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Abstract

The effect of uniform wind flow on modulational instability of two crossing waves is
studied here. This is an extension of an earlier work to the case of a finite-depth water
body. Evolution equations are obtained as a set of three coupled nonlinear equations
correct up to third order in wave steepness. Figures presented in this paper display the
variation in the growth rate of instability of a pair of obliquely interacting uniform wave
trains with respect to the changes in the air-flow velocity, depth of water medium and
the angle between the directions of propagation of the two wave packets. We observe
that the growth rate of instability increases with the increase in the wind velocity and the
depth of water medium. It also increases with the decrease in the angle of interaction of
the two wave systems.

2010 Mathematics subject classification: primary 76B07; secondary 76B15, 76E17.
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1. Introduction

Over the centuries, freak waves remained as marine monsters in the maritime history.
Ocean engineer and adventurer Bascom [1] has described some stories of freak waves
in his book “Waves and Beaches”. In recent years, freak waves, also known as rogue
waves, killer waves or giant waves, have become a matter of academic interest. Even
today we do not have adequate knowledge of the physics involved in the process of
formation of freak waves and the propagation of such waves. Unless these things
are clearly understood, prediction of occurrence of these waves is difficult, in spite
of applications of sophisticated equipments like radar, drones, satellites, weather
information systems, wind’s profilers, computers of high configuration and so on.
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Different mathematical models [7, 8, 12, 17, 23, 25] reveal that freak waves can
be generated as a result of modulational instability mechanism. Some investigations
[11, 13, 16, 18, 20, 24, 31] show how the dynamics of freak waves is influenced by
various factors like water current, geometry of the bottom surface, air flowing over
the water surface and so on. Chabchoub [4] conducted an experimented with hybrid
Peregrine-JONSWAP (Joint North Sea Wave Project) wave field with random phases,
and observed formation of an extreme wave.

It is known that waves of different sizes can form even with a fairly steady wind. The
factors that determine the size of waves are the wind’s speed, the fetch, the duration
of wind flow and so on. Miles [21, 22] elaborated a linear theory concerning the
initial growth of infinitesimal wind waves. Bliven et al. [2] performed an experiment
in a wind-wave tunnel to observe the influence of wind on regular wave growth rate,
modulational frequency and sideband growth rate. Dhar and Das [9], Waseda and Tulin
[32], Kharif et al. [15], Peirson and Garcia [26] and many others studied influence of
wind on water wave propagation. To study evolution of weakly nonlinear gravity
waves over finite-depth water in the presence of wind flow, Leblanc [20] added to the
Davey–Stewartson [6] equation a linear term corresponding to the Miles mechanism
of wave generation. Leblanc found that the modulations of gravity waves grow
super-exponentially under the influence of wind. Debsarma et al. [7, 8] also studied
asymptotic stability of wind forced modulations in a situation of crossing sea states.
They observed super-exponential growth of two obliquely propagating uniform waves
as a result of modulational instability. They assumed that the wind input results in
a growth rate at an order same as that of the order of nonlinear modulation. In their
paper, the effect of wind input is incorporated by adding linear terms proportional
to wave steepness to the evolution equations. Chabchoub et al. [5] carried out an
experiment in a large wind-wave tank which can generate wind speeds between 1 to
14 ms−1. They found that the evolution of Peregrine solution of nonlinear Schrödinger
equation [27] is not much influenced by slow winds blowing in the same direction.
They also observed formation of Peregrine breather-like large wave amplitude under
the action of strong winds. Brunetti and Kasparian [3] studied the effects of stronger
wind-forcing on modulational instability. They considered wind-forced nonlinear
Schrödinger equation with a growth rate of the wave energy of the same order as the
wave steepness. Such an equation, as observed by Brunetti and Kasparian [3], results
in widely extending the spectral range of the modulational instability gain, compared
with the wind-forced nonlinear Schrödinger equation with the assumption that the
growth rate of the wave energy of the same order as the dissipation. To study statistical
properties of wind-generated waves, Toffoli et al. [30] performed an experiment in an
annular flume over which a constant and quasi-homogeneous wind blows. In such a
tank, waves can propagate circularly in an unlimited fetch condition. They found that
the wave field generated in this annular tank in the presence of wind flow deviates
largely from the Gaussian statistics. They also observed spontaneous formation of
rogue waves just before the wave field reaches a stationary state.

