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A new Bayesian approach for multiple satellite faults detection and exclusion is proposed by
introducing a classification variable to each satellite observation. If we treat this classification
variable as random and assume a prior distribution for it, then a rule for satellite fault detec-
tion and exclusion based on the posterior probabilities of the classification variables is
constructed under the framework of Bayesian hypothesis testing. Secondly, the Gibbs sampler
is introduced to compute the posterior probabilities of the classification variables. Then the
implementation for a Bayesian Receiver Autonomous Integrity Monitoring (RAIM)
algorithm is designed with the Gibbs sampler. Finally, different schemes are designed to
evaluate the performance of the new Bayesian RAIM algorithm in the case of multiple faults.
We compare the method in this paper with the Range Consensus (RANCO) method.
Experiments illustrate that the proposed algorithm in this paper is capable of detecting and
eliminating multiple satellite faults, and the probability of correctly detecting faults is high.
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1. INTRODUCTION. Receiver Autonomous Integrity Monitoring (RAIM)
is an integrity monitoring method in which an airborne receiver performs self-
contained fault detection (Lee, 1986; Parkinson and Axelrad, 1988; Sturza, 1988;
Brown, 1992). Several RAIM algorithms have been considered in the literature (Lee,
1986; Brown, 1992; Angus, 2006; Ene et al., 2007; Schroth et al., 2008; Blanch et al.,
2010; Wu et al., 2013). When utilising the Global Positioning System (GPS) as a
navigational means in aviation, RAIM is only required to consider the occurrence of a
single satellite failure. This is due to the probability of two simultaneous satellite
failures at a particular location being estimated as 1 × 10−8, which is significantly
smaller than the 1 × 10−7 probability required (Pervan et al., 1998; Ober, 2003; Lee,
2004; Knight et al., 2009; Knight and Wang, 2009). However, along with the revital-
isation of the Globalnaya Navigatsionnaya Sputnikovaya Sistema (GLONASS)
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system and the current development of Galileo and Beidou (BDS) systems, the avail-
ability of RAIM algorithms is greatly increased in an integrated navigation system.
However, the probability of a user experiencing multiple failures simultaneously will
be too high to ignore (Knight et al., 2009).
In recent years, a few approaches have been considered in the literature for handling

multiple satellite faults. Angus (2006) focused on providing an exact solution to the
problem of extending RAIM protection levels for single fault to the case of protecting
for multiple faults. Knight et al. (2009) designed a RAIM algorithm for removing two
satellite faults by extending the χ2 test statistics. Hewitson and Wang (2006) pointed
out that an extended w-test identification procedure can be used for the simultaneous
removal of multiple outliers simply and effectively, provided the navigation adjust-
ment is sufficiently resilient to the contaminating measurements. Wang and Wang
(2007) introduced robust M-estimation schemes into a RAIM algorithm, and demon-
strated that the M-estimation can mitigate the effect of multiple satellite faults in the
Global Navigation Satellite System (GNSS) navigation solution. In fact, any robust
method can serve this purpose, such as least median of squares (Rousseuw, 1984) and
sign-constrained robust least squares (Xu, 2005). However, quick and robust methods
are demanding in real time applications. Schroth et al. (2008) proposed a Range
Consensus (RANCO) RAIM algorithm for dealing with multiple satellite faults. The
main idea of RANCO is that it calculates the position solutions based on subsets of
four satellites and compares the estimate with the pseudoranges of all the satellites not
contributing to this solution. Ene et al. (2007) discussed a multiple hypothesis solution
separation (MHSS) RAIM algorithm to treat multiple satellite faults.
It is noticeable that although these methods above can solve problems in the corres-

