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Abstract

Using the comparison results for positive compact operators by Aliprantis and Burkinshow, Mokhtar-
Kharroubi investigated compactness properties of positive semigroups on Banach lattices. The aim of this
paper is to study these properties in general Banach spaces (without positivity). Our results generalize
a part of those obtained by Mokhtar-Kharroubi to general Banach spaces context. More specifically, we
derive conditions which ensure the compactness of the remainder term Rn(t) for some integer n. The
improvement here is that it can applied directly to the neutron transport equation for a wide class of
collision operators.

2000 Mathematics subject classification: primary 47A10,47A55, 47G20.

1. Introduction

Let X be a Banach space and let J?(X) be the set of all bounded linear operators
in X. Let T be the infinitesimal generator of a C°-semigroup [U(t), t > 0} acting
on X. We denote by a> the type of this semigroup. It is well known (see, for instance,
[6, 10]) that if K e J£?(X), then T + K generates a strongly continuous semigroup
{V(t), t > 0} given by the Dyson-Phillips expansion

where

U0(t) = U(t), Uj(t) = [ U(s)KUj^(t - s)ds (j > 1).
J
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26 Khalid Latrach [2]

The remainder term of order n is given by

For a linear operator T acting on X, the spectrum of T is denoted by cr(r). The
resolvent set of T is the complement of o (T) in the complex plane, p(T) = C\a(T).
For any A. in p(T), the resolvent operator (A. — T)~l is denoted by /?(A., T).

In his classical work [12], Vidav proved that under the following condition

f there exists n > 1 such that [(A. - T)~lK]n is compact for all A.
I satisfying Re A. > a>

the part of the spectrum of T + K lying in the half plane Re A. > co consists of, at most,
isolated eigenvalues with finite algebraic multiplicity. Unfortunately, this condition
does not guarantee that the part of the spectrum of the perturbed semigroup V(t)
outside the spectral disc of U(t) consists of, at most, isolated eigenvalues. This is
due to the fact that, in general, we have e"

7(T+K) c o(V(t)). More precisely, there
can exist a point a ^ 0 in the continuous spectrum of V(t) which does not belong
to the closure of the set e'

a{T+K). So, it is necessary to attack the problem directly
by studying the spectrum of the operators {V(i), t > 0}. Motivated by problems
in transport theory, a perturbation technique for studying the spectrum of V(t) was
initiated by Vidav [13]. His analysis was clarified and refined later by Voigt [14] who
showed that if

(there exist m, n e N such that (Rn(t)B)m is compact for large t and
( ' (forallfi

thena(V(t))D[a e C : |or| > eM'} consists of, at most, isolated eigenvalues with finite
algebraic multiplicity. In particular, for any v > co, a{T + K) n {A. e C : Re A. > v}
consists of, at most, finitely many eigenvalues {A.i,... , A.,}. If P, and D, denote,
respectively, the spectral projection and the nilpotent operator associated with A.,,
1 < i < n, then

n

V(t) = (I - P) V(t) + J^ eXi'eDi'Pi
1=1

with ||(/ - P)V(t)\\ = o(e(k'-e)t) as t -*• +00, where P = J?M P,, A.' = min{ReA.,,
l < / < p ] and e > 0 small enough.

Within the framework of positive semigroups, Mokhtar-Kharroubi [8] has shown the
existence of many connections between the assumptions (HI) and (H2). In particular,
the spectral analysis of the perturbed semigroup V(t) is possible with assumptions
such as (HI).
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[3] Perturbed semigroups 27

The aim of this paper is to generalize and to extend a part of the results obtained
in [8] to general Banach space context. Indeed, we prove that if there exists n e N ,
M # 0 such that if

(H3) ( K n"=i( / ? ( A"' T) U(ti)K) i s c o m P a c t f o r a*1 "-tuples ( / , , . . . , tn), tt > 0;
I (ti,... ,tn) -*• K Wi=\ (U(ti)K) is continuous in the uniform topology,

then the remainder Rn+i(t) of order n + 1 in the Dyson-Phillips expansion V(t) =
5Zjlo Uj W 1S compact. This shows that the spectral analysis of the perturbed semi-
group V(t), is also possible on general Banach spaces (without positivity). Our
methods of proofs are different from those used in [8] and do not rely on positivity
arguments.

