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SUMMARY

Zoonotic cutaneous leishmaniasis (ZCL) constitutes a serious public health problem in many parts
of the world including Iran. This study was carried out to assess the risk of the disease in an
endemic province by developing spatial environmentally based models in yearly intervals. To fill
the gap of underestimated true burden of ZCL and short study period, analytical hierarchy process
(AHP) and fuzzy AHP decision-making methods were used to determine the ZCL risk zones in a
Geographic Information System platform. Generated risk maps showed that high-risk areas were
predominantly located at the northern and northeastern parts in each of the three study years.
Comparison of the generated risk maps with geocoded ZCL cases at the village level demonstrated
that in both methods more than 90%, 70% and 80% of the cases occurred in high and very high
risk areas for the years 2010, 2011, and 2012, respectively. Moreover, comparison of the risk
categories with spatially averaged normalized difference vegetation index (NDVI) images and a
digital elevation model of the study region indicated persistent strong negative relationships between
these environmental variables and ZCL risk degrees. These findings identified more susceptible
areas of ZCL and will help the monitoring of this zoonosis to be more targeted.

Key words: Analytical hierarchy process (AHP), fuzzy AHP (FAHP), Geographic Information
System (GIS), risk map, zoonotic cutaneous leishmaniasis (ZCL).

INTRODUCTION

Leishmaniasis, one of the most neglected tropical dis-
eases and a high-priority public health issue, is spread
to humans by the bite of infected female sand flies.
The World Health Organization (WHO) reported
that the public health impact of leishmaniasis has
been greatly underestimated for many years, and has
classified the disease as an emerging and uncontrolled
disease [1]. Leishmaniasis includes a wide variety of

diseases which are classified into three main categories
including: cutaneous leishmaniasis (CL), visceral
leishmaniasis (VL) and muco-cutaneous leishmaniasis
(MCL), among which CL is the most common form in
Iran. The disease remains a global problem in which
about 2 million new cases are believed to occur annu-
ally (1·5 million CL and 0·5 million VL cases) [2]. The
geographical distribution of leishmaniasis is almost
entirely restricted to tropical and subtropical regions
predominantly in developing countries including
Afghanistan, Algeria, Brazil, Iran, Peru, Saudi
Arabia and Syria. CL is one of the most significant in-
fectious diseases in Iran with a yearly average number
of 20 000 cases [3]. Both epidemiological entities of
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CL including zoonotic cutaneous leishmaniasis (ZCL)
caused by Leishmania major and anthroponotic cuta-
neous leishmaniasis (ACL) due to L. tropica are pre-
sent in Iran; however, about 80% of cases are of the
ZCL form [4]. Despite the fact that this common zoo-
notic disease rarely causes severe morbidity, the long
lasting lesions leave unpleasant scars on the face or
other exposed skin areas. Therefore, the disease not
only causes serious psychological effects for the
patients but also a great socioeconomic burden to
society.

Despite all conducted efforts to control the disease,
it is still endemic and has been reported in different
provinces of Iran, especially Golestan province
where ZCL prevention and control is highly empha-
sized by Ministry of Health of Iran. Incidence of
ZCL in this endemic province is well correlated with
the climate conditions [5]. Variations in the spatial dis-
ease pattern are influenced by environmental and
landscape factors, which determine the distribution
and abundance of vectors and reservoirs [6]. As diag-
nosed by molecular methods in Golestan province, the
vector of the disease is the female sand fly of
Phlebotomus papatasi species which is distributed in
almost all parts of Iran, the parasitic agent of ZCL
is L. major with rodents as reservoirs hosts [7].