ponding practical fields, they have several disadvantages (Angus, 2006; Hewiston
and Wang, 2006; Schroth et al., 2008). Firstly, the current non-Bayesian methods
are based on classical hypothesis testing and the threshold for fault detection often
depends on the measured noise and false alarm probability. For instance, the prob-
ability of correctly detecting faults by the RANCO method is affected by the
threshold. Secondly, most of the current RAIM algorithms, such as the RANCO
method, use the measurement domain rather than the position domain. However, the
probability of missed detection of the measurement domain is often defined as
the probability of an undetected measurement bias rather than that of the unallowable
position error (Ober, 2003). In the position domain methods, a failure is detected as
soon as the accuracy or integrity requirements are not met. Thirdly, the traditional
RAIM algorithms do not consider the historical observations of satellite and receiver.
Fourthly, the exact probabilities of hazardously misleading information are not given
and then the availability of the navigation system is either underestimated or over-
estimated. Fortunately, Bayesian methods can exactly compute the probabilities of
hazardously misleading information in the problem of integrity monitoring (cf. Ober,
2000).
In fact, the Bayesian RAIM methods for handling a single satellite fault have been

developed to a certain extent. Ober (2000) pointed out that the positioning perfor-
mance can be described as a weighted sum of error distributions in which the weights
depend on the measurement residuals, the statistical properties of the measurements
and a prior probability of fault. Further, the weights could be used as a testing statistic
to detect faults. Pesonen (2009) proposed a RAIM method using Bayesian statistical
decision theory, but the method depends on a user-defined loss function to model the
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relative costs of false alarms and missed detection. Pesonen and Piché (2009) designed
a RAIM algorithm based on Bayesian model comparison theory. However, when the
posterior probability odds are near the critical values, the results are not reliable.
Pesonen (2011) analysed the RAIM performance parameters of accuracy, availability,
continuity and integrity from the viewpoint of Bayesian statistics and pointed out that
in the Bayesian framework all of the problems of faults detection, identification and
integrity could be converted into a computation concerning the posterior probability
distributions of the positioning parameters, but an effective computation algorithm is
not given in that paper. None of the Bayesian RAIM methods above can deal with
multiple satellite faults.
Therefore, a new Bayesian RAIM approach for multiple satellite fault detection

and exclusion is proposed based on the classification variables in this article. The
paper is organised as follows. Section 2 introduces a classification variable to each
satellite observation; a rule for multiple satellite fault detection and exclusion is
proposed based on the posterior probabilities of the classification variables in the
respective of Bayesian hypothesis testing. In Section 3, the Gibbs sampler is intro-
duced to solve the computing problem of the posterior probabilities of the classific-
ation variables. Therefore, the posterior distributions that are needed by the Gibbs
sampler are deduced. In Section 4, the implementation of the Bayesian RAIM
algorithm is designed with the Gibbs sampler and a flow chart is given. In Section 5,
designs of several experiments to evaluate the effectiveness of the proposed Bayesian
RAIM algorithm in the case of multiple faults are given. Real observations of the
CHAN station of the International GNSS Service (IGS) are analysed by this
algorithm. In Section 6, conclusions are summarised.

2. MULTIPLE FAULTS DETECTION AND EXCLUSION BASED
ON CLASSIFICATION VARIABLES

2.1. Model and rule. It is assumed that n denotes the number of visible satellites
and the system of the linearized GNSS equation of the pseudo-range observations is as
follows:

L = AX + Δ (1)
Where L = (L1, . . . , Ln)

T is the n × 1 vector of observations containing the differences
between the expected ranging values and the raw pseudo-range observations to each of
the n satellites; A = (a1, . . . , an)

T is the n × 4 observation matrix; X is the 4 × 1 vector
of parameters which contain the three components of the true position deviation from
the nominal position and the user clock bias deviation; Δ = (Δ1, . . . , Δn)

T is the n × 1
vector of measurement errors where Δi contains the clock/ephemeris error, the residual
tropospheric errors, the residual ionospheric errors, receiver noise and multipath
error. It is assumed that Δ*Nn (0, σ0

2P−1), where σ20 is an unknown variance of unit
weight and P = diag (p1, . . . , pn) is a known weight matrix. Let τ = σ−2

0 .
In this paper, the problem of satellite fault detection and exclusion is converted into

the problem of outlier detection and identification (cf. Wang and Wang, 2007). Since
outlier detection is done explicitly in the position domain, we do not use the con-
ventional mean-shift model (Koch, 1999; Gui et al., 2011) for fault detection. Instead,
we assume that when the observation Li does not contain an outlier, the corresponding
error Δi * N(0, τ−1pi

