

Algebraic equivalence of cycles and algebraic models of smooth manifolds

W. Kucharz

Abstract

On a real algebraic variety there may exist an algebraic cycle that is algebraically equivalent to zero and whose cohomology class is non-zero. The group of such cohomology classes can be highly non-trivial. It is interesting since it allows one to detect cohomology classes, in complementary dimension, which cannot be represented by algebraic cycles.

1. Introduction and results

Throughout this paper the term *real algebraic variety* designates a locally ringed space isomorphic to an algebraic subset of \mathbb{R}^n , for some *n*, endowed with the Zariski topology and the sheaf of \mathbb{R} -valued regular functions. Morphisms between real algebraic varieties will be called *regular maps*. Basic facts on real algebraic varieties and regular maps can be found in [BCR98]. Every real algebraic variety carries also the Euclidean topology, which is determined by the usual metric topology on \mathbb{R} . Unless explicitly stated otherwise, all topological notions related to real algebraic varieties will refer to the Euclidean topology.

Let \mathcal{X} be a reduced quasiprojective scheme over \mathbb{R} . The set $\mathcal{X}(\mathbb{R})$ of \mathbb{R} -rational points of \mathcal{X} is contained in an affine open subset of \mathcal{X} . Thus if $\mathcal{X}(\mathbb{R})$ is dense in \mathcal{X} , we can regard $\mathcal{X}(\mathbb{R})$ as a real algebraic variety whose structure sheaf is the restriction of the structure sheaf of \mathcal{X} ; up to isomorphism, each real algebraic variety is of this form.

Given a compact non-singular real algebraic variety X (as in [AK92, BCR98], non-singular means that the irreducible components of X are pairwise disjoint, non-singular and of the same dimension), we can find a non-singular quasiprojective scheme \mathcal{X} over \mathbb{R} with $\mathcal{X}(\mathbb{R}) = X$ dense in \mathcal{X} . Then we have the cycle homomorphism

$$c\ell_{\mathbb{R}}: Z^k(\mathcal{X}) \to H^k(X, \mathbb{Z}/2)$$

defined on the group $Z^k(\mathcal{X})$ of algebraic cycles on \mathcal{X} of codimension k: for any integral subscheme \mathcal{V} of \mathcal{X} of codimension k, the cohomology class $c\ell_{\mathbb{R}}(\mathcal{V})$ is Poincaré dual to the homology class represented by the subvariety $\mathcal{V}(\mathbb{R})$ of X assuming $\mathcal{V}(\mathbb{R})$ has codimension k in X, and otherwise $c\ell_{\mathbb{R}}(\mathcal{V}) = 0$ [BH61]. The subgroup

$$H^k_{\text{alg}}(X, \mathbb{Z}/2) = c\ell_{\mathbb{R}}(Z^k(\mathcal{X}))$$

of $H^k(X, \mathbb{Z}/2)$ plays a fundamental role in real algebraic geometry (cf. [BK98] for a short survey of its properties and applications). We define

 $\operatorname{Alg}^k(X),$

Received 22 May 2002, accepted in final form 5 November 2002. 2000 Mathematics Subject Classification 14P25, 14C25.

Keywords: real algebraic variety, algebraic cycle, cohomology class.

The paper was written at the Max-Planck-Institut für Mathematik in Bonn, whose support and hospitality are gratefully acknowledged.

This journal is © Foundation Compositio Mathematica 2004.