In this paper, we consider a crossing sea states situation at the interface of air
and water. We assume that wind flows uniformly over the water body which is of
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finite depth. A similar situation was also considered by Senapati et al. [28], but in
their paper the water medium was taken to be of infinite depth. Dhar and Das [10]
studied evolution of two obliquely interacting water wave packets. They assumed
constant atmospheric pressure. Here we assume that the two water wave packets are
propagating symmetrically with respect to the direction of wind flow. This assumption
makes the model a simple one, but not physically unrealistic. This is because wind-
flow direction, in some rare situation, may be half-way between the two directions
of water wave propagation. Following a standard multiple scale method, we have
derived wind-flow modified evolution equations. Using these evolution equations we
have performed stability analysis of a pair of obliquely propagating Stokes wave trains
in the presence of wind flowing uniformly over water. The aim of the present study
is to see how the presence of wind modifies modulational instability of Stokes wave
trains in a situation of crossing sea states. Stability analysis performed here shows
that the growth rate of instability increases as the depth of water medium increases.
As the wind velocity increases, the growth rate of instability of the two wave trains
also increases. We also find that if the angle of interaction of the two wave systems
becomes smaller, the growth rate of instability becomes higher.

The paper is organized as follows. In Section 2 we write down the governing
equations. In Section 3 we derive the evolution equations, and in Section 4 we present
stability analysis of a pair of obliquely propagating uniform wave trains. Finally, in
Section 5 we report the results obtained by stability analysis.

2. Basic equations
We consider a finite-depth water body over which wind flows at a uniform speed U

parallel to the x-direction. At the interface of air and water, two obliquely propagating
narrow-banded water wave packets meet, and produce the wavy interface z = ζ(x, y, t)
at time t. We have chosen z-axis pointing in the vertically upward direction. The
simple model that we have considered here is shown in Figure 1. We assume that both
air and water medium are inviscid and incompressible, and the motion is irrotational in
either medium. Let φw and φa be the perturbed velocity potentials in the water medium
and atmosphere, respectively. So, the velocity vectors within water and air medium
are given, respectively, by ~∇φw and ~∇φa +

−→
U , where

−→
U = (U, 0, 0). The equations of

continuity in water and air medium take the following forms:

∇2φw = 0, −h < z < ζ (2.1)

∇2φa = 0, ζ < z <∞ (2.2)

where h is the depth of the water body. The kinematic boundary condition at the
interface is given by

d
dt

[z − ζ(x, y, t)] = 0 on z = ζ.

Thus, the kinematic boundary conditions at the interface z = ζ are
∂φw

∂z
−
∂ζ

∂t
=
∂φw

∂x
·
∂ζ

∂x
+
∂φw

∂y
·
∂ζ

∂y
on z = ζ, (2.3)
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Figure 1. Schematic description of the model of crossing seas in the presence of wind blowing uniformly
over water.

∂φa

∂z
−
∂ζ

∂t
− U

∂ζ

∂x
=
∂φa

∂x
·
∂ζ

∂x
+
∂φa

∂y
·
∂ζ

∂y
on z = ζ· (2.4)

The equations of motion in the water and air medium are, respectively,
d
dt

[~∇φw] = −→g −
1
ρw

~∇pw,

d
dt

[~∇φa +
−→
U] = −→g −

1
ρa

~∇pa,

where ρa, ρw are the densities of air and water medium, respectively; pa, pw are the
pressure of air and water medium, respectively, and −→g is the acceleration due to the
earth’s gravity. The condition of continuity of pressure at the air–water interface gives
pw = pa on z = ζ. This gives the dynamic boundary condition

ρw
∂φw

∂t
− ρa

∂φa

∂t
+ g(ρw − ρa)ζ − ρaU

∂φa

∂x
= −

1
2
ρw(~∇φw)2 +

1
2
ρa(~∇φa)2 on z = ζ.

(2.5)
The bottom boundary condition is

∂φw

∂z
= 0 on z = −h. (2.6)

In the atmospheric medium,

φa → 0 as z→∞. (2.7)

To obtain linear dispersion relation for the system of equations (2.1)–(2.7), we consider
the motion of an infinitesimal progressive wave with wave number (k, l) and frequency
ω at the air–water interface in the following form:

ζ = α sin(kx + ly − ωt),
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φa = αa(z) cos(kx + ly − ωt),

φw = αw(z) cos(kx + ly − ωt).

Substituting these in the linearized version of equations (2.1)–(2.7) and then
eliminating α, αa, αw, we obtain the following linear dispersion relation:

D(ω, k, l) ≡ ω2 coth(h
√

k2 + l2) + r(ω − Uk)2 − g(1 − r)
√

k2 + l2 = 0, (2.8)

where r = ρa/ρw is the density ratio. Since equation (2.8) is quadratic in ω, there are
two possible modes of wave propagation for the following two values of ω:

ω± =
rUk tanh(kch) ±

√
[g(1 − r)kc{1 + r tanh(kch)} − rk2U2] tanh(kch)

1 + r tanh(kch)
, (2.9)

where kc =
√

k2 + l2. We may designate waves to be of positive mode or negative mode
according as they propagate with frequency ω = ω+ or ω = ω−. Expression (2.9) for
ω± also shows that a wave with wave number (k, l) becomes linearly unstable, if the
wind-flow velocity exceeds the critical velocity Uc, which is given by

Uc =

[gkc(1 − r){1 + r tanh(kch)}
rk2

]1/2
. (2.10)

When the wave propagates making an angle θ with the direction of air flow k = kc cos θ,
l = kc sin θ and equation (2.10) becomes

Uc cos θ =

[g(1 − r){1 + r tanh(kch)}
rkc

]1/2
.

