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Summary

General and genetic statistical methods are commonly used to deal with microsatellite data (highly
variable neutral genetic markers). In this paper, the self-organizing map (SOM) that belongs to the
unsupervised artificial neural networks (ANNSs) was applied to analyse the structure of 58 European
and two Chinese pig populations (Sus scrofa) including commercial lines, local breeds and
cosmopolitan breeds. Results were compared with other unsupervised classification or ordination
methods such as factorial correspondence analysis, hierarchical clustering from an allele sharing
distance and the Bayesian genetic model and with principal components analysis and neighbour
joining from allelic frequencies and genetic distances between populations. Like other methods,
SOMs were able to classify individuals according to their breed origin and to visualize similarities
between breeds. They provided additional information on the within- and between-population
diversity, allowed differences between similar populations to be highlighted and helped differentiate

different groups of populations.

1. Introduction

The availability of many genetic markers allowed
large-scale surveys of genetic diversity to be carried
out in various species. Such projects have provided
large data sets that give access to a detailed knowledge
of the genetic structure of populations. Most analyses
have made use of methods based on population gen-
etic models that allow specific evolutionary hypoth-
eses to be addressed. Using more general descriptive
tools may, however, provide complementary points of
view and suggest new questions. In most biological
sciences, parametric and non-parametric multivariate
analyses are commonly used as classification methods
(e.g. Sparling & Williams, 1978; Martindale, 1980;
Figueredo et al., 1992; Le Pape & Chevalet, 1992;
Terhune et al., 1993). Nevertheless, some limitations
are known: strong distortions with nonlinear data sets
(Kenkel & Orloci, 1986), horseshoe effects due to
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unimodal response curves in principal components
analysis (PCA), arch effects, outliers, missing data,
etc. (Giraudel & Lek, 2001). Linear multivariate ap-
proaches (such as PCA or factorial correspondence
analysis) used to analyse large genetic data sets did
not allow a large part of the total variance or inertia
to be explained by the first main principal compo-
nents. As an alternative tool to deal with this problem
of complexity in biological data, artificial neural net-
works (ANNSs) have been used for patterning samples
in biological systems, such as segmentation of brain
images (Vijayakumar et al., 2007). ANNs have proved
their utility in various fields. They have been widely
used in the areas of word recognition (Waibel et al.,
1989; Lefebvre et al., 1990; Gemello & Mana, 1991;
Maravall et al., 1991), chemistry and physics but less
in population genetics and ecology. Previous work
using ANNs concerned, for example, classification in
the behavioural sciences (Reby et al., 1997; Park
et al., 2005), evaluation of the contribution of re-
population to biodiversity (Aurelle et al., 1999; Zhu,
2004), genetic analysis of populations with highly
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variable markers such as microsatellites (Cornuet
et al., 1996; Aurelle et al., 1999), classification of in-
dividuals based on genotypic data (Guinand et al.,
2002); analysis of the geographic origin of ancient
patrilineal populations (Manni et al., 2005); identifi-
cation of patterns of genetic diversity (Grigull et al.,
2001; Zhao et al., 2005); and identification of bio-
markers (Kouskoumvekaki ez al., 2008).

In this work, we applied the self-organizing map
(SOM ; Kohonen, 1982, 2001) method to a large pig
(Sus scrofa) genetic data set in order to assess the ad-
ded value of this unsupervised approach, compared
with a previous genetic analysis (SanCristobal et al.,
2006) and with other approaches. Three unsupervised
methods allowing individuals to be clustered were
used: factorial correspondence analysis (FCA), hier-
archical clustering based on allele sharing (AS) dis-
tances between individuals and a Bayesian approach
based on a genetic model (Pritchard et al., 2000).
Results were then compared with classifications of
populations based on allele frequencies (neighbour
joining (NJ) from genetic distances and PCA).

2. Materials and methods
(1) Data

The materials used in this study were available from
the European Pig Biodiversity project (PigBioDiv;
BIO4 CT 98 0188, http://www.projects.roslin.ac.uk/
pigbiodiv/). The objectives of this project were to
study the genetic diversity, as well as to improve the
understanding of the structure and dynamics of the
pig populations in Europe. In this project, about 50
individuals were sampled in each of 60 populations
representing 23 local breeds, five cosmopolitan breeds
(with 12 Landrace, ten Large White, four Piétrain,
three Duroc and two Hampshire populations), four
synthetic lines, and two populations of Meishan ori-
gin (population originating in China). Genotypes at
up to 50 microsatellite markers were available with a
total of 2737 individuals and 700 alleles (SanCristobal
et al., 2006). Markers have been chosen to be poly-
morphic, to cover the genome (two to three markers
per chromosome), to be genetically independent
and for their capability to produce good resolution
using automatic DNA analysers and multiplexing
(Archibald et al., 1995; Groenen et al., 2003).
Although most methods allowed for missing data,
54 individuals with valid genotypes at less than five
markers were discarded from all analyses, and 161
more individuals had to be discarded for a specific
method (AS, as explained below).

