in contrast, the main focus of [13] is on Abelian p-groups having

‘small’ invariants, fulfilling si ≤ (e − i + 1) · (p − 1), for 1 ≤ i ≤ e.
In Section 7, we turn to an aspect of the general question of how much information

about a group is encoded into its spectrum, at best whether its isomorphism type can
be recovered from it. Since in view of the examples in [9] this cannot possibly hold
without restricting the class of groups considered, the class of Abelian p-groups seems
to be a good candidate to look at. More specifically, Talu’s conjecture [13] says that,
whenever p is odd, the spectrum of a non-trivial Abelian p-group already determines
the group up to isomorphism. Moreover, although this cannot possibly hold in full
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generality for p = 2, in view of the examples considered below, one might expect that
it still holds true up to finitely many finite sets of exceptions.

But, as a consequence of Main Theorem 1, we are able to produce infinitely many
counterexamples to Talu’s conjecture (both for p odd and p = 2), that is pairs of
non-isomorphic Abelian p-groups having the same spectrum. We present two distinct
kinds of counterexamples, consisting of groups having the same order and exponent,
and of groups where these invariants are different, in Section 7.1 and Sections 7.2–7.4,
respectively. This even shows that there cannot be an absolute bound on the cardinality
of a set of Abelian p-groups sharing one and the same spectrum, even if we restrict
ourselves to groups having the same order and exponent.

In order to show the effectiveness of the combinatorial methods developed, in
Sections 8 and 9, we work out various explicit examples, where in particular we get
new proofs of a number of earlier results scattered throughout the literature:

In Theorem 7, we determine the Abelian p-groups of non-positive reduced
minimum genus, where we recover the Abelian p-groups amongst the well-known
finite groups acting on surfaces of genus g ≤ 1, see [11, Appendix] or [2, Section 6.7].
In particular, the non-cyclic Abelian groups of order at most 9, which have to be
treated as exceptions in [8, Theorem 4], reappear here naturally. In Theorem 8, we
deal with cyclic p-groups, whose smallest genus ≥ 2 we determine. In particular, we
recover the results in [4] and [6, Proposition 3.3], and we show that such a group
is uniquely determined by its smallest genus ≥ 2, with the exception of the groups
{�2, �4, �8}. Similarly, in Theorem 9, we consider Abelian p-groups of rank 2, for
which we also determine the smallest genus ≥ 2. In particular, we improve the bound
in [6, Proposition 3.4], and we show that such a group is uniquely determined by
its smallest genus ≥ 2, with the exception of the groups {�2 ⊕ �4, �2 ⊕ �8, �2

4}. For
Abelian p-groups of cyclic deficiency 1, where p is odd, we recover part of [9, Theorem
5.4] and [9, Corollary 5.5]. Finally, in Sections 8.1 and 8.2, we completely determine
the spectrum of the Abelian 2-groups of order dividing 16, and of the Abelian 3-groups
of order dividing 27, respectively.

In Theorem 10 and Proposition 7, we determine the reduced minimum genus of
elementary Abelian p-groups, and we show that such a group is uniquely determined by
its minimum genus, with the exception of the groups {�2, �2

2}; for p odd this is claimed
in [9, Corollary 7.3]. Similarly, in Theorem 11 and Proposition 8, we determine the
reduced minimum genus of Abelian p-groups of exponent p2, and we show that such a
group is uniquely determined by its minimum genus and its Kulkarni invariant, with
the exception of the groups {�2

4, �2 ⊕ �4}; for p odd this is claimed in [13, Theorem
3.8].

In particular, these results imply the following theorem related to Talu’s conjecture:

THEOREM. Talu’s conjecture holds within the following subclasses of the class of
non-trivial Abelian p-groups (including the case p = 2):

(a) the class of cyclic p-groups (with the exception {�2, �4, �8}),
(b) the class of Abelian p-groups of rank 2 (with the exception {�2 ⊕ �4, �2 ⊕ �8}),
(c) the class of elementary Abelian p-groups (with the exception {�2, �2

2}),
(d) the class of Abelian p-groups of exponent p2 (without exception).

2. Groups acting on Riemann surfaces. We assume the reader is familiar with the
basic theory of Riemann surfaces, as is exhibited, for example, in [1, 2], so that here
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we are just content with recalling a few facts. The connection between geometry and
group theory is given by the following well-known theorem. We point out that it is
often only used for g ≥ 2, in which case the ‘groups with signature’ occurring are the
Fuchsian groups, but it actually holds for all g ≥ 0; see, for example, [1, Section 1], [2,
Chapter 6] and [11].

THEOREM 1. A finite group G acts on a compact Riemann surface X, if and only if
there is � ≤ Aut(U), where U is a simply-connected Riemann surface and � is a group
with finite signature in the sense of Section 2.1, and a smooth epimorphism φ : � −→ G,
such that X is isomorphic to the orbit space U/ker(φ).

2.1. Smooth epimorphisms. We keep the notation of Theorem 1. A group � is
said to be a group with (finite) signature if it has a distinguished generating set

{ak, bk : 1 ≤ k ≤ h} ∪ {cj : 1 ≤ j ≤ s}
for some h, s ∈ �0, subject to the order relations

cnj

j = 1, where nj ∈ � \ {1}
for 1 ≤ j ≤ s, and the ‘long’ relation

h∏
k=1

[ak, bk] ·
s∏

j=1

cj = 1,

where [a, b] := a−1b−1ab denotes the commutator of a and b. More generally, there
might also be order relations of the form ‘c∞ = 1’, that is no order relation for the
generator c at all; but, since we are requiring X to be compact, and hence the orbit
space X/G to be compact as well, these cases do not occur here; see [11, Appendix].

An epimorphism φ : � −→ G with torsion-free kernel is called smooth. This is
equivalent to the condition that φ(cj) ∈ G has order nj, for all 1 ≤ j ≤ s. In this case,
the (s + 1)-tuple (n1, . . . , ns; h) is called a signature of G, with periods n1, . . . , ns ≥ 2
and orbit genus h ≥ 0. The orbit space X/G has genus h, and the branched covering
X −→ X/G gives rise to the Riemann–Hurwitz equation

g − 1 = |G| ·
(

h − 1 + 1
2

·
s∑

i=1

(
1 − 1

ni

))
.

2.2. Kulkarni’s Theorem. To describe the structure of the genus spectrum of a
finite group G, in [6], a group theoretic invariant N(G) ∈ �, now called the Kulkarni
invariant of G, is introduced, such that

sp(G) \ {0} ⊆ 1 + N(G) · �0,

and sp(G) \ {0} is a co-finite subset of 1 + N(G) · �0. Moreover, we have

N(G) = 1
ε(G)

· |G|
exp(G)

,

where ε = ε(G) ∈ {1, 2} is determined by the structure of G as follows.
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If |G| is odd, then ε := 1; if |G| is even, letting G̃ be a Sylow 2-subgroup of G, then
ε := 1 provided the subset {a ∈ G̃; |a| < exp(G̃)} ⊆ G forms a subgroup of G̃ of index
2, otherwise ε := 2.

This yields the description of the non-negative part of the reduced spectrum sp0(G)
as stated earlier. As for its negative part, the well-known description of finite group
actions on compact Riemann surfaces of genus g = 0, see [11, Appendix] or [2, Section
6.7], says that in this case G is cyclic, dihedral, alternating or symmetric of isomorphism
type in {�n, Dih2n, Alt4, Sym4, Alt5}; hence, we indeed get �(G) = ε(G).

2.3. The case of p-groups. We turn to the case of interest for us: Let G be a
p-group of order pn and exponent pe, where e ≤ n ∈ �0.

If φ : � −→ G is a smooth epimorphism, then all the periods are of the form pi,
where 0 ≤ i ≤ e. Hence, we may abbreviate any signature (n1, . . . , ns; h) of G by the
(e + 1)-tuple (x1, . . . , xe; h), being called the associated p-datum, where

xi := |{1 ≤ j ≤ s; nj = pi}| ∈ �0.

The set D(G) of all p-data of G, being afforded by smooth epimorphisms, is called
the data spectrum of G. Then, the Riemann–Hurwitz equation gives rise to the genus
map g : D(G) −→ sp(G) defined by

g(x1, . . . , xe; h) := 1 + pn−e ·
(

(h − 1) · pe + 1
2

·
e∑

i=1

xi(pe − pe−i)
)

.

Letting the cyclic deficiency of G be defined as

δ = δ(G) := logp(�(G)) = n − e ∈ �0,

in view of Kulkarni’s theorem (2.2), we have N(G) = 1
ε(G) · pδ(G). Then, the reduced

genus map

g0 : D(G) −→ sp0(G) ⊆ 1
ε(G)

· ({−1} ∪ �0) ⊆ 1
2

· ({−1} ∪ �0),

given by associating the reduced genus g−1
pδ ∈ sp0(G) with any g ∈ sp(G), reads

g0(x1, . . . , xe; h) = (h − 1) · pe + 1
2

·
e∑

i=1

xi(pe − pe−i).

3. Mainline integers. In this section, we consider sequences of non-negative
integers from a certain purely combinatorial viewpoint. We develop a little piece of
general theory, as far as will be needed in Sections 5 and 6.

3.1. Integer sequences. Given finite sequences a = (a1, . . . , ae) ∈ �e
0 and b =

(b1, . . . , be) ∈ �e
0 of non-negative integers, of length e ≥ 1, we write a ≤ b, and say

that b dominates a, if ai ≤ bi for all 1 ≤ i ≤ e. We will be mainly concerned with the set

386 J

https://doi.org/10.1017/S0017089518000265 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089518000265


STRUCTURED DESCRIPTION OF THE GENUS SPECTRUM

of non-increasing sequences

N = N (e) := {a = (a1, . . . , ae) ∈ �e
0 : a1 ≥ · · · ≥ ae}.

We introduce a few combinatorial notions concerning integer sequences: To this end,
we fix p ∈ �; later on p will be a prime, but here is no need to assume this.

(i) For an arbitrary sequence a = (a1, . . . , ae) ∈ �e
0, let

℘(a) = ℘(a1, . . . , ae) :=
e∑

i=1

aipe−i ∈ �0.

Then, the (p-)mainline integers associated with a are defined as

P(a) = P(a1, . . . , ae) := {℘(b) ∈ �0 : b ∈ N , a ≤ b}.
Note that we allow for arbitrary a to start with, while the sequences b used in the
definition of P(a) are required to be non-increasing. It will turn out that there
always is a non-increasing sequence affording a given set of mainline integers.
The hull sequence ã = (ã1, . . . , ãe) ∈ N of a is defined recursively by letting ãe :=
ae and

ãi := max{ãi+1, ai} for e − 1 ≥ i ≥ 1;

note that this definition is actually independent of the chosen integer p. Hence,
we have a ≤ ã, where a = ã, if and only if a ∈ N ;

(ii) Given a non-increasing sequence a = (a1, . . . , ae) ∈ N , its p-enveloping sequence
â = (â1, . . . , âe) ∈ N is defined recursively by âe := ae and

âi := max{âi+1 + (p − 1), ai} for e − 1 ≥ i ≥ 1;

hence, we have a = ã ≤ â, where a = â if p = 1.
Moreover, whenever e ≥ 2 let

||a|| = ||(a1, . . . , ae)|| := min{ai − ai+1 : 1 ≤ i ≤ e − 1},
and let ||a|| := ∞ for e = 1; note that, despite notation, || · || is not a norm in
sense of metric spaces. In particular, we have a = â if and only if ||a|| ≥ p − 1.

PROPOSITION 1. Given a ∈ �e
0, then we have P(a) = P(ã).

Proof. Let b = (b1, . . . , be) ∈ N . If ã ≤ b, then from a ≤ ã we also get a ≤ b.
Conversely, if a ≤ b, then we have ãe = ae ≤ be, and recursively for e − 1 ≥ i ≥ 1 we
get ãi+1 ≤ bi+1 ≤ bi and ai ≤ bi, hence ãi ≤ bi; this implies that ã ≤ b. �

PROPOSITION 2. Given a ∈ N , the set �0 \ P(a) is finite.

Proof. We consider the p-enveloping sequence â = (â1, . . . , âe) ∈ N of a, and we
show that any m ≥ ℘(â) is a mainline integer: To this end, write m − ℘(â) in a partial
p-adic expansion as m − ℘(â) = ∑e

i=1 bipe−i, where bi ≥ 0 such that b2, . . . , be ≤ p − 1,
but b1 might be arbitrarily large. Then, we have m = ∑e

i=1(âi + bi)pe−i. Since for 1 ≤
i ≤ e − 1 we have âi − âi+1 ≥ p − 1 ≥ bi+1 − bi, thus âi + bi ≥ âi+1 + bi+1, this implies
that m ∈ P(a). �
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3.2. Combinatorial problems. The general aim now is to investigate the structure
of P(a), for a given sequence a ∈ �e

0: By Proposition 1, we have

μ(a) := min P(a) = min P(ã) = ℘(ã),

where ã ∈ N is the associated hull sequence. Moreover, by Proposition 2, the set
P(a) = P(ã) is a co-finite subset of �0. In consequence, the problems associated with
a are to determine the smallest integer σ (a) ∈ �0 such that all m ≥ σ (a) are elements
of P(a), and to determine the gap {μ(a) + 1, . . . , σ (a) − 1} \ P(a).

Note that by the proof of Proposition 2, we have μ(a) ≤ σ (a) ≤ ℘(â), where â is the
associated p-enveloping sequence. Hence, in particular we have shown the following.

THEOREM 2. Given a ∈ N such that ||a|| ≥ p − 1, then we have μ(a) = σ (a) = ℘(a),
that is the associated mainline integers are given as P(a) = �0 + ℘(a).

4. Talu’s theorem revisited. In this section, we develop our approach to describe
the smooth epimorphisms onto a given Abelian p-group. We first prepare the setting.

4.1. Abelianisations. Let � be a group with signature, given by the p-datum
(x1, . . . , xf ; h), where h ≥ 0, f ≥ 0 and xf > 0; note that we are allowing for the case
f = 0, where the p-datum becomes (−; h). Thus, � is generated by the set

{ak, bk : 1 ≤ k ≤ h} ∪ {cij : 1 ≤ i ≤ f, 1 ≤ j ≤ xi},

subject to the order relations

cpi

ij = 1, for 1 ≤ i ≤ f and 1 ≤ j ≤ xi,

and the long relation

h∏
k=1

[ak, bk] ·
f∏

i=1

xi∏
j=1

cij = 1.

