
J. Fluid Mech. (2019), vol. 869, pp. 313–340. c© Cambridge University Press 2019
This is an Open Access article, distributed under the terms of the Creative Commons Attribution
licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and
reproduction in any medium, provided the original work is properly cited.
doi:10.1017/jfm.2019.215

313

Retrogressive failure of a static granular layer on
an inclined plane

A. S. Russell1, C. G. Johnson1, A. N. Edwards1, S. Viroulet2, F. M. Rocha1

and J. M. N. T. Gray1,†
1School of Mathematics and Manchester Centre for Nonlinear Dynamics, University of Manchester,

Manchester M13 9PL, UK
2Institut de Mécanique des Fluides de Toulouse (IMFT) - Université de Toulouse, CNRS,

31400 Toulouse, France

(Received 23 November 2018; revised 4 March 2019; accepted 12 March 2019;
first published online 26 April 2019)

When a layer of static grains on a sufficiently steep slope is disturbed, an
upslope-propagating erosion wave, or retrogressive failure, may form that separates the
initially static material from a downslope region of flowing grains. This paper shows
that a relatively simple depth-averaged avalanche model with frictional hysteresis
is sufficient to capture a planar retrogressive failure that is independent of the
cross-slope coordinate. The hysteresis is modelled with a non-monotonic effective
basal friction law that has static, intermediate (velocity decreasing) and dynamic
(velocity increasing) regimes. Both experiments and time-dependent numerical
simulations show that steadily travelling retrogressive waves rapidly form in this
system and a travelling wave ansatz is therefore used to derive a one-dimensional
depth-averaged exact solution. The speed of the wave is determined by a critical
point in the ordinary differential equation for the thickness. The critical point lies in
the intermediate frictional regime, at the point where the friction exactly balances the
downslope component of gravity. The retrogressive wave is therefore a sensitive test
of the functional form of the friction law in this regime, where steady uniform flows
are unstable and so cannot be used to determine the friction law directly. Upper
and lower bounds for the existence of retrogressive waves in terms of the initial
layer depth and the slope inclination are found and shown to be in good agreement
with the experimentally determined phase diagram. For the friction law proposed by
Edwards et al. (J. Fluid. Mech., vol. 823, 2017, pp. 278–315, J. Fluid. Mech., 2019,
(submitted)) the magnitude of the wave speed is slightly under-predicted, but, for a
given initial layer thickness, the exact solution accurately predicts an increase in the
wave speed with higher inclinations. The model also captures the finite wave speed
at the onset of retrogressive failure observed in experiments.
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1. Introduction
Snow avalanches, debris flows, pyroclastic flows and submarine landslides often

occur on inclines covered by a static layer of erodible granular material. A small
disturbance to this layer, due either to human activity or natural processes such
as additional snowfall, rainfall infiltration or earthquakes, may destabilise a small
region and cause it to flow downslope. The presence of erodible material downslope
of the disturbance allows the flow to grow rapidly in size as it erodes additional
material (Mangeney et al. 2010; Iverson & Ouyang 2015; Köhler et al. 2016).
Sometimes static material is also eroded upslope of the disturbance through an
upward-propagating wave of material failure. This ‘retrogressive failure’ (Varnes 1978)
further increases the volume of the flow and is commonly observed in landslides as
well as sand avalanches on the slip face of dunes. Submarine retrogressive failures
are important in dredging processes, occurring when sediment is removed from
the bottom or middle of a slope (Van den Berg, Van Gelder & Mastbergen 2002;
Eke, Viparelli & Parker 2011; Mastbergen et al. 2016), but also occur naturally
at continental margins and can generate substantial tsunamis (Lovholt et al. 2015;
Glimsdal et al. 2016).

Retrogressive failures are also observed in small-scale dry granular flow experiments
(e.g. Daerr & Douady 1999; Daerr 2001, and those performed in this paper). Figure 1
shows an example of an approximately planar retrogressive wavefront, generated by
a straight perturbation across the full width of the inclined plane (figure 2). The
retrogressive wave separates a thicker upslope layer of static grains from a thinner
downstream layer of flowing grains. In the experiments of Daerr & Douady (1999) and
Daerr (2001) the failure was initiated at a single point and so generated a non-planar
retrogressive failure, instead. In their experiments a static layer of thickness hstop(ζ )
was created by pouring 180–300 µm diameter glass beads down a plane covered with
velvet cloth and inclined at an angle ζ to the horizontal. Due to frictional hysteresis,
the layer remained static until the inclination angle was increased, up to an angle
ζstart(h)> ζ , at which the layer spontaneously started flowing. Inclining the static layer
to an angle only slightly larger than ζ and then perturbing it, resulted in an avalanche
that propagated only downhill from the point of disturbance, whereas perturbing
a layer that had been inclined further caused an additional upward retrogressive
failure, propagating at a constant speed. Daerr (2001) showed that, at a certain
inclination angle, the behaviour immediately switched from a downslope avalanche to
a retrogressive failure in which the wave propagated upslope at a non-zero speed, i.e.
there is a finite wave speed at the onset of retrogressive failure. The same qualitative
behaviour also occurs in the retrogressive failures studied in this paper, but the fact
that they are planar makes them more amenable to analysis.

Daerr & Douady (1999) and Daerr (2001) termed the retrogressive failures
‘uphill-propagating avalanches’. These were investigated theoretically by Bouchaud
& Cates (1998) using the Bouchaud, Cates, Ravi Prakash and Edwards (BCRE)
model (Bouchaud et al. 1994) in which a granular material is separated into two
phases; rolling and static. Although this was a purely kinematic model, it was
able to capture the transition between non-retrogressive and retrogressive failure.
However, with the BCRE model this transition occurred smoothly, i.e. there was
a smooth variation of the retrogressive wave speed starting from zero when the
wave does not move upslope, which contradicts the experimental results of Daerr
(2001). Aranson & Tsimring (2001, 2002) captured the retrogressive failures using a
partially fluidised granular flow model with an order parameter equation to represent
the transition between static and flowing grains. Using this model they found that
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FIGURE 1. A composite of a sketch and a photograph of a planar retrogressive failure
(approximately uniform in the cross-slope direction) in a small-scale laboratory experiment
on a plane inclined at ζ to the horizontal. Static glass beads in a layer of thickness
h0 ∈ [hstop(ζ ), hstart(ζ )] (upper half of the photograph) are separated from a thinner
flow of grains (lower half, blurred by the exposure time of 1/20 s), of thickness h∞
and depth-averaged downslope velocity ū∞, by the front which propagates upslope with
constant speed uw < 0 and progressively erodes the static layer. The transparent glass
beads (125–160 µm diameter, appearing white) are seeded with red tracer particles
(300–400 µm diameter) to aid visualisation. The time-dependent evolution of the wave can
be seen in supplementary movies 1 and 2, which are available in the online supplementary
material (https://doi.org/10.1017/jfm.2019.215).

the uphill-propagating front was a travelling wave solution with the onset occurring
through a discontinuity in the speed of the retrogressive waves, i.e. the wave speed
immediately jumped up from zero (for no upslope propagation) to a finite non-zero
value. Their theoretical prediction for the existence of uphill waves agreed with the
experimental data of Daerr & Douady (1999) and Daerr (2001), using one fitting
parameter. These models of retrogressive failure (Aranson & Tsimring 2001, 2002)
are, however, phenomenological in nature (Aradian, Raphaël & De Gennes 2002),
since the grain inertia is neglected and there is some uncertainty in the physics
underlying the order parameter and its governing equation.