W. KUCHARZ

the main object of our investigation here, to be the image under $c\ell_{\mathbb{R}}$ of the subgroup of $Z^k(\mathcal{X})$ consisting of the cycles algebraically equivalent to 0 (we refer to [Ful84, Chapter 10] for the theory of algebraic equivalence). Thus, by definition, $\operatorname{Alg}^k(X)$ is a subgroup of $H^k_{\operatorname{alg}}(X,\mathbb{Z}/2)$. It readily follows that $H^k_{\operatorname{alg}}(X,\mathbb{Z}/2)$ and $\operatorname{Alg}^k(X)$ do not depend on the choice of \mathcal{X} . Note that $\operatorname{Alg}^k(X)$ can also be described as follows. An element u of $H^k_{\operatorname{alg}}(X,\mathbb{Z}/2)$ belongs to $\operatorname{Alg}^k(X)$ if and only if there exist a compact non-singular irreducible real algebraic variety T, two points t_0 and t_1 in T, and a cohomology class z in $H^k_{\operatorname{alg}}(X \times T, \mathbb{Z}/2)$ such that $u = i^*_{t_1}(z) - i^*_{t_0}(z)$, where given t in T, we let $i_t: X \to X \times T$ denote the map defined by $i_t(x) = (x, t)$ for all x in X, while

$$i_t^*: H^*(X \times T, \mathbb{Z}/2) \to H^*(X, \mathbb{Z}/2)$$

is the induced homomorphism (this does not force u = 0, the parameter space T being possibly disconnected).

Why is the group $\operatorname{Alg}^k(X)$ of interest? It was R. Silhol who first demonstrated that $\operatorname{Alg}^1(X)$ is important for understanding of $H^1_{\operatorname{alg}}(X, \mathbb{Z}/2)$ [Sil82]. In [Kuc01] it is proved, among other things, that $\operatorname{Alg}^1(-)$ is a birational invariant. The group $\operatorname{Alg}^k(X)$ strongly influences the behavior of $H^{n-k}_{\operatorname{alg}}(X, \mathbb{Z}/2)$, where $n = \dim X$ [Kuc96, Kuc01]. Substantial constructions of [Kuc02], at the borderline between real algebraic geometry and differential topology, depend on $\operatorname{Alg}^k(-)$. For some remarkable properties of $\operatorname{Alg}^k(X)$ contained in [AK99, Kuc96] see also Theorem 2.1 in § 2. It is in general very difficult to compute $\operatorname{Alg}^k(X)$, except for the cases k = 0 or $k = \dim X$ (cf. for example [AK99] to see how these trivial cases are settled). In this paper we investigate the groups $\operatorname{Alg}^k(X)$ as X runs through the class of varieties diffeomorphic to a fixed variety. Below we make this precise.

All smooth (of class \mathcal{C}^{∞}) manifolds that appear here are paracompact and without boundary. By Tognoli's theorem [Tog73, BCR98], any compact smooth manifold M has an algebraic model, that is, there exists a non-singular real algebraic variety X diffeomorphic to M. We study how the groups $\operatorname{Alg}^k(X)$ vary as X runs through the class of algebraic models of M. The kth Stiefel–Whitney class of M will be denoted by $w_k(M)$, while [M] will stand for the fundamental class of M in $H_m(M, \mathbb{Z}/2)$, $m = \dim M$. As usual, we use \cup and \langle , \rangle to denote the cup product and scalar (Kronecker) product.

THEOREM 1.1. Let M be a compact smooth manifold of dimension m with $m \ge 2$. Given a subgroup G of $H^1(M, \mathbb{Z}/2)$, the following conditions are equivalent:

- a) There exist an algebraic model X of M and a smooth diffeomorphism $\varphi : M \to X$ such that $\varphi^*(\operatorname{Alg}^1(X)) = G.$
- b) G is contained in the image of the reduction modulo 2 homomorphism $H^1(M, \mathbb{Z}) \to H^1(M, \mathbb{Z}/2)$ and for each integer ℓ , $1 \leq \ell \leq m$, and all u_1, \ldots, u_ℓ in G, one has $\langle u_1 \cup \cdots \cup u_\ell \cup w_{i_1}(M) \cup \cdots \cup w_{i_r}(M), [M] \rangle = 0$ for all non-negative integers i_1, \ldots, i_r with $i_1 + \cdots + i_r = m - \ell$.

Furthermore, if condition b holds, then X in condition a can be chosen irreducible.