Let 0 ≤ f ′ ≤ f be defined as follows:

f ′ :=
{

0, if
∑f

i=1 xi ≤ 1,

max{1 ≤ d ≤ f :
∑f

i=d xi ≥ 2}, if
∑f

i=1 xi ≥ 2.

In other words, we have f ′ = 0 if and only if the p-datum is (−; h) or (0, . . . , 0, 1; h),
while otherwise we have f ′ = f if and only if xf ≥ 2, and if xf = 1 then 1 ≤ f ′ < f is
largest such that xf ′ > 0.

It follows from the above presentation that the Abelianisation H := �/[�,�] of �,
where [�,�] denotes the derived subgroup of �, can be written as

H ∼=

⎧⎪⎪⎨
⎪⎪⎩

�2h, if f ′ = 0,

�2h ⊕ �x1
p ⊕ �

x2

p2 ⊕ · · · ⊕ �
xf −1
pf , if f ′ = f,

�2h ⊕ �x1
p ⊕ �

x2

p2 ⊕ · · · ⊕ �
xf ′
pf ′ , if 1 ≤ f ′ < f.
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Indeed, identifying the elements of � with their images under the natural map � −→ H,
we conclude that H is generated by the set

C := C0 ∪ C1 ∪ · · · ∪ Cf −1 ∪ Cf ,

reflecting its decomposition as a direct sum of cyclic subgroups, where

C0 := {ak, bk ∈ H : 1 ≤ k ≤ h},
Ci := {cij ∈ H : 1 ≤ j ≤ xi}, for 1 ≤ i ≤ f − 1,

Cf := {cfj ∈ H : 1 ≤ j ≤ xf − 1}.

4.2. Abelian groups. Let G be a non-trivial Abelian p-group given by

G ∼= �r1
p ⊕ �

r2

p2 ⊕ · · · ⊕ �
re
pe ,

where e ≥ 1, and ri ≥ 0 for 1 ≤ i ≤ e − 1, and re ≥ 1. Moreover, let

{gij : 1 ≤ i ≤ e, 1 ≤ j ≤ ri}

be a generating set reflecting the decomposition as a direct sum of cyclic subgroups.
Proceeding similarly as above, let 0 ≤ e′ ≤ e be defined as follows:

e′ :=
{

0, if
∑e

i=1 ri ≤ 1,

max{1 ≤ d ≤ e :
∑e

i=d ri ≥ 2}, if
∑e

i=1 ri ≥ 2.

Thus, we have e′ = 0 if and only if G ∼= �pe is cyclic, while otherwise we have e′ = e if
and only if re ≥ 2, and if re = 1 then 1 ≤ e′ < e is largest such that re′ > 0.

In particular, letting 	e−1(G) := {g ∈ G : gpe−1 = 1}, we observe that 	e−1(G) is a
subgroup of G of index p if and only if e′ < e. Hence, using the notation of Kulkarni’s
theorem 2.2, we have ε(G) = 2 if and only if p = 2 and e′ = e.

For the remainder of this section, we keep the notation fixed in Sections 4.1 and
4.2. Now, since any group homomorphism from � to an Abelian group factors through
H, from Section 2.1, we get the following:

PROPOSITION 3. There is a smooth epimorphism φ : � −→ G if and only if there is
an epimorphism ϕ : H := �/[�,�] −→ G such that ϕ(cij) has order pi, for 1 ≤ i ≤ f and
1 ≤ j ≤ xi, and

∏xf −1
j=1 ϕ(cfj) has order pf .

We also call such an epimorphism ϕ : H −→ G smooth. Having this in place, we
are prepared to state a necessary and sufficient arithmetic condition for the existence
of a smooth epimorphism φ : � −→ G. By Proposition 3, this amounts to giving such
a condition for a smooth epimorphism ϕ : H −→ G, which is done in (3) and (4)
for necessity and sufficiency, respectively. We call this collection of statements Talu’s
theorem, for the following reasons.

We pursue a strategy similar to the one employed in [13, Lemma 3.2] and [13,
Theorem 3.3], where the statements of Theorems 3 and 4 are proven for the case p odd.
Here, we are developing a general approach, which covers the case p = 2 as well, and
with which we recover the results in [13] in a more unified manner. In particular, we
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close a gap in the proof of [13, Theorem 3.3], where the element there playing a role
similar to the element ‘g’ in our proof of Theorem 4 is incorrectly stated.

THEOREM 3. If there exists a smooth epimorphism ϕ : H −→ G, then we have f ′ =
f ≤ e, and the following inequalities are fulfilled:

2h +
f∑

j=i

xj ≥ 1 +
e∑

j=i

rj, for 1 ≤ i ≤ f, and 2h ≥
e∑

j=f +1

rj.

Moreover, if p = 2 and e′ < f , then xf is even.

Proof. For 0 ≤ i ≤ e let 	i(G) = {g ∈ G : gpi = 1} and �i(G) = {gpi ∈ G : g ∈ G}
be the characteristic subgroups of G consisting of all elements of order dividing pi,
and of all pi-th powers, respectively. In particular, 	1(G) is an �p-vector space, where
�p denotes the field with p elements.

Now, the existence of the smooth epimorphism ϕ : H −→ G implies f ′ = f ≤ e.
We have �e(H) ≤ ker(ϕ), thus letting

H̃ := H/�e(H) ∼= �x1
p ⊕ �

x2

p2 ⊕ · · · ⊕ �
xf −1
pf ⊕ �2h

pe

yields an epimorphism ϕ̃ : H̃ −→ G. Hence, dualising we get a monomorphism
ϕ̃∗ : G∗ := Hom(G, �∗) −→ Hom(H̃, �∗) = H̃∗, that is G ∼= G∗ is isomorphic to a
subgroup of H̃∗ ∼= H̃. Thus, 	i(G) and �i(G) can be identified with subgroups of
	i(H̃) and �i(H̃), respectively, and hence we have

dim�p (	1(�i(G))) ≤ dim�p (	1(�i(H̃))).

Now, for 0 ≤ i ≤ e − 1 we have

	1(�i(G)) ∼= �ri+1
p ⊕ �ri+2

p ⊕ · · · ⊕ �re
p ,

which yields

dim�p (	1(�i(G))) =
e∑

j=i+1

rj.

Similarly, for 0 ≤ i ≤ f − 1 we have

	1(�i(H̃)) ∼= �xi+1
p ⊕ �xi+2

p ⊕ · · · ⊕ �
xf −1
p ⊕ �

xf −1
p ⊕ �2h

p ,

yielding

dim�p (	1(�i(H̃))) = 2h − 1 +
f∑

j=i+1

xj,

while for f ≤ i ≤ e − 1 we get

dim�p (	1(�i(H̃))) = 2h.
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Finally, let p = 2 and e′ < f ≤ e. Then, G has the form

G ∼= �
r1
2 ⊕ �

r2
4 ⊕ · · · ⊕ �

re′
2e′ ⊕ �2e ,

and thus

	f (G)/	f −1(G) ∼= �2e−f /�2e−f +1 ∼= �2.

Now, we observe that ϕ(cfj) ∈ 	f (G) \ 	f −1(G), for 1 ≤ j ≤ xf − 1, where∏xf −1
j=1 ϕ(cfj) �∈ 	f −1(G) as well, implying that xf − 1 is odd. �

THEOREM 4. Let f ′ = f ≤ e, where in case p = 2 and e′ < f we additionally assume
that xf is even, such that

2h +
f∑

j=i

xj ≥ 1 +
e∑

j=i

rj, for 1 ≤ i ≤ f, and 2h ≥
e∑

j=f +1

rj.

Then, there exists a smooth epimorphism ϕ : H −→ G.

Proof. By the inequalities assumed, we have

|C0 ∪ Cf ∪ Cf −1 ∪ · · · ∪ Ci| ≥
e∑

j=i

rj, for 1 ≤ i ≤ f, and |C0| ≥
e∑

j=f +1

rj,

where the latter sum is empty if e = f . Thus, we may choose a subset Df +1 ⊆ C0 of
cardinality

∑e
j=f +1 rj. Subsequently, for f ≥ i ≥ 1, we may recursively choose, disjointly

from Df +1, pairwise disjoint sets

Di = {di,1, . . . , di,ri} ⊆ C0 ∪ Cf ∪ Cf −1 ∪ · · · ∪ Ci

of cardinality ri. Let

C ′
i := Ci \

( i⋃
j=1

Dj

)
for 1 ≤ i ≤ f, and C ′

0 := C0 \
( f +1⋃

j=1

Dj

)
.

We are going to define a homomorphism ϕ : H −→ G by specifying the image of C:
The direct summand 〈Df +1〉 of H is a free Abelian group of rank

∑e
j=f +1 rj, hence

choosing ϕ(c) appropriately, for c ∈ Df +1 ⊆ C0, the direct summand

G′ := 〈gij : f + 1 ≤ i ≤ e, 1 ≤ j ≤ ri〉 ∼= �
rf +1

pf +1 ⊕ �
rf +2

pf +2 ⊕ · · · ⊕ �
re
pe

of G becomes an epimorphic image of 〈Df +1〉. Thus, letting ϕ(c) := 1 for c ∈ C ′
0, we are

done in the case f = 0. Hence, we may assume that f ′ = f > 0; thus, we have xf ≥ 2
and Cf �= ∅, where we may assume that Cf ∩ Df �= ∅ whenever rf > 0.

Now, for dij ∈ C0 ∩ Di, where 1 ≤ i ≤ f , we let ϕ(dij) := gij. Moreover, for dij ∈
Ck ∩ Di, where 1 ≤ i ≤ k < f ≤ e, we let ϕ(dij) := gij · gpe−k

e,re , while for c ∈ C ′
k we let

ϕ(c) := gpe−k

e,re . To specify ϕ(c) for c ∈ Cf we need some flexibility:
For dij ∈ Cf ∩ Di, where 1 ≤ i ≤ f , we let ϕ(dij) = gij · c′, for some c′ ∈ G, while

for c ∈ C ′
f we just write ϕ(c) = c′. Then, we have to show that the elements c′ can be
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chosen suitably to give rise to an epimorphism such that all ϕ(c), where c ∈ Cf , as well
as g := ∏

c∈Cf
ϕ(c) have order pf .

In particular, ϕ(c) will have order pf , if c ∈ Cf \ Df and c′ ∈ G is chosen to have
order pf , or if c ∈ Cf ∩ Df and c′ ∈ G′ is chosen to have order dividing pf . Moreover, ϕ

will be an epimorphism whenever f < e and we choose c′ ∈ G′ for all c ∈ Cf ∩ (
⋃f

i=1 Di).
The order condition on g will be checked by showing that the image of g under a
suitable projection of G onto one of its direct summands already has order pf . We now
distinguish various cases as follows:

(i) Let f < e′ ≤ e. Then, pick c0 ∈ Cf , and let c′
0 := gpe′−f

e′,1 , while for c0 �= c ∈ Cf let

c′ := gpe−f

e,re ; note that for e′ = e we have re ≥ 2. Then, projecting g onto 〈ge′,1〉 yields
c′

0, which has order pf .
(ii) Let f = e′ ≤ e. Then, since rf = re′ > 0, we may assume that de′,1 ∈ Cf ∩ Df . For

c ∈ Cf \ Df let c′ := gpe−f

e,re , while for c ∈ Cf ∩ Df let c′ := 1; note that for f = e′ = e
we have re ≥ 2, and de,re ∈ C0 ∪ Cf implies that ϕ is an epimorphism. Projecting g
onto 〈ge′,1〉 yields ge′,1, which has order pf .

(iii) Let e′ < f < e. Then, for c ∈ Cf let c′ := (gpe−f

e,1 )ac , where ac is chosen coprime to

p. Projecting g onto 〈ge,1〉 yields (gpe−f

e,1 )a, where a := ∑
c∈Cf

ac. The latter element

has order pf if and only if a is coprime to p. If p is odd, this can be achieved by
picking any c ∈ Cf and replacing ac by ac + 1 or ac − 1, if necessary. If p = 2, then
ac is odd for all c ∈ Cf , which, since |Cf | = xf − 1 is odd, implies that a is odd;

(iv) Let e′ < f = e. Then, since rf = re = 1, we may assume that Cf ∩ Df = {de,1}.
For c ∈ Cf let c′ := gac

e,1, where ac is chosen co-prime to p for c �= de,1, while for
c = de,1 we choose ac such that 1 + ac is co-prime to p. This implies that ϕ(de,1) has
order pf and that ϕ is an epimorphism. Projecting g onto 〈ge,1〉 yields ga

e,1, where
a := 1 + ∑

c∈Cf
ac. The latter element has order pf if and only if a is co-prime to

p. If p is odd, this can be achieved by picking c ∈ Cf and replacing ac by ac + 1 or
ac − 1, if necessary. If p = 2, then ac is odd for all de,1 �= c ∈ Cf , and 1 + ac is odd
for c = de,1, which, since |Cf | = xf − 1 is odd, implies that a is odd.

�

5. Transforming to mainline integers. In this section, we show how mainline
integers, as introduced in Section 3, can be used for the problem of determining the
reduced genus spectrum of Abelian p-groups. In order to be able to reformulate the
results of Section 4, we have to introduce quite a bit of notation, which we do in a
series of steps.

5.1. Translating to non-increasing sequences. We define α : �e+1
0 −→ �e+1

0 by

α(x1, . . . , xe; x0) :=
( e∑

i=1

xi + 2x0,

e∑
i=2

xi + 2x0, . . . , xe + 2x0, 2x0

)
,

which is injective and has image, using the notation from Section 3.1,

im(α) = N ′(e + 1) := {(a1, . . . , ae+1) ∈ N (e + 1) : ae+1 ∈ 2�0}.
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The inverse map α−1 : N ′(e + 1) −→ �e+1
0 is given by

α−1(a1, . . . , ae+1) :=
(

a1 − a2, . . . , ae − ae+1;
ae+1

2

)
.

5.2. Translating the reduced genus map. We continue to assume that G is a non-
trivial Abelian p-group of exponent pe. Letting D(G) ⊂ �e+1

0 be the data spectrum of
G as introduced in Section 2.3, let

A(G) := α(D(G)) ⊂ �e+1
0 .