In this paper, it is shown that the retrogressive wave speed, as well as the
jump in the wave speed at the non-retrogressive/retrogressive failure transition,
can be quantitatively predicted by using a depth-averaged avalanche model with
a non-monotonic effective basal friction law (Pouliquen & Forterre 2002; Edwards
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FIGURE 2. The experimental set-up consisting of a rough plane, inclined at an angle ζ to
the horizontal, which has a monolayer of spherical glass beads of diameter 750–1000 µm
stuck to the surface, to create no slip at the base. A hopper and a gate at the top of the
chute are used to create a deposit of thickness hstop by generating a steady uniform flow
and then closing the mass supply. The laser profilometer (Micro-Epsilon scanCONTROL
2700-100) is mounted normal to the inclined plane in order to measure the flow thickness.
A set of coordinates Oxyz is defined with the x-axis pointing downslope, the y-axis across
the slope and the z-axis along the upward pointing normal. A typical retrogressive wave
experiment is shown in movie 3 in the online supplementary material.

et al. 2017, 2019). The non-monotonic friction law encodes the hysteresis that leads
to hstop(ζ ) and hstart(ζ ) (the inverse function of ζstart(h)) and consists of (i) a dynamic
regime, which is a monotonically increasing function of the speed at moderate to
high Froude numbers (Pouliquen 1999a), (ii) a multi-valued static friction when the
Froude number is zero and (iii) a monotonically decreasing regime that interpolates
between the maximum static friction and the minimum dynamic friction at low
Froude numbers (Pouliquen & Forterre 2002). In addition, Edwards et al. (2017,
2019) showed that there was another important thickness h∗ ∈ (hstop, hstart), which
defines the transition between intermediate and dynamic regimes and is the minimum
observable steady uniform flow thickness.

Depth-integrated avalanche theories of this sort are widely used for modelling
shallow granular free-surface flows and are closely related to the shallow water,
or St Venant equations, of fluid mechanics. The first derivation for granular flows
was by Savage & Hutter (1989, 1991) assuming an incompressible flow with a
Mohr–Coulomb rheology and a constant Coulomb basal friction coefficient. This
yielded a shallow-water-like system of conservation laws with additional source
terms due to gravity, basal friction and topography gradients, as well as an ‘earth
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pressure’ coefficient multiplying the depth-integrated pressure, which took active and
passive values dependent on whether the flows were dilatational or compressional. In
this paper, as in many recent works, the earth pressure coefficient is assumed to be
unity (Gray, Wieland & Hutter 1999; Pouliquen 1999b; Gray, Tai & Noelle 2003).
The model has been generalised to two-dimensional flows over complex topography
(Gray et al. 1999; Wieland, Gray & Hutter 1999; Mangeney-Castelnau et al. 2003;
Pudasaini & Hutter 2003; Bouchut & Westdickenberg 2004; Luca et al. 2009) and
has been widely used in the snow avalanche community for hazard zone mapping
(Grigorian, Eglit & Iakimov 1967; Naaim et al. 2004; Sampl & Zwinger 2004;
Christen, Kowalski & Bartelt 2010; Fischer, Kowalski & Pudasaini 2012). Analogous
theories have been developed for debris flows (Iverson 1997; Iverson & Denlinger
2001; Denlinger & Iverson 2001; Johnson et al. 2012), pyroclastic flows (Pitman
et al. 2003; Mangeney et al. 2007; Doyle, Hogg & Mader 2011) and landslides (Kuo
et al. 2009; Mangeney et al. 2010).

The constant Coulomb basal friction of Savage & Hutter (1989) provides a good
description of dry granular flows over smooth surfaces. However, the basal friction
felt by flows over a rough surface, i.e. where the bed roughness approaches or exceeds
the mean particle diameter, is strongly dependent on both the flow thickness and the
speed (Pouliquen & Forterre 2002). Gray & Edwards (2014) showed that by formally
depth averaging the µ(I)-rheology for granular flows (GDR-MiDi 2004; Jop, Forterre
& Pouliquen 2006) and exploiting the shallowness of the system, the shallow-water-
like avalanche equations emerge naturally, at leading order in the aspect ratio, with
an effective basal friction corresponding to Pouliquen & Forterre’s (2002) dynamic
regime described above. However, since frictional hysteresis is key to the formation
of retrogressive failures, it is necessary to augment the model with the intermediate
and static regimes, at low and zero Froude numbers respectively (Pouliquen & Forterre
2002; Edwards et al. 2017, 2019).

The retrogressive failures are particularly sensitive to the intermediate (velocity-
decreasing) part of the friction law, which, in the absence of direct experimental
observations, has previously been described by a power-law interpolation between
the maximum static and minimum dynamic friction (Pouliquen & Forterre 2002).
Retrogressive failures are therefore not just of fundamental scientific interest, but also
provide an important test case for the friction law proposed by Edwards et al. (2017,
2019).

2. Experimental observations
The experimental set-up consists of a plane (1.65 m long by 0.58 m wide) that is

inclined at an angle ζ to the horizontal as shown in figure 2. The plane is roughened
with a monolayer of spherical glass beads of diameter 750–1000 µm (to ensure no
basal slip, Silbert et al. 2001; Goujon, Thomas & Dalloz-Dubrujeaud 2003; Jing et al.
2016), which are attached using double-sided sticky tape. To start an experiment, the
plane is inclined to an angle ζ0 and glass beads, of diameter 125–160 µm, are released
from a hopper at the top of the chute to form a steady uniform flow. As this flow
ceases, it forms a static layer of uniform thickness h0 = hstop(ζ0) at its trailing edge
(Edwards et al. 2019). The inclination of the chute is then carefully increased to an
angle ζ > ζ0. Provided that the new inclination angle is not too large, i.e. ζ < ζstart(h0),
frictional hysteresis keeps the grains static. The resulting layer is described as being
metastable (Daerr 2001) because it can exist in either a flowing or static state, where
the static state is stable to infinitesimal perturbations, but unstable to sufficiently large
finite perturbations.
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FIGURE 3. Overhead photographs showing a time sequence of the retrogressive failure
front. It spans the width of each image and separates the initially stationary layer of 125–
160 µm glass beads (in focus at the top of each picture) from the flowing material below
(blurred by the exposure time of 1/50 s). The retrogressive front propagates upslope with
speed |uw| = 11.7 cm s−1, and continues to do so until it reaches the top of the static
layer. The time-dependent evolution of the wave can be seen in movie 4 in the online
supplementary material.