(i1)) SOM analysis

The SOM is an unsupervised learning algorithm
(Kohonen, 2001), which performs a nonlinear
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projection of multivariate data onto lower dimension.
Formally, it consists of two connected layers of neu-
rons: the input layer (the data) and an output layer.
In the output layer, the SOM consists of a two-
dimensional finite network arranged on a grid with its
own topology. Each piece of data as well as each
output neuron is a vector of dimension N, the number
of items describing individual data. During the
learning process, the algorithm computes the Eucli-
dean distances between an input vector and the out-
put neurons. In the output layer, the best matching
neuron (BMN), which has a minimum distance with
the input vector, is selected as winner. For the BMN
and its neighbours in the output layer, weight vectors
are updated to minimize the distance from the input
vector.

At the end of the process, each input vector is
assigned to one of the output neurons on the
grid. Further, a hierarchical clustering and U-matrix
algorithm allow boundaries to be defined between
clusters on the trained SOM map (Ultsch, 1993; Park
et al., 2004). A global quality criterion of the result is
given by the topographic error, which is the pro-
portion of individuals for which the first (winning)
and the second best matching neurons are not adjac-
ent on the SOM.

Details of the method can be found in Giraudel &
Lek (2001) or Park et al. (2004).

Data consisted here of one genetic matrix of 2683
individuals from the 60 pig populations with 700
alleles. Each allele is encoded by the number of copies
(0, 1 or 2) present in the individuals. The algorithm
was implemented using the SOM toolbox developed
for Matlab (The Mathworks 2001) by the Laboratory
of Information and Computer Science in the Helsinki
University of Technology (Alhoniemi et al., 2000).
Initialization methods and the choice of the grid were
based on the suggestions of these authors.

(ii1) Complementary approaches
(a) FCA

FCA was performed to characterize genetic variation
of both individuals and populations through the
GENETIX software (V4.05.2, 2004; Belkhir et al.,
1996).

(b) The AS method

AS distances between individuals were calculated at
each locus and then averaged over loci (SanCristobal
et al., 2006). In order to get sufficient precision, ana-
lyses were restricted to a subset of 2522 individuals
that shared at least ten typed loci with all the others.
Using the AS distance, individuals were submitted
to UPGMA clustering (Sneath & Snokal, 1973)
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calculated with the ‘hclust’ method of the S-plus
software suite (Becker et al., 1988). The resulting 12
groups (additional Fig. S1 of SanCristobal et al.,
2006) were further analysed along the same rationale.

(c) STRUCTURE (St)

Data were analysed using the STRUCTURE soft-
ware (Pritchard, Wen, Falush, Version 2.2, April
2007), under the admixture model. Classification was
performed assuming several numbers of clusters,
mainly from 8 to 12.

(d) NJ tree

The matrix of Reynolds genetic distances (Reynolds
et al., 1983) was derived and summarized graphically
in an NJ tree (Saitou & Nei, 1987). Following the re-
sults given in Fig. 3 of SanCristobal et al. (2006), only
significant clusters of populations are reported here.
They correspond to the nodes of the tree that are re-
peatedly found in bootstrap resampling of markers
(bootstrap values higher than 75 %).

() PCA

PCA was performed on the different populations and
breeds, based on the allele frequencies in populations
at the 50 markers. Missing values were replaced by
the mean values of frequencies in the whole data set.
Calculations were done using the ‘prcomp’ method of
S-Plus, and results were visualized with the Tetralogie
software (Dkaki and Dousset, http://atlas.irit.fr/;
Dousset, 2003), which allows the user to have a global
four-dimensional view of results and to select inter-
esting points of view.