In Figure 2 we have shown the variation of critical velocity Uc with respect to
characteristic wave number kc for a given depth h = 500 m. Considering limit h→∞
in (2.10), we can find the critical velocity Uc for infinite-depth water, which is

Uc =

[gkc(1 − r2)
rk2

]1/2
.

In the present model, we assume that the magnitude of the wind-flow velocity
is much less than this critical velocity Uc, which assures us that the waves do not
undergo linear instability mechanism. Note that a wind-wave can be of various
forms depending on the nature (magnitude or direction) of the wind flow. A detailed
discussion on the generation of waves by wind and the interaction of ocean waves with
wind was given by Janssen [14].

3. Derivation of evolution equations

We have considered weakly nonlinear interaction of two narrow-banded water wave
packets having central wave numbers (k, l) and (k,−l). Above the water surface wind
flows with a uniform velocity U in a direction parallel to the x-axis. Thus, in our
ocean model, the two wave packets are propagating symmetrically with respect to the
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Figure 2. Plot of critical velocity Uc against carrier wave number kc for different values of θ and for
r = 0.00129, h = 500 m.

direction of wind flow. In order to derive the wind-flow modified evolution equations
in a situation of crossing sea states, here we have followed standard multiple scale
method as in Dhar and Das [10]. We assume a solution of equations (2.1)–(2.7) in the
form

φw = φ00 +
∑

(m,n),(0,0)

[φmn exp{i(mψ1 + nψ2)} + c.c.], (3.1)

φa = φ′00 +
∑

(m,n),(0,0)

[φ′mn exp{i(mψ1 + nψ2)} + c.c.], (3.2)

ζ = ζ00 +
∑

(m,n),(0,0)

[ζmn exp{i(mψ1 + nψ2)} + c.c.], (3.3)

where ψ1 = kx + ly − ωt and ψ2 = kx − ly − ωt are the phase functions of the first and
second wave packets, respectively. Note that (ω, k, l) and (ω, k,−l) both satisfy the
linear dispersion relation (2.8). Here c.c. is the abbreviation for complex conjugate,
and φmn, φ′mn are functions of x1, y1, z and t1 while ζmn are functions of x1, y1 and t1.
Here x1, y1, t1 are slow space and time variables defined by

x1 = εx, y1 = εy, t1 = εt,

where the parameter ε indicates the order of smallness of wave steepness.
Substituting (3.1) and (3.2) in equations (2.1) and (2.2), respectively, and

then equating coefficients of exp[i(mψ1 + nψ2)] on both sides of these two
equations, we get the following equations for φmn and φ′mn with (m, n) =

(0, 0), (1, 0), (0, 1), (1, 1), (1,−1), (2, 0) and (0, 2):[ d2

dz2 − ∆2
mn

]
(φmn, φ

′
mn) = (0, 0), (3.4)
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where

∆2
mn ≡ K2

mn + L2
mn, Kmn ≡

{
(m + n)k − iε

∂

∂x1

}
, Lmn ≡

{
(m − n)l − iε

∂

∂y1

}
.

Condition (2.6) requires
∂φmn

∂z
= 0 on z = −h, (3.5)

while condition (2.7) demands

φ′mn → 0 as z→∞. (3.6)

The general solution of (3.4), which satisfies end conditions (3.5) and (3.6) are

φmn = cosh[(z + h)∆mn]Amn,

φ′mn = exp[−z∆mn]A′mn, (m, n) , (0, 0),

where Amn and A′mn are functions of x1, y1 and t1.
For convenience, we take Fourier transforms of zeroth harmonic equations in (3.4)

(that is, for (m, n) = (0, 0)), with respect to x1 and y1, defined by

f̄ (κx, κy) =
1

2π

∫ ∫ ∞

−∞

f (x1, y1) exp[−iκxx1 − iκyy1] dx1 dy1,

where κx and κy are Fourier transform parameters. Performing the Fourier transform
we obtain [ d2

dz2 + ε2κ2
]
(φ̄00, φ̄

′
00) = (0, 0), (3.7)

where κ2 = κ2
x + κ2

y .
Recalling the end conditions (3.5) and (3.6), we take solution of equations (3.7) as

φ̄00 = cosh[εκ(h + z)]Ā00, (3.8)