The layer is destabilised by tapping it near the bottom with a ruler held horizontally
across the chute. After a rapid initial transient, the retrogressive failure propagates
upwards at a constant speed, and remains approximately straight and perpendicular
to the downslope direction as shown in figure 3 and supplementary movies 1–4. The
grains that have been eroded by this retrogressive failure form a steady uniform flow
of thickness h∞ < h0 downstream of the wavefront. The propagation speed of the
retrogressive front is determined by a high-speed camera (Teledyne DALSA Genie
HM1400), which takes overhead photographs at 200 frames per second. Figure 4
shows a typical space–time plot that is constructed by extracting the middle row of
pixels down the centre of the chute from each image and combining them into a
single plot with time t on the abscissa and downstream distance x on the ordinate.
Oblique illumination from the bottom of the chute makes the retrogressive front
clearly visible as a diagonal line. The gradient of this line is measured to obtain the
front propagation speed |uw|.

Measurements of the flow thickness using a laser profilometer (Micro-Epsilon
scanCONTROL 2700-100) are used to quantify the decrease in flow thickness h that
occurs across the retrogressive failure. For a typical experimental flow, illustrated in
figure 5(a), this decrease is ∼0.13 mm, which is approximately one grain diameter
and is similar to the measured roughness of the free-surface profile. An average of
many such thickness profiles in a frame moving upslope with the wave, at speed |uw|,
and plotted with respect to the frame coordinate ξ = x − uwt (figure 5b) provides a
clearer picture of the shape of the retrogressive wave. Upslope of the wave (ξ < 0)
the grains form a uniform thickness static layer. At the point of failure ξ = 0 the
surface gradient ∂h/∂ξ rapidly steepens and the flow transitions smoothly to a
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FIGURE 4. A space–time plot for ζ0 = 24◦, ζ = 27.5◦ and h0 = hstop(24◦) = 0.95 mm.
The horizontal straight lines indicate material that is static and the more speckled region
indicates flowing material. The interface between these two regions is the retrogressive
failure front, which propagates upslope at speed |uw| = 8.5 cm s−1. The steady uniform
flow downslope of the front causes faint diagonal lines whose gradient implies that the
surface velocity rapidly accelerates to us = 8.1 cm s−1.

thinner, uniform flowing layer downslope of the failure. The averaged experimental
data in figure 5(b) indicate that this transition occurs over a length scale of 6–7 mm,
although instantaneous measurements (figure 5a) suggest that the wave may be
slightly narrower (<5 mm). The exact retrogressive failure solutions that will be
constructed in § 5 have a thickness profile that is almost identical to the dataset
shown in figure 5(b).

3. Governing equations
3.1. Depth-averaged avalanche model

The retrogressive wave has a shallow aspect ratio (figure 5b) and is nearly uniform
in the cross-slope direction (figure 3), which motivates the use of a one-dimensional
depth-integrated avalanche model to describe the flow. The flow thickness h(x, t) and
depth-averaged downslope velocity ū(x, t) therefore satisfy the depth-integrated mass
and momentum equations

∂h
∂t
+
∂

∂x
(hū)= 0, (3.1)

∂

∂t
(hū)+

∂

∂x
(χhū2)+

∂

∂x

(
1
2

gh2 cos ζ
)
= ghS cos ζ , (3.2)

where x is the downslope coordinate, t is time, χ = u2/ū2 is the shape factor, ζ is the
chute inclination angle, S is the non-dimensional net acceleration and g is the constant
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FIGURE 5. Measurements of the flow thickness h during the retrogressive failure with an
initial layer thickness h0 = hstop(25◦) = 0.59 mm and current inclination angle ζ = 27.5◦.
(a) An instantaneous snapshot of the thickness profile as a function of downslope distance
x− x0, where the constant x0 is the position of the failure. The measured noise is of the
order of one grain diameter. (b) Average of 1160 such profiles acquired at 1 ms intervals
and plotted with respect to a coordinate ξ = x− uwt, which moves upstream at constant
speed |uw| = 6.9 cm s−1.

of gravitational acceleration. For deep flows on rough beds, a steady uniform flow
will develop into a Bagnold velocity profile (GDR-MiDi 2004; Gray & Edwards 2014)
and the shape factor χ = 5/4, while for thinner flows close to hstop weakly
exponential profiles develop (Kamrin & Henann 2015), which have a shape factor
of approximately 1.53 for the typical profiles observed in our experiments. Solutions
to this system are, however, quite insensitive to the value of the shape factor due to
the low value of Froude number (Saingier, Deboeuf & Lagrée 2016; Viroulet et al.
2017). Therefore it is assumed here that χ = 1, because it significantly simplifies
the characteristic structure of the equations (see e.g. Savage & Hutter 1989; Gray
et al. 1999; Pouliquen 1999b; Gray et al. 2003; Pouliquen & Forterre 2002; Gray
& Edwards 2014). The characteristic speeds of the hyperbolic system (3.1)–(3.2) are
then

c± = ū±
√

gh cos ζ , (3.3)

and the ratio of flow speed to the gravity wave speed defines the Froude number

Fr=
|ū|

√
gh cos ζ

. (3.4)

The non-dimensional net acceleration S in the source term on the right-hand side of
(3.2) is defined as the difference between the downslope component of gravity and
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the effective basal friction µ(h, Fr)

S= tan ζ −µ(h, Fr)(ū/|ū|), (3.5)

where the factor ū/|ū| ensures that the basal friction always opposes the direction
of motion. In this paper the friction always acts upslope irrespective of whether the
material is moving or static and hence ū/|ū|= 1. The non-dimensional net acceleration
S determines whether a constant thickness layer will accelerate (S > 0), decelerate
(S< 0) or move with constant speed (S= 0).

It is important to note that the depth-averaged viscous terms (Gray & Edwards 2014;
Baker, Barker & Gray 2016a), which are crucial for the formation of leveed channels
on non-erodible slopes (Rocha, Johnson & Gray 2019), can be neglected here because
the retrogressive failures are planar. It is, however, anticipated that viscous terms could
well be important for non-planar retrogressive waves, where cross-slope gradients in
the velocity will develop naturally, or, for the correct cutoff frequency and coarsening
dynamics of roll waves and erosion–deposition waves that may form downstream of
the failure front (Gray & Edwards 2014; Edwards & Gray 2015; Viroulet et al. 2018).

3.2. The non-monotonic effective basal friction law
Gray & Edwards (2014) showed that, to leading order in the aspect ratio, both the
inviscid avalanche equations (3.1)–(3.2) and the dynamic friction law of Pouliquen &
Forterre (2002) emerge naturally from depth averaging the µ(I)-rheology for granular
flows (GDR-MiDi 2004; Jop et al. 2006). In order to model coexisting regions of
static and flowing material it is necessary to augment the dynamic regime (Fr > β∗)
with the multi-valued static (Fr= 0) and intermediate (0<Fr<β∗) regimes (Pouliquen
& Forterre 2002; Edwards et al. 2017, 2019). For glass ballotini (which does not have
an offset Γ in the empirical flow rule) the non-monotonic friction law of Edwards
et al. (2019) reduces to

µ(h, Fr)=



µ1 +
µ2 −µ1

1+ hβ/
(
L Fr

) , Fr > β∗, (3.6)(
Fr
β∗

)κ (
µ1 +

µ2 −µ1

1+ hβ/(L β∗)
−µ3 −

µ2 −µ1

1+ h/L

)
+µ3 +

µ2 −µ1

1+ h/L
, 0< Fr<β∗,

(3.7)

min
(
µ3 +

µ2 −µ1

1+ h/L
,

∣∣∣∣tan ζ −
∂h
∂x

∣∣∣∣) , Fr= 0, (3.8)

where µi = tan ζi for i= 1, 2, 3 and the parameters are given in table 1. Importantly,
this friction law is identical to that of Pouliquen & Forterre (2002) when Fr > β∗,
and so is consistent with previous experimental measurements of steady uniform flows
(Pouliquen 1999a; Pouliquen & Forterre 2002).