3. Results

(1) Classification of individuals and populations
with SOM

Several prior runs were performed using the complete
data set, with different sizes of the output layer.
A hexagonal grid of 10 x 20 cells was chosen that al-
lowed the topographic error to get an acceptable
value. At the end of the learning process, each indi-
vidual was assigned to a single cell in the SOM map.
The quality of this assignment is characterized by the
topographic error rate, which was found to be lower
than 0-05, indicating that the assignment of an indi-
vidual at some location in the SOM map was robust.

The map was further classified into eight clusters,
using Euclidean distance and Ward’s linkage method
(Fig. 1). Similarities between the clusters are charac-
terized by the resulting tree (Fig. 1a,b). The results
of the ‘U-matrix’ algorithm are shown Fig. 1¢. They
indicate the limits between clusters with dark points.
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Fig. 1. Classification of European pigs generated by SOM.
(a) SOM tree of the eight clusters defined in Table 1. (b)
Classification of pig populations on the SOM map. The
contents of the eight SOM clusters are detailed in Table 1.
The repartition of the breeds on this map is shown in
Figure 2. (¢) U-matrix map. This map is made up of
‘mini-cells’ corresponding to both the output neurones
and to the links between adjacent cells. Black or dark
mini-cells indicate links between unrelated or distant cells
and hence limits between clusters. The main breeds
corresponding to clusters are Landrace LR, Large White
LW, Pietrain PI for clusters 1, 3 and 4, respectively,
Meishan for cluster 6 and Duroc and Hampshire for
cluster 8.

The darker the limit is, the stronger the differentiation
between the clusters is. For example, the 6th cluster
(corresponding to the Chinese Meishan breed) is
strongly separated from the other ones. This means
that although this cluster lies in the middle of the map,
it must be considered as very distant from its neigh-
bours. Hence, analysing proximities on the SOM map
must take into account these limits.

Table 1 gives the list of populations that are rep-
resentative of each cluster, with the proportion of
individuals of the population that were found in the
cluster. In general, most individuals from the same
population were assigned within a single cluster.
However, most clusters included also a small number
of individuals from other populations. Individuals
from different populations of the same breed (Large
White, Landrace, Meishan, Duroc and Hampshire)
were generally assigned to a single cluster, with some
exceptions. Three populations from the cosmopolitan
breeds, and three local breeds were split into two
SOM clusters: the Icelandic Landrace (ISLR09) split
into clusters 3 and 1; the 1970 sample of the Danish
Landrace (DKLROS5) split into clusters 1 and 5; the
German Hampshire line (DEHAO02) split into clusters
8 and 1, the Spanish Negro Canario (NC) and the
Italian Casertana (CT) breeds. A few populations and
breeds were spread over three or four clusters: the
Italian Nera Siciliana (NS), the French Créole (CR)
and the synthetic DRB (DR).
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Table 1. Distribution of pig populations in the different clusters (1-8) given by SOM, STRUCTURE (St),

AS and NJ methods

Cluster ~ Population Code Type Y N. St AS NJ
1 Danish Landrace (1997) DKLRO04 LR-N 100 4 LR LR LR
1 Danish Landrace (1970) DKLRO05 LR-N 90 9 LR LR LR
1 Finnish Landrace FILRO6 LR-N 100 8 LR LR LR
1 French Landrace FRLRO1 LR-N 100 17 LR LR LR
1 Italian Landrace ITLRO3 LR-N 100 18 LR LR LR
1 Norwegian Landrace NOLROS LR-N 100 4 LR LR LR
1 German Landrace DELR14 LR-C 100 6 LR LR LR
1 French Landrace FRLR13 LR-C 98 6 LR LR LR
1 British Landrace GBLR10 LR-C 100 6 LR LR LR
1 British Landrace GBLRI11 LR-C 98 6 LR LR LR
1 British Landrace GBLRI12 LR-C 100 3 LR LR LR
1 British Lop GBBLO1 LO 100 4 LR LR LR
1 Bunte Benheimer DEBBO1 LO 100 3 LR LR

1 Lindrodssvin SELSO01 LO 97 2 LR-DU LR

1 Leicoma synthetic GBLEO1 SY 100 3 LR-DU HA-1

1 Icelandic Landrace ISLRO9 LR-N 20

1 German Hampshire DEHAO02 HA-C 15 LR

2 Middle White GBMWO01 LO 100 3 LW-Br-LR (0)

3 French Large White (sire) FRLWI2 LW-N 98 14 Lw Lw Lw
3 French Large White (dam) FRLWO1 LW-N 92 15 LW LW Lw
3 German Large White DELWO02 LW-N 100 21 LW Lw Lw
3 Italian Large White ITLWO3 LW-N 100 14 LW LW Lw
3 British Large White GBLWO05 LW-C 100 8 LW LW LW
3 British Large White GBLWO06 LW-C 98 6 LW LW Lw
3 British Large White GBLWO07 LW-C 100 2 LW LW LW
3 French Large White FRLWO0S LW-C 100 3 LW LW Lw
3 French Large White FRLWO09 LW-C 100 11 LW LW Lw
3 German Large White DELW10 LW-C 100 6 LW LW Lw
3 Icelandic Landrace ISLRO9 LR-N 74 9 LW-LR LW