−1); otherwise the error Δi has the variance-inflation normal
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distribution (Koch, 1999), that is to say, Δi*N(0, k2τ−1pi
−1) where k > 1 is called an

inflation coefficient.
A classification variable δi is introduced for each observation Li to detect outliers,

which is defined as

δi = 1 Δi � N(0, k2τ−1p−1
i )

0 Δi � N(0, τ−1p−1
i )

�
, i = 1, . . . , n (2)

That is to say, when the classification variable δi equals 0, it denotes that Li is normal;
otherwise when the classification variable δi equals 1, it denotes that Li contains an
outlier.
Thus, the model for satellite faults detection and exclusion can be reformulated as

follows:

L = AX + Δ
Δi � (1− δi)N(0, τ−1p−1

i ) + δiN(0, k2τ−1p−1
i ), i = 1, . . . , n

�
(3)

We allow for a small prior probability α that any given observation is affected by
an outlier, where α << 1 − α, which means that the observation is assumed to
be normal according to the prior information. Then the prior odds ratio for δi = 1
to δi = 0 is

P(δi = 1)
P(δi = 0) =

α

1− α
,, 1, i = 1, . . . , n (4)

After we obtain the observation vector L, the posterior odds ratio for δi = 1 to δi = 0 is
given by

P(δi = 1|L)
P(δi = 0|L) =

α
1− α

× observation information, i = 1, . . . , n (5)

According to the principle of Bayesian hypothesis testing (Berger, 1985; Koch, 2007),

when
P(δi = 1|L)
P(δi = 0|L) . 1, we identify that Li contains an outlier; otherwise, Li is normal.

Since P(δi = 1|L) + P(δi = 0|L)=1,
P(δi = 1|L)
P(δi = 0|L) . 1 is equivalent to

P(δi = 1|L) . 0.5 (6)
In conclusion, a rule of detecting multiple outliers based on the posterior prob-

abilities of the classification variables is proposed as follows. When we obtain the ob-
servation vector L, the posterior probability of each observation Li containing an
outlier is computed, qi = P(δi = 1|L), i = 1, . . . , n. If qi >0·5, we identify that Li

contains an outlier.
2.2. Prior distributions of the unknown parameters. To follow the principle of

Bayesian statistics, the prior distributions of the parameters X ,τ and δi i = 1, . . . , n
which are considered to be random variables are assigned as follows.
Firstly, according to the definition of the classification variables, the prior

distribution of δi can be modelled by the two point distribution:

δi � b(1, α), i = 1, . . . , n (7)
If we do not know anything about the unknown parameters X and τ, we can model

them by a non-informative prior density function according to Fisher’s information
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matrix (Koch, 2007), that is to say,

p(X , τ)/ 1
τ

(8)

If there is available historical information about the unknown parameters X and
τ, we can model them by the conjugate principle (Berger, 1985; Koch, 2007), that is
to say, the prior distribution of X and τ has the normal-gamma distribution
(X,τ) * NG(X0,τ

−1Σ0
−1,α0,α1) with the hyper parameters X0, Σ0, α0 and α1, which

are determined by the historical data.

3. COMPUTATION OF THE POSTERIOR PROBABILITIES
BASED ON THE GIBBS SAMPLER. According to Section 2, the problem
of satellite fault detection and exclusion is converted into the computation problem
of the posterior probabilities of the corresponding classification variables. Since
the distributions involved by the posterior probabilities qi = P(δi = 1|L), i = 1,. . .,
n are complex, we use a Gibbs sampler (Ethier and Kurtz, 1986; Koch, 2007;
Gui et al., 2011) to solve the computation problem. Let δ = (δ1, . . . , δn) and
δ(− i) = (δ1, . . . , δi−1,δi+1, . . . , δn), i = 1, . . . , n.
Firstly, in order to compute P(δi = 1|L), i = 1, . . . , n by the Gibbs sampler, we

deduce the posterior distributions of the parameters X, τ and δi i = 1, . . . , n.
When the prior distribution of the unknown parameters X and τ has the normal-

gamma distribution (X,τ) * NG (X0,τ
−1Σ0

−1,α0,α1), we can obtain the posterior dis-
tribution of X, τ and δi i = 1, . . . ,n according to Bayes’ theorem (Berger, 1985; Koch,
2007),