There are many epidemiological studies conducted
throughout Iran that have concentrated on the zoo-
notic features of ZCL and the role of reservoir hosts
for its transmission, but little attention has been paid
to environmental and geographical characteristics
affecting the disease spread. Since 1990, Geographic
Information System (GIS) has become a powerful
tool in epidemiological investigations and disease sur-
veillance providing a potential tool for monitoring
ZCL epidemics in tropical countries. Although this
tool is well-known in health systems in developed
countries, its application is very limited in developing
countries such as Iran [8]. Several studies regarding
the use of GIS and spatial analysis of CL have been
reported from different parts of the world. In this re-
gion, Mollalo et al. [9] showed that the geography of
the area has played an important role in ZCL distribu-
tion. Moreover, the spatial distribution of ZCL due to
environmental factors was confined to the northern
and north-eastern low-lying regions of the province.
In another study conducted in Fars province located
in southern Iran, a spatial environmentally based
model using a geographic weighted regression model
was developed. The results showed that minimum
temperature, maximum relative humidity, population

density, days of rainfall and wind velocity were the
most significant risk factors explaining 0·388 of the
associated factors of CL [10]. In central Tunisia,
Salah et al. [11] used the scan statistics technique to
identify spatial, temporal and spatio-temporal clusters
of ZCL to visualize the abnormally high incidence
rates. Their results demonstrated that the most likely
spatial clusters were located close to a dam. Seid
et al. [12] used GIS and statistical analysis to develop
a risk map for CL based on environmental factors in
Ethiopia. Their results indicated that slope, elevation
and annual rainfall were good predictors of CL pres-
ence based on the probabilistic and weighted overlay
approaches.

Although GIS-based multi-criteria decision-making
(MCDM) methods have been occasionally used for
zoonosis diseases, according to Clements et al. [13],
it provides a great understanding about the uncer-
tainty related to the geographical distribution of dis-
eases. Modelling of a disease based on its
cause-and-effect parameters can support public health
welfare decision makers in monitoring, controlling
and preventing diseases. This study thus concentrated
on the identifying high- and low-risk areas of ZCL
using the combination of GIS and MCDM analyses.
Making proper decisions based on analyses of such in-
formation, would facilitate reaching desired results in
a shorter time with less costs.

MATERIAL AND METHODS

Study area

This analytical cross-sectional investigation was con-
ducted over a period of 3 years from January 2010
to December 2012 throughout Golestan province,
northeastern Iran. As shown in Figure 1, this province
is located between latitudes 36° 30′ to 38° 8′ N of
equator and longitudes 53° 57′ to 56° 22′ E of the
Greenwich meridian. The province with the centre of
Gorgan is one of the 31 provinces of Iran, bordering
Turkmenistan, occupying an area of 20 893 km2 with
a total population of about 1 750 000 people. The
data concerning administrative boundaries of prov-
ince and counties, locations of villages as well as
population statistics were obtained from the
Ministry of Interior of Iran for 2011 under the
Shapefile format (the Ministry of Interior of Iran, un-
published data).

This region is characterized by widely diverse region-
al and/or seasonal variations, ranging from extremely
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harsh conditions to very hot, dry summers. Northern
regions are located in arid and semi-arid climates
with hot and dry summers and cool and rainy winters.
The southern regions represent a mountainous climate,
and central and southwest parts of the province lie
under the influence of the Mediterranean climate
(Weather Centre, Hashemabad of Gorgan, 2007, un-
published data).

Data collection and preparation

Various data in different formats (attribution, vector
and raster formats) and different scales received
from multiple data sources [Centre for Disease
Control and Prevention (CDC), meteorological sta-
tions, Ministry of Interior]. The data were prepared
in a GIS environment so as to have the same coordin-
ate system, spatial extent, and spatial and temporal
resolution. Disease data together with various envir-
onmental variables which directly/indirectly effect on
the ecology of ZCL (mainly vectors and reservoirs)
were studied and selected. For the disease cases,

suitable spatial and attribution data were collected
and manipulated, having village as the spatial unit.

Epidemiological data

This study is based on the passive data of 2893 indig-
enous ZCL cases from 2010 to 2012. Cases were
confirmed by a positive skin test and/or parasitological
examination and were officially provided by Golestan
CDC. Data containing monthly reports of disease
onset, and place of residence at the village level were
checked meticulously to prevent any possible duplicate
records and were linked with their corresponding geo-
graphical location at the village level. Detailed infor-
mation with regard to demographic characteristics of
ZCL cases and identification methods have been pre-
sented in the paper by Mollalo et al. [9].