Then, the reduced genus map g0 : D(G) −→ 1
2 · ({−1} ∪ �0), given by

g0(x1, . . . , xe; h) = −pe +
(

h + 1
2

·
e∑

i=1

xi

)
· pe − 1

2
·

e∑
i=1

xipe−i,

can be rephrased as γ = g0 ◦ α−1 : A(G) −→ 1
2 · ({−1} ∪ �0), where explicitly

γ (a1, . . . , ae+1) = −pe + ae+1

2
+ p − 1

2
· ℘(a1, . . . , ae),

where still ℘(a1, . . . , ae) := ∑e
i=1 aipe−i.

Moreover, as will become clear below, elements of the form
(x1, . . . , xi, 0, . . . , 0; h) ∈ D(G), for some 0 ≤ i ≤ e, are of particular importance.
These translate into elements of the form (a1, . . . , ai, 2a, . . . , 2a) ∈ N ′(e + 1). For the
latter, we have

γ (a1, . . . , ai, 2a, . . . , 2a) = −pe + a + p − 1
2

· ℘(a1, . . . , ai, 2a, . . . , 2a),

where the argument of ℘ is a sequence of length e, and yields

℘(a1, . . . , ai, 2a, . . . , 2a) = pe−i ·
i∑

j=1

ajpi−j + 2a ·
e−i−1∑

j=0

pj.

From that, we get

γ (a1, . . . , ai, 2a, . . . , 2a) = −pe + pe−i ·
(

a + p − 1
2

· ℘(a1, . . . , ai)
)

.

In particular, for i = 0 we get γ (2a, . . . , 2a) = (a − 1) · pe, while for i = e
we recover γ (a1, . . . , ae, 2a) = −pe + a + p−1

2 · ℘(a1, . . . , ae). Note that we have
γ (a1, . . . , ai, 2a, . . . , 2a) ∈ �, unless p = 2 and i = e and ae odd, in which case we
have γ (a1, . . . , ae, 2a) ∈ 1

2 � \ �.
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JÜRGEN MÜLLER AND SIDDHARTHA SARKAR

5.3. Translating Talu’s theorem. Let again G ∼= �r1
p ⊕ �

r2

p2 ⊕ · · · ⊕ �
re
pe , where e ≥

1, ri ≥ 0 for 1 ≤ i ≤ e − 1, and re ≥ 1. Moreover, for 1 ≤ i ≤ e + 1 we fix

si := 1 +
e∑

j=i

rj.

Hence, we have s := (s1, . . . , se+1) ∈ N (e + 1) such that se ≥ 2 and se+1 = 1. Now
rephrasing Theorems 3 and 4 yields the following structured description of A(G):

(i) For p odd, we have

A(G) = A0 ∪ A1 ∪ · · · ∪ Ae,

where for 0 ≤ i ≤ e we let, setting a0 := ∞,

Ai := {a ∈ N ′(e + 1) : (a1, . . . , ai) ≥ (s1, . . . , si),

ai+1 = · · · = ae+1 ≥ si+1 − 1, ai − ai+1 ≥ 2}.
In particular, we have

A0 = {a ∈ N ′(e + 1) : a1 = · · · = ae+1 ≥ s1 − 1}
and

Ae = {a ∈ N ′(e + 1) : (a1, . . . , ae) ≥ (s1, . . . , se), ae − ae+1 ≥ 2}.
For 0 ≤ i < j ≤ e, the sequences in Ai satisfy aj = aj+1, while those in Aj satisfy
aj − aj+1 ≥ 2; hence, Ai ∩ Aj = ∅; thus, A(G) is partitioned by the Ai.

(ii) For p = 2, letting 0 ≤ e′ ≤ e be as defined in Section 4.2, we get

A(G) = A0 ∪ A1 ∪ · · · ∪ Ae′ ∪ A′
e′+1 ∪ · · · ∪ A′

e,

where for 1 ≤ i ≤ e, we let

A′
i := {a ∈ Ai : ai − ai+1 ∈ 2�}.

In particular, for i = e, we get

A′
e := {a ∈ Ae : ae ∈ 2�}.

Note that we have γ (Ae) ⊆ 1
2 � and γ (A′

e) ⊆ �, thus we recover Kulkarni’s theorem
(2.2) in the case of Abelian p-groups. The above partition of A(G) now gives a way
to compute the reduced minimum genus of G, but we need some more notation.

5.4. Towards the minimum genus. As we have seen above, for p odd, we have

μ0(G) = min{min γ (Ai) : 0 ≤ i ≤ e},
while for p = 2, we get

μ0(G) = min ({min γ (Ai) : 0 ≤ i ≤ e′} ∪ {min γ (A′
i) : e′ < i ≤ e}).
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(i) We proceed to derive formulae, in terms of the sequence s = (s1, . . . , se+1)
associated with G, to determine min γ (Ai), for 0 ≤ i ≤ e: To this end, let

si :=
(

s1, . . . , si, 2 ·
⌊ si+1

2

⌋
, . . . , 2 ·

⌊ si+1

2

⌋)
∈ N ′(e + 1)

and

si+ :=
(

s1, . . . , si−1, si + εi, 2 ·
⌊ si+1

2

⌋
, . . . , 2 ·

⌊ si+1

2

⌋)
∈ N ′(e + 1),

where εi ∈ {0, 1, 2} is chosen minimal such that si + εi − 2 · � si+1
2 � ≥ 2, that is

εi :=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0, if si − si+1 ≥ 2,

0, if si − si+1 = 1, si+1 odd,

1, if si − si+1 = 1, si+1 even,

1, if si = si+1, si+1 odd,

2, if si = si+1, si+1 even.

Note that for i = e we have se+1 = 1 and se ≥ 2, and thus εe = 0; moreover, for
i = 0 we let ε0 = 0.
It now follows from the description of Ai, and Proposition 1, that min γ (Ai) is
attained precisely for the hull sequence

s̃i+ =
(

s̃1, . . . , s̃i, 2 ·
⌊ si+1

2

⌋
, . . . , 2 ·

⌊ si+1

2

⌋)
∈ N ′(e + 1),

of si+, where the prefix (s̃1, . . . , s̃i) of length i is determined as follows:
For i ≥ 1, let 0 ≤ i′′ ≤ i′ < i be both maximal such that si′ − si ≥ 1 and si′′ − si ≥
2; hence, if i′′ < i′, then we have si′ − si′+1 = 1, and i′ = 0 and i′′ = 0 refer to the
cases s1 = si and s1 − si ≤ 1, respectively. Then, (s̃1, . . . , s̃i) is given as

(s1, . . . , si), if εi = 0,

(s1, . . . , si′ , si′+1 + 1, . . . , si + 1), if εi = 1,

(s1, . . . , si′′ , si′′+1 + 1, . . . , si′ + 1, si′+1 + 2, . . . , si + 2), if εi = 2.

Thus, letting

μi := γ (si) = −pe + pe−i ·
(⌊ si+1

2

⌋
+ p − 1

2
· ℘(s1, . . . , si)

)
,

we get

min γ (Ai) = γ (s̃i+) =

⎧⎪⎨
⎪⎩

μi, if εi = 0,

μi + 1
2 · (pe−i′ − pe−i), if εi = 1,

μi + 1
2 · (pe−i′′ + pe−i′ − 2pe−i), if εi = 2.

In particular, we have

min γ (Ae) = μe = −pe + p − 1
2

· ℘(s1, . . . , se),

395

https://doi.org/10.1017/S0017089518000265 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089518000265
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being attained precisely for (s1, . . . , se, 0), and

min γ (A0) = μ0 =
(⌊ s1

2

⌋
− 1

)
· pe,

being attained precisely for (2 · � s1
2 �, . . . , 2 · � s1

2 �).
(ii) It remains to consider min γ (A′

i), for e′ < i ≤ e, in the case p = 2: For e′ < i < e,
we have si = si+1 = 2; hence , s̃i = 4 and 2 · � si+1

2 � = 2, while for e′ < i = e, we have
se = 2 and se+1 = 1; hence, s̃e = 2 and 2 · � se+1

2 � = 0. Thus, the above description
for e′ < i ≤ e yields

min γ (A′
i) = min γ (Ai) = γ (s̃i+),

implying that the reduced minimum genus of G, just as for p odd, is given as

μ0(G) = min{min γ (Ai) : 0 ≤ i ≤ e}.

We are now prepared to prove the following.

THEOREM 5. Keeping the above notation, we have

μ0(G) = min{μi : i ∈ I(G)},

where, letting s0 := ∞,

I(G) := {0 ≤ i ≤ e : si − si+1 ≥ 2} ∪ {0 ≤ i ≤ e : si − si+1 = 1, si+1 odd}.

In particular, we always have {0, e} ⊆ I(G), but if s1 is even, then to find μ0(G), it
suffices to consider i ∈ I(G) \ {0} only.

Proof. We have already seen that μ0(G) = min{min γ (Ai) : 0 ≤ i ≤ e}, where
min γ (Ai) = γ (s̃i+). We aim to show that μ0(G) can be determined by taking the
minimum over a suitably chosen subset of indices 0 ≤ i ≤ e. To this end, we consider
the cases where εi �= 0; hence, we have 1 ≤ i ≤ e − 1.

(i) If si+1 is even and si = si+1, then we have

si+ = (s1, . . . , si−1, si + 2, si, . . . , si),
s(i−1)+ = (s1, . . . , si−1 + εi−1, si, si, . . . , si),

where εi−1 = 0 whenever si−1 ≥ si + 2, and si−1 + εi−1 = si + 2 otherwise.
(ii) If si+1 is even and si − si+1 = 1, then we have

si+ = (s1, . . . , si−1, si + 1, si − 1, . . . , si − 1),
s(i−1)+ = (s1, . . . , si−1 + εi−1, si − 1, si − 1, . . . , si − 1),

where εi−1 = 0 whenever si−1 ≥ si + 1, and si−1 + εi−1 = si + 1 otherwise.
(iii) If si+1 is odd and si = si+1, then we have

si+ = (s1, . . . , si−1, si + 1, si − 1, . . . , si − 1),
s(i−1)+ = (s1, . . . , si−1 + εi−1, si − 1, si − 1, . . . , si − 1),

where εi−1 = 0 whenever si−1 ≥ si + 1, and si−1 + εi−1 = si + 1 otherwise.
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In either of these cases, going over to hull sequences yields s̃i+ ≥ s̃(i−1)+, implying

min γ (Ai) = γ (s̃i+) ≥ γ (s̃(i−1)+) = min γ (Ai−1),

so that min γ (Ai) need not be considered in finding μ0(G).
Thus, we are left with the cases 0 ≤ i ≤ e such that εi = 0, that is precisely those

in I(G); for the latter we indeed have min γ (Ai) = μi. Recalling that ε0 = εe = 0, we
always have {0, e} ⊆ I(G). But, if s1 is even, then since s1 ≥ · · · ≥ se ≥ 2, we have

μe = −pe + p − 1
2

· ℘(s1, . . . , se) ≤ −pe + s1

2
· (pe − 1) <

( s1

2
− 1

)
· pe = μ0;

hence, in this case, min γ (A0) need not be considered in finding μ0(G). �
In other words, finding μ0(G) is reduced to computing the minimum of |I(G)| ≤

e + 1 numbers, which are given explicitly in terms of known invariants of G. In
particular, this method to determine μ0(G) will feature prominently in the proof of
our main result, i.e., Main Theorem 1. Moreover, to underline the effectiveness of
these techniques, in Sections 8 and 9, we give detailed example treatments of the
Abelian p-groups of rank at most 2, and of the Abelian p-groups of exponent at most
p2, respectively.

5.5. Translating back. We translate the results back, to express μi = min γ (Ai),
for i ∈ I(G), in terms of the p-datum giving rise to μi, which by Section 5.2 is given as

xi = (x1, . . . , xe; h) := α−1
(

s1, . . . , si, 2 ·
⌊ si+1

2

⌋
, . . . , 2 ·

⌊ si+1

2

⌋)
.

(i) If ri = si − si+1 ≥ 2 and si+1 is even, then we have

xi =
(

r1, . . . , ri, 0, . . . , 0;
si+1

2

)
,

yielding

μi = pe ·
(

si+1

2
− 1 + 1

2
·

i∑
j=1

rj

(
1 − 1

pj

))
.

(ii) If ri = si − si+1 ≥ 1 and si+1 is odd, then we have

xi =
(

r1, . . . , ri−1, ri + 1, 0, . . . , 0;
si+1 − 1

2

)
,

yielding

μi = pe ·
(

si+1 − 1
2

− 1 + 1
2

·
i∑

j=1

rj(1 − 1
pj

) + 1
2

· (1 − 1
pi

)
)

.

In particular, the case i = 0 is encompassed by the above cases, depending on
whether s1 is even or odd, respectively, by x0 = (0, . . . , 0; � s1

2 �), where this case
need not be considered if s1 is even. Moreover, the case i = e, since se+1 = 1, is
subsumed in the second of the above cases, by xe = (r1, . . . , re−1, re + 1; 0).
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Finally, we observe that the various μi = min γ (Ai) to be considered belong to
pairwise distinct orbit genera, as follows.

PROPOSITION 4. The map

I(G) −→ � : i �→
⌊ si+1

2

⌋

is strictly decreasing, hence in particular is injective.

Proof. If both i − 1, i ∈ I(G), then we have si − si+1 ≥ 1 anyway, where for si odd
and si+1 even from si − si+1 ≥ 2, we get � si

2 � = si−1
2 >

si+1
2 = � si+1

2 �. �

5.6. Maclachlan’s method. We compare our approach with the method to
compute the minimum genus for arbitrary non-cyclic Abelian groups given in [8].

To this end, let for a moment G ∼= �n1 ⊕ �n2 ⊕ · · · ⊕ �ns , where s ≥ 2 and 1 < n1 |
n2 | · · · | ns; hence, the exponent of G equals ns. Let νh ∈ �0 be the reduced minimum
genus afforded by all signatures of G with fixed orbit genus h ≥ 0. Then, by [8, Theorem
4], the reduced minimum genus of G equals

μ0(G) = min
{
νh : 0 ≤ h ≤

⌊ s
2

⌋}
,

where the numbers νh can be computed explicitly as

νh = ns ·
(

h − 1 + 1
2

·
s−2h∑
k=1

(
1 − 1

nk

)
+ 1

2
·
(

1 − 1
ns−2h

) )
.