The friction law (3.6)–(3.8) encodes information about the empirical flow rule
(Pouliquen 1999a; Pouliquen & Forterre 2002)

Fr= β
h

hstop(ζ )
, (3.9)
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ζ1 = 21.27◦, ζ2 = 33.89◦, ζ3 = 25.3◦, β = 0.143, β∗ = 0.19, L = 0.2351 mm, κ = 1.

TABLE 1. Parameters for the effective basal friction law (3.6)–(3.8) for 125–160 µm
diameter glass ballotini on a rough bed made of a monolayer of 750–1000 µm diameter
glass ballotini. The angles ζ1−3 and L are fitted from the experimentally measured hstop(ζ )

and hstart(ζ ) curves in figure 6, β is taken from Pouliquen (1999a) with a 1/
√

cos ζ
correction, while β∗ and κ are measured using the retrogressive failure experiments in this
paper.

and the hstop and hstart curves

hstop(ζ )=L

(
tan ζ2 − tan ζ1

tan ζ − tan ζ1
− 1
)
, ζ ∈ [ζ1, ζ2], (3.10)

hstart(ζ )=L

(
tan ζ2 − tan ζ1

tan ζ − tan ζ3
− 1
)
, ζ ∈ [ζ3, ζ4], (3.11)

where ζ4 = tan−1(µ2 −µ1 +µ3). Edwards et al. (2019) also introduced the minimum
observable steady uniform flow thickness h∗, which occurs at the transition between
the intermediate and dynamic regimes at Fr= β∗. In particular, if β∗ is constant then
the empirical flow rule (3.9) implies that h∗ is proportional to hstop (Edwards et al.
2019)

h∗(ζ )=
(
β∗

β

)
hstop(ζ ). (3.12)

In order to experimentally fit the hstop(ζ ) and hstart(ζ ) functions (3.10) and (3.11)
a steady uniform flow at an angle ζ0 is created, which leaves behind a deposit of
hstop(ζ0). This static layer is then inclined gently to an angle ζstart= h−1

start(hstop(ζ0))> ζ0,
where it spontaneously starts flowing. There is a large spread in the data for ζstart due
to the layer of grains becoming increasingly sensitive to infinitesimal perturbations as
it is inclined towards the angle at which it will spontaneously fail. The ζstart curve
is also sensitive to the packing of the grains, which induces some intrinsic variation
in the data (Balmforth & McElwaine 2018). This process is repeated for a range of
angles ζ0 to generate the data in figure 6 and hence determine the parameters ζ1, ζ2, ζ3
and L in table 1. In this paper, the value of β is essentially taken to be the same as
the value of 0.136 measured in experiments of Pouliquen (1999a) for glass ballotini.
However, due to Pouliquen’s (1999a) alternative definition of the Froude number Fr=
|ū|/
√

gh, compared to (3.4), a correction of 1/
√

cos ζ is made, with a typical value
of ζ in the range [22◦, 28◦] studied by Pouliquen (1999a), to give β = 0.143.

The formula for the intermediate regime (3.7) is a monotonically decreasing
function of the Froude number, which interpolates between the maximum static friction
µstart and the minimum dynamic friction at Fr = β∗ (Pouliquen & Forterre 2002;
Edwards et al. 2017, 2019). Edwards et al. (2017, 2019) suggested an interpolation
power κ = 1 in (3.7) to give static material in the metastable range of thicknesses
greater stability to small perturbations than in Pouliquen & Forterre’s (2002) original
formulation. Pouliquen & Forterre (2002) used a value of κ = 10−3 instead, which
implies that the hysteretic friction is only partially represented in typical machine
precision calculations (Edwards et al. 2019) and as a result, the metastable range
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FIGURE 6. Experimental data for the hstop(ζ ) and hstart(ζ ) curves (black and white
circles, respectively) and empirical fits (red and green lines, respectively) using equations
(3.10) and (3.11) and the parameters in table 1. The experiments are performed with
125–160 µm spherical glass ballotini on a monolayer of 750–1000 µm spherical glass
beads stuck to a wooden surface. The orange line shows the functional form of h∗(ζ )
given by (3.12).

of thicknesses [h∗, hstart] is much more sensitive to disturbances than is physically
realistic.

For the glass beads in our experiments, the slowest steady uniform flows
attainable are at h∗/hstop = 1.33, which by (3.12) implies β∗ = 0.19 and hence that
h∗ ∈ (hstop, hstart) for all angles in [ζ1, ζ2]. The friction transition at Fr= β∗ implies the
minimum steady uniform flow thickness h∗> hstop, contrary to Pouliquen & Forterre’s
(2002) original hypothesis that the minimum steady uniform flow thickness hstop

occurred at Fr = β. Edwards et al. (2017, 2019) showed, however, that modifying
the transition in this way implied that a steady uniform flow close to h∗ produced a
deposit depth close to hstop as observed in experiment, whilst Pouliquen & Forterre’s
(2002) transition produced deposits that were thinner than hstop (see e.g. Edwards &
Gray 2015).

4. Numerical simulations of retrogressive failure

Retrogressive failure fronts are simulated by solving the conservation laws (3.1)–
(3.2) together with the friction law (3.6)–(3.8) numerically. The central scheme of
Kurganov & Tadmor (2000) and a second-order Runge–Kutta method are used to
discretise the equations, with the time step determined by a Courant–Friedrichs–Lewy
(CFL) number of 1/4. In static regions, the equilibrium force balance is assessed prior
to each time step and the friction coefficient set appropriately using (3.8), resulting
in a well-balanced discretisation of the source terms that preserves these static states
exactly. The material parameter values used in these numerical simulations are given
in table 1.
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FIGURE 7. The retrogressive wave thickness h(x, t) and downslope velocity u(x, z, t) at a
sequence of time steps (a) 0 s (b) 0.15 s (c) 0.3 s (d) 0.45 s and (e) 0.6 s for a slope
inclined at ζ = 27.5◦. The initial stationary layer is of thickness h(x, 0) = 1.0 mm. The
filled region shows the thickness and the contour scale within it denotes the velocity,
which is reconstructed from the depth-averaged downslope velocity ū(x, t) assuming an
exponential profile (4.1) with λ=2.45. There is no inflow at x=0 and there is free outflow
at the downstream boundary. The diagonal dashed line shows that the retrogressive failure
front rapidly develops and travels upslope at a constant speed. The wave erodes the static
surface particles, which are shown with light blue markers and they travel downslope on
the surface of the steady uniform flow. The material properties are given in table 1 and
an animation is shown in movie 5 of the online supplementary material.