In Section 2 we discuss, under the assumption (H3), the compactness of the remain-
ders Rn(t) of order n in the Dyson-Phillips expansion. The main results of Section 2
are Theorem 2.1 and Theorem 2.2. We close Section 2 by giving a spectral analysis
of perturbed semigroups. Finally, applications of these results to the neutron transport
equation are the topic of Section 3.

2. Compactness results

Let X be a Banach space and let T be the infinitesimal generator of a C°-semigroup
(U(0, t > 0) of type a> acting on X". Let K € S£{X). Following the perturbation
theory (see [6, 10]), A = T + K generates a C°-semigroup which we denote by
(V(t),t>0).

LEMMA 2.1. The following two statements are equivalent:

(i) The operator U(t)K is compact on X for every t > 0.
(ii) The map (0, +oo) B t —*• U(t)K is continuous in the uniform topology and

R(k, T)K is compact on X for some (every) k in p(T).

PROOF. Let M be such that || T(t)\\ < Me0". Assume U(t)K is compact for every
t > 0. Since K is bounded and located on the right of U(t), arguing as in the proof
of [10, Theorem 3.2, page 48] we get the continuity of the map (0, oo) - • U(t) K in
the uniform topology.

We now prove the second part of the assertion. Indeed, it follows from boundedness
of K that

r°°
R(k,T)K= e-k'U(t)Kdt, forRekxo

Jo

and the integral exists in the uniform operator topology.
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Let 8 > 0, Re k > co and

oo

W(k,8) = / e-x'U{t)Kdt.

Since U{t)K is compact for every t > 0, the use of [16, Corollary 2.3] implies the
compactness of W(k, 8). Whence, the estimate

\\R(k,T)K-W(k,8)\\<
Jo

U(t)Kdt <SM\\K\\ - • 0 as<5->-0

shows the compactness of R(k, T)K. Now the resolvent identity gives the compact-
ness of R(k, T)K for every k e p(T).

Conversely, let t > 0, since U(t)K is bounded we may write

kR(k,T)U(t)K = ke~ksU(t + s)Kds for every k > co.
Jo

Further, the use of the relation /0°° ke~ks ds = 1 leads to

/•OO

kR(k, T)U(t)K - U(t)K = / ke~Xii[U(t + s)K - U(t)K]ds.
Jo

Let k > a>. Then for every 8 > 0 we have

\\kR(k,T)U{t)K-U(t)K\\

ke~ks \\U(t + s)K- U(t) K || ds< f
Jo

ke-ks\\U(t + s)K- U(t)K\\ds+ / ke~ks\\ U(t + s)K - U(t)K\\ ds
J

< sup \\U(t + s)K- U(t)K\\-
0<s<S

Therefore, we get

lim \\kR(k, T)U(t)K - U(t)K\\ < sup \\U(t + s)K - U(t)K\\

for every 8 > 0. Since 8 > 0 is arbitrary, we have

(2.1) lim \\kR(k, T)U(t)K - U(t)K\\ = 0.
*.-»• 00

Finally, the compactness of U(t)K(t > 0) follows from the commutativity of the
operators R(k,T) and U(t) and (2.1). •
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We are now prepared to establish the following result.

THEOREM 2.1. Suppose that the map U(-)K : (0, oo) -> Jf (X), t -+ U(t)K
is continuous in the uniform topology and that, for some X in p(T), R(X, T)K is
compact. Then

V(t) - U(t) = f U(t- s)KV(s)ds
Jo

is compact on X.

PROOF. The result is immediate if t = 0. Suppose now t > 0. Clearly, Lemma 2.1
implies the compactness of U(t)K. Accordingly, the operator U(s)KV(t — s) is
compact too for every 5 € (0, t]. Therefore, using Duhamel formula [6, equation (2.3),
page 497] and applying [16, Corollary 2.3] one concludes the compactness of V(t) —
U(t) for every / > 0. •

REMARK 2.1. A theorem of the type of Theorem 2.1 was first proved by Vidav
([13, Theorem 1]). In his special situation K is compact and X is reflexive. Later,
assuming the compactness of K, Vidav's analysis was improved and extended by
Voigt ([14, Theorem 2.4]) to the case of general Banach spaces. Note, however, that
Voigt's hypothesis is stronger than those of Theorem 2.1. In fact, if K is compact,
then U(t)K is also compact and consequently the assertion of Theorem 2.1 follows
via Lemma 2.1.