X τ, δ,L|{ } � Nt(X̃ , τ−1Σ−1
1 ) (9)

τ X , δ,L|{ } � Γ(α2, α3) (10)
δi X , τ, δ(−i),L
��� � � b(1, q̃i), i = 1, . . . , n (11)

where

X̃ = (ATP̃A+ Σ0)−1(ATP̃L+ Σ0X0) (12)
Σ1 = ATP̃A+ Σ0 (13)

α2 = n+ t+ 2α0
2

(14)

α3 = (L− AX )TP̃(L− AX ) + (X − X0)TΣ0(X − X0) + 2α1
2

(15)

P̃ = diag
p1

1+ δ1(k2 − 1) , . . . ,
pn

1+ δn(k2 − 1)
� �

(16)

q̃i = P(δi = 1 X , τ, δ(−i),L
�� ) = αφ(Δi

ffiffiffiffiffiffi
piτ

√
/k)

αφ(Δi
ffiffiffiffiffiffi
piτ

√
/k) + k(1− α)φ(Δi

ffiffiffiffiffiffi
piτ

√ ) , i = 1, . . . , n

Δi = Li − aTi X , i = 1, . . . , n

(17)

and φ(·) denotes the probability density function of the normal distribution. The
derivation of Equation (17) is given in the Appendix.
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In particular, when we assume a non-informative prior density function for the
unknown parameters X and τ, the corresponding hyper parameters included in the
posterior distribution of X, τ and δi i = 1, . . . ,n are given by

X̃ = (ATP̃A)−1ATP̃L (18)
Σ1 = ATP̃A (19)

α2 = n
2

(20)

α3 = (L− AX )TP̃(L− AX )
2

(21)

Secondly, the approximate formula for computing P(δi = 1|L) is deduced in the
following Section. In fact, we can obtain

qi =P(δi = 1|L) =
ððð

P(δi = 1,X , τ, δ(−i)|L)dXdτdδ(−i)

=
ððð

P(δi = 1|X , τ, δ(−i),L)p(X , τ, δ(−i)|L)dXdτdδ(−i)

=EX ,τ,δ(−i)|L{P(δi = 1|X , τ, δ −i( ),L)}, i = 1, . . . , n

(22)

It is assumed that {X(s),τ(s),δ(s),s = 1, . . . , R} is a set of stationary random samples
that are drawn iteratively from the posterior distributions Equations (9) to (11) by the
Gibbs sampler. Combining Equation (22) with Equation (17), we can obtain a
formula for computing the posterior probabilities of the classification variables,

q̂i ≈
1
R

XR
s=1

αφ(k−1(Li − aTi X
(s))

ffiffiffiffiffiffiffiffiffiffiffiffiffi
p(s)i τ(s)

q
)

αφ(k−1(Li − aTi X (s))
ffiffiffiffiffiffiffiffiffiffiffiffiffi
p(s)i τ(s)

q
) + k(1− α)φ((Li − aTi X (s))

ffiffiffiffiffiffiffiffiffiffiffiffiffi
p(s)i τ(s)

q
)

i = 1, . . . , n

(23)

4. IMPLEMENTION FOR MULTIPLE FAULTS DETECTION
AND EXCLUSION BASED ON BAYESIAN METHODS. A new
Bayesian RAIM algorithm is designed for multiple faults detection and exclusion by
the Gibbs sampler.
Step 1. Choose the initial conditions y(0) = (X(0),τ(0),δ(0)) of the Gibbs sampler where

each element of δ(0) is equal to 1 with a probability of α.
If we use a non-informative prior density function for X and τ, the initial value X(0)

is assigned as 0 and τ(0) equals to
1

(σ20)(0)
, where the initial value (σ0

2)(0) is determined by

the range errors.
If the prior distribution of X andτ has a normal-gamma distribution (X,τ) * NG

(X0, τ
−1Σ0

−1, α0, α1), the initial value X(0) is determined by X(0) = (ATP(0)A + Σ0)
−1

(ATP(0)L + Σ0X0), where the weight P(0) = diag( p(0)1

1+ δ(0)1 (k2 − 1) , . . . ,
p(0)n

1+ δ(0)n (k2 − 1))

is determined by the ratios of p(0)i = σ2i
(σ20)(0)

