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Combinatorics of the Heat Trace
on Spheres

Iosif Polterovich

Abstract. We present a concise explicit expression for the heat trace coefficients of spheres. Our for-

mulas yield certain combinatorial identities which are proved following ideas of D. Zeilberger. In

particular, these identities allow to recover in a surprising way some known formulas for the heat trace

asymptotics. Our approach is based on a method for computation of heat invariants developed in [P].

1 Introduction and Main Results

1.1 Heat Trace Asymptotics on Spheres

Let Sd be a sphere with the standard Riemannian metric of curvature +1. The Laplace-
Beltrami operator ∆ on Sd has eigenvalues λk,d = k(k + d − 1), and each λk,d has

multiplicity µk,d given by

µk,d =
(2k + d − 1)(k + d− 2)!

k! (d − 1)!
, k ≥ 1 and µ0,d = 1,

(see, for example, [Mü]). Consider an asymptotic expansion for the trace of the heat
operator e−t∆ as t → 0+ (see [MP], [Se], [Be], [Gi]):

∑

λ

e−tλ
=

∞
∑

k=0

µk,de−tλk,d ∼
∞
∑

n=0

an,dtn− d
2 .(1.1.1)

Heat trace coefficients (or heat invariants) an,d were calculated in [CW] (see (1.3.2)
and (1.4.2) for similar formulas) by methods of Lie groups and representation theory

(see also [Ca], [ELV], [DK] for related results). In this paper we present a different
approach based on [P]. We obtain the following concise explicit expression for an,d.

Theorem 1.1.2 For any n ≥ 1 and any integer ω ≥ 2n the heat invariants an,d are

equal to

(1.1.3) an,d =

ω
∑

j=1

2(−1)n
Γ(ω + d

2
+ 1)

(ω − j)! ( j + n)! (2 j + d)!

j
∑

k=1

(−1)k

(

2 j + d− 1

j − k

)

µk,dλ
j+n
k,d .
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There is some delicacy in the proof of Theorem 1.1.2. For ω ≥ 3n it follows
from a simple generalization of the main result of [P] and some facts about Legendre

polynomials (see Sections 2.1 and 2.2). Theorem 1.1.2 for 2n ≤ ω < 3n follows from
the proofs of Theorems 1.3.1 and 1.4.1 involving rather sophisticated combinatorial
arguments due to Doron Zeilberger (see below).

Validity of formula (1.1.3) for 3n > ω ≥ 2n was suggested by computer experi-
ments using [Wo]. Note that 2n is “sharp” in a sense that if ω < 2n then (1.1.3) is no

longer true (see Section 3.1).

1.2 Combinatorial Identities

Taking d = 1 in (1.1.3) we should get zero since the heat trace coefficients an,1 of a
circle S1 vanish identically for n ≥ 1. This gives rise to a surprising combinatorial
identity:

Theorem 1.2.1 (S1-identity (D. Zeilberger, [Z]))

ω
∑

j=0

1

(ω − j)! ( j + n)! (2 j + 1)

j
∑

k=0

(−1)kk2 j+2n

( j − k)! ( j + k)!
= 0

for n ≥ 1, ω ≥ 2n.

Theorem 1.2.1 was proved in [Z] (see also Section 3.1) by pure combinatorial
methods.

Similarly, taking into account that

an,3 =

√
π

4 · n!
(cf. [MS], [CW]),

we get:

Theorem 1.2.2 (S3-identity)

ω
∑

j=0

Γ(ω + 5/2)

(ω − j)! ( j + n)! (2 j + 3)

j+1
∑

l=0

(−1)ll2(l2 − 1) j+n

( j + l + 1)! ( j − l + 1)!
=

(−1)n+1
√
π

8 · n!
,

for n ≥ 1, ω ≥ 2n.

A combinatorial proof of this theorem based on a generalization of Zeilberger’s
arguments is given in Section 3.2.