REMARK 2.2. It should be noted that the result of Theorem 2.1 holds provided that
the map (0, +oo) B t —*• K U(t) is continuous in the uniform topology and, for some
X in p( T), KR (X, T) is compact on X. Indeed, under these hypotheses, for all? > 0,
the operator K U(t) is compact. To see this, let t > 0 and let X > u>. Using the
boundedness of K U(t) we obtain

r°°
XK U(t)R(X, T)-KU(t) = / Xe~ks[KU(t + s) - KU(t)] ds.

Jo

Similar calculations as in the second part of the proof of Lemma 2.1 lead to

lim \\XKU(t)R(X, T) - KU{t)\\ = 0.
X-KX)

Using the commutativity of the operators U(t)andR(X, T) and the fact that K R( X, T)
is compact, we infer from the last equation the compactness of K U(t) (t > 0).
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On the other hand, the operator T may be viewed as a bounded perturbation of
T + K by — K. Hence according to Duhamel formula we have

iU(t) = V(t) + V(t- s)(-K) U(s) ds.
Jo

From the compactness of KU(r), (r > 0), we infer that V(t — s)(—K)U(s) is

compact for each s e (0, t]. Applying [16, Corollary 2.3] we obtain the compactness

of/? ,(*)= V ( 0 - U(t).

COROLLARY 2.1. Assume that the hypotheses of Theorem 2.1 are satisfied. Then
the map (0, oo) a t -> Ri(t)K is continuous in the uniform topology.

PROOF. By virtue of the hypotheses, it suffices to show the continuity in the uniform
topology of the map (0, +oo) 3 I ^ V(t)K. To do this, we first observe that
Lemma 2.1 and Theorem 2.1 imply the compactness of U(t)K and R(t)K for all
t > 0. Therefore, V(t)K is compact for all t > 0. Proceeding as in the first part of
the proof of Lemma 2.1 we obtain the continuity in the uniform topology of the map
(0, +oo) 3 t -*• V(t)K which completes the proof. •

REMARK 2.3. We have seen above that U(t) K is continuous in the uniform topology
if its values are compact operators for each t > 0 (Lemma 2.1). It seems that in case
n > 2, the compactness of U{h)K • • • U(tn)K for each n-tuple (tu... , tn) e (0, oo)"
does not suffice. Nevertheless, for n > 2, it is not difficult to check that, if

K I~I"=2W')^) i s compact for all (n - l)-tuples (t2,..., tn), r, > 0;
(t2, . . . , tn) —>• K YYi=1(U{ti)K) is continuous in the uniform topology,

then the map (t\,... ,?„)—> K n " = i ( ^ ( ' ' ) ^ ) ls continuous in the uniform topology
and its values are compact operators on X.

Indeed, let (t[,... , t'n) and (tu... , tn) be two elements of (0, oo)". Then

KU(t[)K -K U(t'n)K - KU{tx)K -K U(tn)K

= KU{t[)[KU{t'2) • • -KU(t'n) - KU(t2) • • -KU(tn)]

+ K[U(t[) - U{.h)]KU(t2)K • • • U(tn)K.

The first term of the right member tends to zero in norm as {t'2,... , t'n) —> (t2,... , tn).
Since U(t) is bounded and (U(t), t > 0) is continuous in the strong operator topology,
the use of the compactness of KU{t2)K • • • KU(tn)K {t > i) and [6, Lemma 3.7,
page 151] implies that the second term of the right member also tends to zero in norm
as t[ tends to tx which completes the proof of the statement.

Now, we come to the main result of this section.
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THEOREM 2.2. Let n > 1 be a fixed integer and suppose that, for all X > o>, the
following assumption is satisfied

K I~I"=i(fl(*. T) U(ti)K) is compact for all n-tuples (tu ... , tn), t, > 0;
{t\,... , tn) —*• K n"=i(^( ' ' )^) is continuous in the uniform topology.