Climate data

In addition to ZCL data, climate characteristics includ-
ing the minimum, maximum and mean temperature

Fig. 1. Geographical location of Golestan province and its counties, North-east Iran.
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(°C); minimum, maximum and mean relative humidity
(%); mean evaporation (mm), accumulative precipita-
tion (mm), and number of freezing days (number of
days with minimum temperatures 40° C) and rainy
days were retrieved from Golestan province meteoro-
logical centres and also neighbouring provinces for a
more accurate interpolation process. Taking into ac-
count spatial autocorrelations, raster maps were pro-
duced using the inverse distance weighting (IDW)
method for each of the aforementioned parameters in
a GIS framework with a yearly interval at 100 m spa-
tial resolution. Based on the reported data of synoptic
stations of the study area, during the study period,
the annual average of minimum, maximum, and
mean temperature were 12·6 °C, 22·9 °C and 17·8 °C,
respectively; the yearly average of minimum, maximum
and mean humidity were 53%, 88% and 71%, respect-
ively; yearly total rainfall ranged between 69·8 and
103·2 mm; and the yearly number of rainy and freezing
days were about 76–108 days and 10–26 days,
respectively.

Remote sensing and topographic data

To reflect vegetation cover, mean annual normalized
difference vegetation index (NDVI) values, a dimension-
less index, which are calculated from the red (R) and

near infrared (NIR) bands as follows were originated
from MODIS sensor data (http://modis.gsfc.nasa.gov/):

NDVI = NIR−R( )/ NIR+R( ).
According to the MODIS satellite data, during the
study period, the average range of NDVI was some-
where between −0·15 and 0·80 with a mean value of
0·14. In addition, locations of dams in Golestan prov-
ince were extracted from Google Earth satellite images.
Figure 2 shows generated maps of the climate factors by
the IDWmethod together with the average NDVI satel-
lite image of MODIS sensor, during the study period.
Moreover, assuming topography may influence on the
ZCL distribution, topographical data providing eleva-
tion data at 90 m spatial resolution were derived from
a STRM digital elevation model.

Spatial analyses

A three-stage approach was adopted to investigate
ZCL risk degrees in Golestan province. First, by con-
sidering the knowledge of local health authorities,
Pearson’s correlation analysis for each year was con-
ducted to choose the independent variables. Then,
linear multivariate regression analyses were devel-
oped to determine which independent environmental

Fig. 2. Generated climate maps using inverse distance weighting method as well as MODIS normalized difference
vegetation index (NDVI) image in Golestan province, Iran, 2010–2012.
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factors plays more important role in ZCL incidence
distribution. Second, both analytical hierarchy process
(AHP) and fuzzy AHP methodologies were employed
to produce the ZCL risk map for each year, separately.
Finally, the obtained results were compared with
geo-referenced ZCL data. Furthermore, frequency of
ZCL cases in each risk zone was calculated and com-
pared with corresponding environmental factors.

AHP

Each independent affecting environmental factor has
a different level of importance and weight in model-
ling of ZCL risk. To obtain the mapping weight or im-
portance of each ZCL risk factor, the AHP method
proposed by Saaty [14] was employed. This technique
is a powerful, flexible, and systematic tool for creating
a hierarchical model of the spatial decision problem,
assisting policy makers to set priorities and make bet-
ter decisions [15]. AHP decomposes an unstructured
and complex problem to a hierarchy so that it is easier
to study and weight each criteria and sub-criteria
individually.

To designate the importance of each factor, it is nec-
essary to specify the weight of each. One of the
advantages of MCDM is that it is based on the pair-
wise comparison that facilitates the decision-making
because it reveals the compatibility/incompatibility
of the decisions. In the pairwise comparison weighting
method, criteria are compared two by two and their
importance is determined towards each other. A
rank matrix is created where its inputs are the same
determined weights and its outputs are the relative
weights related to criteria. For example, in the pair-
wise matrix the element aij= 3 indicates that the ith
element is slightly more important than jth element
in ZCL risk, thus the knowledge of users can be ap-
plied in these methods. Detailed information in
terms of a pairwise matrix has been presented in
Tables 1 and 2. In this research, in order to weight
the factors using pairwise comparison method, the
Expert Choice version 11 software (expertchoice.
com) was used. Table 3 presents the assigned relative
weights of each input parameter for each year,
separately.