Interestingly enough, pushing forward this combinatorial approach one recovers
the results of [CW] from Theorem 1.1.2 for ω ≥ 3n. We present them in a more
concise form especially in some particular cases (see (1.3.4), (1.4.4)).
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1.3 Odd-Dimensional Case

In odd dimensions formula (1.1.3) can be substantially simplified.

Theorem 1.3.1 The heat invariants of odd-dimensional spheres S2α+1 are equal to

an,2α+1 =

α
∑

s=1

α2n−2α+2s
Γ(s + 1

2
)Kαs

(n− α + s)! (2α)!
,(1.3.2)

where the coefficients Kαs are defined by

α−1
∏

β=0

(z2 − β2) =

α
∑

s=1

Kαs z2s.(1.3.3)

In particular,

an,5 =
4n−3(6− n)

√
π

3 · n!
, an,7 =

32n−6(16n2 − 286n + 1215)
√
π

640 · n!
.(1.3.4)

1.4 Even-Dimensional Case

Formulas for even-dimensional spheres have a more intricate combinatorial struc-
ture due to a certain hypergeometric expression vanishing only for d odd (see Sec-
tion 4.2).

Theorem 1.4.1 The heat invariants of even-dimensional spheres S2ν are equal to

an,2ν

=
1

(2ν − 1)!

( ν−1
∑

t=0

(ν − 1− t)!

(n− t)!

(

ν − 1

2

) 2n−2t

Kνt +

ν−1
∑

t=0

Kνt

n−t
∑

p=ν−t

(−1)p+ν−t−1 (ν − 1
2
)2n−2t−2pB2p

p(n− t − p)! (p − ν + t)!

( 1

22p−1
− 1
)

)

(1.4.2)

where B2p are the Bernoulli numbers (see [GKP]) and the constants Kνt are defined by

ν−3/2
∏

β=1/2

(z2 − β2) =

ν−1
∑

t=0

Kνt z2ν−2−2t .(1.4.3)

In particular (cf. [Ca]),

an,2 =
1

n! 22n

n
∑

r=0

(−1)r

(

n

r

)

(2− 22r)B2r.(1.4.4)

Note that the second sum in (1.4.2) vanishes for ν > n.
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1.5 Structure of the Paper

In Section 2.1 we present a generalization of the main result of [P] which allows to
prove Theorem 1.1.2 for ω ≥ 3n using some properties of Legendre polynomials,
see Section 2.2. In Section 3.1 we review Zeilberger’s proof of Theorem 1.2.1 which

leads to the proof of Theorem 1.2.2 in Section 3.2. Theorems 1.3.1 and 1.4.1 are
proved in Sections 4.1 and 4.2 using Theorem 1.1.2 for ω ≥ 3n. Theorem 1.1.2 for
3n > ω ≥ 2n follows from Theorems 1.3.1 and 1.4.1 by taking the arguments in their
proofs in the reverse order, see Section 4.3. Two auxiliary combinatorial lemmas are

proved in Sections 5.1 and 5.2.

Acknowledgments I am very grateful to Doron Zeilberger for helpful advice con-
cerning combinatorial identities proved in this paper, and especially for his proof
of Theorem 1.2.1. I would like to thank Dmitry Jakobson, Yakar Kannai, Leonid

Polterovich, Andrei Reznikov and Joseph Wolf for stimulating discussions. The au-
thor is also indebted to Klaus Kirsten and Francois Lalonde for useful remarks on the
first draft of this paper.

This research was partially conducted during my stay at the Mathematical Sciences

Research Institute in Berkeley whose hospitality and support are gratefully acknowl-
edged.

2 Heat Invariants and Spherical Harmonics

2.1 Computation of Heat Invariants

For any d-dimensional closed Riemannian manifold M the coefficients an,d can be
obtained from the local heat invariants an,d(x) (see [Gi]):

an,d =

∫

M

an,d(x) d vol(x).