Then the remainder term Rn+i(t) of the Dyson-Phillips expansion is compact on X
for all t > 0.

REMARK 2.4. Note that Theorem 2.2 generalizes Theorem 6 in [8] to general Ba-
nach spaces. Indeed, the latter theorem was proved in the Banach lattice context and
its proof is essentially based on comparison arguments for positive operators (see [ 1 ]).

The proof of Theorem 2.2 uses the following lemma.

LEMMA 2.2. Under the assumptions of Theorem 2.2 the operator K r]"=i (U(jtt)K)
is compact on X for all n-tuples (t\,... , tn), /, > 0 with i = 1 , . . . , n.

For the sake of simplicity, we consider only the case n = 2. The general case can
be treated similarly.

PROOF. Since X e p(T), we can write

X2KR(X, T)U(h)KR(X, T)U(t2)K - KU(ti)KU(t2)K

Ke~k'U(t + h)dt 1 Ke~XsKU(s + t2)Kds - KU{tx)KU(t2)K

Jo

/ e~Mt+s) KU(t + tx)K U(s + t2)Kdtds

Jo

/

OO />OO / /-OO \

/ e-M'+s)KU(ti)KU(t2)Kdtds (because / Xe~kl dt = 1)
Jo \ Jo /

/

oo /-oo

/ e-k(l+s)[KU(t + tl)KU(s + t2)K-KU{tx)KU(t2)K]dtds.
Jo

Let S > 0. Writing

J(t, s, tut2) = X2e~Ml+s)[KU(t + t^KUis + t2)K - K U(h)K U(t2)K]

we haven
Jo Jo

oo />oo

J(t,s,tut2)dtds

J(t,s, tut2)dtds+ dt J(t,s,tut2)dtds
Jo y«

/

oo i*5 i»oo /»oo

dt I J(t,s,tut2)dtds + I I J(t,s,ti,t2)dtds.
Jo Js Js
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Setting

J(t,s,tut2)dtds, h = / / J{t,s,tx,t2)dtds,
Js Jo

flS /»00 y»00 /»00

h = I I J(t,s,tut2)dtds, U = / / J(t,s,h,h)dtds
Js JsJs Js

we get

/

OO /-DO

/ 7(f, 5, /i, t2)dt ds = h + I2 + h + h-
Jo

Using the estimate

fs fs

< / / X.2e-Ml+s)\\KU(t + ti)KU(s + t2)K - KU(ti)KU(t2)K\\dsdt
Jo Jo

/
Jo Js

OO

< sup ||ATf/(f + fOAT t/(i + r2)AT - KUit^KUit^KW [ / Xe~kl dt

0St,s<S

and f0 Xe~k'dt < 1, we obtain

||/,|| < sup \\KU(t + t!)KU(s-
0<t,s<8

Next,

l|/2 II <

f°° -Ju f
Js o<i<s Jo

Obviously, the estimate

sup \\KU(t + h)KU(s + t2)K - KU(ti)KU(t2)K\\

< \\K\\3M2e'"(''+'2+'+S) + ||Al3MV('1+'2> = \\K\\3M2eai{h+'2)

and f™ e^'e^'^dt = e"6 (e-^-^1) / (k - co) lead to

/
°° 3 2 f°°

Js
Since f™ ke~u dt = e~xs, we obtain

(2.2) ||72|| < ||Ar||3MV("+« \e-u + L^JH'\ .
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Note that 73 is similar to 72, then it satisfies the estimate (2.2).
Consider now 74. It is easy to see that

\\h\\<[ I k2e-M'+s)\\K\\3M2ea'("+'2+'+s)dtds
Js Js

Js
f \ \ \ \ dtds.
s Js

Hence, from the relation

<>OO /•OO/ f
s Js

f k2e~Ml+s)\\K\\3M2ea'{"+'2+'+s)dtds
Js

Uoo /.oo

/ ke-{k-w)s

= \\K\\3M2e<°u>+h)

, A. — CO

and

n k2e-X«+s) || K

f
it follows that

[ j 2 -2(X-<o)S "I

(X-GJ)2 J

Since S > 0 is arbitrary we have | | / i | | = 0. Moreover, the estimates (2.2) and (2.3)
imply

lim ||/f|| = 0 for i = 2 ,3 ,4 .