A solution exhibiting retrogressive failure on a slope inclined at ζ = 27.5◦ is shown
in figure 7 and supplementary movie 5. Initially for x< 0.06 m there is a stationary
layer of thickness h(x,0)=1.0 mm and for x>0.06 m the chute is empty. There is no
inflow at x= 0 and free outflow at the downstream boundary. A retrogressive failure
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wave rapidly develops (figure 7b) and travels upslope at a constant speed (figure 7b–e,
indicated by the dashed line). This wave connects a thicker static deposit upslope and
thinner flowing region downslope.

The two-dimensional downslope velocity field u(x, z, t) is reconstructed from the
depth-averaged downslope velocity ū(x, t) assuming an exponential velocity profile
through the depth of the avalanche as in Wiederseiner et al. (2011),

u(x, z, t)=
λū(x, t)

exp(λ)− 1
exp

(
λz
h

)
, (4.1)

where the non-dimensional parameter λ determines the ratio of surface to depth-
averaged velocity,

us

ū
=
λ exp(λ)

exp(λ)− 1
. (4.2)

Concave velocity profiles of this sort are predicted for shallow flows by the non-
local rheology of Kamrin & Henann (2015) and by discrete element simulations (their
figure 2).

The parameter λ is calibrated experimentally by creating a static layer at an
angle ζ0, placing a ruler across the deposit and sweeping the grains off the chute
downslope of the ruler. The chute was then inclined to an angle ζ > ζ0 and the
ruler was then removed, allowing a retrogressive failure to propagate upslope through
the static layer of grains. Downstream of the release a steady uniform flow rapidly
developed with a granular front (Pouliquen 1999b) that propagated downslope with
the depth-averaged speed of the flow. Both the surface velocity us of the uniform
flow and the speed of the granular front ū were measured, and (4.2) was used to
determine λ. For experimental conditions close to those in figure 4 the surface velocity
us = 8.5 cm s−1 and ū = 3.2 cm s−1, giving us/ū = 2.7 and hence λ = 2.45. This
reconstruction allows integration of surface particle trajectories (light blue markers
in figure 7). As the particles accelerate and the flow thins, the spacing between the
particles increases. An animation showing how the particles move at different depths
in the flow (movie 6) is available in the online supplementary material.

The downslope surface velocity can also be visualised in a space–time plot
(figure 8). The contours of us form parallel diagonal lines, indicating the rapid
development of a travelling retrogressive failure that moves upslope at a constant
speed. A series of particle trajectories are plotted on top of the contours (light
blue lines), with stationary particles upslope of the failure (horizontal lines) and
moving particles downslope (diagonal lines). This is the same behaviour shown in the
experimental space–time plot in figure 4. The simulated retrogressive wave speed of
9.1 cm s−1 is similar to the experimentally measured wave speed |uw| = 8.5 cm s−1,
while the simulated surface velocity of the steady uniform flow downstream of the
failure us = 8.1 cm s−1 is within 0.1 cm s−1 of that measured in the experiment.

5. Travelling wave solutions for retrogressive failure

The experiments in § 2 and the numerical simulations in § 4 suggest that
retrogressive failures rapidly develop into travelling waves. This is now investigated,
within the framework of the avalanche model described in § 3, by using a travelling
wave ansatz.
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FIGURE 8. Space–time (t, x) plot showing the surface velocity u(x, h, t) of a retrogressive
failure front on a slope inclined at ζ = 27.5◦ with an initial stationary layer of thickness
h(x, 0)= 1.0 mm. Individual surface particles are tracked (light blue lines) to visualise the
particle trajectories through the retrogressive failure front. The horizontal lines indicate
stationary particles and the diagonal lines represent moving surface particles whose
velocity is reconstructed assuming an exponential profile (4.1) with λ = 2.45. The inset
shows a close up of one of the particle paths as it goes through the retrogressive failure
front. The material properties are given in table 1.

5.1. Equations in a steadily moving frame
A schematic diagram of the anticipated solution structure is shown in figure 1. It
consists of a static region of constant thickness h0, that lies upstream of a flowing
region, which decreases in thickness as it accelerates towards a steady uniform flow
of thickness h∞ < h0 and depth-averaged velocity ū∞. The retrogressive failure is
assumed to travel upslope with velocity uw < 0. Looking for steady solutions in the
frame of the retrogressive wave ξ = x−uwt, the governing equations (3.1)–(3.2) reduce
to

d
dξ
(h(ū− uw))= 0, (5.1)

(ū− uw)
dū
dξ
+ g cos ζ

dh
dξ
= gS cos ζ , (5.2)

where the acceleration terms in (5.2) have been simplified using (5.1). Integrating the
mass balance (5.1) with respect to ξ , subject to the condition that the thickness is
constant h = h0 and ū = 0 in the static region, implies that the flux in the moving
frame is constant

h(ū− uw)=−uwh0. (5.3)

This can be rearranged to show that the depth-averaged velocity, anywhere in the flow,
is a function of the wave velocity and thickness

ū= uw

(
1−

h0

h

)
. (5.4)
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Substituting for the depth-averaged velocity in (5.2) and using (5.3) to simplify the
result, implies that the thickness profile satisfies the autonomous ordinary differential
equation (ODE)

dh
dξ
=

S(h)

1−
u2

wh2
0

gh3 cos ζ

, (5.5)

where S(h) = tan ζ − µ(h, Fr(h)) is defined in (3.5) and the Froude number can be
written using (3.4) and (5.4) in terms of the thickness, initial thickness and wave
speed, as

Fr=
−uw

√
gh cos ζ

(
h0

h
− 1
)
. (5.6)

The initial layer depth h0 and the inclination ζ are prescribed in experiments, so
equation (5.5) is a first-order ODE for h with the wave velocity uw a free parameter.
As the flow thins from the initial thickness h0 to the steady uniform thickness h∞
the Froude number increases from zero to the steady uniform flow Froude number
Fr∞ = ū∞/

√
gh∞ cos ζ . This must lie in the dynamic frictional regime, since steady

uniform flows in the intermediate regime are unstable. However, in order to connect
the static and dynamic equilibria the solution passes through a point where S= 0 in
the intermediate regime (illustrated in figure 9); this must necessarily occur since the
Froude number (5.6) is a strictly decreasing function of h. If the denominator on the
right-hand side of (5.5) is non-zero, solutions to the ODE (5.5) have zero gradient
where S = 0, preventing a solution that connects the static and dynamic equilibrium
solutions. Consequently, the denominator must be zero when S= 0 in the intermediate
regime, forming a critical point of the ODE at

h= hc =

(
u2

wh2
0

g cos ζ

)1/3

. (5.7)

Writing the ODE (5.5) as

dh
dξ
=

S(h)
1− (hc/h)3

, (5.8)

and using L’Hôpital’s rule gives a finite value for the gradient at the critical point,

dh
dξ

∣∣∣∣
h=hc

=
hc

3
dS
dh

∣∣∣∣
h=hc

. (5.9)