Moreover, one of the most important advantages of
this process is the ability to estimate the inconsistency
rate of pairwise comparison matrix for more accurate
judgments. For this purpose, the consistency ratio
(CR) was used. This index reflects the consistency of
one’s judgment so that a CR of ≤ 0·1 is considered

acceptable. Conversely, any higher value at any level
is considered an inconsistent decision indicating that
the judgement requires revision.

Table 1. Saaty’s [14] pairwise comparison table with
9 degrees

Intensity of
importance Definition

1 Equal importance: two factors
contribute equally to the objective

3 Somewhat more important
5 Much more important
7 Very much more important
9 Absolutely more important
2, 4, 6, 8 Intermediate values

Table 2. Triangular fuzzy conversion scale

Corresponding triangular
fuzzy number Definition

(1, 1, 1) The same importance
(1/2, 1, 3/2) Little more importance
(1, 3/2, 2) More importance
(3/2, 2, 5/2) Much more importance
(2, 5/2, 3) Extreme importance
(5/2, 3, 7/2) Total importance

Table 3. Environmental variables affecting zoonotic
cutaneous leishmaniasis incidence rate utilized in the
models along with their initial weights and positive/
negative signs in 2010, 2011 and 2012, Golestan
province, Iran

Year Independent variable Initial weight

2010 Topography −0·20
No. freezing days 0·12
Humidity −0·25
Vegetation cover −0·12
Max temperature 0·26

2011 Topography −0·22
Evaporation 0·17
Humidity −0·37
Vegetation cover −0·47
Temperature 0·12

2012 Topography −0·20
Precipitation −0·19
Max wind direction 0·40
Vegetation cover −0·42
Temperature 0·13
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Fuzzy AHP

One limitation of AHP is that this method does not
consider the uncertainty and imprecision associated
with the mapping and nature of the variables [16].
To reduce the accuracy of this major drawback, an
alternative to the AHP method, designated FAHP,
was employed. This method uses linguistic expression
for modelling uncertainty in the decision-making
process [17]. Each effective factor in the prediction
model was fuzzified using triangular fuzzy numbers
according to Chang’s extent analysis method [18].
Similar to the stages of the AHP method the risk
maps in all the 3 years were provided by running
MATLAB codes with the exception of fuzzy opera-
tors and rules.

After obtaining the weights of all contributing fac-
tors by MCDM analyses, pixel values of correspond-
ing factors, multiplied by their respective weights, and
the final value of each pixel (i.e. produced risk maps)
calculated by weighted arithmetic mean formula in a
GIS environment for further spatial analyses. Based
on the distribution of data (pixel values of output
raster map) the natural-break classification method
which identifies real classes was used to classify the

ZCL risk map. This method finds points that minim-
ize within-class variance and maximizes variances be-
tween classes. The obtained risk maps were then
classified into five classes of risk categories ranging
from ‘very low’ to ‘very high’ risk areas for prioritizing
control interventions. The range of values of the ZCL
risk map, produced by both AHP and FAHP are
presented in Table 7, for each year separately. The
accuracy of the produced risk maps was assessed by
comparing them with the spatial distribution of ZCL
in the study area. Moreover, the spatially averaged
environmental factors for each risk category were cal-
culated and evaluated.

RESULTS

Table 3 summarizes the independent explanatory vari-
ables together with their weights resulting from both
Pearson’s correlation and multivariate regression ana-
lyses of the relationship between ZCL incidence and
different environmental variables. Then, the weights
were used as initial weights in AHP and FAHP meth-
ods. In total, for all of the 3 years of the study, topog-
raphy and vegetation cover had a major inverse

Table 4. Criteria pairwise comparison matrix, Golestan province, Iran, in 2010, 2011 and 2012

Year Alt Frz Hum NDVI Max temp

2010 Alt 1 2 1 2 1
Frz 1 0·5 1 0·5
Hum 1 3 1
NDVI 1 0·5
Max temp 1

Inconsistency = 0·00
Alt Evap Hum. NDVI Temp

2011 Alt 1 1 0·5 0·5 2
Evap 1 0·5 0·33 2
Hum 1 1 3
NDVI 1 4
Temp 1

Inconsistency = 0·01
Alt Prc Max. wind NDVI Temp

2012 Alt 1 1 2 2 2
Prc 1 2 2 1
Max wind 1 1 3
NDVI 1 3
Temp 1

Inconsistency = 0·01

Alt, Altitude from the sea level (m); Frz, number of freezing days; Hum, humidity (%); NDVI, normalized difference vege-
tation index; Max temp, maximum temperature (°C); Evap, evaporation (mm); Max wind, maximum direction of wind vel-
ocity; Temp, temperature (°C); Prc, precipitation (mm)
Pairwise comparison matrixes are symmetric, thus real numbers like 0·33 indicates that Evap is somewhat more important
than NDVI (the weight of Evap is three times more than NDVI).
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relationship in ZCL distribution, while temperature
variables had a direct relationship.