In our case of Abelian p-groups this reads as follows: We have

(n1, . . . , ns) = (
p, . . . , p, p2, . . . , p2, . . . , pe, . . . , pe) ,

where the entry pi occurs ri times, for 1 ≤ i ≤ e; hence, we have s = ∑e
i=1 ri = s1 − 1.

Thus, we are able to improve [8, Theorem 4], for non-cyclic Abelian p-groups, as
follows.

By the injectivity of the map I(G) −→ � : i �→ � si+1
2 �, see Proposition 4, for i ∈

I(G) we have ν� si+1
2 � = μi, and thus by Theorem 5, we may compute μ0(G) as a minimum

over a set of cardinality |I(G)| ≤ e + 1 instead of one of cardinality � s1−1
2 � + 1, as

μ0(G) = min{ν� si+1
2 � : i ∈ I(G)}.

Recall that whenever s1 is even, the case i = 0 need not be considered, so that
we always get a subset of the indices used in [8], where from the formulae in Section
5.5 to compute μi in terms of p-data, we recover the formulae for ν� si+1

2 � given in
there. Moreover, our approach is also valid for cyclic p-groups, which are excluded
in [8]. And since only genus g ≥ 2 is considered there, the case s = 2 and some small
Abelian groups have to be treated as exceptions; these reappear in Theorem 7, where
we consider Abelian p-groups of non-positive reduced minimum genus.
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6. The main result. We keep the notation introduced in Section 5, in particular,
let

G ∼= �r1
p ⊕ �

r2

p2 ⊕ · · · ⊕ �
re
pe ,

where e ≥ 1, ri ≥ 0 for 1 ≤ i ≤ e − 1, and re ≥ 1.

PROPOSITION 5. Suppose that

℘(ri+1, . . . , re) ≥ pe−i − 1,

for all 0 ≤ i ≤ e − 1 such that si+1 is odd. Then, we have μ0(G) = μe.
If si > si+1 for all 1 ≤ i ≤ e − 1 such that si+1 is odd, then the converse also holds.

Proof. By Section 5.4, we have min γ (Ae) = μe and min γ (A0) = μ0, while for
1 ≤ i ≤ e − 1 we have min γ (Ai) ≥ μi. Moreover, for p = 2 and e′ < i ≤ e we have
min γ (A′

i) = min γ (Ai). Thus, it is sufficient to show that under the assumptions made
we have μi ≥ μe, for 0 ≤ i ≤ e − 1.

Now, μi ≥ μe is equivalent to saying

2 ·
⌊ si+1

2

⌋
· pe−i ≥ (p − 1) · ℘(si+1, . . . , se).

The right-hand side of this inequality being equal to

si+1pe−i − se +
e−1∑

j=i+1

(sj+1 − sj)pe−j = si+1pe−i − 1 − ℘(ri+1, . . . , re),

we thus have μi ≥ μe, if and only if(
si+1 − 2 ·

⌊ si+1

2

⌋)
· pe−i ≤ 1 + ℘(ri+1, . . . , re).

The latter inequality clearly holds if si+1 is even, while if si+1 is odd then it holds if and
only if ℘(ri+1, . . . , re) ≥ pe−i − 1. This proves the first assertion.

For the second assertion, let 0 ≤ i ≤ e − 1 such that si+1 is odd. Then, for i �= 0
the assumption si − si+1 ≥ 1 implies εi = 0, using the notation of Section 5.4, while we
have ε0 = 0 anyway. Thus, we get μi = min γ (Ai) ≥ μ0(G) = μe, which by the above
observation implies the second assertion. �

We are now in a position to prove our main result.

MAIN THEOREM 1. Let G be a non-trivial abelian p-group of form

G ∼= �r1
p ⊕ �

r2

p2 ⊕ · · · ⊕ �
re
pe ,

such that

ri ≥ p − 1 for 1 ≤ i ≤ e − 1, and re ≥ max{p − 2, 1}.

(a) Then, the reduced minimum and stable upper genus of G is given as

μ0(G) = σ0(G) = 1
2

·
(

−1 − pe +
e∑

i=1

(pe − pe−i) · ri

)
.

In particular, the reduced spectral gap is empty.
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(b) Letting 0 ≤ j ≤ e be chosen smallest such that (rj+1, . . . , re) = (p − 1, . . . , p − 1),
where j = e refers to the case re �= p − 1, the reduced minimum genus μ0(G) is afforded
precisely by the p-data(

r1, . . . , ri−1, ri + 1, 0, . . . , 0;
1
2

(e − i)(p − 1)
)

,

where j ≤ i ≤ e is arbitrary for p odd, but restricted to the cases where e − i is even
for p = 2. In particular, μ0(G) is always afforded by

(r1, . . . , re−1, re + 1; 0).

Proof.

(a) By Sections 5.4 and 5.5, we have

1
2

·
(

−1 − pe +
e∑

i=1

(pe − pe−i) · ri

)
= −pe + p − 1

2
· ℘(s1, . . . , se) = μe.

Note that μe ∈ 1
2 �, where μe ∈ 1

2 � \ � if and only if p = 2 and se is odd. Since,
μ0(G) ≤ σ0(G) anyway, it suffices to prove σ0(G) ≤ μe and μe ≤ μ0(G).

(i) We first show σ0(G) ≤ μe: By assumption, we have si − si+1 = ri ≥ p − 1
for 1 ≤ i ≤ e − 1, that is ||(s1, . . . , se)|| ≥ p − 1. Hence, for any m ∈ �0, by
Theorem 2, there is a sequence (a1, . . . , ae) ∈ N (e) such that (a1, . . . , ae) ≥
(s1, . . . , se) and ℘(a1, . . . , ae) = ℘(s1, . . . , se) + m.
Let first p be odd, and σ ∈ � such that σ ≥ μe. Then, there are m ∈ �0 and
r ∈ �0 such that r <

p−1
2 and

σ = μe + m · p − 1
2

+ r = −pe + p − 1
2

· (℘(s1, . . . , se) + m) + r.

Let (a1, . . . , ae) such that ℘(a1, . . . , ae) = ℘(s1, . . . , se) + m, and ae+1 :=
2r, then, ae − ae+1 ≥ (re + 1) − 2 · p−3

2 ≥ 2 implies (a1, . . . , ae+1) ∈ Ae. Since
γ (a1, . . . , ae+1) = −pe + r + p−1

2 · ℘(a1, . . . , ae) = σ , from Section 5.3, we get
σ ∈ sp0(G).
Let now p = 2, and σ ∈ 1

2 �, such that σ ≥ μe. Let m := 2(σ − μe) ∈ �0.
Let (a1, . . . , ae) be as above such that ℘(a1, . . . , ae) = ℘(s1, . . . , se) + m,
and ae+1 := 0, then, ae − ae+1 ≥ re + 1 ≥ 2 implies (a1, . . . , ae+1) ∈ Ae. Since
γ (a1, . . . , ae+1) = −2e + 1

2 · ℘(a1, . . . , ae) = σ , thus, if e′ = e from Section
5.3, we get σ ∈ sp0(G).
If e′ < e, then we have e′ = e − 1 and se = 2, and hence γ (A(G)) = γ (A0) ∪
γ (A1) ∪ · · · ∪ γ (Ae−1) ∪ γ (A′

e) ⊆ �. Since μe = min γ (A′
e), we may assume

that σ ∈ �, thus m := 2(σ − μe) ∈ �0 is even. Hence, we get

ae ≡ ℘(a1, . . . , ae) = ℘(s1, . . . , se) + m ≡ se + m ≡ 0 (mod 2),

implying that (a1, . . . , ae+1) ∈ A′
e, and from Section 5.3, we get σ ∈ sp0(G).

(ii) We show μe ≤ μ0(G): Since si − si+1 = ri ≥ 1, for all 1 ≤ i ≤ e − 1, by
Proposition 5, we have to show ℘(ri+1, . . . , re) ≥ pe−i − 1, for all 0 ≤ i ≤ e − 1
such that si+1 is odd.
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For p odd we have rj ≥ p − 1 for 1 ≤ j ≤ e − 1, and re ≥ p − 2,
where

∑e
j=i+1 rj = si+1 − 1 being even implies that (ri+1, . . . , re−1,re) �= (p −

1, . . . , p − 1, p − 2). Thus,

℘(ri+1, . . . , re) > −1 + (p − 1) ·
e∑

j=i+1

pe−j = pe−i − 2.

For p = 2 we have rj ≥ 1 for 1 ≤ j ≤ e, directly yielding

℘(ri+1, . . . , re) =
e∑

j=i+1

rj · 2e−j ≥
e∑

j=i+1

2e−j = 2e−i − 1.

(iii) We determine when μ0(G) is attained: By (5.4), min γ (Ae) = μe is attained
precisely for (s1, . . . , se, 0), corresponding to the p-datum (r1, . . . , re−1, re +
1; 0).
Now, for 0 ≤ i ≤ e − 1, by the proof of Proposition 5, we have μi ≥ μe.
Moreover, replacing inequalities by equalities in the proof of Proposition 5
shows that μi = μe is equivalent to si+1 being odd and ℘(ri+1, . . . , re) = pe−i −
1. Since (ri+1, . . . , re−1, re) ≥ (p − 1, . . . , p − 1, max{p − 2, 1}), the latter
equality holds if and only if (ri+1, . . . , re) = (p − 1, . . . , p − 1). Since, in this
case, si+1 − 1 = ∑e

j=i+1 rj = (e − i)(p − 1), we have si+1 odd if and only if p is
odd or e − i is even. Hence, we conclude, by Section 5.4 again, that in these
cases min γ (Ai) = μi is attained precisely for(

s1, . . . , si, 2 ·
⌊ si+1

2

⌋
, . . . , 2 ·

⌊ si+1

2

⌋)
= (s1, . . . , si, si+1 − 1, . . . , si+1 − 1),

corresponding to the p-datum, using the notation of Section 5.5,

xi = (r1, . . . , ri−1, ri + 1, 0, . . . , 0;
1
2

(e − i)(p − 1)).

Note that we have I(G) = {0, . . . , e} for p odd, while for p = 2 we at
least get {0} ∪ {e − 2 · � e−j

2 �, . . . , e − 2, e} ⊆ I(G); hence, the indices 0 ≤ i ≤ e
affording μ0(G) are indeed elements of the index set I(G), in accordance with
Theorem 5.

�
EXAMPLE 1.

(i) For p odd and (r1, . . . , re−1, re) = (p − 1, . . . , p − 1, p − 2), that is the extremal
case, we get

μ0(G) = σ0(G) = 1
2

·
((

e(p − 1) − 3
) · pe + 1

)
.

Thus, we recover [13, Corollary 3.7], where σ0(G) is determined.
(ii) For p arbitrary and (r1, . . . , re−1, re) = (p − 1, . . . , p − 1, p − 1), we get

μ0(G) = σ0(G) = 1
2

· (
e(p − 1) − 1

) · pe,
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which for p = 2 specialises to μ0(G) = e−2
2 · 2e.

As an immediate consequence of Main Theorem 1, invoking Kulkarni’s theorem
2.2, we are able to describe the complete (reduced) spectrum of the groups in question.

COROLLARY 1.

(a) The reduced spectrum of G is given as

sp0(G) =
{

μ0(G) + �0, if p odd or re = 1,

μ0(G) + 1
2 �0, if p = 2 and re ≥ 2.

(b) Letting δ = δ(G) := ∑e
i=1(iri − 1) be the cyclic deficiency of G, then, the minimum

genus and the spectrum of G are given as μ(G) = 1 + pδ · μ0(G) and

sp(G) =
{

1 + pδ · μ0(G) + pδ · �0, if p odd or re = 1,

1 + 2δ · μ0(G) + 2δ−1 · �0, if p = 2 and re ≥ 2.

Moreover, for certain suitable co-finite sets of positive integers we are conversely
able to provide Abelian p-groups having the specified set as their reduced spectrum:

THEOREM 6. Let p be a prime, let e ≥ 1, and let m ∈ � such that

m ≥
{

(2e − 1)pe − 2 · pe−1
p−1 + 1, if p odd,

(e − 1) · 2e+1 + 2, if p = 2.

Then, there is a group G of exponent pe such that μ0(G) = −pe + p−1
2 · m and

sp0(G) =
{

μ0(G) + �0, if p odd or m even,

μ0(G) + 1
2 �0, if p = 2 and m odd.

Proof. We consider the sequence (a1, . . . , ae) ∈ N given by ae := max{p − 1, 2},
and ae−i := ae + i · 2(p − 1) for 1 ≤ i ≤ e − 1.

(i) We first show that the lower bound for m given above coincides with ℘(a1, . . . , ae):
To this end, let first se(p) := ∑e

i=1 ipi. Then, we have

se(p) = p
p − 1

·
(

epe −
e−1∑
i=0

pi
)

,

which is seen by induction: The case e = 1 is clear, and se+1(p) = (e + 1)pe+1 +
se(p) = p

p−1 ·
(

(e + 1)(p − 1)pe + epe − ∑e−1
i=0 pi

)
= p

p−1 · (
(e + 1)pe+1 − ∑e

i=0 pi
)
.

In particular, for p = 2, we get se(2) = (e − 1) · 2e+1 + 2.
Now, for p odd, we have

℘(a1, . . . , ae) = (p − 1) ·
e∑

i=1

(2(e − i) + 1)pe−i

= 2(p − 1)
p

·
e∑

i=1

ipi − (p − 1) ·
e−1∑
i=0

pi,
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which using the above expression for se(p) can be rewritten as

℘(a1, . . . , ae) = 2 ·
(

epe −
e−1∑
i=0

pi

)
− pe + 1 = (2e − 1)pe + 1 − 2 ·

e−1∑
i=0

pi.

For p = 2, we get ℘(a1, . . . , ae) = 2 · ∑e
i=1(e − i + 1) · 2e−i = ∑e

i=1 i · 2i = se(2).
(ii) The strategy of proof now is reminiscent of the proof of Theorem 2:

Given m ≥ ℘(a1, . . . , ae), then we write m − ℘(a1, . . . , ae) in a partial p-
adic expansion as m − ℘(a1, . . . , ae) = ∑e

i=1 bipe−i, where bi ≥ 0 such that
b2, . . . , be < p, but b1 might be arbitrarily large. Hence, letting si := ai + bi for
1 ≤ i ≤ e, we have m = ∑e

i=1 sipe−i. Thus, for 1 ≤ i ≤ e − 1 we get

ri := si − si+1 = 2(p − 1) + (bi − bi+1) ≥ p − 1,

and re := se − 1 ≥ ae − 1 = max{p − 2, 1}. Hence, by Main Theorem 1, for the
Abelian group of the form G ∼= �r1

p ⊕ �
r2

p2 ⊕ · · · ⊕ �
re
pe we have

σ0(G) = μ0(G) = μe = −pe + p − 1
2

· ℘(s1, . . . , se) = −pe + p − 1
2

· m.