In particular, if M = Sd the coefficients an,d(x) are constants and therefore for any
x ∈ Sd

an,d = vol(Sd)an,d(x),(2.1.1)

where the volume of a d-sphere is given by (see [Mü]):

vol(Sd) =
2π

d+1
2

Γ( d+1
2

)
.(2.1.2)

Let us prove the following modification of the main result of [P]:

Theorem 2.1.3 For any integer ω ≥ 3n the local heat invariants an,d(x) of a d-

dimensional closed Riemannian manifold M are equal to:

an,d(x) = (4π)−d/2(−1)n

ω
∑

j=0

(

ω + d
2

j + d
2

)

1

4 j j! ( j + n)!
∆

j+n
(

f
(

rx(y)2
) j
)
∣

∣

∣

y=x
,

(2.1.4)
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where f (r2
x) is a smooth function in some neighborhood of x ∈ M, f (s) = s + O(s2),

f : [0, ε]→ [0, ε].

Proof The result follows from Theorem 1.2.1 in [P]) (if f (r2
x) = r2

x we get precisely

the statement of that theorem). Indeed, let (y1, . . . , yd) be normal coordinates in a
neighborhood of the point x = (0, . . . , 0) ∈ M. The Riemannian metric at the point
x has the form ds2

= dy2
1 + · · ·+ dy2

d and the square of the distance function is locally
given by

rx(y)2
= y2

1 + · · · + y2
d,(2.1.5)

where y = (y1, . . . , yd). Let us note that the point x ∈ M is a non-degenerate
critical point of index 0 of the function f and hence due to Morse lemma [Mi] the
function f

(

r2
x(y)

)

can be locally written as the sum of squares (2.1.5) in some new

coordinate system (y ′1, . . . , y
′

d). Moreover, this new system can be chosen in such
a way that y ′1 = y1 + O(|y|2), . . . , y ′d = yd + O(|y|2), and hence the Riemannian
metric remains Euclidean at the point x. Repeating the proof of Theorem 1.2.1 in [P]
with the coordinates (y ′1, . . . , y

′

d) taken instead of normal coordinates we complete

the proof of (2.1.4).

Remark As was recently observed in [We], for f (r2) = r2 one could in fact take
ω ≥ n in (2.1.4).

2.2 Application of Legendre Polynomials

Recall that the Laplacian on Sd has eigenvalues λk,d = k(k + d − 1) and the corre-

sponding eigenfunctions are the Legendre polynomials Lk,d(cos r) (see [Mü]):

∆Lk,d = λk,dLk,d = k(k + d− 1)Lk,d.(2.2.1)

Proof of Theorem 1.1.2 for ω ≥ 3n Take f (r2) = 2 − 2 cos(r) = r2 + O(r4) as
the function f in Theorem 2.1.3. We express its powers in terms of the Legendre

polynomials Lk,d(cos r). Denote t = cos r. Then f (r2) j
= 2 j(1− t) j . Let

f (r2) = 2 j(1− t) j
= 2 j

j
∑

k=0

c jkLk,d(t).(2.2.2)

Since Legendre polynomials are orthogonal with weight (1− t 2)
d−2

2 we have

c jk =

∫ 1

−1
(1− t) jLk,d(t)(1 − t2)

d−2
2 dt

∫ 1

−1
Lk,d(t)2(1− t2)

d−2
2 dt

.(2.2.3)

The denominator of (2.2.3) is equal to (see [Mü]):

vol(Sd)

vol(Sd−1)µk,d
=
Γ( d

2
)
√
π

Γ( d+1
2

)µk,d

,
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where the last equality follows from (2.1.2). The numerator of (2.2.3) is computed
using the Rodrigues rule [Mü] and the following integral (see [Er]):

∫ 1

−1

(1 + t)
d
2

+k−1(1− t)
d
2

+ j−1
=

2k+ j+d−1
Γ( d

2
+ k)Γ( d

2
+ j)

Γ(k + j + d)
,

Finally we get:

c jk =
(−1)k2 j

Γ( j + d
2

) j!