In this study, CRs of 0·01 and 0 were obtained which
are below the threshold of 0·10 suggesting a reasonable
level of consistency in the pairwise comparisons or
acceptable judgement in identifying ZCL risk zones.

After conducting both modelling methods with the
information of the pairwise comparison matrices pre-
sented in Tables 4 and 5, the final weights of each cri-
teria were calculated (Table 6) and the layers were
overlaid based on their obtained weights within the
GIS environment. As the generated risk maps,
which were classified based on the natural-break
method for both methods show (Fig. 3), high-risk
areas were mainly located at the northern and north-
eastern parts of the province while low-risk areas
were located at the southern parts. Comparison of
the generated risk maps with geocoded ZCL cases
at the village level demonstrated that in both meth-
ods more than 90%, 70% and 80% of the cases oc-
curred in high and very high risk areas for the
years 2010, 2011, and 2012, respectively (Fig. 4).
The results indicates the capability of both models
to predict susceptible ZCL areas with an accuracy
exceeding 70%.

Moreover, using several spatial analyses, including
zonal statistics, each category of risk map was com-
pared in relation to their corresponding spatially aver-
aged environmental variables. Based on the results of
AHP and FAHP presented in Table 8, comparison of
the risk categories with spatially averaged NDVI
images for each of the 3 years shows that the majority
of cases occurred at low and very low vegetation areas.
As depicted in Figure 5, it can be clearly seen that there
is a persistent strong negative relationship between the
vegetation cover and level of ZCL risk in Golestan
province, implying the relationship remains somewhat
similar. Similarly, in the 3 years of study, the effect of
altitude on ZCL occurrence is apparent and persistent
as well. High-risk areas were situated at altitudes
between 500 m above mean sea level suggesting ZCL
occurrence tended to be more prevalent in the plains
or at relatively low altitudes, while low-risk areas
were located at high altitudes (Fig. 6).

DISCUSSION

ZCL risk maps play a key role in public health and
epidemiology of zoonoses in that they highlight
areas which are more susceptible and more suitable

Table 5. Fuzzified criteria pairwise comparison matrix, Golestan province, Iran, in 2010, 2011 and 2012

Year Alt Frz Hum NDVI Max temp

2010 Alt (1, 1, 1) (1·5, 2, 2·5) (0·5, 1, 1·5) (1·5,2, 2·5) (0·5, 1, 1·5)
Frz (1, 1, 1) (0, 0·5, 1) (0·5, 1, 1·5) (0, 0·5, 1)
Hum (1, 1, 1) (2·5, 3, 3·5) (0·5, 1, 1·5)
NDVI (1, 1, 1) (0, 0·5, 1)
Max temp (1, 1, 1)

CRm= 0·07; CRg = 0·08
Alt Evap Hum NDVI Temp.

2011 Alt (1, 1, 1) (0·5, 1, 1·5) (0, 0·5, 1) (0, 0·5, 1) (1·5, 2, 2·5)
Evap (1, 1, 1) (0, 0·5, 1) (0, 0·5, 1) (1·5, 2, 2·5)
Hum (1, 1, 1) (0·5, 1, 1·5) (2·5, 3, 3·5)
NDVI (1, 1, 1) (3·5, 4, 4·5)
Temp (1, 1, 1)

CRm= 0·03; CRg = 0·08
Alt Prc Max wind NDVI Temp.