Consequently, we have

(2.4) lim \\k2KR(k, T)U(h)KR(k, T)U(t2)K - KU(tx)KU{t2)K\\ = 0.
A

\
A . - * OO

Now, the use of the compactness of KR(k, T)U(ti)KR(k, T)U(t2)K together with
(2.4) gives the compactness of KU(t\)KU(t2)K. This completes the proof. •

PROOF OF THEOREM 2.2. For t = 0, the result is obvious. Let / > 0. By Lemma 2.2
we have the compactness of K U(ti)KU(t2) ••• K U(tn)K on X. Hence the integrand
of Rn+i(t), t > 0 is compact on X. Now, the use of [16, Corollary 2.3] ends the
proof. •
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Let T be a closed, densely defined linear operator on X. We recall that A. e C is an
eigenvalue of finite algebraic multiplicity of T if k is an isolated point of cr(T) and is
a pole of the resolvent of T with degenerate associated spectral projection P (see [6,
III, 6.5]), where a(T) denotes the spectrum of T.

Let B e i?(X). The essential spectral radius of B is defined by

/-,,(#) :=sup{|A|, A.ecr(5), X but is not an eigenvalue of finite algebraic multiplicity}.

Let {U(t), t > 0} be a strongly continuous semigroup on X. Then

r(U(t)) = etu> for every t > 0,

where r(-) denotes the spectral radius and co is the type of {U(t), t > 0}, that is,

co = lim -log || [/(Oil = inf - log || U(t)\\.
<->oo t »>0 /

Further, there exists coe € [—oo, co] such that

re(U(t)) = e'°" (t>0)

(see [14, Lemma2.1]). The real number<we is called the essential type of (U(t), t > 0).
Let us first recall a known result on the essential type of perturbed C°-semigroups on
Banach spaces.

PROPOSITION 2.1 ([14, Theorem 2.2]). With the notations introduced above, sup-
pose that there exist two integers m and n and to > 0 such that (BRn(t))

m is compact
for t > t0 and for all B 6 JSf(X). Then re(V(t)) < e"°, where [V(t), t > 0} is the
C°-semigroup generated by T + K.

COROLLARY 2.2. Assume that the hypotheses of Theorem 2.2 are satisfied. Then
a(V{t)) Pi {/x e C : |/x| > e"°} consists of (at most) isolated eigenvalues with finite
algebraic multiplicities.

REMARK 2.5. The interest of Corollary 2.2 lies in the fact that it implies coe < co.
Such a property is useful for the description of the large time behaviour of V(t). In
fact, the part of the spectrum of V(t) outside the spectral disc of U(t) can consist
only of eigenvalues of finite algebraic multiplicities. Assuming the existence of such
eigenvalues, the semigroup V(t) can be decomposed into two parts, the first containing
the time development of finitely many eigenmodes, the second being of faster decay.

PROOF OF COROLLARY 2.2. Clearly the hypotheses of Theorem 2.2 imply the com-
pactness of Rn+i(t) for all t > 0 and n > 1. Therefore, for all B e -Sf (X) and m > 1,
(BRn+i(t))m is compact on X. Now the use of Proposition 2.1 gives the desired
assertion. •

REMARK 2.6. Corollary 2.2 extends [8, Theorem 5] to general Banach spaces.
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3. Application to neutron transport equation

The purpose of this section is to apply the previous results to the neutron transport
equation. Indeed, consider the integro-differential operator

f) + f K(X, £,
Jv

where T is the streaming operator and K denotes the integral part of A (the collision
operator), (x,%) e DxV, where the configuration space D is an open bounded subset
of RN (N > 1), while the velocity space V is an arbitrary open subset of \&N. The
unbounded operator A is studied in the Banach spaces LP(D x V), 1 < p < oo.