( j − k)! ( j + k + d − 1)!

(4π)d/2µk,d

vol(Sd)
.

Let us substitute this into (2.2.2) and further on into (2.1.4). Note that Lk,d(cos 0) =
Lk,d(1) = 1 for all k (see [Mü]). Taking into account (2.2.1) and (2.1.1) we obtain

(1.1.3) after some easy combinatorial transformations. This completes the proof of
Theorem 1.1.2 for ω ≥ 3n.

As we mentioned in Section 1.1, it follows from the proof of Theorems 1.3.1 and
1.4.1 that in fact one can take ω ≥ 2n (see Section 4.3).

3 Proofs of the Identities

3.1 Proof of Theorem 1.2.1

In this section we follow [Z]. We will prove a more general statement:

ω
∑

j=0

1

(ω − j)! ( j + n)! (2 j + 1)

j
∑

k=− j

(−1)k(x + k)2 j+2n

( j − k)! ( j + k)!
= 0,(3.1.1)

for x ∈ R and ω ≥ 2n. If x = 0 we get the original S1-identity. Note that we have

symmetrized the summation limits in the inner sum—this is equivalent to multiply-
ing the left-hand side by factor 2. Our aim is to make (3.1.1) hypergeometric, i.e., to
represent it as a function

2F1(a, b; c; z) =

∞
∑

m=0

(a)m(b)m

(c)m

zm

m!
,(3.1.2)

where (t)m = t(t + 1) · · · (t + m − 1), (t)0 = 1. Let E f (x) = f (x + 1) be the shift

operator. Then we can rewrite (3.1.1) as

ω
∑

j=0

(−1) j

(ω − j)! ( j + n)! (2 j + 1)!

2 j
∑

p=0

(−1)p

(

2 j

p

)

Ep− jx2 j+2n

=

ω
∑

j=0

(−1) j

(ω − j)! ( j + n)! (2 j + 1)!
(E1/2 − E−1/2)2 jx2 j+2n.

(3.1.3)
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Using Taylor theorem E = eD where D is the differentiation operator (see [GKP]) we
have:

(E1/2 − E−1/2)2 j
= (eD/2 − e−D/2)2 j

= P(D)2 j D2 j ,

where

P(D) =
2 sinh D/2

D
=

eD/2 − e−D/2

D
= 1 +

D2

24
+ O(D4).(3.1.4)

Substituting this into the sum and applying D2 j to x2 j+2n we get:

ω
∑

j=0

(−1) j(2 j + 2n)! P(D)2 jx2n

(ω − j)! ( j + n)! (2 j + 1)! (2n)!

=
1

ω! n!
2F1

(

n + 1/2,−ω; 3/2; P(D)2
)

x2n

=
1

ω! n!
2F1

(

1− n, ω + 3/2; 3/2; P(D)2
)(

1− P(D)2
)ω−n+1

x2n.

(3.1.5)

The first equality is obtained by representing the sum as a hypergeometric series and

the second equality follows from the Euler transformation (see [GKP]):

2F1(a, b; c; z) = (1− z)c−a−b
2F1(c − a, c − b; c; z).(3.1.6)

Note that on both sides we have in fact polynomials in D since−ω ≤ 0 and 1−n ≤ 0
and therefore both hypergeometric series are finite (otherwise they would not be well
defined).

On the other hand, due to (3.1.4) we have

(

1− P(D)2
)ω−n+1

= O(D2ω−2n+2),

and hence
(

1− P(D)2
)ω−n+1

x2n
= 0

for ω ≥ 2n. This completes the proof of the S1-identity.

Note that for ω = 2n− 1 the identity (1.2.1) does not hold (see [Z]) and hence 2n

is “sharp” as was mentioned in Section 1.1.