Our second result is the following.

THEOREM 1.2. Let M be a compact connected smooth manifold of dimension m with $m \ge 3$. Given a subgroup G of $H^{m-1}(M, \mathbb{Z}/2)$, the following conditions are equivalent:

- a) There exist an algebraic model X of M and a smooth diffeomorphism $\varphi : M \to X$ such that $\varphi^*(\operatorname{Alg}^{m-1}(X)) = G.$
- b) $\langle u \cup w_1(M), [M] \rangle = 0$ for all u in G.

Theorems 1.1 and 1.2 are proved in § 2. We also have another result of the same type, Theorem 2.5 in § 2, dealing with certain subgroups G of $H^k(M, \mathbb{Z}/2)$ for other values of k. Example 2.7 at the end of the paper shows how Theorems 1.1, 1.2 and 2.5 work in a special case.

2. Proofs

The groups $H^k_{\text{alg}}(-,\mathbb{Z}/2)$ and $\text{Alg}^k(-)$ have the expected functorial properties. If $f: X \to Y$ is a regular map between compact non-singular real algebraic varieties, then the induced homomorphism

 $f^*: H^*(Y, \mathbb{Z}/2) \to H^*(X, \mathbb{Z}/2)$

satisfies

$$f^*(H^*_{\mathrm{alg}}(Y,\mathbb{Z}/2)) \subseteq H^*_{\mathrm{alg}}(X,\mathbb{Z}/2) \text{ and } f^*(\mathrm{Alg}^*(Y)) \subseteq \mathrm{Alg}^k(X).$$

Furthermore,

$$H^*_{\mathrm{alg}}(X, \mathbb{Z}/2) = \bigoplus_{q \geqslant 0} H^q_{\mathrm{alg}}(X, \mathbb{Z}/2)$$

is a subring of the cohomology ring $H^*(X, \mathbb{Z}/2)$, whereas

$$\operatorname{Alg}^*(X) = \bigoplus_{q \ge 0} \operatorname{Alg}^q(X)$$

is an ideal of $H^*_{\text{alg}}(X, \mathbb{Z}/2)$. These assertions concerning $H^k_{\text{alg}}(-, \mathbb{Z}/2)$ are proved in [BH61, BT82] and they immediately imply the corresponding assertions about $\text{Alg}^k(-)$.

Recall that if M is a smooth manifold, then a cohomology class u in $H^k(M, \mathbb{Z}/2), k \ge 1$, is said to be *spherical*, provided that $u = f^*(c)$, where $f: M \to S^k$ is a continuous (or equivalently smooth) map from M into the unit k-sphere S^k and c is the unique generator of the group $H^k(S^k, \mathbb{Z}/2) \simeq \mathbb{Z}/2$.

We shall make use of the following result.

THEOREM 2.1. Let X be a compact non-singular real algebraic variety. Then:

- i) $\langle u \cup v, [X] \rangle = 0$ for all u in Alg^k(X) and v in $H^{\ell}_{alg}(X, \mathbb{Z}/2)$, where $k + \ell = \dim X$;
- ii) $\langle u \cup w_{i_1}(X) \cup \cdots \cup w_{i_r}(X), [X] \rangle = 0$ for all u in Alg^k(X) and all non-negative integers i_1, \ldots, i_r with $i_1 + \cdots + i_r = \dim X k$;
- iii) if k = 1 or if $k = \dim X 1$ and X is connected, then every cohomology class in $\operatorname{Alg}^{k}(X)$ is spherical.

For the proof, the reader is referred to [Kuc96, Theorem 2.1] and [AK99, Theorem 1.1].