φ̄′00 = exp[−εκz]Ā′00, (3.9)

where Ā00 and Ā′00 are functions of κx, κy and t1. We now expand (2.3), (2.4) and (2.5) in
Taylor’s series about z = 0 and then in the resulting equations we substitute (3.1)–(3.3)
and also use solutions (3.8)–(3.9). Finally, equating coefficients of exp[i(mψ1 + nψ2)]
on both sides, we get the following system of equations:

∆mn sinh(h∆mn)Amn + iWmnζmn = amn, (3.10)

−∆mnA′mn + iWmnζmn − iUKmnζmn = a′mn, (3.11)

−iWmn cosh(h∆mn)Amn + irWmnA′mn + g(1 − r)ζmn − irUKmnA′mn = bmn (3.12)

on z = 0 with

Wmn ≡ (m + n)ω + iε
∂

∂t1
,

and amn, a′mn, bmn as contributions from nonlinear terms. Fourier transforms of zeroth
harmonic equations in (3.10)–(3.12) yield the following three equations:
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εk sinh(εkh)Ā00 − ε
∂ζ̄00

∂t1
= ā00, (3.13)

−εkĀ′00 − ε
∂ζ̄00

∂t1
− iεUkxζ̄00 = ā′00, (3.14)

ε cosh(εkh)
∂Ā00

∂t1
− εr

∂Ā′00

∂t1
+ g(1 − r)ζ̄00 − iεUrkxĀ′00 = b̄00 (3.15)

on z = 0. Eliminating Ā00, Ā′00 from equations (3.10)–(3.12) for (m, n) = (1, 0) and
(0, 1) we obtain the following equations:

[{coth(h∆mn) + r}W2
mn − 2ρUKmnWmn + rU2K2

mn − g(1 − ρ)∆mn]ζmn

= −iWmn coth(h∆mn)amn − ir(Wmn − UKmn)a′mn − ∆mnbmn (3.16)

for (m, n) = (1, 0), (0, 1). We make use of the two equations in equation (3.16)
to determine the evolution equations of the two water wave packets considered
in this section. For that we need solutions for Āmn, Ā′mn and ζmn for (m, n) =

(1, 0), (0, 1), (2, 0), (0, 2), (1, 1), (1,−1), (0, 0). We take perturbation expansion of these
quantities in the form

Gmn = Σε pG(p)
mn,

where Gmn stands for Āmn, Ā′mn and ζmn, and the superscript p starts from p = 1 for
(m, n) = (1, 0), (0, 1) and it starts from p = 2 for the other variables. Solutions for Āmn,
Ā′mn and ζmn are given in Appendix A. We now solve equations (3.13)–(3.15) for the
case (m, n) = (0, 0). Having determined a00, a′00 and b00 we note that a00, a′00 are of
O(ε3) while b00 is of O(ε2). Thus, from equation (3.15) we conclude that ζ̄00 is of
O(ε2). Also, from equations (3.13) and (3.14) we conclude that Ā00 is of O(ε) and
Ā′00 is of O(ε2). Solving equations (3.13)–(3.15) we get Ā00, Ā′00 and ζ̄00, which are
given in Appendix A. Finally, we substitute all the solutions obtained above on the
right-hand side of two equations in (3.16) and simplify both sides correct up to O(ε3).
Thus, we obtain the following equations which govern the evolution of the two wave
packets having carrier wave numbers (k, l) and (k,−l), when they interact in a situation
in which air flows with uniform velocity parallel to x-direction. These equations are
then made dimensionless by using the following changes of variables:

x′1 = kcx1, y′1 = kcy1, t′1 = t1
√

gkcσ, σ = tanh(kch), kc =
√

k2 + l2,

ζ′10 = kcζ10, ζ′01 = kcζ01, U′ = U/
√

gσ/kc, E = A(1)
00 /(

√
gkcσ/k2

c ),

h′ = kch, k′ = k/kc, l′ = l/kc, ω′ = ω/
√

gkcσ.

In dimensionless form the evolution equations, correct up to third order in wave
steepness, are the following in which we have dropped the (′) notation:

i
∂ζ10

∂t1
+ iβ1

∂ζ10

∂x1
+ iβ2

∂ζ10

∂y1
+ β3

∂2ζ10

∂x2
1

+ β4
∂2ζ10

∂y2
1

+ β5
∂2ζ10

∂x1∂y1

= λ1ζ
2
10ζ
∗
10 + λ2ζ10ζ01ζ

∗
01 + λ3ζ10L+E, (3.17)
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i
∂ζ01

∂t1
+ iβ1

∂ζ01

∂x1
− iβ2

∂ζ01

∂y1
+ β3

∂2ζ01

∂x2
1

+ β4
∂2ζ01

∂y2
1

− β5
∂2ζ01

∂x1∂y1

= λ1ζ
2
01ζ
∗
01 + λ2ζ01ζ10ζ

∗
10 + λ3ζ01L−E, (3.18)

where E satisfies the equation[
σ2 ∂

2

∂t2
1

− (1 − r)hσ
(
∂2

∂x2
1

+
∂2

∂y2
1

)]
E = L+(ζ10ζ

∗
10) + L−(ζ01ζ

∗
01). (3.19)

The operators L± appearing in equations (3.17)–(3.19) are

L± ≡ 2(1 − r)ω
(
k
∂

∂x1
± l

∂

∂y1

)
− (1 − σ2)ω2 ∂

∂t1
.