3 Negro Canario ESNCO1 LO 83 5 LW-Br-LR (@)

3 DRB synthetic FRDRO1 SY 28

4 French Piétrain FRPI02 PI-N 100 11 PI PI PI
4 German Piétrain DEPIO3 PI-N 100 11 PI PI PI
4 British Piétrain GBPI04 PI-C 100 3 PI PI PI
4 French Piétrain FRPIO5 PI-C 100 3 PI PI PI
5 Bisaro PTBIO1 LO 100 6 Ib-LW-LR (0)

S Presticke CZPRO1 LO 90 8 PI-Ib (OX

5 Pulawska Spot PLPUO1 LO 100 6 PI PI

5 Laconie synthetic FRLAO1 SY 100 2 PI-HA-LW LW

5 Tia Meslan synthetic FRTMO1 SY 90 4 MS-PI-Br (0) MS
5 Danish Landrace (1970) DKLROS5 LR-N 10

5 French Créole (Guadeloupe) FRCRO1 LO 22

5 Casertana ITCTO1 LO 11

5 DRB synthetic FRDRO1 SY 28

6 British Meishan GBMS02 MS 100 1 MS MS MS
6 French Meishan FRMSO01 MS 100 1 MS MS MS
6 Tia Meslan synthetic FRTMO1 SY 10

7 Berkshire GBBKO01 LO 100 1 Br HA-2 BG
7 Gloucester Old Spots GBGOO01 LO 100 1 Br HA-2 BG
7 Large Black GBLBO01 LO 100 3 Br HA-2

7 Tamworth GBTAO01 LO 100 1 Br o’

7 Mangalica DEMAO1 LO 97 2 Ib HA-1

7 British Saddleback GBBS01 LO 98 9 Br-PI HA-2

7 Angler Sattelschwein DEASO1 LO 88 14 Br-PI-LR o’

7 Nera Siciliana ITNSO1 LO 76 11 Ib-PI-LR Split

7 French Créole (Guadeloupe) FRCRO1 LO 44 15 Ib-Br—-LW-PI (OX

7 Negro Canario ESNCO1 LO 11

7 DRB synthetic FRDRO1 SY 14

8 Italian Duroc ITDUO1 DU-N 100 2 DU DU DU
8 British Duroc GBDUO02 DU-C 100 2 DU DU DU
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Table 1. (cont.)

Cluster Population Code Type % N, St AS NJ

8 German Duroc DEDUO03 DU-C 100 2 DU DU DU

8 British Hampshire GBHAO1 HA-C 100 2 HA HA-1 HA

8 German Hampshire DEHAO02 HA-C 83 4 HA HA-1 HA

8 Manchado de Jabugo ESMJ01 LO 100 1 Ib HA-1 Iberian
8 Negro Iberico ESNIO1 LO 100 5 Ib HA-1 Iberian
8 Retinto ESREOI LO 100 10 Ib HA-1 Iberian
8 Cinta Senese ITCSO01 LO 100 2 Ib HA-1

8 Calabrese ITCAO1 LO 100 2 Ib-LR HA-1

8 Casertana ITCTO1 LO 82 5 Ib-DU-LR-LW DU

8 DRB synthetic FRDRO1 SY 30 9 DU-LW DU

8 French Créole (Guadeloupe) FRCRO1 LO 34

8 Nera Siciliana ITNSO1 LO 14

Population: usual names used by the breeders.

Code: concatenation of a two-letter country code, a two-letter breed or line name and a two-digit count. There are a total of
14 countries: CZ=Czech Republic; DE=Germany; DK =Denmark; ES=Spain; FI=Finland; FR =France; GB=the
United Kingdom; IS=Iceland; IT =1Italy; NO=Norway; PL=Poland; PT =Portugal; SE =Sweden.