The next fact will also be very useful. Let B^k be a non-singular irreducible real algebraic variety with precisely two connected components B_0^k and B_1^k , each diffeomorphic to S^k , $k \ge 1$. For example, one can take

$$B^{k} = \{ (x_{0}, \dots, x_{k}) \in \mathbb{R}^{k+1} \mid x_{0}^{4} - 4x_{0}^{2} + 1 + x_{1}^{2} + \dots + x_{k}^{2} = 0 \}.$$

Let $B = B^k \times \cdots \times B^k$ and $B_0 = B_0^k \times \cdots \times B_0^k$ be the *d*-fold products, and let $\delta : B_0 \hookrightarrow B$ be the inclusion map. It is known [Kuc02, Example 4.5] that

$$H^{q}(B_{0}, \mathbb{Z}/2) = \delta^{*}(H^{q}(B, \mathbb{Z}/2)) = \delta^{*}(\operatorname{Alg}^{q}(B)) \text{ for all } q \ge 0.$$

$$(2.2)$$

We now recall an important result from differential topology.

THEOREM 2.3. Let P be a smooth manifold. Two smooth maps $f: M \to P$ and $g: N \to P$, where M and N are compact smooth manifolds of dimension d, represent the same bordism class in the unoriented bordism group $\mathcal{N}_*(P)$ if and only if for every non-negative integer q and every cohomology class v in $H^q(P, \mathbb{Z}/2)$, one has

$$\langle f^*(v) \cup w_{i_1}(M) \cup \dots \cup w_{i_r}(M), [M] \rangle = \langle g^*(v) \cup w_{i_1}(N) \cup \dots \cup w_{i_r}(N), [N] \rangle$$

for all non-negative integers i_1, \ldots, i_r with $i_1 + \cdots + i_r = d - q$.

W. Kucharz

For the proof, the reader is referred to [Con79, (17.3)].

If Y is a non-singular real algebraic variety, then a bordism class in $\mathcal{N}_*(Y)$ is said to be *algebraic* provided that it can be represented by a regular map $f: X \to Y$ of a compact non-singular real algebraic variety X into Y, cf. [AK81, AK92, BT80a, BT80b, BT82].

A topological real vector bundle on a real algebraic variety Y is said to admit an *algebraic* structure if it is topologically isomorphic to an algebraic subbundle of the trivial vector bundle with total space $Y \times \mathbb{R}^p$ for some p (cf. [BCR98] for various characterizations of such vector bundles and for their basic properties).

Given smooth manifolds N and P, we endow the set $\mathcal{C}^{\infty}(N, P)$ of all smooth maps from N into P with the \mathcal{C}^{∞} topology [Hir76] (in our applications N is always compact so it does not matter whether we take the weak \mathcal{C}^{∞} topology or the strong one).

Our basic tools include the following approximation theorem.

THEOREM 2.4. Let M be a compact smooth submanifold of \mathbb{R}^n and let W be a non-singular real algebraic variety. Let $f: M \to W$ be a smooth map whose bordism class in $\mathcal{N}_*(W)$ is algebraic. Suppose that M contains a (possibly empty) Zariski closed non-singular subvariety L of \mathbb{R}^n , the restriction $f|L: L \to W$ is a regular map, and the restriction to L of the tangent bundle of Madmits an algebraic structure. If $2 \dim M + 1 \leq n$, then there exist a smooth embedding $e: M \to \mathbb{R}^n$, a Zariski closed non-singular subvariety X of \mathbb{R}^n , and a regular map $g: X \to W$ such that $L \subseteq X$ $= e(M), e|L: L \to \mathbb{R}^n$ is the inclusion map, g|L = f|L, and $g \circ \bar{e}$ (where $\bar{e}: M \to e(M)$ is the smooth diffeomorphism defined by $\bar{e}(x) = e(x)$ for all x in M) is homotopic to f. Furthermore, given a neighborhood \mathcal{U} in $\mathcal{C}^{\infty}(M, \mathbb{R}^n)$ of the inclusion map $M \hookrightarrow \mathbb{R}^n$ and a neighborhood \mathcal{V} of fin $\mathcal{C}^{\infty}(M, W)$, the objects e, X, and g can be chosen in such a way that e is in \mathcal{U} and $g \circ \bar{e}$ is in \mathcal{V} .