The coefficients βi, λi are given in Appendix B. In the absence of wind flow we
recover the evolution equations of Kundu et al. [18]. Also, in the limit h→∞, these
coefficients are in agreement with the corresponding coefficients of Senapati et al. [28].

We now introduce a reference frame that moves horizontally along positive the x-
direction with a velocity equal to the group-velocity component of either wave packet
in that direction. The new space and time variables are

ξ = x1 − kcgt1, η = y1, τ = εt1,

where cg is the dimensionless group velocity given by kcg = ∂ω/∂k = β1. In this
moving reference frame, equations (3.17)–(3.19) become, respectively,

i
∂ζ10

∂τ
+ iβ2

∂ζ10

∂η
+ β3

∂2ζ10

∂ξ2 + β4
∂2ζ10

∂η2 + β5
∂2ζ10

∂ξ∂η

= λ1ζ
2
10ζ
∗
10 + λ2ζ10ζ01ζ

∗
01 + λ3ζ10L+E, (3.20)

i
∂ζ01

∂τ
− iβ2

∂ζ01

∂η
+ β3

∂2ζ01

∂ξ2 + β4
∂2ζ01

∂η2 − β5
∂2ζ01

∂ξ∂η

= λ1ζ
2
01ζ
∗
01 + λ2ζ01ζ10ζ

∗
10 + λ3ζ01L−E, (3.21)

µ1
∂2E
∂ξ2 + µ2

∂2E
∂η2 = L+(ζ10ζ

∗
10) + L−(ζ01ζ

∗
01). (3.22)

The coefficients µ1 and µ2 are given in Appendix B. These two coefficients match the
corresponding coefficients of equation (32) of Kundu et al. [18]. The operators L±
appearing in equations (3.20)–(3.22) now have the form

L± ≡ {2kω(1 − r) + β1(1 − σ2)ω2}
∂

∂ξ
± 2lω(1 − r)

∂

∂η
.

In the absence of air flow and second wave packet, the system of equations (3.20)–
(3.22) reduce to Davey–Stewartson [6] equations. Again, if we consider limit h→∞
in the absence of airflow, then the coefficients βi, λi become in agreement with the
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corresponding coefficients of the evolution equations derived by Onorato et al. [23]
and Shukla et al. [29].

For very small h, the coefficients β1, β2, β3, β4, β5 are of order O(h−1/2), O(h−1/2),
O(h−3/2), O(h−3/2) and O(h−3/2), respectively; while the coefficients λ1, λ2, λ3, µ1
and µ2 are of order O(h−3/2), O(h−3/2), O(h−1/2), O(h2), O(h2), respectively. So, the
evolution equations (3.20)–(3.22) do not remain valid for shallow water body.

4. Stability analysis

Spatially uniform solution of the system of equations (3.20)–(3.22) is given by

ζ10 = A0e−iτ∆ω1 , ζ01 = B0e−iτ∆ω2 , E = E0, (4.1)

where A0, B0 and E0 are three real constants. The amplitude dependent frequency
shifts of the two wavetrains are given by

∆ω1 = λ1A2
0 + λ2B2

0, ∆ω2 = λ1B2
0 + λ2A2

0.

To investigate stability of the above uniform solution (4.1), we consider the following
infinitesimal perturbation:

ζ10 = A0e−iτ∆ω1 (1 + A′), ζ01 = B0e−iτ∆ω2 (1 + B′), E = E0(1 + E′). (4.2)

We now substitute the perturbed solution (4.2) in equations (3.20)–(3.22) and linearize
with respect to the perturbed quantities. Assuming

A′ = A′r + iA′i , B′ = B′r + iB′i , E′ = E′r + iE′i ,

with A′r,A
′
i , B
′
r, B

′
i ,E

′
r,E

′
i being real, we separate real and imaginary parts. Thereby, we

get a system of six equations in these perturbed variables. Then we take the Fourier
transform of these equations with respect to ξ, with η defined by

f̄ (K, L) =
1

2π

∫ ∫ ∞

−∞

f (ξ, η)e−i(Kξ+Lη) dξ dη,

where f stands for A′r, A
′
i , B′r, B′i , E

′
r, and E′i . Finally, assuming time dependence of

Ā′r, Ā
′
i , B̄′r, B̄′i , Ē

′
r and Ē′i to be of the form exp(−iΩτ) we obtain the following linear

system of six equations:

(β3K2 + β4L2 + β5KL + 2λ1A2
0)Ā′r − i(Ω − β2L)Ā′i + 2λ2B2

0B̄′r + iE0λ3Q+Ē′r = 0, (4.3)

i(Ω − β2L)Ā′r + (β3K2 + β4L2 + β5KL + 2λ1A2
0)Ā′i + iE0λ3Q+Ē′i = 0, (4.4)

2λ2A2
0Ā′r + (β3K2 + β4L2 − β5KL + 2λ1B2

0)B̄′r − i(Ω + β2L)B̄′i + iE0λ3Q−Ē′r = 0, (4.5)

i(Ω + β2L)B̄′r + (β3K2 + β4L2 − β5KL)B̄′i + iE0λ3Q−Ē′i = 0, (4.6)

2iA2
0Q+Ā′r + 2iB2

0Q−B̄′r + (µ1K2 + µ2L2)E0Ē′r = 0, (4.7)

(µ1K2 + µ2L2)E0Ē′i = 0. (4.8)
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Figure 3. Contour plot of Gr in K–L plane r = 0.00129, U = 10, A0 = 0.1, B0 = 0.1, h = 2.

The factor (µ1K2 + µ2L2) vanishes only if (K, L) = (0, 0) or if h = 0. Hence, from
equation (4.8) it follows that Ē′i = 0. Again, using (4.7) we can eliminate Ē′r from the
equation (4.3)–(4.6). As a result, the system of six equations (4.3)–(4.8) reduces to
a system of four equations in four unknowns Ā′r, Ā′i , B̄′r, B̄′i . This system possesses a
nontrivial solution only if Ω satisfies the following biquadratic equation

[(Ω − β2L)2 − P+{P+ + 2(λ1 + λ3Q2
+R)A2

0}]
· [(Ω + β2L)2 − P−{P− + 2(λ1 + λ3Q2

−R)B0.
2}]

= 4P+P−(λ2 + λ3Q+Q−R)2A2
0B2

0. (4.9)

Equation (4.9) is the nonlinear dispersion relation in which P±, Q±, R are

P± = β3K2 + β4L2 ± β5KL,

Q± = [2kω(1 − r) + β1(1 − σ2)ω2]K ± 2lω(1 − r)L,

R = [µ1K2 + µ2L2]−1.

Solving equation (4.9) numerically we have plotted growth rate of instability Gr =

Im(Ω) of the uniform wave solution (4.1) in the perturbed wave number plane.
In Figures 3–6 we have shown contour plots of growth rate of instability for θ = π/8,

π/4, 3π/8. Following Leblanc [19], we have chosen r = 0.00129 as the density ratio
between air and water. In Figures 3–5 the amplitudes of the two wave trains are taken
to be equal A0 = B0 = 0.1, while in Figure 6, A0 = 0.12, B0 = 0.07. Figures 3, 4, 6
are drawn for positive mode of wave propagation taking U = 10, while Figure 5 is
for the case of negative mode of wave propagation taking U = −10. If we compare
Figure 4 with Figure 5, we observe that the region of instability expands as the depth
of the water medium increases within the scope of validity of the evolution equations
(3.20)–(3.22). Comparing Figure 5 with Figure 3, we observe that there is not much
difference in the regions of instability for the positive and negative modes of wave
propagation.
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Figure 4. Contour plot of Gr in K–L plane r = 0.00129, U = 10, A0 = 0.1, B0 = 0.1, h = 5.

Figure 5. Contour plot of Gr in K–L plane r = 0.00129, U = −10, A0 = 0.1, B0 = 0.1, h = 2.

For unidirectional perturbations along x-direction, equation (4.9) can be solved for
Ω as follows:

Ω2 = β3K2[β3K2 + (λ1 + λ3S )(A2
0 + B2

0)

±

√
{(λ1 + λ3S )(A2

0 − B2
0)}2 + 4(λ2 + λ3S )2A2

0B2
0],

where
S = [2kω(1 − r) + β1(1 − σ2)ω2]2/µ1.

The uniform wave solution (4.1) becomes unstable under perturbation along x-
direction when

β3[(λ1 + λ3S )(A2
0 + B2

0) ±
√
{(λ1 + λ3S )(A2

0 − B2
0)}2 + 4(λ2 + λ3S )2A2

0B2
0] < 0.

Figure 7 shows stable and unstable regions in h–θ plane for unidirectional
perturbations. Comparing the right-hand figure (U = 10) with left-hand figure (U = 5)
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Figure 6. Contour plot of Gr in K–L plane r = 0.00129, U = 10, A0 = 0.12, B0 = 0.07, h = 2.