It's domain is given by

D(A) = \\lr € LJD x V), £— e LAD x V),\lr[r = 0I ox

where F_ = {{x, £) e 3D x V, % is ingoing atx e 3D}. For the trace results we
refer, for instance, to [3,4].

The usual assumptions are

a ( ) € L°°(V) -and K € %{LP{D x V)).

It is well known (see, for instance, [3, 9]) that the streaming operator T = A — K
generates the following explicit C°-semigroup

otherwise,

where .$(*, £) = inf{s > 0, x - s$ i D}. Since K is bounded in LP(D x V),T + K
generates a C°-semigroup {V(t), t > 0} (see [6, 10]).

REMARK 3.1. In the neutron transport theory the compactness of /?2 (0 (t > 0) on
L/,(£>xV0(l < p < oo) was considered in the 1980s by many authors under different
assumptions and conditions on the scattering kernels (see, for instance, [5, 11, 15]).
Recently, the same result was proved in [9] for a wide and useful class of collision
operators referred to as regular operators (see [9, Definition 2.1]). In what follows we
give another proof of this result based solely on the results obtained in Section 2.

Note that the operator K is local in x so it can be viewed as a mapping

K() : x € D - • K(x) € Sf(Lp(V)).
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We assume that AT(-) is strongly measurable, 

j t e D - > K(x)f e LP(V) is measurable for any / € LP(V) 

and bounded 

esssupl l t fCxOI I -^MV)) < ° ° -

It follows easily that K defines a bounded operator on the space Lp(Dx V) according 
to the rule 

<p e LP(D x V) K(x)q>(x) e L P (Z) x V) 

(we identify Lp(Ł> x V) and L„(D; L„( V))) and 

H t f ( * ) l l . s f ( M C x V ) ) - ess sup | | A : ( * ) I I J ? < Z . , ( V ) ) -
j r e D 

Our final assumption is 

Ł 0 ) 6 X{LP(V)) almost everywhere, 

where X(LP (V)) denotes the set of all compact operators on Lp (V). 

DEFINITION 3.1 ([9, Definition 2.1]). A collision operator 

«•(•) . x € D K(x) 6 JSf(Lp( V)). 

is said to be regular if K(x) € X(LP (V)) almost everywhere on D and 

AT(-) : x e D - * /sT(*) e jSf(Ł„( V)) 

is Bochner measurable. 

In the sequel, we denote by 3P,(LP (D x V)) the set of all regular collision operators 
on Lp (D x V). The interest of this class of operators lies in the following lemma. 

LEMMA 3.1 ([9, Lemma 2.3]). A regular collision operator K can be approxi
mated, in the uniform topology, by a sequence {Kn} of collision operators with kernels 
of the form 

Ł/,•(*)*,•(Ł)*,•($'), 
iel 

where fi e L°°(D), g, 6 L"(V) andht e L"\V) (l/p + l/p' = 1) (lisfinite). 
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As it is suggested by the hypotheses ofTheorem 2.2 we define the set & (Lp (DxV))
(1 < p < oo) by

&(LP(D x V)) = {K 6 3f(Lp(Dx V)) such that there exists n € AT satisfying
K njL, (#(*, 71) £/(',)*) (ft > 0) is compact on Lp (D x V)
and the map (tu... ,/„)-»• K f]"=1 (U(ti)K) is continuous
in the uniform topology}.

First we prove the following result.

THEOREM 3.1. Let p e [1, oo) arad AT € &(LP(D x V)). Then there exists an
integer n such that Rn+i (t) is compact for all t > 0 on Lp (D x V).

PROOF. The result follows immediately from Theorem 2.2. •

The next corollary shows the relationship between the sets ^{LP{D x V)) and
@{LP{D x V)).

COROLLARY 3.1. Let p € (1, oo). With the notations above, we have

Sf,{Lp{D x V)) c &(LP(D x V)).