3.2 Proof of Theorem 1.2.2

As in the previous section, we symmetrize the inner sumation indices and prove that

ω
∑

j=0

(−1)n
Γ(ω + 5/2)

(ω − j)! ( j + n)! (2 j + 3)

j+1
∑

l=− j−1

(−1)l l2(l2 − 1) j+n

( j + l + 1)! ( j − l + 1)!
= −

√
π

4 · n!
,

for n ≥ 1, ω ≥ 2n.
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We transform the inner sum:

1

(2 j + 2)!

j+1
∑

l=− j−1

(

2 j + 2

j − l + 1

)

(l2 − 1) j+nl2

=
(−1) j+1

(2 j + 2)!

2 j+2
∑

p=0

(−1)p(p − j − 1)!

(

2 j + 2

p

)

(

(p − j − 1)2 − 1
) j+n
.

Let us substitute this to the initial expression changing the summation index j →
j + 1. Denote ω ′ = ω + 1, n ′ = n− 1. We have

ω ′
∑

j=0

(−1)n ′+1
Γ(ω ′ + 3/2)(−1) j

(ω ′ − j)! ( j + n ′)! (2 j + 1)!

2 j
∑

p=0

(−1)p

(

2 j

p

)

(p − j)2
(

(p − j)2 − 1
) j+n ′

.

(3.2.1)

Let us open the last bracket. We get:

j+n ′
∑

r=0

(−1)r

(

n ′ + j

r

) 2 j
∑

p=0

(−1)p

(

2 j

p

)

(p − j)2 j+2n ′−2r+2.

Note that (see (1.13) in [Go])

2 j
∑

p=0

(−1)p

(

2 j

p

)

(p − j)s
= 0(3.2.2)

for s < 2 j and

2 j
∑

p=0

(−1)p

(

2 j

p

)

(p − j)2 j
= (2 j)! .(3.2.3)

Therefore non-zero contribution comes only from 2 j + 2n ′ − 2r + 2 ≥ 2 j, i.e.,
r ≤ n ′ + 1. This implies that (3.2.1) can be rewritten as

(−1)n ′+1
Γ(ω ′ + 3/2)

n ′+1
∑

r=0

(−1)r

(

n ′ + 1

r

)

·
ω ′
∑

j=1

(−1) j

(ω ′ − j)! ( j + t − 1)! (2 j + 1)!

2 j
∑

p=0

(−1)p

(

2 j

p

)

(p − j)2 j+2t ,

(3.2.4)
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where t = n ′ − r + 1. Consider the last two sums:

ω ′
∑

j=1

(−1) j

(ω ′ − j)! ( j + t − 1)! (2 j + 1)!

2 j
∑

p=0

(−1)p

(

2 j

p

)

(p − j)2 j+2t .(3.2.5)

Let us show that (3.2.5) vanishes for ω ′ ≥ 2t +1 which is always the case since ω ≥ 2n

and t ≤ n ′ + 1 = n). We use Lemma 5.1.1 (see Section 5.1) taking s = 1 in (5.1.3).
Applying the same arguments as in the proof of Theorem 1.2.1 we get that (3.2.5)

vanishes for r < n ′ + 1. Therefore the only non-zero contribution to (3.2.4) comes
from r = n ′ + 1. Taking this into account and substituting (3.2.3) into (3.2.4) we
finally obtain:

Γ(ω ′ + 3/2)

(n ′ + 1)! a ′!

ω ′
∑

j=1

(−1) j j

2 j + 1

(

ω ′

j

)

= − Γ(ω ′ + 3/2)
√
π

4(n ′ + 1)!Γ(ω ′ + 3/2)
= −

√
π

4 · n!

which completes the proof of Theorem 1.2.2.

4 Proofs of Theorems 1.3.1 and 1.4.1

4.1 Proof of Theorem 1.3.1

Denote z = k + α. The inner sum in (1.1.3) is equal to:

j+α
∑

z=α

(−1)z+α (z + α− 1)! 2z(z2 − α2) j+n

(z − α)! (2α)!