Although h0 is given, it is easiest to solve the problem by assuming a value of the
critical thickness hc and then solving for hc = hc(h0) later. Assuming that hc is given,
the critical Froude number at h= hc, can be found by solving S= 0 using (3.5) and
the intermediate friction law (3.7) to give

Frc = β∗

 tan ζ −µ3 −
µ2 −µ1

1+ hc/L

µ1 +
µ2 −µ1

1+ hcβ/L β∗
−µ3 −

µ2 −µ1

1+ hc/L


1/κ

. (5.10)
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FIGURE 9. Contour S=0 (thick black line) as a function of the Froude number Fr and the
thickness h for a slope angle ζ = 26.5◦. In the blue shaded region a constant depth flow is
accelerative (S> 0), in the white region it is decelerative (S< 0) and on the zero contour
(S = 0) it moves at constant speed. The green line is hstart, the orange line is h∗ and
the red line is hstop. The vertical dashed line lies at Fr= β∗, which is where the friction
switches from the intermediate to the dynamic regime. The blue lines show solutions to
the ODE (5.5) for different initial layer thicknesses h0 and which are parameterised by the
curve (5.6) with different values of uw. The white circles are the critical points, the grey
circles are the transitions to static friction, the black circles are the transitions to dynamic
friction and the white circles containing the crosses are the steady uniform flow velocities
downstream (h∞, ū∞).

From the definition of the Froude number (3.4) it follows that the critical velocity

ūc = Frc

√
ghc cos ζ . (5.11)

Substituting hc and ūc into the integrated mass balance (5.3) implies that

h0uw = hc(uw − ūc). (5.12)

Solving (5.7) gives another expression for h0uw,

h0uw =−hc

√
ghc cos ζ , (5.13)

where the negative root in the quadratic is assumed, so that uw is negative. Equating
(5.12) and (5.13) then determines the velocity of the retrogressive wave

uw = ūc −
√

ghc cos ζ , (5.14)

which is equal to the upward characteristic velocity (3.3) evaluated at the critical point.
Substituting the wave velocity (5.14) back into (5.13) and dividing by

√
ghc cos ζ then

determines the corresponding initial deposit thickness

h0 =
hc

1− Frc
. (5.15)
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FIGURE 10. A series of retrogressive travelling wave solutions for (a) the thickness h
and (b) the depth-averaged downslope velocity ū as a function of the travelling wave
coordinate ξ and for an inclination ζ = 26.5◦. The solutions correspond to an initial
layer thicknesses h0=hstop(22.55◦),hstop(23◦),hstop(23.5◦),hstop(24◦),hstop(25.068◦), with the
thicker layers corresponding to hstop at lower angles. The point at which static material
is mobilised by the wave at ξ = 0 is indicated by a grey filled circle, the critical point
h = hc by a white filled circle, the transition to dynamic friction at Fr = β∗ by a black
circle and the steady uniform flow downstream (h= h∞, ū= ū∞) by a crossed circle. The
deeper steady uniform flows in (a) correspond to faster depth-averaged velocities in (b)
and there is no motion for ξ < 0.

If, as in the experiment, the initial deposit thickness h0 is known but hc is not,
hc can be found by inverting (5.15) numerically with Frc(hc) evaluated using (5.10).
For a given value of the thickness hc, it follows that the Froude number Frc, the
velocity at the critical point ūc, the wave velocity uw and the initial deposit thickness
h0 are determined by (5.10), (5.11), (5.14) and (5.15), respectively. The thickness
profile h(ξ) can then be calculated by numerically integrating (5.8) upslope from hc to
h0 and downslope from hc to h∞, using L’Hôpital’s rule (5.9) to start the integration.

A series of thickness profiles for different static deposit thicknesses h0 and for
ζ = 26.5◦ are shown in figure 10(a), aligned as in figure 5(b) so that the point of
failure lies at ξ = 0. Upslope of the failure point, the material is stationary and
of constant thickness h0, whilst downslope of it the thickness decreases and tends
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towards the steady uniform flow thickness h∞ as ξ → ∞. At ξ = 0 there is a
discontinuity in dh/dξ , which is consistent with the experimental observations in
figure 5(b). This is due to the discontinuity in friction between the static friction
µ= tan ζ (3.8) and intermediate friction (3.7) at the point of failure. In the flowing
region, the depth-averaged velocity is given by (5.4) and rises smoothly from zero at
ξ = 0 towards the steady uniform flow velocity ū∞ as ξ→∞ (figure 10b). For deeper
initial layers the steady uniform flow thickness h∞ and the velocity ū∞ are greater
than for thinner layers. The length scale for the transition from the static to the
flowing state is an increasing function of both the initial layer thickness h0 and
inclination angle ζ .

The flow far downstream can be found without numerical integration of the
governing ODE. The dynamic friction law (3.6) implies that the Froude number far
downstream is

Fr∞ =
(

tan ζ −µ1

µ2 − tan ζ

)
βh∞
L

, (5.16)

which, by using its definition (3.4), allows the velocity ū∞ to be calculated as a
function of h∞. Integrating the transformed mass balance (5.1), but evaluating the
constant of integration at the critical point rather than in the static layer, implies that

h∞(ū∞ − uw)= hc(ūc − uw). (5.17)

Solving (5.16) and (5.17) determines the thickness far downstream for a given critical
thickness hc, since uw and ūc are known from (5.14) and (5.11), respectively.

The solutions can also be visualised in (Fr, h)-space as shown in figure 9. The
solutions connect the static layer to the steady uniform flow solution far downslope
with a trajectory that smoothly passes through the critical point (Frc, hc) on the S= 0
contour in the intermediate friction regime.

5.2. Existence of retrogressive travelling wave solutions
The retrogressive wave solutions outlined in § 5.1 exist over a range of slope angles ζ
and initial layer thicknesses h0. An upper bound for the initial layer thickness is
provided by the requirement that the static layer does not fail spontaneously, which
implies that

h0 < hstart(ζ )= hmax
0 (ζ ). (5.18)

The function hstart(ζ ) takes a finite value when ζ > ζ3 as in figure 9, but is infinite for
shallower inclinations ζ 6 ζ3, in which case the initial static layer may be arbitrarily
thick. A lower bound for the initial thickness h0 stems from the requirement that a
steady uniform flow exists far downstream, which implies that h∞ > h∗ as shown in
figures 9 and 10. It follows that the minimum initial thickness h0 for which a solution
exists occurs when hc= h∗= h∞ and Fr= β∗, which, using (5.15) and (3.12), implies
that

hmin
0 =

h∗
1− β∗

=
β∗

(1− β∗)β
hstop(ζ ), (5.19)

which is a constant multiple of hstop(ζ ). The upper and lower bounds (5.18) and
(5.19) define a region in phase space, shown in figure 11, where retrogressive waves
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FIGURE 11. Experimental phase diagram showing the values of slope angle ζ and static
layer thickness h0 for which retrogressive failures are observed (black circles) and are
not observed (crosses). This agrees well with the predicted domain of existence for
h0 ∈ [hmin

0 (ζ ), hstart(ζ )), which is shaded blue. In particular, the lower boundary hmin
0 (ζ )