Moreover, for p = 2, we have ae = 2, and thus if m is even, we get be = 0 and hence
re = 1, while if m is odd, we get be = 1 and hence re = 2. Thus, the statement on
sp0(G) follows from Corollary 1. �

7. Talu’s conjecture. In general, we wonder which invariants of a non-trivial
Abelian p-group G are determined by its spectrum. Given the latter, this determines
the Kulkarni invariant N = N(G), and hence the cyclic deficiency δ = δ(G) = logp(N)
is known as well whenever p is odd, while δ ∈ {logp(N), 1 + logp(N)} for p = 2. Thus,
the spectrum also determines the reduced minimum and stable upper genus whenever
p is odd, while the latter are known up to a factor of 2 for p = 2.

In this spirit, Talu’s conjecture says that if p is odd, then even the isomorphism
type of G is determined by its spectrum. Here, we include the case p = 2 as well,
by conjecturing this to hold true up to finitely many finite sets of exceptions; we
cannot possibly expect more, for example, in view of the sets of groups {�2, �4, �2

2, �8},
{�2 ⊕ �4, �3

2, �2 ⊕ �8}, and {�2
2 ⊕ �4, �4

2} presented in Section 8.1 and Table 3.
As for evidence, restricting to certain classes of Abelian p-groups, in Sections

8 and 9, we show that Talu’s conjecture (including the case p = 2) holds within the
class of cyclic p-groups with the exception of the groups {�2, �4, �8}; within the class of
Abelian p-groups of rank 2 with the exception of the groups {�2 ⊕ �4, �2 ⊕ �8}; within
the class of elementary Abelian p-groups with the exception of the groups {�2, �2

2};
and within the class of p-groups of exponent p2 without exception.

We proceed to prove a further finiteness result.

PROPOSITION 6. Let G be a set of groups (up to isomorphism) fulfilling the
assumptions of Main Theorem 1 and having the same reduced minimum genus. Then, G
is finite.

Proof. Since the only admissible cyclic groups are �2 and �3, we may assume that
the groups under consideration are non-cyclic, that is have an associated sequence
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(s1, . . . , se) �= (2, . . . , 2). We show that, given any m ≥ 0, there are only finitely many
e ≥ 1 and sequences s1 ≥ · · · ≥ se ≥ 2, where s1 ≥ 3, such that

μe = −pe + p − 1
2

· ℘(s1, . . . , se) ≤ m.

This is seen as follows: The above inequality is equivalent to

℘(s1 − 2, . . . , se − 2) = ℘(s1, . . . , se) − 2 · pe − 1
p − 1

≤ 2(m + 1)
p − 1

.

This implies (s1 − 2) · pe−1 ≤ 2(m+1)
p−1 ; hence, since s1 ≥ 3, we infer that e is bounded.

Fixing e, we get (si − 2) · pe−i ≤ 2(m+1)
p−1 , bounding si as well, for 1 ≤ i ≤ e. �

In view of this, there necessarily are groups fulfilling the assumptions of main
Theorem 1 whose reduced minimum genus exceeds any given bound. Hence, the point
of Theorem 6 is to add some precision to this observation. But here positive results
come to an end.

In Sections 7.1–7.4, we are going to construct counterexamples to Talu’s conjecture
(both for p odd and p = 2), consisting of pairs of groups having the same order and
exponent, and pairs where these invariants are different, respectively. Moreover, by the
results in Section 7.1, there cannot be an absolute bound on the cardinality of a set of
Abelian p-groups having the same spectrum, even if we restrict to groups having the
same order and exponent.

7.1. Counterexamples with fixed exponent. We construct non-isomorphic
Abelian p-groups G and G̃ having the same order, exponent and spectrum, thus, in
particular, having the same Kulkarni invariant, cyclic deficiency, minimum genus and
reduced minimum genus.

In view of the results in Propositions 7 and 8, we let e := 3, and look at groups

G ∼= �r1
p ⊕ �

r2

p2 ⊕ �
r3

p3 and G̃ ∼= �r̃1
p ⊕ �

r̃2

p2 ⊕ �
r̃3

p3

of exponent p3 fulfilling the assumptions of Main Theorem 1, that is coming from
sequences r = (r1, r2, r3) and r̃ = (r̃1, r̃2, r̃3) such that r1, r2, r̃1, r̃2 ≥ p − 1 and r3, r̃3 ≥
max{p − 2, 1}. Then, by Corollary 1, the groups G and G̃ are as desired if and only if
they are non-isomorphic such that |G| = |G̃| and μ0(G) = μ0(G̃), and in case p = 2,
we have r3 = 1 if and only if r̃3 = 1.

Now, |G| = |G̃| translates into

r1 + 2r2 + 3r3 = logp(|G|) = logp(|G̃|) = r̃1 + 2r̃2 + 3r̃3,

and μ0(G) = μ0(G̃) translates into

3∑
i=1

(p3 − p3−i) · ri =
3∑

i=1

(p3 − p3−i) · r̃i.
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Hence, we conclude that we have |G| = |G̃| and μ0(G) = μ0(G̃) if and only if r̃ − r ∈ �3

is an element of the row kernel of the matrix

P :=
⎡
⎣1 p3 − p2

2 p3 − p
3 p3 − 1

⎤
⎦ ∈ �3×2 ⊆ �3×2.

Now, P has �-rank 2, and its row kernel is given as ker(P) = 〈ρ〉�, where

ρ := (p + 2,−2p − 1, p) ∈ �3.

Since gcd(p + 2,−2p − 1, p) = 1, we conclude that ker(P) ∩ �3 = 〈ρ〉�.

In conclusion, we have |G| = |G̃| and μ0(G) = μ0(G̃) if and only if r̃ = r + k · ρ

for some k ∈ �, where G and G̃ are non-isomorphic if and only if k �= 0. Thus, this
provides a complete picture of the counterexamples to Talu’s conjecture in the realm
of Abelian p-groups of exponent p3 fulfilling the assumptions of Main Theorem 1.

In particular, for any l ∈ �, there is a set of isomorphism types of cardinality at
least l + 1 consisting of groups having the same order and reduced minimum genus:
Given r1 ≥ p − 1 and r3 ≥ p − 2, such that r3 ≥ 2 for p = 2, and letting r2 := (p − 1) +
l · (2p + 1), all the sequences r + k · ρ, where 0 ≤ k ≤ l, give rise to groups as desired.
The smallest counterexamples, in terms of group order, are given by choosing r as
small as possible for the case l = 1.

(i) For p odd, this yields

r = (p − 1, 3p, p − 2) and r̃ := r + ρ = (2p + 1, p − 1, 2p − 2),

giving rise to groups such that

|G| = |G̃| = p10p−7 and μ0(G) = μ0(G̃) = 1
2

· (5p4 − 5p3 − 2p2 − p + 1).

Hence, in particular, for p = 3, we get r = (2, 9, 1) and r̃ = (7, 2, 4), giving rise to
groups such that |G| = |G̃| = 323 and μ0(G) = μ0(G̃) = 125.

(ii) In order to cover the case p = 2 as well, for p arbitrary, we may let

r = (p − 1, 3p, p) and r̃ = (2p + 1, p − 1, 2p),

giving rise to groups such that

|G| = |G̃| = p10p−1 and μ0(G) = μ0(G̃) = 1
2

· (5p4 − 3p3 − 2p2 − p − 1).

Hence, in particular, for p = 2, we get r = (1, 6, 2) and r̃ = (5, 1, 4), giving rise to
groups such that |G| = |G̃| = 219 and μ0(G) = μ0(G̃) = 45

2 .

7.2. Towards counterexamples with varying exponent. We construct non-
isomorphic Abelian p-groups G and G̃ just having the same spectrum, thus, in
particular, having the same Kulkarni invariant and minimum genus; hence, for p odd
also having the same cyclic deficiency and reduced minimum genus.

To do so, we look at groups afforded by sequences r = (r1, . . . , re) and r̃ =
(r̃1, . . . , r̃ẽ), where 1 ≤ ẽ ≤ e, fulfilling the assumptions of Main Theorem 1, that
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is ri ≥ p − 1 for 1 ≤ i ≤ e − 1, and r̃i ≥ p − 1 for 1 ≤ i ≤ ẽ − 1, as well as re, r̃ẽ ≥
max{p − 2, 1}. We indicate the heuristics we are using.

Let δ ≥ −2e + e(e+1)
2 · (p − 1) whenever p is odd, and δ ≥ e(e−1)

2 for p = 2, in
each case the lower bound being the cyclic deficiency associated with the smallest
admissible sequence (p − 1, . . . , p − 1, max{p − 2, 1}); note that smaller values of δ are
not achieved at all. We now aim at varying r within the set of admissible sequences,
such that logp(|G|) = δ + e = ∑e

i=1 iri is kept fixed, but

2μe + 1 = −pe +
e∑

i=1

(pe − pe−i) · ri = −pe +
e∑

i=1

pe − pe−i

i
· iri

is maximised and minimised, respectively.
To this end, we observe that the arithmetic mean of the first i entries of the

sequence (pe−1, . . . , p, 1) is given as 1
i · ∑e−1

j=e−i pj = 1
i · pe−pe−i

p−1 , for 1 ≤ i ≤ e; hence,

the sequence ( pe−pe−1

1 ,
pe−pe−2

2 , . . . ,
pe−1

e ) is strictly decreasing. Thus, 2μe + 1 becomes
largest (respectively smallest) by choosing the last (respectively first) e − 1 entries of
r as small as possible, and adjusting the first (respectively last) entry such that r has
cyclic deficiency δ associated with it.

We now distinguish the cases p odd and p = 2.

7.3. Counterexamples with varying exponent for p odd. We keep the setting of
Section 7.2, and let p be odd.

Then, maximizing yields 2μe + 1 ≤ 2μe(a, p − 1, . . . , p − 1, p − 2) + 1, where

a := δ + 2e − (e + 2)(e − 1)
2

· (p − 1).

Note that by the choice of δ, we conclude that a ≥ p − 1; hence, the right-hand side of
the above inequality is achieved. By a straightforward computation, we get

2μe + 1 ≤
(
δ + (e−1)(e+6)

2 − e(e−1)(p−1)
2

)
· pe

−
(
δ + e(e+5)

2

)
· pe−1 + 2

.

Similarly, minimizing yields 2μe + 1 ≥ 2μe(p − 1, p − 1, . . . , p − 1, b) + 1, where

b := δ

e
− e − 1

2
· (p − 1) + 1.

Note that here b in general is not integral, so that the right-hand side of the above
inequality might not be achieved. By a straightforward computation, we get

2μe + 1 ≥
(

δ

e
+ (e − 1)(p − 1)

2
− 1

)
· pe + (e + 1)(p − 1)

2
− δ

e
.

Hence, we have to ensure that the above upper bound for 2μẽ + 1, applied to some
1 ≤ ẽ < e, is at least as large as the lower bound for 2μe + 1.

Viewing the upper and lower bounds as linear functions in δ, in order to have
an unbounded range of candidates δ to check, the slope of the upper bound function

406

https://doi.org/10.1017/S0017089518000265 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089518000265


STRUCTURED DESCRIPTION OF THE GENUS SPECTRUM

should exceed the slope of the lower bound function. This yields

(p − 1)pẽ−1 ≥ pe − 1
e

;

in other words

e ≥
e∑

i=1

p(e−i)−(ẽ−1) =
e−ẽ∑
i=0

pi +
ẽ−1∑
i=1

p−i = pe−ẽ+1 − 1
p − 1

+
ẽ−1∑
i=1

p−i,

implying

e ≥ pe−ẽ+1 − 1
p − 1

+ 1.

Thus, we are led to consider the case ẽ = e − 1. Then, the smallest possible choices,
so that the upper bound function actually is at least as large as the lower bound
function, are e := p + 2 and ẽ := p + 1. This leads to the following specific examples,
which actually have been found by running an explicit search for odd p ≤ 11, using the
computer algebra system GAP [3], and observing the pattern arising:

Let

r := (p − 1, . . . , p − 1, p, p3 + p2 − 2),

thus having p consecutive entries p − 1, and for p ≥ 5, let

r̃ := (p4 + 3p3 + 2p2 − p − 1, p − 1, . . . , p − 1, p, p, p − 1, p − 2),

thus having p − 4 consecutive entries p − 1, while for p = 3, let

r̃ := (p4 + 3p3 + 2p2 − p, p, p − 1, p − 2)|p=3 = (177, 3, 2, 1);

a few explicit cases are given in Table 1.
Then, by a straightforward computation, we indeed have

δ = δ̃ = p4 + 7
2

p3 + 3p2 − 5
2

p − 6,

and

μe(r) = μẽ(r̃) = 1
2

· (
(p3 + 2p2 − 4) · pp+2 − p3 − p2 + 1

)
.

Thus, r and r̃ give rise to groups G and G̃, respectively, by Corollary 1 having the same
spectrum, but having distinct exponents pp+2 and pp+1, respectively.

7.4. Counterexamples with varying exponent for p = 2. We keep the setting of
Section 7.2, and let p = 2. Since our approach involves sequences r, such that re ≥ 2,
for r̃ we distinguish the cases r̃ẽ ≥ 2 and r̃ẽ = 1:

(i) Let first r̃ẽ ≥ 2. Then, by Corollary 1, the groups G and G̃ associated with
these sequences have the same spectrum if and only if they have the same cyclic

407

https://doi.org/10.1017/S0017089518000265 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089518000265
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Table 1. Counterexamples with varying exponent for p odd

p r r̃

3 (2, 2, 2, 3, 34) (177, 3, 2, 1)
5 (4, 4, 4, 4, 4, 5, 148) (1044, 4, 5, 5, 4, 3)
7 (6, 6, 6, 6, 6, 6, 6, 7, 390) (3520, 6, 6, 6, 7, 7, 6, 5)

11 (10, . . . , 10, 11, 1450) (18864, 10, . . . , 10, 11, 11, 10, 9)
13 (12, . . . , 12, 13, 2364) (35476, 12, . . . , 12, 13, 13, 12, 11)
17 (16, . . . , 16, 17, 5200) (98820, 16, . . . , 16, 17, 17, 16, 15)

p e δ μe

3 5 189 4964
5 7 1119 6679613
7 9 3725 8817262934

11 13 19629 27083067676913144
13 15 36719 64775747609331851801
17 19 101535 655895227302212659718161655

deficiency and reduced minimum genus. Thus, a similar analysis, as in Section
7.3, yields 2μe + 1 ≤ 2μe(a, 1, . . . , 1) + 1, where a := δ − (e−2)(e+1)

2 ; hence, we get

2μe + 1 ≤
(

δ − (e − 2)(e − 3)
2

− 1
)

· 2e−1 + 1.