, and X0, Σ0 are estimated em-

pirically. The variance σ2i of measurement noise is given by the formula σ2i =
σ2

URA
+ σ2tro,i + σ2ion,i + σ2SNR,i + σ2m, where σ2

URA
is the variance of the clock/ephemeris
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error, σ2tro,i is the variance of the residual tropospheric error, σ
2
ion,i is the variance of the

residual ionosphere error, σ2SNR,i is the variance of receiver noise and σ2m is the variance
of multipath. The initial value τ(0) is obtained by sampling from the posterior
distribution p(τ|L,δ(0), X(0)) = Γ (α(0)2 , α(0)3 ), where

α(0)2 = n+ t+ 2α0
2

α(0)3 = (L− AX (0))TP(0)(L− AX (0)) + (X (0) − X0)TΣ0(X (0) − X0) + 2α1
2

and α0, α1 are determined empirically.
Also, the reasonable inflation coefficient k in the model Equation (3) is chosen as

3–5 according to the 3σ principle of normal distribution.
Step 2. Implement the standard Gibbs sampler. Suppose that the (s-1)th realisation

is (X(s−1), τ(s−1), δ(s−1)). Then the sth realisation can be obtained as follows:

X s( ) is drawn from p (X |τ s−1( ), δ s−1( ),L),

τ(s) is drawn from p (τ L, δ(s−1),X (s)�� ),

δ s( )
i is drawn from p (δi|X s( ), τ s( ), δ s( )

1 , . . . , δ s( )
i−1, δ

s−1( )
i+1 , . . . , δ s−1( )

n ,L), i = 1, . . . , n

Run the Gibbs sampler until it is stationary where the judging criteria for
the stationary Gibbs sampler in this paper are as follows: if |q̂(s)i − q̂(s−1)

i | , ε, then we
claim that the Gibbs sampler is stationary, where ε is a given constant that is
sufficiently small. Then, a set of samples (X(1),τ(1),δ(1)), . . . ,(X(R),τ(R),δ(R)) can be
obtained.
Step 3. Compute the posterior probabilities of the classification variables by

Equation (23) and detect outliers by the rule proposed in Section 2.1.
The detailed flow chart of the Bayesian RAIM algorithm is shown at Figure 1.

5. EXAMPLES AND ANALYSIS
5.1. Example 1. To illustrate the effects of the proposed algorithm for detecting

and excluding multiple satellite faults, we simulate the pseudo-range observations of
an integrated GPS/BDS constellation using Satellite Toolkit (STK). The data were
collected from 00:10:01 of 15 January 2013 to 00:10:01 of 16 January 2013, with the
selected site in Zhengzhou (Lat 34·6836°N, Lon 113·533°E, Altitude: 0·0 m). The
sampling rate was 30 s.
The observations are single frequency pseudo-range measurements, including the

errors of clock/ephemeris, residual tropospheric, residual ionosphere, receiver noise
and multipath whose standard deviations are given by

σURA = σ0 = 1m, σtro,i = 0.5m, σion,i = 5m, σSNR,i = 0.2m, σm = 1m

respectively.
The number of visible satellites, the GDOP values and the simulated sky plot of the

integrated GPS/BDS constellation are shown in Figures 2 and 3, respectively.
We assign a normal-gamma distribution as prior for X and τ. And the inflation

coefficient k in the model Equation (3) is chosen as 3.
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The experimental schemes are designed as follows. Firstly, we introduce three faults
with the sizes 60 m, 25 m and 45 m in BD11, G17 and G27 respectively at epoch 150.
Secondly, we introduce two faults with the sizes 65 m and 30 m in BD4 and G20
respectively at epoch 500.

Acquire pseudo-range observations

Obtain and

Choose the initial conditions of the
Gibbs sampler by the prior information.