Proof. Precisely this formulation is in [Kuc02, Theorem 4.2]. It is based on very similar results of [AK81, AK92, BT80a, BT80b]. \Box

After these preparations we return to the main topic of our paper.

THEOREM 2.5. Let M be a compact smooth manifold of dimension m. Let G be a subgroup of $H^k(M, \mathbb{Z}/2)$, where $k \ge 1$. Assume that G is generated by spherical cohomology classes. If $2k + 1 \le m$, then the following conditions are equivalent:

- a) There exist an algebraic model X of M and a smooth diffeomorphism $\varphi : M \to X$ such that $\varphi^*(\operatorname{Alg}^k(X)) = G.$
- b) For every integer ℓ satisfying $\ell \ge 1$ and $\ell k \le m$, one has

$$\langle u_1 \cup \dots \cup u_\ell \cup w_{i_1}(M) \cup \dots \cup w_{i_r}(M), [M] \rangle = 0$$

for all u_1, \ldots, u_ℓ in G and all non-negative integers i_1, \ldots, i_r with $i_1 + \cdots + i_r = m - \ell k$.

Furthermore, if condition b holds, then X in condition a can be chosen irreducible.

Proof. It follows from Theorem 2.1, part ii that condition a implies condition b. Suppose then that condition b holds. We prove below that condition a, with X irreducible, is satisfied. We assume that M is a smooth submanifold of \mathbb{R}^{2m+1} .

Let us set

$$\Gamma = \{ v \in H^{m-k}(M, \mathbb{Z}/2) \mid \langle u \cup v, [M] \rangle = 0 \text{ for every } u \text{ in } G \},\$$
$$\Gamma = \{ v_1, \dots, v_s \}.$$

Since $2k + 1 \leq m$, the homology class in $H_k(M, \mathbb{Z}/2)$ Poincaré dual to v_i can be represented by a compact smooth submanifold N_i of M [Tho54, Théorème II.26]. Thus we have

$$e_{i_*}([N_i]) = v_i \cap [M],$$

where $e_i : N_i \hookrightarrow M$ is the inclusion map and \cap stands for the cap product. We may assume that N_1, \ldots, N_s are pairwise disjoint. Note that

$$\langle e_i^*(u), [N_i] \rangle = \langle u \cup v_i, [M] \rangle$$
 for all u in $H^k(M, \mathbb{Z}/2)$. (1)

Indeed standard properties of $\cup, \cap, \langle, \rangle$ (cf. for example [Dol72]) yield

$$\langle e_i^*(u), [N_i] \rangle = \langle u, e_{i_*}([N_i]) \rangle$$

= $\langle u, v_i \cap [M] \rangle$
= $\langle u \cup v_i, [M] \rangle.$

The bilinear map

$$H^k(M, \mathbb{Z}/2) \times H^{m-k}(M, \mathbb{Z}/2) \to \mathbb{Z}/2, (u, v) \to \langle u \cup v, [M] \rangle$$

is a dual pairing [Dol72, p. 300, Proposition 8.13] and hence

$$G = \{ u \in H^k(M, \mathbb{Z}/2) \mid \langle u \cup v, [M] \rangle = 0 \text{ for every } v \text{ in } \Gamma \}.$$

By applying Equation (1), we obtain

$$G = \{ u \in H^k(M, \mathbb{Z}/2) \mid \langle e_i^*(u), [N_i] \rangle = 0 \text{ for } 1 \leq i \leq s \}.$$

$$(2)$$

We shall now successively modify M and N_1, \ldots, N_s to ensure that they satisfy some additional desirable conditions.