2012 Alt (1, 1, 1) (0·5, 1, 1·5) (0, 0·5, 1) (0, 0·5, 1) (1·5, 2, 2·5)
Prc (1, 1, 1) (0, 0·5, 1) (0, 0·5, 1) (0·5, 1, 1·5)
Max wind (1, 1, 1) (0·5, 1, 1·5) (3·5, 3, 3·5)
NDVI (1, 1, 1) (3·5, 3, 3·5)
Temp (1, 1, 1)

CRm= 0·08; CRg = 0·08

Alt, Altitude from the sea level (m); Frz, number of freezing days; Hum, humidity (%); NDVI, normalized difference vege-
tation index; Max temp, maximum temperature (°C); Evap, evaporation (mm); Max wind, maximum direction of wind vel-
ocity; Temp, temperature (°C); Prc, precipitation (mm).
CRm and CRg are consistency ratios of fuzzy pairwise comparison matrix which were defuzzified to crisp numbers.
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for breeding and maintenance of sand flies and reser-
voirs with a high incidence rate. Thus, visualization
of high- and low-risk areas can provide valuable infor-
mation for public health decision makers in geograph-
ical management of ZCL occurrence and give direction
regarding where their control efforts, such as prioritiz-
ing proper allocation of the budget, personnel and
equipment, should be targeted.

This study confirmed the capabilities of decision-
making methods in monitoring and prediction of
ZCL occurrence. Other studies have been conducted
using these decision-making techniques. For example,
one spatial study in Thailand developed AHP and
FAHP models for hand, foot and mouth disease.
Their results showed that FAHP performed more

accurately than AHP in defining high-risk areas [19].
However, in the present study, both methods success-
fully predict high and very high risk areas in all 3 years
of study, the models were also in agreement with each
other in defining high risk areas with no significant
differences.

It should be noted that MCDA provides a great op-
portunity for using the knowledge and experience of
the users or experts in weighting factors by using the
abilities of the pairwise matrix, this way it is possible
to test various scenarios that meet the requirement
of the CR. In reality, it is not true to assume the
whole study area as spatially homogeneous because
the criteria vary across space [20]. Regression analysis
was employed based on non-spatial to provide global,
simple and quick initial weights for running AHP in
Expert Choice software as well as to investigate the
independence of parameters. In other words, because
of insufficient knowledge of environmental factors,
regression analysis was used to determine significant
factors and their initial weights through a significance
test of R2, while it was possible to gain the weights
based on the experience of the expertise or even trial-
and-error method, as well.

The public health surveillance system of Iran has
been well-founded, especially in rural areas, with
more than 95% coverage of the entire country. One
of the basic duties of the system is to provide primary
healthcare and to register health records including
ZCL cases [21]. However, in reality, most ZCL cases
are not observed, some are observed but not recog-
nized; some are recognized but not reported [22].
According to Alvar and colleagues [23], the estimated
degree of under-reporting of cutaneous leishmaniasis
cases in Iran is somewhere between 2·8- and
4·8-fold. On the other hand, pure statistical models re-
quire accurate and reliable data preferably for a long
period of time in order to reach a solid conclusion.
Thus, in such poor conditions of observed data,

Table 7. The range values of zoonotic cutaneous leishmaniasis risk map produced by AHP and FAHP, 2010–2012

Year AHP ranges FAHP ranges

2010 VL (0·35–0·47); L (0·47–0·53); M (0·53–0·57); VL (0·37–0·46); L (0·46–0·50); M (0·50–0·54);
H (0·57–0·60); VH (0·60–0·67) H (0·54–0·58); VH (058–0·68)

2011 VL (0·31–0·41); L (0·41–0·48); M (0·48–0·55); VL (0·35–0·46); L (0·46–0·54); M (0·54–0·60);
H (0·55–0·61); VH (0·61–0·73) H (0·60–0·66); VH (0·66–0·75)

2012 VL (0·46–0·54); L (0·54–0·59); M (0·59–0·64); VL (0·47–0·56); L (0·56–0·61); M (0·61–0·66);
H (0·64–0·68); VH (0·68–0·87) H (0·66–0·69); VH (0·69–0·86)

AHP, Analytical hierarchy process; FAHP, fuzzy analytical hierarchy process; VL, very low degree of risk; L, low degree of
risk; M, moderate degree of risk; H, high degree of risk; VH, very high degree of risk.