Figure 7. Stability and instability regions in h–θ plane for unidirectional perturbations: S denotes stability
and I denotes instability; U = 5 (left), U = 10 (right).

in Figure 7 we find that the curve β3 = 0 lies at a little bit upper position in the right-
hand figure, which implies that the region of instability increases with the increase
in wind-flow velocity. In Figures 8–11 we have shown the variation in growth rate
of instability Gr = Im(Ω) against perturbation wave number K for different values of
U, θ and h. In all the Figures 8–11 it is observed that Gr initially increases with the
increase in perturbation wave number K, but then it starts diminishing. In Figure 8 we
have plotted growth rate of instability Gr = Im(Ω) against perturbation wave number
K for different values of wave steepness B0 of the second wave train. We see that
Gr increases with the increase in B0. In Figure 9 we have shown the variation in Gr

with respect to the change in angle θ. It is seen that Gr decreases with the increase
in the half-angle θ between the directions of propagation of the two wave trains.
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Figure 8. Gr vs K, r = 0.00129, θ = π/6, U = 5, A0 = 0.1, B0 = 0,0.05,0.1,0.15, h = 2 (left), h = 5 (right).

Figure 9. Gr vs K, r = 0.00129, A0 = 0.12, B0 = 0.07, U = 5, θ = 4◦, 14◦, 24◦, 32◦, h = 2 (left), h = 5
(right).

Comparing the right-hand figure with the corresponding left-hand figure in
Figures 8–11, we observe that the maximum growth rate of instability is higher for
h = 5 compared with that for h = 2. Figure 10 shows how Gr changes as the wind-flow
velocity changes. Note that Gr increases with the increase in air-flow velocity, both
for the positive and negative modes of wave propagation. In Figure 11 we observe the
variation in Gr with respect to the change in water depth 1.2 ≤ h ≤ 2.2. We find that Gr

increases with the increase in water depth. In Figures 8–11 we observe that as the depth
of water medium increases, the growth rate of instability becomes maximum for larger
values of perturbation wavenumber. Since we have considered here linear stability
of the uniform solution given by (4.1), we should keep in mind that all the results of
stability analysis remain valid only for sufficiently small perturbation wave numbers.
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Figure 10. Gr vs K, r = 0.00129, A0 = 0.12, B0 = 0.07, θ = π/8, h = 2, U = 0, 8, 16, 20 (left), h = 5,
U = 0,−8,−16,−20 (right).

Figure 11. Gr vs K, r = 0.00129, A0 = 0.12, B0 = 0.07, U = 6, h = 1.2, 1.3, 1.8, 2.2, θ = π/16 (left),
θ = π/8 (right).

In particular, in Figure 9 the growth rate curve beyond k = 0.5 for h = 2 and beyond
k = 0.8 for h = 5, cannot be considered to be meaningful.

5. Conclusions

In order to study the effect of uniform wind flow in a situation of crossing sea
states over finite-depth water, we have derived nonlinear evolution equations correct
up to third order in wave steepness. We have also made stability analysis of a pair
of obliquely propagating Stokes wave trains. Note that in the perturbed wave number
plane, the region of instability increases with the increase in depth of water medium.
The growth rate of instability of one wave train increases with the increase in wave
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steepness of the second wave train. We find that the growth rate of instability becomes
higher as the two wave trains interact making smaller angles. Figures plotted here
show that the growth rate of instability increases with the increase in wind velocity,
both for the positive and negative modes of wave propagation. This work may motivate
further numerical simulation and experimental investigation in order to expand the
horizon of the literature of crossing seas.

To conclude, the limitations of the present model suggest the following works: (i)
one may explore a crossing sea states situation above which wind flow is not uniform;
(ii) numerical simulation and experimental work may be carried out in order to expand
the horizon of the literature of crossing seas.

Appendix A. Amn, A′mn, ζmn, ζ′mn at the lowest order (in dimensional form)

A10 = −
iω

kc sinh(kch)

[
1 + iε

{
σ + kch
σk2

c

}(
k
∂

∂x1
+ l

∂

∂y1

)
+

iε
ω

∂

∂t1

]
ζ10, σ = tanh(kch)

A′10 =
i(ω − Uk)

kc

[
1 +

iε
k2

c

(
k
∂

∂x1
+ l

∂

∂y1

)
+

iεU
(ω − Uk)

∂

∂x1
+

iε
(ω − Uk)

∂

∂t1

]
ζ10

A01 = −
iω

kc sinh(kch)

[
1 + iε

{
σ + kch
σk2

c

}(
k
∂

∂x1
− l

∂

∂y1

)
+

iε
ω

∂

∂t1

]
ζ01

A′01 =
i(ω − Uk)

kc

[
1 +

iε
k2

c

(
k
∂

∂x1
− l

∂

∂y1

)
+

iεU
(ω − Uk)