Let $\gamma_{n,m}$ denote the universal vector bundle on the Grassmannian $\mathbb{G}_{n,m}$ of *m*-dimensional vector subspaces of \mathbb{R}^n . Assuming that *n* is large enough, we can find a smooth classifying map $h_i : N_i \to \mathbb{G}_{n,m}$ for the restriction $\tau(M)|N_i$ of the tangent bundle $\tau(M)$ of *M* (this means that the vector bundles $\tau(M)|N_i$ and $h_i^*\gamma_{n,m}$ are isomorphic). Recall that $\mathbb{G}_{n,m}$ is endowed with a canonical structure sheaf which makes it into a real algebraic variety in the sense of this paper [BCR98, Theorem 3.4.4] ($\mathbb{G}_{n,m}$ is an affine real algebraic variety according to the terminology used in [BCR98]). Moreover, $\mathbb{G}_{n,m}$ is non-singular [BCR98, Proposition 3.4.3] and every bordism class in $\mathcal{N}_*(\mathbb{G}_{n,m})$ is algebraic [BCR98, Proposition 11.3.3; AK92, Lemma 2.7.1]. It follows that Theorem 2.4 can be applied to $h_i : N_i \to \mathbb{G}_{n,m}$ (with *L* empty) and hence modifying *M*, we may assume that N_i is a Zariski closed non-singular subvariety of \mathbb{R}^{2m+1} and $h_i : N_i \to \mathbb{G}_{n,m}$ is a regular map for $1 \leq i \leq s$.

Let u_1, \ldots, u_d be spherical cohomology classes generating G. Using the same notation as in (2.2), choose a smooth map $f_j : M \to B^k$ such that $f_j(M) \subseteq B_0^k$ and $f_j^*(H^1(B^k, \mathbb{Z}/2))$ is the subgroup of G generated by u_j . By (2.2), we have

$$G = f^*(H^k(B, \mathbb{Z}/2)) = f^*(Alg^k(B)),$$
(3)

where $f = (f_1, \ldots, f_d) : M \to B = B^k \times \cdots \times B^k$.

We assert that the maps $(f|N_i, h_i) : N_i \to B \times \mathbb{G}_{n,m}$ and $(c_i, h_i) : N_i \to B \times \mathbb{G}_{n,m}$, where $c_i : N_i \to B$ is a constant map sending N_i to a point in B_0 , represent the same class in the bordism group $\mathcal{N}_*(B \times \mathbb{G}_{n,m})$. By Theorem 2.3 and Künneth's theorem in cohomology, in order to prove the assertion it suffices to show that given cohomology classes ξ in $H^p(B, \mathbb{Z}/2)$ and η in $H^q(\mathbb{G}_{n,m}, \mathbb{Z}/2)$, we have

$$\langle (f|N_i, h_i)^*(\xi \times \eta) \cup w_{j_1}(N_i) \cup \dots \cup w_{j_r}(N_i), [N_i] \rangle = \langle (c_i, h_i)^*(\xi \times \eta) \cup w_{j_1}(N_i) \cup \dots \cup w_{j_r}(N_i), [N_i] \rangle$$

for all non-negative integers j_1, \ldots, j_r satisfying $j_1 + \cdots + j_r = k - (p+q)$. Since $(f|N_i, h_i)^*(\xi \times \eta) = (f|N_i)^*(\xi) \cup h_i^*(\eta)$ and $(c_i, h_i)^*(\xi \times \eta) = c_i^*(\xi) \cup h_i^*(\eta)$, the last displayed equality is equivalent to

$$\langle (f|N_i)^*(\xi) \cup h_i^*(\eta) \cup w_{j_1}(N_i) \cup \dots \cup w_{j_r}(N_i), [N_i] \rangle = \langle c_i^*(\xi) \cup h_i^*(\eta) \cup w_{j_1}(N_i) \cup \dots \cup w_{j_r}(N_i), [N_i] \rangle.$$
(4)

We now justify Equation (4). If p is not a multiple of k, then $\xi = 0$ and hence (4) holds. It remains to consider two cases: (p,q) = (0,k) and (p,q) = (k,0). If (p,q) = (0,k), then $(f|N_i)^*(\xi) = c_i^*(\xi)$,