Implement the Gibbs sampler

Y

Identify and
exclude faults

Position

L A

Compute the posterior probabilities

N

Y

Examine the stationary
of Gibbs sampler

N

( 1| ) 0.5iP Lδ = >

Figure 1. Flow chart of the Bayesian RAIM algorithm.
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The posterior probabilities of the classification variables corresponding to the
pseudo-range observations at epoch 150 and 500 are shown in Tables 1 and 2,
respectively. The position errors before and after the faults exclusion are shown in
Figures 4 and 5, respectively.
From Table 1, we can see that the posterior probabilities of the classification

variables corresponding to the pseudo-range observations of BD11, G17 and G27 at
epoch 150 are larger than 0·5, which shows that the three faults at epoch 150 are
successfully detected by the proposed method.

Figure 2. The numbers of visible satellites and the GDOP values of Zhengzhou station.

Figure 3. The sky plot of the simulated integrated GPS/BDS constellation.

473A NEW BAYESIAN RAIM FOR MULTIPLE FAULTS DETECTIONNO. 3

https://doi.org/10.1017/S0373463314000721 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463314000721


From Table 2, it can be seen that the posterior probabilities of the classification
variables corresponding to the pseudo-range observations of BD4 and G20 at epoch
500 are larger than 0·5. This means that the two faults at epoch 500 are also
successfully detected.
Comparing Figure 4 with Figure 5 we can see that the position errors at epoch 150

and 500 are decreased after faults exclusion.
5.2. Example 2. To check the probability of correctly detecting faults of the

proposed Bayesian RAIM algorithm, we compare the method in this paper with the
RANCO method that is proposed by Stanford University (Schroth et al., 2008).
We simulate the pseudo-range observations of an integrated GPS/BDS constel-

lation to implement our experiment. The sampling rate is 30 s. The simulated sites
are spread worldwide with 24 user points that are retrieved from GPS Minimum
Operational Performance Standards (MOPS) from the Radio Technical Commission
for Aeronautics (RTCA). We randomly select 3–6 satellites at each user point and
introduce range biases to the selected satellites, where the range biases are increased
from 5m to 145 m with a step length of 5 m. The experiment duration is equivalent to
6599 epochs.
We assign a non-informative distribution prior for X and τ. The inflation coefficient

k in the model Equation (3) is chosen as 3.
The observations are single frequency pseudo-range measurements where the

simulated errors are the same as that in Example 5·1. Figure 6 shows the probability of
correctly detecting faults of the Bayesian method and the RANCO method.
From Figure 6, we can see that when the range biases are below 35 m, the prob-

abilities of correctly detecting faults by the new Bayesian RAIM method are larger
than those of the RANCO. Along with the increase of the range biases, the
probabilities of correctly detecting faults by the new Bayesian RAIM method are
stationary at 100%.

Table 1. The posterior probabilities of the classification variables corresponding to the pseudorange
observations at epoch 150.

Visible satellite BD1 BD2 BD3 BD4 BD5 BD6 BD8 BD9

Posterior probability 0·0370 0·0771 0·0909 0·1098 0·0359 0·0362 0·0407 0·0395
Visible satellite BD12 BD14 BD11 G20 G10 G11 G13 G17
Posterior probability 0·0359 0·0374 0·9508 0·0374 0·0357 0·0868 0·0592 0·7652
Visible satellite G23 G24 G26 G27 G28 G32 G02 G04
Posterior probability 0·0406 0·0419 0·0360 0·9645 0·0385 0·0440 0·0603 0·0357

Table 2. The posterior probabilities of the classification variables corresponding to the pseudorange
observations at epoch 500.

Visible satellite BD1 BD2 BD3 BD4 BD5 BD6 BD8 BD9

Posterior probability 0·0930 0·0389 0·0363 0·8177 0·0385 0·0358 0·0369 0·0429
Visible satellite BD12 BD14 BD10 G20 G10 G11 G13 G17
Posterior probability 0·0764 0·0390 0·0365 G20 0·0359 0·0509 0·0359 0·0358
Visible satellite G23 G24 G26 G27 G28 G32 G02 G04
Posterior probability 0·0407 0·0364 0·0399 0·0393 0·0392 0·0473 G02 0·0588
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The RANCO method needs a subset selection for faulted satellites, and the initial
subset will affect the effect of fault detection. Further, when the number of visible
satellites is fewer than seven, the count of inliers is not large enough to guarantee the
quality of the position estimate that is used to detect faults.