Similarly, we get 2μe + 1 ≥ 2μe(1, . . . , 1, b) + 1, where b := δ
e − e−3

2 , yielding

2μe + 1 ≥
(

δ

e
+ e − 3

2

)
· 2e + e + 1

2
− δ

e
.

Again comparing slopes with respect to δ of the upper and lower bound functions
yields 2ẽ−1 ≥ 2e−1

e , which is the same formula, as in section 7.3, specialised to
p = 2. Hence, we obtain the condition e ≥ 2e−ẽ+1. Hence we are led to consider
the case ẽ = e − 1, where the smallest possible choices turn out to be e := 4 and
ẽ = 3:
An explicit search using GAP yields, as smallest cases with respect to δ,

r := (1, 1, 1, 18) and r̃ := (69, 1, 2).

Then, we get

δ = δ̃ = 74 and μe(r) = μẽ(r̃) = 287
2

.

Thus, r and r̃ give rise to groups G and G̃, respectively, by Corollary 1 having
the same spectrum, and both fulfilling the ‘e′ = e’ property, but having distinct
exponents 16 and 8, respectively.

(ii) Let now r̃ẽ = 1. Then, by Corollary 1, the groups G and G̃ associated with the
sequences r and r̃ have the same spectrum if and only if for the associated cyclic
deficiency and reduced minimum genus, we have

δ̃ = δ − 1 and μẽ(r̃) = 2μe(r).
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Considering again the slopes with respect to δ of the upper and lower bound
functions, from 2μẽ(r̃) + 1 = 4μe(r) + 1 = 2 · (2μe(r) + 1) − 1, we get 2ẽ−1 ≥ 2 ·
2e−1

e , implying e ≥ 2e−ẽ+2, thus leading us to consider the case ẽ = e − 1, where
the smallest possible choices turn out to be e := 8 and ẽ = 7:
An explicit search using GAP yields, as smallest cases with respect to δ,

r := (1, 1, 1, 1, 1, 1, 1, 1025) and r̃ := (8199, 1, 1, 1, 1, 1, 1).

Then, we get

δ = 8220 = δ̃ + 1 and μe(r) = 131328 = 1
2

· μẽ(r̃).

Thus, r and r̃ give rise to groups G and G̃, respectively, by Corollary 1 having the
same spectrum, precisely one of them fulfilling the ‘e′ = e’ property, and having
distinct exponents 256 and 128, respectively.

7.5. Counterexamples with fixed exponent again. We keep the setting of Section
7.4(ii), in order to remark that the above approach can also be used to find
counterexamples fulfilling ẽ = e:

Actually, by Propositions 7 and 8, there cannot be counterexamples for 1 ≤ ẽ =
e ≤ 2, except the groups {�2, �2

2}. Indeed, the latter is a specific counterexample, for
δ = 1, but our approach aims at finding 1 ≤ ẽ ≤ e allowing for an infinite range of
candidates δ. Moreover, it turns out that for ẽ = e = 3 and any δ ≥ 0 the upper bound
for 2μe + 1 is smaller than the lower bound for 2 · (2μe + 1) − 1, excluding this case.
Hence, we are led to consider the case e := 4:

An explicit search using GAP yields, as smallest cases with respect to δ,

r := (1, 1, 1, 21) and r̃ := (80, 1, 1, 1).

Then, we get

δ = 86 = δ̃ + 1 and μe(r) = 166 = 1
2

· μẽ(r̃).

Thus, r and r̃ give rise to groups G and G̃, respectively, by Corollary 1 having the same
spectrum, precisely one of them fulfilling the ‘e′ = e’ property, and having the same
exponent 16.

8. Examples: Small rank. In the remaining two sections, in order to show that
the method developed in Section 5 actually is efficient to find the minimum reduced
genus, and in suitable cases even all of the reduced genus spectrum, we explicitly work
out some ‘small’ examples. Moreover, we show that Talu’s conjecture (including the
case p = 2) holds within the various classes of Abelian p-groups considered.

In this section, now, we deal with the Abelian p-groups of minimum genus at most
1, with those of rank at most 2, for which we are particularly interested in finding the
smallest positive reduced genus, and with a few explicit Abelian 2-groups and 3-groups,
whose genus spectrum we determine completely.
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Table 2. Non-positive reduced minimum genus

G μ0 p-datum

s1 = se = 2 �pe 0 (0, . . . , 0; 1)

s1 = se = 3 �2
pe 0 (0, . . . , 0; 1)

s1 = 3 > se = 2 �pe′ ⊕ �pe 0 (0, . . . , 0; 1)

G μe p-datum

s1 = se = 2 �pe −1 (0, . . . , 0, 2; 0)

p = 3, e = 1, s1 = 3 �2
3 0 (3; 0)

p = 2, e = 1, s1 = 3 �2
2 − 1

2 (3; 0)

p = 2, e = 1, s1 = 4 �3
2 0 (4; 0)

p = 2, e = 2, s1 = 3 > s2 = 2 �2 ⊕ �4 0 (1, 2; 0)

THEOREM 7. The non-trivial Abelian p-groups G such that μ(G) ∈ {0, 1} are given
as follows:

(a) We have μ(G) = 0, that is μ0(G) ∈ {−1,− 1
2 }, if and only if

G ∼= �pe or G ∼= �2
2.

(b) We have μ(G) = 1, that is μ0(G) = 0, if and only if

G ∼= �pe′ ⊕ �pe for e′ < e, or G ∼= �2
pe for pe �= 2, or G ∼= �3

2.

Proof. We have μi ≤ 0, for i ∈ I(G), if and only if

p − 1
2

· ℘(s1, . . . , si) ≤ pi − � si+1

2
�.

From s1 ≥ · · · ≥ si ≥ 2 · � si+1
2 � + 2, we get

(� si+1

2
� + 1) · (pi − 1) ≤ p − 1

2
· ℘(s1, . . . , si),

hence assuming μi ≤ 0 yields

(� si+1

2
� + 1) · (pi − 1) ≤ pi − � si+1

2
�,

that is � si+1
2 � · pi ≤ 1, a contradiction for 1 ≤ i ≤ e − 1.

For i = 0, we get μ0 ≤ 0 if and only if � s1
2 � ≤ 1, or equivalently 2 ≤ s1 ≤ 3, yielding

the cases as indicated in the first part of Table 2, where 1 ≤ e′ < e.
For i = e, we get μe ≤ 0 if and only if p−1

2 · ℘(s1, . . . , se) ≤ pe; hence, since s1 ≥
· · · ≥ se ≥ 2 implies pe − 1 = p−1

2 · ℘(2, . . . , 2) ≤ p−1
2 · ℘(s1, . . . , se), we get the cases

indicated in the second part of Table 2. �
Note that the explicit cases for p ≤ 3 are precisely the non-cyclic Abelian groups

of order at most 9, which are treated as exceptional cases in [8, Theorem 4].
This compares to the well-known description of finite group actions on compact

Riemann surfaces of genus g ≤ 1, see [11, Appendix] or [2, Section 6.7], as follows:
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The cases of μe < 0 are precisely the Abelian p-groups amongst the groups with
signature of positive Euler characteristic, and belong to branched self-coverings of
the Riemann sphere. The cases of μ0 = 0 and μe = 0 are precisely the Abelian p-
groups being smooth epimorphic images of the groups with finite signature of zero
Euler characteristic, belonging to unramified coverings of surfaces of genus 1, and to
branched coverings of the Riemann sphere by surfaces of genus 1, respectively.

The groups occurring in Theorem 7 encompass all non-trivial Abelian p-groups
of rank at most 2. These we next consider in more detail, and determine their smallest
genus μ+(G) ≥ 2, or equivalently their smallest reduced genus μ+

0 (G) > 0.

THEOREM 8. Let G ∼= �pe be a non-trivial cyclic p-group, for some e ≥ 1. If pe �=
2, 3, 4, then the smallest genus μ+(G) ≥ 2 is given as

μ+(G) = 1
2

· pe−1 · (p − 1),

while for pe ∈ {2, 3, 4} we have μ+(G) = 2.

Proof. Note that μ+(G) = μ+
0 (G) + 1, and (s1, . . . , se) = (2, . . . , 2). We have

A0 = {(2a, . . . , 2a) : a ≥ 1},
and hence γ (2a, . . . , 2a) = (a − 1) · pe yields min γ (A0) = μ0 = 0 and

min (γ (A0) \ {0}) = pe.

For 1 ≤ i ≤ e − 1, using the notation of Section 5.4, we have i′ = i′′ = 0 and εi = 2;
thus, we have μi = 0 and

min γ (Ai) = pe − pe−i ≥ pe − pe−1 = min γ (A1).

Moreover, for p = 2, we have e′ = 0 and min γ (A′
i) = min γ (Ai). Now let i = e:

(i) Let first p be odd. Then, we have

Ae = {(a1, . . . , ae, 2a) : a1 ≥ · · · ≥ ae ≥ 2(a + 1)};
hence, comparing γ (a1, . . . , ae, 2a) = −pe + a + p−1

2 · ℘(a1, . . . , ae) with
γ (2, . . . , 2, 0) = min γ (Ae) = μe = −1 yields

min (γ (Ae) \ {−1}) = 1
2

· pe−1 · (p − 1) − 1 ≥ 0,

being attained precisely for (3, 2, . . . , 2, 0). We have pe−1 · (p − 1) = 2 if and only
if p = 3 and e = 1. Thus, if pe �= 3, then we have μ+

0 (G) = 1
2 · pe−1 · (p − 1) − 1.

The case pe = 3 is presented in Section 8.2) and Table 4.
(ii) Let, now, p = 2. We have

A′
e = {(a1, . . . , ae, 2a) : a1 ≥ · · · ≥ ae ≥ 2(a + 1), ae even}.

We assume that e ≥ 3. Comparing γ (a1, . . . , ae, 2a) = −2e + a + 1
2 ·

℘(a1, . . . , ae) with γ (2, . . . , 2, 0) = μe = −1, we get

min (γ (A′
e) \ {−1}) = 2e−2 − 1 > 0,
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being attained precisely for (3, 2, . . . , 2, 0). Hence, we conclude μ+
0 (G) = 2e−2 − 1.

The cases pe = 2, 4 are presented in Section 8.1 and Table 3. �
Hence, we recover the results in [4] and [6, Proposition 3.3]. Moreover, we conclude

that a cyclic p-group is uniquely determined by its smallest genus μ+(G) ≥ 2, with the
exception of the groups {�2, �4, �8}, which by Section 8.1 and Table 3, indeed have the
same spectrum. In particular, Talu’s conjecture (including the case p = 2) holds within
the class of cyclic p-groups.

THEOREM 9. Let G ∼= �pe′ ⊕ �pe be an Abelian p-group of rank 2, for 1 ≤ e′ ≤ e.

(a) If e′ < e and (pe′
, pe) �= (2, 4), then the smallest genus μ+(G) ≥ 2 is given as

μ+(G) =
(

1
2

· pe − 1
)

· (pe′ − 1),

while μ+(�2 ⊕ �4) = 3.
(b) If e′ = e, that is G ∼= �2

pe , and pe �= 2, 3, then μ+(G) is given as

μ+(G) = 1
2

· pe · (pe − 3) + 1,

while μ+(�2
2) = 2 and μ+(�2

3) = 4.

Proof. Note that μ+(G) = pe′ · μ+
0 (G) + 1, and

(s1, . . . , se′ , se′+1, . . . , se) = (3, . . . , 3, 2, . . . , 2).

We have

A0 = {(2a, . . . , 2a) : a ≥ 1},
and hence γ (2a, . . . , 2a) = (a − 1) · pe yields min γ (A0) = μ0 = 0 and

min (γ (A0) \ {0}) = pe.

Let 1 ≤ i ≤ e − 1. Using the notation of Section 5.4, for 1 ≤ i ≤ e′, we have

μi = −pe + pe−i ·
(

1 + 3
2

· (pi − 1)
)

= 1
2

· pe−i · (pi − 1);

hence, from i′ = 0 and εi = 1, we get

min γ (Ai) = μi + 1
2

· pe−i · (pi − 1) = pe−i · (pi − 1).

For e′ < i ≤ e − 1, we have

μi = −pe + pe−i ·
(

pi + 1
2

· pi−e′ · (pe′ − 1)
)

= 1
2

· pe−e′ · (pe′ − 1);

hence, from i′ = e′ and i′′ = 0, as well as εi = 2, we get

min γ (Ai) = μi + 1
2

· pe−e′ · (pe′ + 1) − pe−i = pe−i · (pi − 1).
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Thus, for all 1 ≤ i ≤ e − 1, we have

min γ (Ai) = pe − pe−i ≥ pe − pe−1 = min γ (A1).

Moreover, for p = 2 and e′ < i ≤ e − 1, we have min γ (A′
i) = min γ (Ai).

Hence, let i = e. We have

min γ (Ae) = μe = −1 + 1
2

· pe−e′ · (pe′ − 1),

where μe ≤ 0 if and only if pe−e′ · (pe′ − 1) ≤ 2, which holds if and only if e′ = 1 and
pe ∈ {2, 3, 4}. Hence, for pe > 4, or pe = 4 and e′ = e, we have μe > 0.

Assume that pe − pe−1 < μe = −1 + 1
2 · (pe − pe−e′

), then we have pe · (1 − 2
p +

1
pe′ ) < −2, implying that 1 − 2

p + 1
pe′ < 0, or equivalently 2

p − 1
pe′ > 1, a contradiction.

Thus, for 1 ≤ e′ < e and (pe′
, pe) �= (2, 4), we conclude that

μ+
0 (�pe′ ⊕ �pe ) = −1 + 1

2
· pe−e′ · (pe′ − 1),

and for pe ≥ 4, we have

μ+
0 (�2

pe ) = 1
2

· (pe − 3).