(

2 j + 2α

j + α + z

)

= 2 ·
j+α
∑

z=α

(−1)z+α

(2α)!

α−1
∏

β=0

(z2 − β2)(z2 − α2) j+n

(

2 j + 2α

j + α + z

)

=

j+α
∑

z=− j−α

(−1)z+α

(2α)!

α−1
∏

β=0

(z2 − β2)

(

2 j + 2α

j + α + z

)

(z2 − α2) j+n.

Denote l = z + j + α. Then the last sum can be rewritten as

(−1) j

(2 j + 2α)!

2 j+2α
∑

l=0

(−1)l

α−1
∏

β=0

(

(l − j − α)2 − β2
)

(

2 j + 2α

l

)

(

(l − j − α)2 − α2
) j+n
.

(4.1.1)

Let ω ′ = ω + α, n ′ = n− α and let j := j + α be the new summation index. Due to
(4.1.1) we can represent (1.1.3) as:

an,2α+1 =
2(−1)n ′

Γ(ω ′ + 3
2
)

(2α)!

α
∑

s=1

Kαs ·
ω ′
∑

j=0

(−1) j

(ω ′ − j)! ( j + n ′ − r)! (2 j + 1)!

·
j+n ′
∑

r=0

(−1)rα2r

r!

2 j
∑

l=0

(−1)l

(

2 j

l

)

(l − j)2 j+2n ′−2r+2s,

(4.1.2)
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where Kαs are defined by (1.3.3). Note that if 2 j + 2n ′ − 2r + 2s < 2 j the last sum
vanishes due to (3.2.2). Therefore if r ≤ n ′ + s we can rewrite (4.1.2) as

an,2α+1 =
2(−1)n ′

Γ(ω ′ + 3
2
)

(2α)!

α
∑

s=1

Kαs

n ′+s
∑

r=0

(−1)rα2r

r!

·
ω ′
∑

j=0

(−1) j

(ω ′ − j)! ( j + n ′ − r)! (2 j + 1)!

·
2 j
∑

l=0

(−1)l

(

2 j

l

)

(l − j)2 j+2n ′−2r+2s,

(4.1.3)

using the fact that ( j + n ′ − r)! = 0 for r > j + n ′. Let us note that Lemma 5.1.1

implies that the last two sums in (4.1.3) vanish if r < n ′ + s and ω ≥ 2n. Indeed, this
follows from (5.1.3) for t = n ′ − r + s in the same way as vanishing of (3.2.5) in the
proof of Theorem 1.2.2. Therefore the only non-zero contribution again comes only
from r = n ′ + s when the inner sum is equal to (2 j)! by (3.2.3). Hence we obtain:

an,2α+1 =
2Γ(ω ′ + 3

2
)

(2α)!

α
∑

s=1

Kαs
(−1)sα2n ′+2s

(n ′ + s)!

ω ′
∑

j=0

(−1) j

(ω ′ − j)! ( j − s)! (2 j + 1)
.(4.1.4)

Note that

ω ′
∑

j=0

(−1) j

(ω ′ − j)! ( j − s)! (2 j + 1)

=
(−1)s

(ω ′ − s)!

ω ′−s
∑

j=0

(−1) j

(

ω ′ − s

j

)

1

2 j + 2s + 1

=
(−1)s

(ω ′ − s)!

∫ 1

0

(

ω ′−s
∑

j=0

(−1) j

(

ω ′ − s

j

)

x2 j+2s

)

dx

=
(−1)s

(ω ′ − s)!

∫ 1

0

x2s(1− x2)ω
′
−s dx =

(−1)s
Γ(s + 1

2
)

2Γ(ω ′ + 3/2)
,

where the last equality follows from [GR]. Substituting this into (4.1.4) after certain
cancellations we obtain (1.3.2). In particular, taking α = 2 and α = 3 we get (1.3.4).
The proof of Theorem 1.3.1 is complete.