Table 6. Final weights calculated from AHP and
FAHP approaches for each factor in 2010, 2011 and
2012, Golestan province, Iran

Year Independent variable

Final weight

AHP FAHP

2010 Topography 0·247 0·220
No. freezing days 0·123 0·163
Humidity 0·269 0·236
Vegetation cover 0·114 0·160
Max temperature 0·247 0·220

2011 Topography 0·153 0·180
Evaporation 0·142 0·178
Humidity 0·290 0·233
Vegetation cover 0·334 0·264
Temperature 0·081 0·144

2012 Topography 0·160 0·195
Precipitation 0·139 0·173
Max wind direction 0·299 0·250
Vegetation cover 0·299 0·217
Temperature 0·104 0·164

AHP, Analytical hierarchy process; FAHP, fuzzy analytical
hierarchy process.
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AHP and FAHP models are superior to pure statistic-
al models to fill the gap of reliable and historical data.

The approximate location of identified high-risk
zones, based on the used factors in the present
study, both support and extend the findings of previ-
ous work of cluster detection analysis in the same
study area. The findings of Mollalo et al. [9, 24],
using spatial scan statistics cluster detection technique
in this endemic area, illustrated that the most likely

spatial clusters were located in northern and north-
eastern parts of the study area, with arid and semi-arid
climates and low vegetation cover, supporting the
view that this areas contains potential high-risk popu-
lations and warrants closer consideration. However,
the methods used in this study to define high-risk
areas are more robust than cluster detection methods,
which were merely based on case incidence rates due
to the fact that results of clustering methods cannot

Fig. 3. AHP (top row) and FAHP (bottom row) derived zoonotic cutaneous leishmaniasis risk zones in Golestan
province, Iran, 2010–2012.

Fig. 4. Frequency of zoonotic cutaneous leishmaniasis (ZCL) occurrence in different level of risks using (a) AHP and (b)
FAHP methods in Golestan province, Iran, 2010–2012.
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Table 8. ZCL level of risks expressed in terms of frequency of cases and environmental variables extracted from AHP and FAHP risk models, Golestan province,
Iran (2010-2012)

Degree of risk (2010)

Frequency of ZCL
cases (%) Avg altitude (m)

Avg no. freezing
days Avg humidity (%) Avg NDVI Avg max temp (°C)

AHP FAHP AHP FAHP AHP FAHP AHP FAHP AHP FAHP AHP FAHP

Very low 0 0 2150 2051 0·61 0·59 67 67 0·61 0·65 24·7 24·7
Low 0 0 1257 1206 0·59 0·59 62 65 0·59 0·58 25·18 25·18
Moderate 7·8 8·1 553 539 0·57 0·57 64 64 0·48 0·47 25·03 25·06
High 18·0 16·7 202 236 0·63 0·62 64 63 0·34 0·36 25·14 25·18
Very High 74·2 75·2 113 103 0·67 0·67 61 62 0·09 0·09 25·42 25·36

Degree of risk (2011)

Frequency of ZCL
cases (%) Avg altitude (m)

Avg evaporation
(mm) Avg humidity (%) Avg NDVI Avg temp (°C)

AHP FAHP AHP FAHP AHP FAHP AHP FAHP AHP FAHP AHP FAHP

Very low 0 0 919 1204 3·44 3·53 72 72 0·64 0·61 18 18·06
Low 6·3 6·5 670 948 3·72 3·71 71 72 0·50 0·43 18·01 18·02
Moderate 21·0 18·5 330 357 3·79 3·82 71 71 0·34 0·34 18·04 18·06
High 41·7 41·0 470 202 4·01 4·08 69 69 0·23 0·24 18·07 18·07
Very high 31·0 34·0 329 234 4·73 4·69 65 66 0·15 0·15 17·82 17·82

Degree of risk (2012)

Frequency of ZCL
cases (%) Avg altitude (m) Avg rainfall (mm)

Avg wind direction
(m/s) Avg NDVI Avg temp (°C)