The cases (pe′
, pe) = (2, 4), (2, 2) are presented in Section 8.1 and Table 3, and the

case (pe′
, pe) = (3, 3) is presented in Section 8.2 and Table 4. �

Note that the cases with e ≤ 2 will reappear in Section 9. Moreover, this improves
the general bound given in [6, Proposition 3.4]; and for the cases of cyclic deficiency
δ = 1, where p is odd, we recover the relevant part of [9, Theorem 5.4] and [9, Corollary
5.5].

We conclude that an Abelian p-group of rank 2 is uniquely determined by its
smallest genus μ+(G) ≥ 2, with the exception of the groups {�2 ⊕ �4, �2 ⊕ �8, �2

4};
where by (8.1), Table 3, the groups �2 ⊕ �4 and �2 ⊕ �8 indeed have the same spectrum,
which differs from that of �2

4. In particular, Talu’s conjecture (including the case p = 2)
holds within the class of Abelian p-groups of rank 2.

8.1. Small 2-groups. We compute the reduced genus spectrum of the non-trivial
Abelian 2-groups of order at most 16. The results are collected in Table 3. We consider
the cases not covered by Corollary 1 in turn:

(i) Let G ∼= �4; hence, (e′, e) = (0, 2), that is (s1, s2) = (2, 2). We have

A′
2 = {(a1, a2, 2a) : a1 ≥ a2 ≥ 2(a + 1), a2 even}

and γ (a1, a2, 2a) = −4 + a + a1 + a2
2 . From γ (a1, 2, 0) = a1 − 3, for a1 ≥ 2, we

conclude that γ (A′
2) = {−1} ∪ �0, thus we get

sp0(�4) = {−1} ∪ �0 and sp(�4) = �0;

in particular, we recover a special case of [7, Corollary 6.3].

413

https://doi.org/10.1017/S0017089518000265 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089518000265
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(ii) Let G ∼= �8; hence, (e′, e) = (0, 3), that is (s1, s2, s3) = (2, 2, 2).
We have

A′
3 = {(a1, a2, a3, 2a) : a1 ≥ a2 ≥ a3 ≥ 2(a + 1), a3 even}

and γ (a1, a2, a3, 2a) = −8 + a + 2a1 + a2 + a2
2 . From γ (a1, 2, 2, 0) = 2a1 − 5 for

a1 ≥ 2, and γ (a1, 3, 2, 0) = 2a1 − 4 for a1 ≥ 3, we conclude that γ (A′
3) = {−1} ∪

�. Since, by Theorem 8, we have γ (A0) = 8�0, we conclude that

sp0(�8) = {−1} ∪ �0 and sp(�8) = �0;

in particular, we recover a special case of [7, Corollary 6.3].
(iii) Let G ∼= �16; hence, (e′, e) = (0, 4), that is (s1, s2, s3, s4) = (2, 2, 2, 2). We have

A′
4 = {(a1, a2, a3, a4, 2a) : a1 ≥ a2 ≥ a3 ≥ a4 ≥ 2(a + 1), a4 even}

and γ (a1, a2, a3, a4, 2a) = −16 + a + 4a1 + 2a2 + a3 + a4
2 . Writing m ∈ � as

m =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−15 + 4 · m+9
4 + 2 · 2 + 2, if m ≡ 3 (mod 4),

−15 + 4 · m+7
4 + 2 · 3 + 2, if m ≡ 1 (mod 4),

−15 + 4 · m+6
4 + 2 · 3 + 3, if m ≡ 2 (mod 4),

−15 + 4 · m+4
4 + 2 · 4 + 3, if m ≡ 0 (mod 4)

shows that any m ∈ ({−1} ∪ �0) \ {0, 1, 2, 4, 8} can be written as m = −16 +
4a1 + 2a2 + a3 + 2

2 for some a1 ≥ a2 ≥ a3 ≥ 2, while none of {0, 1, 2, 4, 8} is of
the form −16 + a + 4a1 + 2a2 + a3 + a4

2 for any (a1, a2, a3, a4, 2a) ∈ A′
4. Thus, we

have

γ (A′
4) = ({−1} ∪ �0) \ {0, 1, 2, 4, 8}.

Since, by Theorem 8, we have γ (A0) = 16�0, and min γ (A′
i) = min γ (Ai) =

16 − 24−i for 1 ≤ i ≤ 3, we conclude that

sp0(�16) = ({−1} ∪ �0) \ {1, 2, 4} and sp(�16) = �0 \ {2, 3, 5};
in particular, we recover a special case of [7, Corollary 6.3].

(iv) Let G ∼= �2 ⊕ �8; hence, (e′, e) = (1, 3), that is (s1, s2, s3) = (3, 2, 2). We have

A′
3 = {(a1, a2, a3, 2a) : a1 ≥ max{3, a2}, a2 ≥ a3 ≥ 2(a + 1), a3 even}

and γ (a1, a2, a3, 2a) = −8 + a + 2a1 + a2 + a3
2 . Writing m ∈ � as

m =
{

−7 + 2 · m+5
2 + 2, if m odd,

−7 + 2 · m+4
2 + 3, if m even

shows that m = −8 + 2a1 + a2 + 2
2 for some a1 ≥ a2 ≥ 2 such that a1 ≥ 3. Thus,

we have γ (A′
3) = �. Since, by Theorem 9, we have γ (A0) = 8�0, and min γ (Ai) =

8 − 23−i for 1 ≤ i ≤ 2, we conclude that

sp0(�2 ⊕ �8) = �0 and sp(�2 ⊕ �8) = 1 + 2�0.

414

https://doi.org/10.1017/S0017089518000265 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089518000265


STRUCTURED DESCRIPTION OF THE GENUS SPECTRUM

Table 3. Small 2-groups

G sp0(G) sp(G)

�2 {−1} ∪ �0 �0

�4 {−1} ∪ �0 �0

�2
2 {− 1

2 } ∪ 1
2 �0 �0

�8 {−1} ∪ �0 �0

�2 ⊕ �4 �0 1 + 2�0

�3
2

1
2 �0 1 + 2�0

�16 ({−1} ∪ �0) \ {1, 2, 4} �0 \ {2, 3, 5}
�2 ⊕ �8 �0 1 + 2�0

�2
4 ( 1

2 �0) \ {1} (1 + 2�0) \ {5}
�2

2 ⊕ �4 � 5 + 4�0

�4
2

1
2 � 5 + 4�0

(v) Let G ∼= �2
4; hence, (e′, e) = (2, 2), that is (s1, s2) = (3, 3). We have

A2 = {(a1, a2, 2a) : a1 ≥ a2 ≥ max{3, 2(a + 1)}}

and γ (a1, a2, 2a) = 1
2 · (−8 + 2a + 2a1 + a2). Writing m ∈ � as

m =
{

−8 + 2 · m+5
2 + 3, if m odd,

−8 + 2 · m+4
2 + 4, if m even

shows that any m ∈ � \ {2} can be written as m = −8 + 2a1 + a2 for some a1 ≥
a2 ≥ 3, while 2 is not of the form −8 + 2a + 2a1 + a2 for any (a1, a2, 2a) ∈ A2.
Thus, we have

γ (A2) =
(

1
2

�

)
\ {1}.

Since, by Theorem 9, we have γ (A0) = 4�0 and min γ (A1) = 2, we conclude that

sp0(�2
4) =

(
1
2

�0

)
\ {1} and sp(�2

4) = (1 + 2�0) \ {5}.

8.2. Small 3-groups. We compute the reduced genus spectrum of the non-trivial
Abelian 3-groups of order at most 27. The results are presented in Table 4. We consider
the cases not covered by Corollary 1 in turn:

(i) Let G ∼= �9; hence, (e′, e) = (0, 2), that is (s1, s2) = (2, 2). We have

A2 = {(a1, a2, 2a) : a1 ≥ a2 ≥ 2(a + 1)}
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and γ (a1, a2, 2a) = −9 + a + 3a1 + a2. Writing m ∈ � as

m =

⎧⎪⎨
⎪⎩

−9 + 3 · m+7
3 + 2, if m ≡ 2 (mod 3),

−9 + 3 · m+6
3 + 3, if m ≡ 0 (mod 3),

−9 + 3 · m+5
3 + 4, if m ≡ 1 (mod 3)

shows that any m ∈ ({−1} ∪ �0) \ {0, 1, 4} can be written as m = −9 + 3a1 + a2

for some a1 ≥ a2 ≥ 2, while none of {0, 1, 4} is of the form −9 + a + 3a1 + a2 for
any (a1, a2, 2a) ∈ A2. Thus, we have

γ (A2) = ({−1} ∪ �0) \ {0, 1, 4}.

Since, by Theorem 8, we have γ (A0) = 9�0 and min γ (A1) = 6, we conclude that

sp0(�9) = ({−1} ∪ �0) \ {1, 4} and sp(�9) = �0 \ {2, 5};

in particular, we recover a special case of [7, Corollary 5.3].
(ii) Let G ∼= �3 ⊕ �9; hence, (e′, e) = (1, 2), that is (s1, s2) = (3, 2). We have

A2 = {(a1, a2, 2a) : a1 ≥ max{3, a2}, a2 ≥ 2(a + 1)}

and γ (a1, a2, 2a) = −9 + a + 3a1 + a2. Writing m ∈ � as

m =

⎧⎪⎨
⎪⎩

−9 + 3 · m+7
3 + 2, if m ≡ 2 (mod 3),

−9 + 3 · m+6
3 + 3, if m ≡ 0 (mod 3),

−9 + 3 · m+5
3 + 4, if m ≡ 1 (mod 3)

shows that any m ∈ �0 \ {0, 1, 4} can be written as m = −9 + 3a1 + a2 for some
a1 ≥ max{3, a2} and a2 ≥ 2, while none of {0, 1, 4} is of the form −9 + a + 3a1 +
a2 for any (a1, a2, 2a) ∈ A2. Thus, we have

γ (A2) = �0 \ {0, 1, 4}.

Since, by Theorem 9, we have γ (A0) = 9�0 and min γ (A1) = 6, we conclude that

sp0(�3 ⊕ �9) = �0 \ {1, 4} and sp(�3 ⊕ �9) = (1 + 3�0) \ {4, 13},

thus recovering [9, Corollary 5.5].
(iii) Let G ∼= �27; hence, (e′, e) = (0, 3), that is (s1, s2, s3) = (2, 2, 2). We have

A3 = {(a1, a2, a3, 2a) : a1 ≥ a2 ≥ a3 ≥ 2(a + 1)}
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and γ (a1, a2, a3, 2a) = −27 + a + 9a1 + 3a2 + a3. Writing m ∈ � as

m =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−27 + 9 · m+19
9 + 3 · 2 + 2, if m ≡ 8 (mod 9),

−27 + 9 · m+16
9 + 3 · 3 + 2, if m ≡ 2 (mod 9),

−27 + 9 · m+15
9 + 3 · 3 + 3, if m ≡ 3 (mod 9),

−27 + 9 · m+13
9 + 3 · 4 + 2, if m ≡ 5 (mod 9),

−27 + 9 · m+12
9 + 3 · 4 + 3, if m ≡ 6 (mod 9),

−27 + 9 · m+11
9 + 3 · 4 + 4, if m ≡ 7 (mod 9),

−27 + 9 · m+9
9 + 3 · 5 + 3, if m ≡ 0 (mod 9),

−27 + 9 · m+8
9 + 3 · 5 + 4, if m ≡ 1 (mod 9),

−27 + 9 · m+5
9 + 3 · 6 + 4, if m ≡ 4 (mod 9)

shows that any m ∈ ({−1} ∪ �0) \ S ′, where

S ′ := {0, 1, 2, 3, 4, 5, 6, 7, 9, 10, 13, 14, 15, 16, 18, 19, 22, 27, 28, 31, 40}

can be written as m = −27 + 9a1 + 3a2 + a3 for some a1 ≥ a2 ≥ a3 ≥ 2.
Hence, it remains to check which of the elements of the finite set S ′ are contained
in

⋃3
i=0 γ (Ai), where A3 and γ (a1, a2, a3, 2a) are as given above, and

A2 = {(a1, a2, 2a, 2a) : a1 ≥ a2 ≥ 2(a + 1) ≥ 4},
A1 = {(a1, 2a, 2a, 2a) : a1 ≥ 2(a + 1) ≥ 4},
A0 = {(2a, 2a, 2a, 2a) : a ≥ 1},

and

γ (a1, a2, 2a, 2a) = −27 + 3a + 9a1 + 3a2,

γ (a1, 2a, 2a, 2a) = −27 + 9a + 9a1,

γ (2a, 2a, 2a, 2a) = −27 + 27a.

Since all integers a1, a2, a3, a occurring are non-negative and bounded above
by � 40+27

9 � = 7, this amounts to a finite number of checks, which are
straightforwardly done using GAP. It turns out that S ′ ∩ γ (A3) = ∅ = S ′ ∩
γ (A2), while S ′ ∩ γ (A1) = {18, 27} and S ′ ∩ γ (A0) = {0, 27}. Thus, we conclude
that sp0(�27) = ({−1} ∪ �0) \ S and sp(�27) = {g0 + 1 ∈ �; g0 ∈ sp0(�27)}, where

S := S ′ \ {0, 18, 27} = {1, 2, 3, 4, 5, 6, 7, 9, 10, 13, 14, 15, 16, 19, 22, 28, 31, 40};

in particular, we recover a special case of [7, Corollary 5.3].

9. Examples: Small exponents. In this section, we consider Abelian p-groups of
exponent at most p2. In particular, we ask ourselves whether their reduced minimum
genus has a ‘generic’ description in terms of the defining invariants of the group in
question.
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Table 4. Small 3-groups

G sp0(G) sp(G)

�3 {−1} ∪ �0 �0

�9 ({−1} ∪ �0) \ {1, 4} �0 \ {2, 5}
�2

3 �0 1 + 3�0

�27 ({−1} ∪ �0) \ S �0 \ {m + 1 : m ∈ S}
�3 ⊕ �9 �0 \ {1, 4} (1 + 3�0) \ {4, 13}
�3

3 � 10 + 9�0

S = {1, 2, 3, 4, 5, 6, 7, 9, 10, 13, 14, 15, 16, 19, 22, 28, 31, 40}

THEOREM 10. Let G ∼= �r
p be a non-trivial elementary Abelian p-group, and let

s := r + 1. Then, the reduced minimum genus μ0(G) is given as

μ0(G) =
{

p
2 · (s − 3), if s odd and s ≤ p,
p
2 (s − 2) − s

2 , if s even or s ≥ p.