(solid black curve) is in much better agreement than when β∗ = β (dotted curve), which
corresponds to Pouliquen & Forterre’s (2002) original friction law. The red line represents
hstop(ζ ), the green line to hstart(ζ ) and the vertical dashed lines correspond to the angles
ζ1, ζ2 and ζ3.

exist. Experiments recording the existence or not of a retrogressive wave over a
range of ζ and h0 are in good agreement with the theoretical predictions (figure 11).
Below hmin

0 (ζ ) retrogressive failures are not observed, but avalanches can propagate
downslope and in some cases, for initial layer thicknesses slightly greater than
hmin

0 (ζ ), erosion–deposition waves (Edwards & Gray 2015) can form downstream
of the retrogressive failure. This experimental determination of hmin

0 (ζ ) supports a
constant value of β∗ for all inclinations (as suggested by Edwards et al. 2019) with
β∗ = 0.19 ≈ 1.33β, corresponding to a minimum thickness of steady uniform flow
h∗ ≈ 1.33hstop. The prediction for hmin

0 with β∗ = β (dotted line in figure 11, as
suggested by Pouliquen & Forterre 2002) is not in such good agreement with our
experiments. The experimental phase boundary hmin

0 (ζ ) therefore provides an important
constraint on the theory that also helps to determine β∗.

Retrogressive waves are predicted for angles up to ζ4 = tan−1(µ3 + µ2 − µ1), the
angle at which hstart reaches zero. For ζ > ζ2, the method to determine the critical
point and the retrogressive wave speed remains unchanged, but the flow accelerates
and thins indefinitely downslope once it has failed. This regime is not observed in
our experiments, because the predicted static layer depths are too small (∼1 grain
diameter), but such solutions may be observable in grains with a larger static friction
coefficient that can form thicker static layers at steep inclinations ζ > ζ2.
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5.3. Retrogressive wave speed
The theoretical wave speed |uw| is compared with the experimentally measured
values in figure 12 for a range of slope angles ζ and for initial layers of thickness
(a) h0 = hstop(24◦)= 0.95 mm and (b) h0 = hstop(25◦)= 0.63 mm. Since both hstart(ζ )
and hstop(ζ ) are monotonically decreasing functions, the upper and lower bounds
(5.18) and (5.19) can be rearranged to give the maximum and minimum slope angles
at which an initial layer of thickness h0 will form a retrogressive wave

ζmax
= ζstart(h0), (5.20)

ζmin
= ζstop

(
(1− β∗)β

β∗
h0

)
, (5.21)

where ζstop(h) and ζstart(h) are the inverse functions of hstop(ζ ) and hstart(ζ ), respectively.
For angles ζ > ζmax the initial layer is thicker than hstart and therefore spontaneously
flows off the inclined plane, while for ζ < ζmin a retrogressive wave does not
propagate upslope, although an avalanche forms downstream of the perturbation. In
both of these situations the retrogressive wave speed is defined to be zero.

For the two sets of experiments in figure 12 the range of angles over which
retrogressive failures are, and are not, observed agree well with the theoretically
predicted limits ζmin and ζmax. In the range of angles where retrogressive waves
are observed both sets of data show that the wave speed increases with increasing
inclination angle. This trend is well predicted by the theory, but the magnitude
of the wave speed is slightly under-predicted. The theory does, however, predict
the immediate jump from zero up to a finite non-zero wave speed at the onset
of retrogressive failures at ζ = ζmin. The scatter in the experimental data points
is primarily due to the difficulty of precisely controlling the initial static layer
thickness h0.

The theoretical wave velocity (5.14) is dependent on the thickness hc and the depth-
averaged velocity ūc at the critical point. Substituting for ūc from (5.11) it follows that
the wave speed |uw| can be written as

|uw| = (1− Frc)
√

ghc cos ζ , (5.22)

where Frc(hc) is defined in (5.10). Experimental measurements of the wave speed
therefore provide indirect experimental evidence for the form of the friction law
in the intermediate regime 0 < Fr < β∗. This evidence is valuable because steady
uniform flows, which are widely used to determine the flow rule for Fr > β∗
(Pouliquen 1999a), are unstable in intermediate regime 0< Fr<β∗ and so cannot be
observed experimentally. The friction in the intermediate regime (3.7) is a power-law
interpolation between the maximum static friction at Fr=0 and the minimum dynamic
friction at Fr= β∗, with exponent κ that is taken to be unity (figure 13a, inset). This
form of the friction coefficient results in the retrogressive wave speed being an
increasing function of the slope angle for a given layer thickness h0 (figure 13a),
which is in agreement with experimental cases shown in figure 12(a,b).

In Pouliquen & Forterre’s (2002) original friction law the interpolation parameter
was chosen to be very small (e.g. κ = 10−3), which corresponds to a rapid decrease
from the maximum static friction at low Froude numbers, as shown in the inset in
figure 13(b). This choice of interpolation leads to an extremely small critical Froude
number Frc, and consequently hc ≈ h0. It follows from (5.22) that the wave speed

|uw| ≈
√

gh0 cos ζ . (5.23)
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FIGURE 12. The retrogressive wave speed |uw| for (a) h0 = hstop(24◦) = 0.95 mm and
(b) h0 = hstop(25◦)= 0.63 mm as a function of inclination angle ζ . The circles represent
experimental data for the retrogressive front and the crosses show the cases when
either (i) there is no retrogressive failure, although there is an avalanche that propagates
downslope, or (ii) a static layer of thickness h0 can no longer be supported. The red
line represents the theoretical prediction of the wave speed |uw|. The black dotted line
corresponds to the prediction from Pouliquen & Forterre’s (2002) original friction law
(5.23). Note that since β∗ = β these lines extend considerably into the region where
retrogressive failures are not observed.

This is a slightly decreasing function of the inclination angle ζ (see the dotted lines
in figure 12 as well as figure 13b), which is the opposite trend to that observed in
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FIGURE 13. Contours of the retrogressive wave speed |uw| computed from (5.14)
(black and grey solid lines), plotted with respect to the slope angle ζ and the initial
layer thickness h0. Solutions exist for h0 between h0 = hmin

0 (ζ ) (black dotted line) and
h0=hmax

0 (ζ ) (green line). The inset shows the friction coefficient µ as a function of Froude
number for h= 1 mm. In (a) linear interpolation of the friction is used in the intermediate
regime (κ = 1), leading to the experimentally observed increase in |uw| with increasing ζ .
In (b) a nonlinear interpolation is used (κ = 10−3, as suggested by Pouliquen & Forterre
2002), leading to the opposite relationship between |uw| and ζ . Note that in both of these
plots the value of β∗ in table 1 is used.

the experiments in figure 12. While the scatter in experimental data make it difficult
to infer the precise functional form of the friction coefficient in the intermediate
regime, the clear increase in |uw| observed with increasing ζ is strong evidence that
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the transition to the static failure criterion at Fr= 0 is less rapid than that suggested
by Pouliquen & Forterre (2002). Note that the solution for the original friction law
of Pouliquen & Forterre (2002) in figure 12, with β∗ = β, has a much wider region
in which retrogressive failures form than observed in experiments.