Type: LO (local breed), SY (synthetic population), XX-N or XX-C, where XX stands for a cosmopolitan breed (LR, LW, PI,
DU or HA), N stands for ‘national line of a cosmopolitan breed’ and C for ‘commercial line’.

% : Percentage of individuals in the population that are assigned to the corresponding SOM cluster (only given if larger than

or equal to 10%).
N.: number of SOM cells harbouring the population.

St, AS and NJ columns: groups and sub-groups identified by these methods (see the text).

The dispersion of individuals on the SOM map is
shown in Fig. 2. Populations and breeds whose in-
dividuals are assigned to a single SOM cell or to
neighbouring cells are shown in Fig. 2a. The distri-
bution of individuals from synthetic lines and from
populations whose individuals are spread in different
locations is shown in Fig. 25.

For populations that are not spread in different
clusters, we considered the ratio of the number of
SOM cells occupied by a population (column N,
Table 1) to the total number of cells in the cluster.
This measure of within-population diversity is plotted
against the expected heterozygosity for cosmopolitan
breeds (clusters 1, 3 and 4 with 42, 38 and 20 cells,
respectively, Fig. 3a) and for the local breeds (clusters
5, 7 and 8 with 29, 31 and 26 cells, respectively,
Fig. 3b).

(1)) Complementary approaches
(a) AS

Previous results (Fig. S1 of the Supplementary
Material section of SanCristobal et al., 2006) are re-
called in Table 1. Some populations (BI, MW, NC
and TM) were seen as original groups with no link to
any other one (denoted with O in Table 1). On the
contrary, the two Hampshire populations and a large
number of local breeds were seen as a single AS
group, roughly corresponding to the 7th and 8th SOM
clusters. Reanalysing this group by the AS approach
resulted in the identification of four further original
populations (PR, AS, CR and TA, denoted by O’ in
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Table 1) and two sub-groups: ‘HA-1’ made up of
nine populations (the two Hampshire lines, three
Iberian breeds (NI, MJ and RE), two Italian breeds
(CA and CS), the German MA breed and the syn-
thetic LE). The last group ‘HA-2’ included four
British breeds (BK, GO, BS and LB).

(b) STRUCTURE

Clustering with STRUCTURE software was repeat-
edly performed assuming 8—12 clusters, because the
large size of the data and these large K numbers of
clusters made the algorithm converge to local maxima
of the likelihood, whatever the length of the Monte
Carlo Markov Chains (MCMUC) chains. Several runs
were performed with medium chain lengths (5000 or
10000 for burn-in, followed by 20000 or 50000
iterations) to select the best results showing the same
distribution of likelihoods. The probability of data
increased with K, up to a K value of about 20. As-
suming eight clusters allowed five cosmopolitan
breeds, the Meishan breed, a group based on Iberian
breeds, and a British group of breeds to be identified.
The ‘Iberian’ cluster (Ib in Table 1) included the
Iberian breeds (NI, MJ and RE), the Italian CS and
the German MA. The British cluster (Br in Table 1)
was based on British breeds (BK, GO, LB and TA).
Individuals from the other breeds were either assigned
to a cosmopolitan breed (BL to Landrace and PU to
Piétrain), or considered admixed. The corresponding
assignments and the make-up of admixed populations
are listed in Table 1.
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Fig. 2. Repartition on the SOM map of European pig breeds and populations. () Repartition on the SOM map of
cosmopolitan and local breeds: breeds are designated by their two-letter codes. Examples of the dispersion of individuals
from a single national population and from a single commercial line are shown for the Landrace (cluster 1) and the Large
White (cluster 3) breeds. The two large dotted circles correspond to pairs of similar breeds that are spread in the same
region of the SOM map (RE-NI and AS-BS). (b) Repartition of the four synthetic lines and of populations that are spread
in various places on the SOM map. IR stands for the Icelandic Landrace population.
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Fig. 3. Relationship between heterozygosity and relative SOM diversity in cosmopolitan and local breeds. Abscissa:
expected heterozygosity. Ordinates: relative SOM diversity defined as the ratio of N, (the number of SOM cells occupied
by individuals of the population) to the total number of cells in the corresponding cluster. (a) National populations and
commercial lines of cosmopolitan breeds Landrace, Large White and Piétrain (clusters 1, 3 and 4). The Scandinavian
Landrace populations (triangles) that show a low heterozygosity behave like the commercial lines. (b) Local breeds

(clusters 5, 7 and 8).