4.2 Proof of Theorem 1.4.1

The first steps of the proof are similar to that of Theorem 1.3.1. Let n ′ = n − ν + 1,
ω ′ = ω + ν − 1 and let j := j + ν − 1 be the new summation index. Similarly to
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(4.1.3) we obtain the following formula from (1.1.3):

an,2ν =
2(−1)n ′+1(ω ′ + 1)!

(2ν − 1)!

ν−1
∑

s=0

Kνs

n ′+s
∑

r=0

(−1)r(ν − 1
2
)2r

r!

·
ω ′
∑

j=0

(−1) j

(ω ′ − j)! ( j + n ′ − r)! (2 j + 2)!

·
2 j+1
∑

l=0

(−1)l

(

2 j + 1

l

)

(

l − j − 1

2

) 2 j+2n ′−2r+2s+1

.

(4.2.1)

However, from this moment the situation is quite different. If in the proof of Theo-
rem 1.3.1 only one term corresponding to r = n ′ + s gave a non-zero contribution,
now all terms with n ′ − r + s ≥ 0 contribute to the sum. Indeed, repeating the
arguments of Theorem 1.2.2 we get that the last two sums in (4.2.1) are equal to:

ω ′
∑

j=0

(−1) j(2 j + 2n ′ − 2r + 2s + 1)! P2 j+1

(ω ′ − j)! ( j + n ′ − r)! (2 j + 2)! (2n ′ − 2r + 2s)!
x2n ′−2r+2s

∣

∣

∣

x=0
(4.2.2)

where P is given by (3.1.4). Setting t = n ′ − r + s in (5.2.3) in Lemma 5.2.1 (see

Section 5.2) we get that if ω ≥ 2n, (4.2.2) is equal to

(n ′ − r)s

2(n ′ + s− r)! (ω ′ + 1)!
P−1(x2n ′−2r+2s)

∣

∣

∣

x=0
.(4.2.3)

Let us compute P−1(x2t )|x=0. We have

P−1
=

D

e−D/2 − eD/2
=

∞
∑

i=0

P2iD
2i

and
P−1(x2t )|x=0 = (2t)! P2t .

Computing P2t we get Bernoulli numbers. Indeed,

(2t)! P2t = −2

(

B2t

22t
− B2t

2

)

.(4.2.4)

Indeed, by a well-known formula (see [GKP])

z

ez − 1
=

∞
∑

n=0

Bnzn

n!
,

and on the other hand

z/2

ez/2 − 1
− 1

2

z

ez − 1
= −1

2
P−1(z)
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which implies (4.2.4). Let us substitute (4.2.4) into (4.2.3) and further into (4.2.1).
After certain combinatorial transformations we obtain (1.4.2). In particular, we take

t as the new summation index, t = 0, 1, . . . , n − ν + 1 + s. Note that if n < ν then
t ≤ s and hence (t − s)s = (t − s)(t − s + 1) · · · (t − 1) = 0 unless t = 0 when
(−s)s = (−1)ss!. This explains why the second sum disappears in (1.4.2) for n < ν.

It is easy to check that taking ν = 1 we get (1.4.4). The proof is complete.

4.3 Proof of Theorem 1.1.2 for 2n ≤ ω < 3n

Take the arguments in the proofs of Theorems 1.3.1 and 1.4.1 in the reverse order.

Starting with (1.3.2) in odd dimensions and (1.4.2) in even dimensions we arrive
to (1.1.3). Note that the proofs of Theorems 1.3.1 and 1.4.1 are valid for ω ≥ 2n

(cf. Theorems 1.2.1 and 1.2.2) and hence formula (1.1.3) holds under the same con-
dition. This completes the proof of Theorem 1.1.2.