When κ = 1 the retrogressive wave speed (5.22) is an increasing function of
the initial layer thickness h0. For a given slope angle ζ , the fastest and slowest
retrogressive waves therefore occur at the boundaries h0 = hmax

0 and h0 = hmin
0 defined

in (5.18) and (5.19), respectively. For the thickest initial static layer h0 = hmax
0 the

critical point hc takes its maximum value of hstart and the velocity ūc is zero, as
shown in figure 9. It follows, from (5.14) that the maximum upslope-propagating
wave speed is

|uw| = |uw|
max
=
√

ghstart cos ζ . (5.24)

Conversely, when h0 = hmin
0 , the critical thickness hc takes its minimum value of h∗

and the Froude number Frc takes its maximum value of β∗ as shown in figure 9. This
produces the slowest retrogressive wave speed for a given thickness h0 , which using
(3.12) and (5.22), is

|uw| = |uw|
min
= (1− β∗)

√
gh∗ cos ζ = (1− β∗)

√
(β∗/β)ghstop cos ζ . (5.25)

This is also the wave speed at the onset of retrogressive failure at ζ = ζmin.

6. Conclusions and discussion
Frictional hysteresis (Daerr & Douady 1999; Daerr 2001; Aranson & Tsimring

2002; Pouliquen & Forterre 2002; Edwards et al. 2017, 2019) results in a range
of thicknesses over which both static and moving layers of material can coexist in
a granular flow. This property is fundamental to the retrogressive failures studied
here, which combine a thicker static and thinner flowing layer. In more complex
three-dimensional flows, hysteresis gives rise to a wide range of subtle morphological
features on erodible beds, such as incised troughs (Daerr & Douady 1999; Edwards
et al. 2017), super-elevated channels and static levees (Edwards et al. 2017). It also
plays a crucial role in the selection of the height and width of self-channelised flows
on non-erodible beds (Rocha et al. 2019), which can significantly extend the run-out
distance of hazardous geophysical mass flows (Félix & Thomas 2004; Mangeney
et al. 2007; Johnson et al. 2012; Kokelaar et al. 2014).

In this paper, it is shown experimentally that a static layer of thickness h0= hstop(ζ0)
on a chute inclined at angle ζ ∈ (ζ0, ζstart) can be eroded by a planar retrogressive
failure, which separates static and flowing material and propagates upslope at constant
speed (figures 1–5). These planar retrogressive failures occur when the deposit is
perturbed along a straight line across the slope rather than just at a single point,
as in the experiments of Daerr & Douady (1999). The spatial uniformity in the
cross-slope y direction allows the whole process to be modelled with a relatively
simple one-dimensional depth-averaged avalanche model that uses the non-monotonic
effective basal friction law of Edwards et al. (2017, 2019).

Both direct numerical simulations (figures 7–8) and the experimental space–time
plot (figure 4) suggest that the retrogressive failure rapidly develops into a travelling
wave. In § 5 the travelling wave ansatz is used to derive exact solutions for the speed
of the wave uw and the associated initial deposit height h0, which are dependent on
a critical point where the flow has thickness hc. This critical thickness is determined
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by the requirements that (i) it is a steady uniform flow solution (5.10) to the depth-
averaged momentum balance (3.2) with the intermediate friction law (3.7) and (ii) the
wave speed is equal to that of the upward hyperbolic characteristic. As a result, at
the critical point, both the numerator and the denominator of the ODE (5.5) are zero
and hence solutions exist that smoothly pass through h = hc with a finite gradient,
connecting the static and flowing layers upstream and downstream of the wave.

The exact travelling wave solution accurately predicts the range of slope angles ζ
and initial layer thicknesses h0 for which retrogressive waves exist. The lower phase
boundary, separating upslope propagating retrogressive failures from failures that only
propagate downslope, is a sensitive test of the thinnest possible steady uniform flow.
Figure 11 shows that this boundary is in excellent agreement with the experimentally
determined phase boundary and is therefore supportive of Edwards et al.’s (2019)
idea that the transition between intermediate and dynamic regimes occurs at constant
Froude number Fr = β∗ > β, rather than at Fr = β (Pouliquen & Forterre 2002). At
this onset of retrogressive failure, a jump to a finite non-zero wave speed is correctly
predicted by the model (figure 12), which is a prediction that has previously been
obtained only through the introduction of an additional order parameter and associated
governing equation (Aranson & Tsimring 2001, 2002).

The wave speed (5.14) is dependent on the velocity and thickness at the critical
point, which lies in the intermediate friction regime as shown in figure 9. Since
steady uniform flows in this regime are inherently unstable and so are not observable
experimentally, the retrogressive wave therefore provides a very important means of
probing the functional form of the friction law in this region. The model captures
the experimental trend that, for a fixed value of the initial layer h0, waves move
upslope faster at higher inclinations (figure 12). In contrast, the highly nonlinear
interpolation suggested by Pouliquen & Forterre (2002) predicts a slight decrease
in the wave speed with increasing inclination angle, which is the opposite trend to
that observed in the experiments. Our results therefore provide new evidence that the
friction coefficient varies appreciably through the whole range 0 < Fr < β∗ and that
a linear interpolation with κ = 1 is a more accurate parametrisation than using the
value of κ = 10−3 of Pouliquen & Forterre (2002).

The experiments and modelling of this paper indicate that for thin flows the
apparent basal friction rises appreciably when the Froude number decreases below
β∗ = 0.19. This suggests that the higher friction associated with static grains may
play a role in more rapid flows (up to Fr≈ 0.19) than has been suggested previously
(Pouliquen & Forterre 2002). A possible mechanism for this is that the failure of
grains occurs through (rapid) progressive erosion, in which grains at the surface
are the first to start flowing, followed by those near the bed. The increase in basal
friction inferred for Fr<β∗ would then be a consequence of depth integrating over a
flow in which only the uppermost part is flowing. The steady-state velocity profiles
predicted by discrete particle simulations and non-local rheological models of shallow
flows (Silbert, Landry & Grest 2003; Kamrin & Henann 2015) are broadly supportive
of this hypothesis, with the lower part of the velocity profile of slow, shallow flows
exhibiting very little shear.

The retrogressive failure wave exemplifies several physical mechanisms that have
yet to be fully incorporated into non-depth-integrated models of granular rheology.
The flow depends crucially on non-local rheological behaviour, not only in flowing
regions where the non-locality leads to the minimum flow thickness h∗, but also in
static layers where the non-locality results in a maximum stable layer thickness hstart.
Frictional hysteresis plays an equally important role, allowing these static and flowing
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layers to co-exist at the same slope angle. While many models of granular rheology
are based on steady-state behaviour, the retrogressive wave is highly transient: the
transition from static to flowing equilibrium states in the wave takes less than 100 ms.
Furthermore, the critical point analysis suggests that the speed of the retrogressive
wave is sensitive to this transient flow within the wave itself, not simply on the steady
states either side of it. The retrogressive wave may therefore provide a stringent test
case for future rheological models that aim to capture non-local, hysteretic and
transient phenomena in granular flows.
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