Proof. We have e = 1 and I(G) = {0, 1}, where Theorem 5 says that 0 ∈ I(G) can
be ignored whenever s ≥ 2 is even. Still, by Section 5.4, we have

min γ (A0) = μ0 =
{

ps
2 − p, if s even,
ps
2 − 3p

2 , if s odd,

and

min γ (A1) = μ1 = ps
2

− s
2

− p.

Thus, we have μ0 < μ1 if and only if s is odd and s < p, with equality if and only if
s = p is odd. �

In particular, for p odd, we thus recover, and at the same time correct [9, Section
7, Remark], where μ0(G) is erroneously stated for s < p.

We call the cases where s is odd such that s < p the ‘exceptional’ ones, and the
remaining the ‘generic’ ones; then, there are only finitely many ‘exceptional’ cases,
which do not occur at all for p = 2. In particular, as part of the ‘generic’ region we
have μ0(G) = μ1 for s ≥ max{p − 1, 2}, in accordance with Main Theorem 1.

PROPOSITION 7. We keep the notation of Theorem 10. Then, G is uniquely determined
by its minimum genus μ(G), with the exception of the groups {�2, �2

2}.
Proof. We distinguish the cases p odd and p = 2:

(i) For p odd, viewing μ0 and μ1 as linear functions in s, with positive slope p
2

and p−1
2 , respectively, and since μ0(s + 1) − μ1(s) = s

2 > 0, for 2 ≤ s < p even, we
conclude that μ0(G) is strictly increasing with s, and thus μ(G) = 1 + ps−2 · μ0(G)
is as well. A few values are given in the first part of Table 5, where the ‘exceptional’
cases are given in bold face.
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Table 5. Elementary Abelian p-groups

s 2 3 4 5 . . . p − 3 p − 2 p − 1 p p + 1

μ0(G) −1 0 p − 2 p . . .
p(p−6)+3

2
p(p−5)

2
p(p−4)+1

2
p(p−3)

2
p(p−2)−1

2

s 2 3 4 5 6 7 8

μ0(G) −1 − 1
2 0 1

2 1 3
2 2

μ(G) 0 0 1 5 17 49 129

(ii) For p = 2, we have μ0(G) = μ1 = s
2 − 2 for all s ≥ 2; thus, μ0(G) is strictly

increasing with s, and hence μ(G) = 1 + 2s−2 · μ0(G) is as well for s ≥ 3. A few
values are given in the second part of Table 5. �

By Section 8.1 and Table 3, the exceptions mentioned indeed have the same
spectrum. In particular, Talu’s conjecture (including the case p = 2) holds within the
class of elementary Abelian p-groups.

THEOREM 11. Let G ∼= �r1
p ⊕ �

r2

p2 , where r1 ≥ 0 and r2 ≥ 1, be an Abelian p-group of
exponent p2, and let s := r1 + r2 + 1 and t := r2 + 1. Then, the reduced minimum genus
μ0(G) is given as

μ0(G) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

p2

2 · (s − 3), if
(
s odd and p(s − t) + t ≤ p2

)
,

p2

2 · (s − 2) − p
2 · (s − t + 1), if

(
s even or s − t ≥ p − 1

)
and

(
t odd and t ≤ p

)
,

p2

2 · (s − 2) − p
2 · (s − t) − t

2 , if
(
s even or p(s − t) + t ≥ p2

)
and

(
t even or t = s or t ≥ p

)
.

Proof. We have e = 2 and {0, 2} ⊆ I(G) ⊆ {0, 1, 2}. Moreover, we have s = r1 +
r2 + 1 = s1 and t = r2 + 1 = s2; hence, 1 ∈ I(G) if and only if s − t ≥ 2, or s − t = 1
and t is odd. Additionally, Theorem 5 says that 0 ∈ I(G) can be ignored whenever s is
even.

Still, in order to obtain a complete overview, by Section 5.4, we explicitly have

min γ (A0) = μ0 =
{

p2s
2 − p2, if s even,

p2s
2 − 3p2

2 , if s odd,

and

min γ (A1) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p2s
2 − p(s−t)

2 − p2, if t even, s − t ≥ 2,
p2s
2 − p(s−t)

2 − p
2 − p2, if t odd, s − t ≥ 2,

p2s
2 − p − p2

2 , if t even, s − t = 1,
p2s
2 − p − p2, if t odd, s − t = 1,

p2s
2 − p, if t even, s = t,

p2s
2 − p − p2

2 , if t odd, s = t,
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and

min γ (A2) = μ2 = p2s
2

− p(s − t)
2

− t
2

− p2.

Now, we compare the various minima:
0 vs. 2: We have μ0 < μ2 if and only if s is odd and p(s − t) + t < p2, with equality

if and only if s is odd and p(s − t) + t = p2.
1 vs. 2: We have (min γ (A1)) < μ2 if and only if t is odd and t < min{p, s}, with

equality if and only if t = p is odd and t < s.
0 vs. 1: We have μ0 < (min γ (A1)) if and only if we are in one of the following

cases: ⎧⎪⎨
⎪⎩

s = t even,

s odd, t even, s − t < p,

s odd, t odd, s − t < p − 1,

with equality if and only if s is odd, and s − t = p odd or s − t = p − 1 even.
In particular, we have equality μ0 = (min γ (A1)) = μ2 throughout if and only if

t = p odd and s = 2p − 1.
Thus, there are three cases, in which μ0(G) coincides with either of μ0, μ1 and μ2,

where the intersection of these cases is described by equating the associated μi:

(i) Let s be odd such that p(s − t) + t ≤ p2, in particular, implying s − t < p. Then,
we have μ0 ≤ μ2 and μ0 ≤ (min γ (A1)), hence we get μ0(G) = μ0.

(ii) Let t be odd such that t ≤ p, and let s be even or s − t ≥ p − 1. Then, we have
(min γ (A1)) ≤ μ2 and (min γ (A1)) ≤ μ0, hence we get

μ0(G) = μ1 = p2

2
· (s − 2) − p

2
· (s − t + 1).

(iii) Let s be even or p(s − t) + t ≥ p2, and let t be even or t = s or t ≥ p. Then, we
have μ2 ≤ μ0 and μ2 ≤ (min γ (A1)), hence we get μ0(G) = μ2. �

Then, case (i) consists of finitely many pairs (s, t), while in case (ii) s is unbounded,
but t is still bounded. Hence, we again call these the ‘exceptional’ cases, as opposed
to the ‘generic’ case (iii), where both s and t are unbounded. In particular, as part of
the ‘generic’ region, we have μ0(G) = μ2 for t ≥ max{p − 1, 2} and s − t ≥ p − 1, in
accordance with Main Theorem 1.

In particular, for p = 2, case (i) consists of the pairs (s, t) = (3, 3) and (s, t) = (3, 2),
that is G ∼= �2

4 and G ∼= �2 ⊕ �4, respectively, case (ii) does not occur at all, and all
pairs except (s, t) = (3, 3) belong to case (iii).

To further illustrate the idea of distinguishing between ‘generic’ and ‘exceptional’
cases, the various cases for p = 5 and 2 ≤ t ≤ s ≤ 27 are presented in Table 6: The Cases
(i), (ii) and (iii) are depicted by ‘∗’, ‘•’ and ‘·’, respectively, the intersections ‘i)∩iii)’,
‘ii)∩iii)’ and ‘i)∩ii)’ are indicated by ‘×’, ‘◦’ and ‘�’, respectively, and ‘i)∩ii)∩iii)’ is
denoted by ‘⊗’. In particular, ‘i)∩ii)’ consists of (s, t) ∈ {(7, 3), (9, 5)}, and ‘i)∩ii)∩iii)’
consists of (s, t) = (9, 5).

The closed interior of the cone emanating from (s, t) = (8, 4) indicates the realm
of applicability of Main Theorem 1; actually, this turns out to be the largest cone
being contained in the ‘generic’ region, saying that in a certain sense this result is
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Table 6. ‘Generic’ and ‘exceptional’ cases for p = 5

25

s

t

1 5 10 15 20

best possible, at least for the cases considered here. Moreover, within this cone, the
‘generic’ case (iii) refers to the case j = 2 in the notation of Main Theorem 1, while the
‘exceptional’ intersection ‘ii)∩iii)’ refers to j ≤ 1, that is the pairs (s, 5) such that s ≥ 9,
and finally the intersection ‘i)∩ii)∩iii)’ refers to j = 0, that is (s, t) = (9, 5).

PROPOSITION 8. We keep the notation of Theorem 11. Then, G is uniquely determined
by its Kulkarni invariant N = N(G) and its minimum genus μ(G), with the exception of
the groups {�2

4, �2 ⊕ �4}.
Proof. We distinguish the cases p odd and p = 2:

(i) Let first p be odd. The cyclic deficiency δ = δ(G) and the reduced minimum
genus μ0(G) of G are known from δ = logp(N) and μ0(G) = μ(G)−1

pδ . We have
δ = r1 + 2r2 − 2 = s + t − 4; thus, we may view μ0 in case of Theorem 11(i), μ1

in case of Theorem 11(ii), and μ2 in case of Theorem 11(iii) as linear functions in
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s, depending on parameter δ:

μ0 = p2

2
· s − 3p2

2
,

μ1 =
(

p2

2
− p

)
· s + p(δ + 3)

2
− p2,

μ2 = (p − 1)2

2
· s + (p − 1)(δ + 4)

2
− p2.

As these functions have positive slopes, they are strictly increasing; hence, we look
for coincidences across the cases (Theorem 11(i), (ii), (iii)):
(i) vs. (ii): Let, first, μ1(s, t) = μ0(s̃, t̃), where (s, t) belongs to case Theorem
11(ii), and (s̃, t̃) belongs to case Theorem 11(i). Then, we conclude
that s̃ = s − s−t+1

p + 1; hence, we have s − t = kp − 1 for some k ≥ 1.

From this, we get s = 1
2 · (δ + 3 + kp) and t = 1

2 · (δ + 5 − kp), implying
s̃ = s − k + 1 = 1

2 · (δ + 5 − 2k + kp) and t̃ = δ + 4 − s̃ = 1
2 · (δ + 3 + 2k − kp).

Thus, we get s̃ − t̃ = 1 + k(p − 2). Hence, s̃ − t̃ ≤ p − 1 yields k = 1, and thus
s̃ = s and t̃ = t. Note that in this case both s and t are odd such that t ≤ p and
s − t = p − 1, indeed yielding μ1(s, t) = μ0(s, t).

(i) vs. (iii): Let, next, μ2(s, t) = μ0(s̃, t̃), where (s, t) belongs to case Theorem
11(iii), and (s̃, t̃) belongs to case Theorem 11(i). Then, we conclude that s̃ =
s + (p−1)t−ps

p2 + 1; hence, we have t = kp for some k ≥ 1. Thus, we infer that p
divides k(p − 1) − s; hence, we get s = k(p − 1) + lp for some l ≥ 1. This yields
s̃ = (k + l)(p − 1) + 1 and t̃ = s − s̃ + t = kp + l − 1. Hence, we have p(s̃ − t̃) +
t̃ = l(p − 1)2 + 2p − 1 ≤ p2, implying l = 1; thus, s̃ = s = (k + 1)p − k and hence
t̃ = t. Note that in this case s is odd, where s − t = p − k and t = kp ≥ p, hence
p(s − t) + t = p2, indeed yielding μ2(s, t) = μ0(s, t).
(ii) vs. (iii): Let, finally, μ2(s, t) = μ1(s̃, t̃), where (s, t) belongs to case Theorem
11(iii), and (s̃, t̃) belongs to case Theorem 11(ii). Then, we conclude that (p − 1)s̃ +
t̃ − 1 = (p − 1)s + p−1

p · t; hence, we have t = kp for some k ≥ 1, and thus t̃ − 1 =
(p − 1)(s + k − s̃) ≥ p − 1. This yields s̃ = s + k − 1 and t̃ = p. Hence, we get
s + kp = s + t = δ + 4 = s̃ + t̃ = s + k − 1 + p, implying (k − 1)p = k − 1; thus,
k = 1, and hence s̃ = s and t̃ = t. Note that in this case t = p is odd, and s is even
or s ≥ 2p − 1, in particular, yielding μ2(s, t) = μ1(s, t).

(ii) Let now p = 2. We first consider case Theorem 11(iii), where, using s + t = δ − 4
again, we have

μ2 = s + t
2

− 4 = s
2

+ δ

2
− 2.

We distinguish the cases t = 2 and t > 2: If t = 2, then we have log2(N) = δ =
s − 2 = μ2 + 1; thus,

μ(G) = μ2 · 2δ + 1 = (log2(N) − 1) · N + 1,

while if t > 2, then we have log2(N) = δ − 1; thus,

μ(G) = μ2 · 2δ + 1 = (log2(N) + s − 3) · N + 1.
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Hence, we are able to decide in which of these cases we are, and to determine δ

and subsequently s, in the former case from N and in the latter case from N and
μ(G).
Finally, we consider the pair (3, 3), that is G ∼= �2

4, which is the only pair
not belonging to case Theorem 11(iii), but just to case Theorem 11(i): We
have μ0(�2

4) = μ0(3, 3) = 0; hence, its minimum genus equals μ(�2
4) = 1. For

pairs (s, t) belonging to case Theorem 11(iii), the statement μ(G) = 1 translates
into μ2(s, t) = 0, that is s + t

2 = 4, being equivalent to (s, t) = (3, 2), that is
G ∼= �2 ⊕ �4; note that (3, 2) is the other pair belonging to case Theorem
11(i). Moreover, for G ∼= �2

4, we have log2(N) = δ − 1 = 1, and for G ∼= �2 ⊕ �4,
we also have log2(N) = δ = 1. Thus, {�2

4, �2 ⊕ �4} are the only groups under
consideration, which cannot be distinguished by N and μ(G). �

By Section 8.1 and Table 3, the exceptions mentioned can be distinguished by their
spectrum. In particular, Talu’s conjecture (including the case p = 2) holds within the
class of Abelian p-groups of exponent p2; thus, for p odd, we recover [13, Theorem
3.8].
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