5 Auxiliary Combinatorial Lemmas

5.1 Odd Dimensions

Lemma 5.1.1 Let ω ′ ≥ 2t + s, s ≥ 0, t ≥ 1. Then

ω ′
∑

j=0

(−1) j (2 j + 2t)! z j

(ω ′ − j)! ( j + t − s)! (2 j + 1)!
=

s
∑

k=0

Qk,s(z)2F1

(

−ω ′ + k,
1

2
+ t + k;

3

2
+ k; z

)

,

(5.1.2)

where Qk,s(z) are some polynomials in z. Moreover,

ω ′
∑

j=0

(−1) j(2 j + 2t)!

(ω − j)! ( j + t − s)! (2 j + 1)!
P(D)2 jx2t

= 0,(5.1.3)

where P(D) is defined by (3.1.4).

Proof Denote the sum at the left hand side by σs(z). Let us proceed by induction.
For s = 0 the statement follows from (3.1.5). Suppose we proved it for all s ≤ s0. Let

us prove it for s0 + 1. It is easy to see that

σs0+1(z) = (t − s0)σs0
(z) + z

dσs0

dz
.(5.1.4)

By the induction hypothesis and the rule for differentiation of a hypergeometric

function (see [Er]) we obtain:

dσσ0

dz
=

s0
∑

k=0

Q ′k,s0
(z)2F1

(

−ω ′ + k,
1

2
+ t + k;

3

2
+ k; z

)

+

s0
∑

k=0

Qk,s0
(z)

(k − ω ′)( 1
2

+ t + k)

k + 3
2

2F1

(

−ω ′ + k + 1,
3

2
+ t + k;

5

2
+ k; z

)

.
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Substituting this to (5.1.4) implies (5.1.2).

Let us prove (5.1.3). We use (5.1.2) and apply arguments of the previous section
starting with (3.1.5) to each term of the sum σs(z). Note that each hypergeometric

function in the right-hand side of (5.1.2) is in fact a finite series since −ω ′ + k < 0
for all k = 0, 1, . . . , s. Due to (3.1.6) we have the following condition for vanishing
of the left hand side in (5.1.3):

3/2 + k− 1/2− t − k + ω ′ − k = ω ′ − k− t + 1 > t,(5.1.5)

that is ω ′ ≥ 2t + k. But we have supposed that ω ′ ≥ 2t + k and since k ≤ s we get

(5.1.5). The last thing we have to verify is that using the Euler transformation (3.1.6)
we always get a finite hypergeometric series. This is indeed so since

3/2 + k− 1/2− t − k = 1− t ≤ 0

due to the condition t ≥ 1. This completes the proof of the Lemma.

5.2 Even Dimensions

Lemma 5.2.1 Let ω ′ ≥ 2t + s, s ≥ 0, t ≥ 0. Then

ω ′
∑

j=0

(−1) j (2 j + 2t + 1)! z j+1

(ω ′ − j)! ( j + t − s)! (2 j + 2)!

=
(2t)! (t − s)s

2(ω ′ + 1)! t!
+

s
∑

k=0

Qk,s(z)2F1

(

−1− ω ′ + k,
1

2
+ t + k;

1

2
+ k; z

)

,

(5.2.2)

where Qk,s(z) are some polynomials in z. Moreover,

ω ′
∑

j=0

(−1) j(2 j + 2t + 1)! P2 j+1

(ω ′ − j)! ( j + t − s)! (2 j + 2)!
x2t
∣

∣

∣

x=0
=

(2t)! (t − s)s

2(ω ′ + 1)! t!
P−1(x2t )

∣

∣

∣

x=0
,(5.2.3)

where P(D) is defined by (3.1.4).

Proof Again, we proceed by induction over s. For s = 0 this can be checked by a
direct computation (e.g. using [W]). Denoting the left-hand side of (5.2.2) by ζs(z)
similarly to (5.1.4) we have

ζs0+1(z) = (t − s0 − 1)ζs0
(z) + z

dζs0

dz
.(5.2.4)

As in the proof of Lemma 5.1.1 this implies the induction step and proves (5.2.2). The
relation (5.2.3) follows from (5.2.2) in a similar way as (5.1.3) follows from (5.1.2).
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