AHP FAHP AHP FAHP AHP FAHP AHP FAHP AHP FAHP AHP FAHP

Very low 0 0 1560 1698 75·9 76·2 6·78 6·78 0·56 0·52 18·13 18·15
Low 4·5 4·2 1135 1117 63·9 64·0 6·88 6·88 0·50 0·50 18·15 18·15
Moderate 12·6 7·6 357 377 61·3 61·7 6·93 6·93 0·41 0·42 18·15 18·13
High 28·4 31·5 181 182 57·9 58·0 7·10 7·09 0·30 0·31 18·32 18·30
Very high 54·5 56·7 198 177 54·3 54·6 7·47 7·43 0·19 0·19 18·39 18·40

ZCL, Zoonotic cutaneous leishmaniasis; NDVI, normalized difference vegetation index; AHP, analytical hierarchy process; FAHP, fuzzy analytical hierarchy process.
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be extrapolated to other areas, while risk factors can
be used to identify high-risk zones in other areas
where risk factor data are available [25].

Regardless of investigating the stability of the
results, the most important reason for conducting ana-
lyses for each year separately was based on the de-
scriptive statistics of a previous study in this region
by Mollalo et al. [9] who observed that the frequency
of ZCL cases in 2010 (1660 cases) significantly
decreased in the next years (660 cases in 2011); thus
we supposed that environmental changes in the area
may be responsible for such a huge difference. It can
be a reason indicating why the set of environmental
variables differed from one year to another. It is obvi-
ous that some phenomena like earthquakes, flood, or
even climate change can change the behaviour and
pattern of infected vectors and consequently the fre-
quency of human ZCL cases.

Results of the risk models were further compared
with discrete correlation analysis between environ-
mental variables and ZCL incidence rate for the
same study region [5], where dynamic monthly

significant associations were observed between envir-
onmental variables (including vegetation cover, top-
ography and climate factors) and ZCL incidence
rate in Golestan province. Both studies showed strong
negative influence of altitude and NDVI factors, as
proxies of environmental changes, on the ZCL inci-
dence rate providing an excellent niche for ZCL trans-
mission. While temperature and relative humidity
variables in discrete correlation analyses showed
strong significant association with ZCL incidence
rate, the current study signified poor relationships be-
tween these variables. This might be due to the fact
that in the previous study the associations between
each variable and ZCL occurrence were analysed indi-
vidually, regardless of influence or dependency be-
tween parameters. However, the advantage of such
modelling techniques is that not only is it based on in-
dependent constituting variables but also the inter-
action between the variables can be reflected in the
results. It should be noted that the results of above
models might vary by different geographical areas
due to different seasonal patterns in different

Fig. 5. Level of zoonotic cutaneous leishmaniasis risks concerning mean of normalized difference vegetation index
(NDVI) using (a) AHP and (b) FAHP methods, Golestan province, Iran, 2010–2012.

Fig. 6. Level of zoonotic cutaneous leishmaniasis risks concerning mean of altitudes using (a) analytical hierarchy process
(AHP) and (b) fuzzy AHP methods, Golestan province, Iran, 2010–2012.
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ecological zones of the province, thus the results of
this study are not plausible for other endemic areas.
For instance, visual comparison between location of
dams and produced risk maps of the study area
shows that almost all of the dams are located in low
and very low risk areas, which is in contrast with the
study of Salah et al. [11] who observed location of spa-
tial hotspots close to dams in Tunisia.

It should acknowledged that the current study has
shortcomings from two perspectives. The first weak-
ness is short data length (3 years) which might not
lead to robust and reliable results and the second limi-
tation is related to absence of biological conditions
and socioeconomic status in the models which are im-
portant determinants of ZCL risk. Therefore, future
research should consider other neglected influencing
factors and/or even culture and life-style of the popu-
lation at risk to better describe the epidemiology of the
disease. Despite existing limitations encountered in the
current study, these findings identified more suscep-
tible areas and will help to make the control and mon-
itoring of ZCL more targeted in Golestan province.

CONCLUSION

By identifying the independent environmental factors
associated with the ZCL incidence rate, the present
work emphasized the spatial characteristics of this
common zoonosis in an endemic focus of Iran. The
developed risk maps provide an effective visual tool
for public health policy makers with regard to where
the control programmes must be targeted, assisting
more optimal allocation of budget and health facilities
under future environmental changes. Integration of
popular decision-making methods (i.e. AHP and
FAHP modelling techniques) and powerful GIS can
help the results to be more precise, knowledge-based,
and cost-effective in defining high-risk areas of ZCL.
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