(c) Multivariate analyses

FCA was performed on individuals and on the
population means. The first four components ac-
counted for a total of 8:3% of the total inertia on
individuals and for a total of 31:5% on populations.
For the PCA done on populations’ allele frequencies,
the first four components accounted, respectively, for
12, 106, 9-7 and 5-7% of the total variance, with a
total of 38 %. In the following, only results obtained
by PCA are shown, due to the high similarities
of the result with FCA. Results are shown as two-
dimensional projections chosen after the visualization
provided by the Tetralogie software (Fig. 4). One
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component (the second one) allowed the Chinese
Meishan breed to be differentiated from all the
other populations, with the Tia Meslan synthetic
lying between the Meishan and the European breeds
(Fig. 4a). The other three main components allowed
four cosmopolitan breeds to be differentiated: large
White vs Landrace and Duroc, Landrace vs Duroc
and Piétrain vs Duroc (Fig. 45).

(d) Genetic distances

The significant results derived from the NIJ classifi-
cation, based on genetic distances, are recalled in
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Populations are designated by the two-letter code of the breed. IR stands for the Icelandic Landrace population.
(a) Coordinates are the combinations C2—C1/2 and C3 + C4/2. Note the external position of the Chinese Meishan
breed (MS) and of the Tia Meslan synthetic (TM), the intermediate position of the Icelandic Landrace between the
Landrace and the Large White clusters, and the position of British Lop inside the Landrace cluster. (b) Coordinates
are the combinations C1 and C3. Note the general similarity between this topology and that proposed by SOM

(Figs 1c and 2a).
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Table 1. In addition to the grouping of populations
from the same cosmopolitan breeds, only four sig-
nificant groupings were found: three Iberian breeds
(RE, NI and MJ), two British breeds (BK and GO,
denoted by BG in Table 1), the assignment of British
Lop (BL) to the Landrace group and the link of the
Tia Meslan synthetic to the Chinese Meishan breed
(MS).

4. Discussion

We discuss the results obtained in parallel with the
different approaches and focus on the added value of
the SOM method.

All the methods allowed similar classifications
or ordinations of individuals and populations to
be proposed. Individuals and populations from the
Chinese Meishan breed and from cosmopolitan bre-
eds (Large White, Landrace and Piétrain) were
grouped by all methods (SOM, St, AS, NJ and PCA)
within their own breed group. Both SOM and
AS methods suggested that the Icelandic Landrace
population could be partly attached to the Large
White and to the Landrace clusters, while the NIJ
classification did not attach this population to any
group. This exception was interpreted as an effect of
the stratification within the population (SanCristobal
et al., 2006). The other two cosmopolitan breeds
(Duroc and Hampshire) and the local breeds were
grouped in similar although slightly different ways.
Although the AS method clearly identified the Duroc
pigs as a separate cluster, while SOM did not, both
methods suggested the same groupings (HA-1 and
SOM cluster 8, HA-2 and SOM cluster 7). Using
STRUCTURE (with eight clusters), the British and
the Iberian groups defined by NJ were extended to
more breeds, so as to get a classification compatible
with SOM and AS clustering. For other populations
that were grouped by SOM, STRUCTURE suggested
an admixed composition of the corresponding in-
dividuals. For example it showed that all the Icelandic
pigs are admixed between Landrace and Large White
(plus other small contributions). Conversely, for the
DEHAO02 Hampshire population that was found split
by all methods, STRUCTURE strongly indicated
that the eight outliers were pure Landrace pigs. This
observation, which was confirmed when running a
test of assignment (not shown), implies that an error
occurred when labelling the DNA samples since
Hampshire pigs cannot be confused with Landrace
ones. Suggestions of admixture, as given by STRUC-
TURE, are however dependent on the number K of
clusters that are searched for. Increasing K suggested
new groupings of populations. For example assuming
K =12 resulted in the emergence of a cluster made up
of seven populations: five of SOM cluster 5, the
British BS and the German AS, which were previously
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considered as admixed (Table 1). Although this
emergence was in accordance with the SOM result
and with PCA (Fig. 4b), the meaning of this cluster
was not clear, since it involved two synthetic lines and
local breeds from distant European regions. This
clustering was not confirmed by AS, for which these
populations were seen as original, nor by the first four
components of FCA on individuals (not shown).
A possible interpretation is that all these individuals
were found in the middle of the cloud (as seen in FCA
and PCA). Their genotypes might be close to some
mean genotype either because these synthetic lines are
admixtures from quite different breeds, or because
these local breeds would be representative of a com-
mon ancestor from which the present cosmopolitan
breeds have diverged.