5.3. Example 3. To illustrate the effects of the proposed algorithm when
handling real data, we utilise the observations of the CHAN station of IGS to

Figure 4. Position errors before faults exclusion.

Figure 5. Position errors after faults exclusion.
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implement an experiment. The observable time of this experiment is from 00:00:01 to
23:59:59 on 16 July 2012. The sampling rate is 30 s with a masking angle of 5°.
The experimental schemes are designed as follows. Firstly, we introduce two faults

with sizes 40 m and 45 m in G30 and G12 at epoch 45, respectively. The visible sate-
llites at epoch 45 are G14, G29, G30, G32, G31, G18, G12, G22 and G25. Secondly,
we introduce two faults with the sizes 60 m and 35m in G29, G31 at epoch 95,
respectively. The visible satellites at epoch 95 are G14, G29, G30, G32, G31, G12,
G22 and G25.
The posterior probabilities of the classification variables corresponding to the

pseudo-range observations are shown in Table 3. The position errors before and after
the faults exclusion are shown in Figures 7 and 8, respectively.
From Table 3 it can be seen that the posterior probabilities of the classification

variables corresponding to the pseudorange observations of G30 and G12 at epoch 45
are larger than 0·5, and the posterior probabilities of the classification variables
corresponding to the pseudo-range observations of G29 and G31 at epoch 95 are
larger than 0·5, which shows that the proposed method is capable of detecting multiple
satellite faults in real data.
Comparing Figure 7 with Figure 8 it can be seen that the position errors are

decreased.

Figure 6. Probability of fault detection.

Table 3. The posterior probabilities of the classification variables corresponding to the pseudorange
observations of the visible satellites at epoch 45 and 95.

Visible satellite at 45 epoch G14 G29 G30 G32 G31 G18 G12 G22 G25

Posterior probability 0·0882 0·1341 0·8501 0·0893 0·0799 0·0958 1·0000 0·1542 0·1285
Visible satellite at 95 epoch G14 G29 G30 G32 G31 G12 G22 G25
Posterior probability 0·1017 0·9999 0·0770 0·0775 0·9120 0·0828 0·0850 0·0853
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6. CONCLUSIONS. A new Bayesian approach for multiple satellite faults
detection and exclusion is proposed by introducing a classification variable to each
satellite observation. If we treat this classification variable as random and assume a
prior distribution for it, then a rule for satellite faults detection and exclusion based on
the posterior probabilities of the classification variables is constructed under the
framework of Bayesian hypothesis testing. A Gibbs sampler is introduced to compute
the posterior probabilities of the classification variables, and the implementation for
Bayesian RAIM algorithm combined with Gibbs sampler is designed.
Experiments illustrate that the algorithm proposed in this paper is convenient for

implementation and capable of detecting and eliminating multiple satellite faults,
whether under single constellation or integrated constellation. Many simulations
indicate that the average number of iterations of the Gibbs sampler to achieve

Figure 8. The position errors after faults exclusion.

Figure 7. The position errors before faults exclusion.
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convergence is 200, the average computation time is 150 ms and the longest com-
putation time is 230 ms, which shows that the proposed Bayesian RAIM algorithm
can be implemented in real time. Also, the necessary time for outlier cancellation is
almost within one epoch if the outlier is isolated.
The problems of assigning the prior distributions reasonably for the unknown

parameters and making use of the historical information effectively need to be care-
fully studied in the future. It is expected that the algorithms proposed by this paper can
be used to handle six or more outliers.
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APPENDIX

The derivation of Equation (17) is as follows. Firstly, according to the Bayes’ theorem
(Berger, 1985; Koch, 2007), we can obtain

p(δ|X , τ,L)/ p(L X , τ, δ| )p(δ)

/
Yn
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1+ δi(k − 1) exp −τ
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Therefore,
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Further, according to the regularisation requirement of the probability density
function, it is can be obtained that:

q̃i = P(δi = 1 X , τ,| δ(−i),L) =
αf (Δi

ffiffiffiffiffiffiffi
piτ

√
/k)

αφ(Δi
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ffiffiffiffiffiffiffi
piτ

√ )
i = 1, . . . , n
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