PROOF. Let K e 3f\Lp(D x V» and let X e p(T). Using [9, Lemma 2.1]
we deduce the compactness of K(A. — T)~l on LP(D x V) and consequently the
operator K(k - T)~l U(t)K is compact on LP(D x V) for all / > 0. On the other
hand, [7, Theorem 1] implies the continuity in the uniform topology of the map
(0, oo) 3 t -> KU(t)K. Hence we conclude that K € ^(LP(D x V)) which
completes the proof. D

It follows from Corollary 3.1 and Theorem 4.1 that if K e &(LP(D x V)), then
there exists an integer n > 2 such that Rn(t), t > 0 is compact on Lp (D x V). In fact,
we have the following more precise result.

COROLLARY 3.2. Let p e (1, oo) and let K e &(LP(D x V)). Then R2(t) is
compact on LP(D x V) for all t > 0.

PROOF. Let K e &(LP(D x V)) and let A. e p(T). Clearly (see the proof of
Corollary 4.1) we have the compactness of K (k-T)~lU(t) K (t > 0)onL p (Dx V)
and the continuity in the uniform topology of the map (0, oo) 9 t -> K U(t)K. Thus
the result follows from Theorem 2.2. •

REMARK 3.2. The Corollary 4.2 is the first part ofTheorem 3.1 in [9].
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Let us now consider the case p = 1. To avoid some technical difficulties, we
assume that D is convex.

THEOREM 3.2. Forp = 1 we have

@,(LX(P x V)) c ^>(Li(D x V)).

PROOF. Let K e ^ (L , (D x V)). We claim that KR(X, T)U(t)K is compact
on Li(D x V), for every X e p(T) and f > 0. Indeed, by Lemma 4.1 there
exists a sequence of finite rank operators which converges, in the operator norm,
to K. Then it suffices to establish the result for a finite rank operator, that is,
K(X, f, £') = EU Ki(x, £, f ) , K,(X, £, r ) = //(*)««($)&,•(*'), where n e A^*,/,(-) €
L°°(D),gi(-) 6 L'(V) and /i,(-) € L°°(V). Since the compactness is stable by
summation, we can restrict ourselves to an operator of kernel Kt{x, £, £') (which we
denote again by K). Thus, KR(X, T)U(t)K is an integral operator on L,(D x V)
whose kernel is

where

= r
with ./,(•) = gi(-)hi(-) e L' (RN) (J,;(•) is extended by zero outside V). It follows that
KR(X., T)U(t)K = A4A2A3A2AU where

A, : Ll(Dx V)-* Ll(D) \A2: L\D) - • L\D)
I

[A4 : L\D) ->• L\D x V)
+ JDN&x,x')ylr(x')dx', \

It is clear that the operators A\, A2, A3, and A4 are bounded. In order to conclude
our claim, it suffices to show that A3 is compact on Li(D). In fact, by virtue of the
convexity of D, A3 is a convolution operator on L{(D). Since D is bounded, the use
of [2, Corollary 27, page 74] implies the compactness of A3 on Ly(D). This proves
our claim.

Now the use of [7, Theorem 1] implies the continuity in the uniform topology of
the map (0, oo) B t ->• KU(t)K (because K is regular) and ends the proof of the
theorem. •
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As a consequence of Theorem 3.2 and [7, Theorem 1] we have the following result.

COROLLARY 3.3. Let K e @{Lx{Dx V)). Then, fort > 0, the operators KU {t) K,
K V(t)K, KRi (t) and Rx(t)K are compact on L{(D x V).

REMARK 3.3. The results of Corollary 3.3 were announced without proof in [7].

By Theorem 3.2 we conclude that if K is regular, then K e &{LX(D x V)).
Therefore, using Theorem 2.2 and [7, Theorem 1], we obtain the following corollary.

COROLLARY 3.4. Let K e &.{LX(D x V)). Then, for t > 0, R2(t) is compact on
Li(D x V).

REMARK 3.4. Note that the results obtained in Section 2 imply the compactness of
R2U) on L\(D x V). This improves the second part of Theorem 3.1 in [9] where only
the weak compactness of Ri{t) on L\(D x V) was obtained.

REMARK 3.5. We close this paper by observing that the class of regular collision
operators was introduced in [9] and it was shown that transport equation with such
collision operators have many nice properties (see [9] and [7]). We proved above that
&(LP(D x V)) contains &(LP(D x V)) (1 < p < 00) but we do not know yet
whether these two sets are different or not.
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