Compared with other unsupervised clustering
methods (AS and St), the SOM method provides re-
lationships between clusters (Fig. 1) and a graphical
description of data in a finite space (Fig. 2). Simi-
larities between the clusters were characterized by the
resulting tree (Fig. 1 a, b). The tree identified two main
clades corresponding to the Large White and Land-
race cosmopolitan breeds. Considering the positions
of the clades on the SOM map (Fig. 1¢), it seemed
that the Piétrain was closer to Large White than
to Landrace. Similarly, the Hampshire and Duroc
breeds were set closer to Landrace than to Large
White. Figure 1¢, however, showed that, within
cluster 8, the Hampshire breed was separated from
its neighbours by a dark fence, corresponding to the
large genetic distance between the Hampshire and
Duroc breeds. Similarly, the proximity between Pié-
train and Meishan (clusters 4 and 6) shown by the
tree must be taken with caution since the Meishan is
strongly isolated from the other populations (Fig. 1¢).
Taking this into account, the dispersion of individuals
and breeds on the SOM map provides an interesting
global view of the data (Fig. 2).

As reported in other studies (Brosse et al., 2001;
Kohonen, 2001; Park et al., 2004) a clear similarity
between the topologies given by SOM (Fig. 2a) and
PCA (Fig. 4b) was found.

The global topology is conserved, but the nonlinear
SOM projection introduces two different scales. Large
distances between individuals from different clusters
are shrunk and represented by distances between
clusters. Within a cluster, small distances between
similar individuals are expanded, allowing fine struc-
tures to be visualized. The large clusters dedicated to
Landrace and Large White populations illustrate this.
In each one, there were similar populations with small
genetic distances (< 0-10), but individuals were spread
over many SOM cells (42 and 38, respectively). In the
other clusters, i.e. clusters 4, 5, 7 and 8, differences in
within-population diversity were observed between
populations. Individuals from the same population
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were often found in a single SOM cell, or in neigh-
bouring cells (Fig. 2a). Several exceptions were ob-
served. Firstly, the samples of the Hampshire breed
were found in three non-adjacent regions: one within
the Landrace cluster 1 (not shown in Fig. 2 because of
probably corresponding to labelling errors of sam-
ples), and two within cluster 8. Secondly, two local
breeds and one synthetic line were found split into
different regions of the SOM map (Fig. 2b). For
cosmopolitan breeds (Landrace, Large White and
Piétrain) it was observed that the numbers of cells
harbouring animals from the same population were
generally smaller for commercial lines (mean values of
5-4, 6 and 3, for the three breeds, respectively), than
for national populations (10, 16 and 11, respectively).
Examples of this observation were illustrated in
Fig. 2a. Similarly, the larger genetic diversity ob-
served in the NI and RE Iberian breeds compared
with MJ was highlighted on the SOM map. It is worth
noting that looking at the dispersion of individuals in
FCA did not allow such differences to be visualized
(not shown). Figure 3 illustrates how populations are
differentiated by SOM, according to their diversity.
The genetic interpretation of the proposed semi-
quantitative measure of diversity is not straight-
forward. The larger is the heterozygosity, the greater
1s the increase in this measure, but there is no one-
to-one correspondence. Considering cosmopolitan
breeds, the distributions of the measure for commer-
cial or national populations did not overlap (except
for the national Scandinavian populations with low
diversity), whereas the distributions of heterozygosity
did (Fig. 3a). Figure 35 suggested that there are two
types of local breeds: a first group showed a low
diversity smaller than that observed in specialized
commercial lines, whereas the second group seemed
to be made of potentially ‘healthy’ breeds with high
indices of diversity. As for the national populations of
cosmopolitan breeds, there was no clear relationship
between this SOM measure of diversity and expected
heterozygosity.