∂

∂x1
+

iε
(ω − Uk)

∂

∂t1

]
ζ01

ζ20 = F1ζ
2
10

A20 = iω cosech(2kch)
[
σ−1 −

F1

kc

]
ζ2

10, A′20 = i(ω − Uk)
(
1 +

F1

kc

)
ζ2

10

ζ02 = F1ζ
2
01

A02 = iω cosech(2kch)
[
σ−1 −

F1

kc

]
ζ2

01, A′02 = i(ω − Uk)
(
1 +

F1

kc

)
ζ2

01

ζ11 = F2ζ10ζ01

A11 =
iω

k sinh(2kh)

[ 2k2

σkc
− F2

]
ζ10ζ01, A′11 =

i(ω − Uk)
kkc

[2k2 + kcF2]ζ10ζ01

ζ1−1 = F3ζ10ζ
∗
01, A1−1 = 0, A′1−1 = 0

F1 =
2kc

f1

[
ω2 + r(ω − Uk)2 − ω2

{1 + 2 cosh(2kch)
2 sinh2(kch)

}]
, f1 = −D(2ω, 2k, 2l)

F2 =
2k
f2k2

c

[
ω2{3k2

c − (k2 − l2)σ−2 − 4kkcσ
−1 coth(2kh)}

+ 2ρ(ω − Uk)2(−k2 − 2l2 + 2kkc)
]
, f2 = −D(2ω, 2k, 0)

F3 =
1

g(1 − r)

[
ω2 − ω2

(k2 − l2

σ2k2
c

)
−

2l2

k2
c

r(ω − Uk)2
]
.
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Appendix B. Coefficients of the evolution equations

β1 = [ks2 + 2rU(ω − Uk)]/s1, β2 = ls2/s1

s1 = 2{ωσ−1 + r(ω − Uk)}, s2 = −ω2h(1 − σ−2) + (1 − r)σ−1

β3 = −
1
s1

[
(r + σ−1)

{
k

s2

s1
+ 2rU

(
ω − Uk

s1

)}2
− 2{−ωhk(1 − σ−2) + Ur}

×

{
k

s2

s1
+ 2rU

(
ω − Uk

s1

)}
− ω2h2k2σ−1(1 − σ−2) −

s2l2

2
+ rU2

]
β4 = −

1
s1

[
l2(r + σ−1)

( s2

s1

)2
− ωhl2(1 − σ−2)

{hω
σ
− 2

( s2

s1

)}
−

s2k2

2

]
β5 = −

1
s1

[
2l(r + σ−1)

( s2

s1

){
k

s2

s1
+ 2rU

(
ω − Uk

s1

)}
− 2ωhkl(1 − σ−2)

{hω
σ
− 2

( s2

s1

)}
+ 4rUωhl

(
ω − Uk

s1

)
(1 − σ−2) − 2rUl

( s2

s1

)
+ kls2

]
λ1 = −

1
s1

[
{ω2(1 − σ−2) − 2ω2(1 + σ−2) + 2ω2 + 2r(ω − Uk)2}F1

+ 2ω2σ−1(σ−2 − 2) − 2r(ω − Uk)2 +
ω4(σ − σ−1)2

σ(1 − r)

]
F1 =

2
f1

[
ω2 + r(ω − Uk)2 − ω2

{1 + 2 cosh(2h)
2 sinh2(h)

}]
f1 = −4ω2{coth(2h) + r} + 8rUωk − 4rU2k2 + 2σ−1(1 − r)

λ2 = −
1
s1

[
3ω2 − r(ω − Uk)2 − (k2 − l2){ω2σ−2 − r(ω − Uk)2}

− 4ω2σ−1k coth(2kh) + 2r(2k − 1)(ω − Uk)2]F2

−
1
s1

[
ω2 − r(ω − Uk)2 − (k2 − l2){ω2σ−2 − r(ω − Uk)2}

]
F3

+
2k2

s1

[
2ω2σ−1{1 − 2kσ−1 coth(2kh)} + 2r(1 − 2k)(ω − Uk)2]

−
1
s1

[
4(−2k2 + l2){ω2σ−1 + r(ω − Uk)2} +

ω4(σ − σ−1)2

σ(1 − r)

]
F2 =

2k
f2

[
ω2{3 − (k2 − l2)σ−2 − 4kσ−1 coth(2kh)} + 2r(ω − Uk)2(−k2 − 2l2 + 2k)

]
f2 = −4ω2{coth(2kh) + r} + 8rUωk − 4rU2k2 + 2kσ−1(1 − r)

F3 =
σ

(1 − r)
[ω2 − ω2σ−2(k2 − l2) − 2l2r(ω − Uk)2]

λ3 =
1

σs1(1 − r)
, µ1 = σ2β2

1 − (1 − r)σh, µ2 = −(1 − r)σh.
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