The dispersion of individuals on the SOM map in
proportion to the internal diversity of their popu-
lation (as reflected for national versus commercial
lines, or for the three Iberian breeds) did not prevent
them from being clustered. The extension of the
BK-GO cluster (NJ) to a larger set of British breeds,
and the Iberian group (NI-RE-MJ) to some Italian
breeds (in SOM clusters 7 and 8), was validated by the
STRUCTURE analysis but did not correspond to
any significant cluster with NJ. Even for populations
from the Landrace breed, the bootstrap value was
quite low (85%, Fig. 3 of SanCristobal et al., 2006).
One explanation may be the sensitivity of the NJ
algorithm to large branch lengths: breeds with low
heterozygosity could not be clustered, because strong
genetic drift in such populations generated large
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genetic distances with other populations. This effect is
clearly seen with the Iberian breeds, for which the
bootstrap value was reduced from 93 % to 75 % when
adding the MJ inbred breed to the pair RE-NI. This
ability to cluster individuals from populations ex-
hibiting very different internal variability may be an
interesting feature of the method. Such an efficiency
of ANN:Ss in classification problems has been reported
by Guinand et al. (2002), showing that ANNs can
outperform likelihood-based methods for assigning
individuals to their population of origin, especially
when working on empirical rather than on simulated
data.

The different methods pointed to populations that
seemed heterogeneous. Except for the DEHAO?2 case,
which is probably due to some labelling error, four
cases were identified with three or four SOM lo-
cations: the Créole (CR) and Nera Siciliana (NS) local
breeds, the Icelandic Landrace population (denoted
as IR in Figs 2b and 4) and the synthetic DRB (DR).
For the other three synthetic breeds (LA, LE and
TM), a single SOM region was found in a location
between the components of the admixture predicted
by STRUCTURE. For the Icelandic Landrace the
SOM localizations of its components were in agree-
ment with the composition given by STRUCTURE.
However, it was not the case for CR, NS and DR
(Fig. 2b). This may suggest that splitting of a popu-
lation on the SOM map may be indicative of ad-
mixture, but the reverse is not true. It may also be
noted that the common SOM sub-localizations of the
Créole and the Nera Siciliana breeds corresponded to
the second lowest genetic distance between different
breeds (after the very similar NI and RE Iberian
breeds). There may be also a relationship with genetic
structure since the dispersion of Créole, Nera Siciliana
and Icelandic Landrace breeds was associated with
significant departures from the Hardy—Weinberg
equilibrium (F;5=0-10, 0-06 and 0-05, respectively;
SanCristobal et al., 2006) and large expected hetero-
zygosities. However, this is not a systematic link: the
synthetic DRB did not show any departure from the
Hardy—Weinberg equilibrium (F;5=0-01) while it is
spread over four SOM regions.

5. Conclusion

Introducing Kohonen’s SOM method to analyse a
large genetic data set contributed several improve-
ments to help apprehend a complex structure. It pro-
vided a global view on the data without any prior
hypothesis on their organization. Using a finite space
to describe the data made it possible to get a look at
many individual data; about 2700 items being spread
here over 200 hexagonal cells. The reduced dimen-
sionality of the space implies nonlinearity and, hence,
changes in the global topology. Accounting for
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such distortions is made possible with specific tools
(hierarchical clustering, U-matrix visualization of
limits between sub-regions) that allow local topology
among similar entities to be recovered. In the present
genetic context the nonlinear projection provided
useful information on the organization of diversity,
firstly by clustering individuals that share a global
similarity (pertaining to the same cosmopolitan breed,
or to a group of British breeds, in our example), then
by spreading individuals from such a cluster without
overlap between clusters. This allowed similar popu-
lations to be clustered in spite of their large genetic
distances due to genetic drift. This is an interesting
feature of the method when large samples from
populations with different histories are considered.
This seems to be a significant advantage compared
with FCA that generally develops overlapping clouds
of points. The dispersion of populations on the map,
as well as intermediate locations of individuals, may
be an index of admixture, or of sub-structuring. As a
model-free approach, it may be valuable in com-
bination with an approach like STRUCTURE, for
which choosing the right number of clusters may be
difficult with complex and large data sets. An empiri-
cal measure of diversity, the proportion of SOM cells
occupied by one population in its cluster, was pro-
posed. This measure seemed to be roughly indepen-
dent of expected heterozygosity and to have some
discriminatory power, even if its genetic meaning re-
mains to be understood.

The method may help in raising genetic or evol-
utionary questions, since it points to features that
might remain invisible while using model-driven
tools. For example in the case of genetic diversity, a
single analysis pointed to several aspects: similarity
and relationships between breeds, variations of with-
in-population diversity, suggestion of admixture, dis-
crimination between groups of populations. Even if it
does not allow any specific genetic hypothesis to be
tested, the method is a valuable descriptive tool to get
a comprehensive view on the data and to participate
in the discussion of the results given by various spe-
cific models.

This research was based on the results gathered in the
PigBioDiv European project (BIO4 CT 98 0188), which is
gratefully acknowledged.
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