W. Kucharz

which implies (4). If (p,q) = (k,0), then $c_i^*(\xi) = 0$ and (4) is reduced to

$$\langle (f|N_i)^*(\xi) \cup h_i^*(\eta), [N_i] \rangle = 0.$$
 (5)

Since $f|N_i = f \circ e_i$, we have

$$(f|N_i)^*(\xi) \cup h_i^*(\eta) = e_i^*(f^*(\xi)) \cup h_i^*(\eta) = \lambda e_i^*(f^*(\xi)),$$

where $\lambda = 0$ or $\lambda = 1$. Hence Equation (5) follows from Equations (2) and (3). This means that Equation (4) always holds and therefore the proof of the assertion is complete.

Since $(c_i, h_i) : N_i \to B \times \mathbb{G}_{n,m}$ is a regular map, the assertion implies that the bordism class of $(f|N_i, h_i) : N_i \to B \times \mathbb{G}_{n,m}$ in $\mathcal{N}_*(B \times \mathbb{G}_{n,m})$ is algebraic. Theorem 2.4 can be applied to $(f|N_i, h_i) : N_i \to B \times \mathbb{G}_{n,m}$ (with L empty) and therefore modifying M and f, we may assume that N_i is still a Zariski closed non-singular subvariety of \mathbb{R}^{2m+1} and $(f|N_i, h_i) : N_i \to B \times \mathbb{G}_{n,m}$ is a regular map for $1 \leq i \leq s$. By construction, $\tau(M)|N_i$ admits an algebraic structure (being isomorphic to $h_i^*\gamma_{n,m}$). Note that $N = N_1 \cup \cdots \cup N_s$ is a Zariski closed non-singular subvariety of \mathbb{R}^{2m+1} and

$$f|N: N \to B$$
 is a regular map, (6)

$$\tau(M)|N$$
 admits an algebraic structure. (7)

We can further modify f so that it is constant on some open subset U of M which is disjoint from N and has a non-empty intersection with each connected component of M. Let P be a compact k-dimensional smooth submanifold of U such that each connected component of M contains a connected component of P, each connected component of P is diffeomorphic to S^k , and the restriction $\tau(M)|P$ is a trivial vector bundle. There is a smooth diffeomorphism σ of \mathbb{R}^{2m+1} such that $\sigma(x) = x$ for x in N and $\sigma(P)$ is a Zariski closed non-singular irreducible subvariety of \mathbb{R}^{2m+1} . Replacing M by $\sigma(M)$, we may assume that P itself is a Zariski closed non-singular irreducible subvariety of \mathbb{R}^{2m+1} .

Note that $N \cup P$ is a Zariski closed non-singular subvariety of \mathbb{R}^{2m+1} . Since f is constant on P, it follows from (6) that

$$f|(N \cup P) : N \cup P \to B$$
 is a regular map. (8)

Furthermore, in view of (7), we get

$$\tau(M)|(N \cup P)$$
 admits an algebraic structure. (9)

We claim that $f: M \to B$ and a constant map $M \to B$ sending M to a point in B_0 represent the same class in the bordism group $\mathcal{N}_*(B)$. We verify the claim via Theorem 2.3. It suffices to show that given a positive integer q and a cohomology class ξ in $H^q(B, \mathbb{Z}/2)$, we have

$$\langle f^*(\xi) \cup w_{i_1}(M) \cup \dots \cup w_{i_r}(M), [M] \rangle = 0 \tag{10}$$

for all non-negative integers i_1, \ldots, i_r with $i_1 + \cdots + i_r = m - q$. If q is not a multiple of k, then $\xi = 0$ and Equation (10) holds. If $q = \ell k \leq m$, then ξ is a linear combination of cohomology classes of the form $\xi_1 \cup \cdots \cup \xi_\ell$, where ξ_1, \ldots, ξ_ℓ are in $H^k(B, \mathbb{Z}/2)$. By (3), the cohomology classes $f^*(\xi_1), \ldots, f^*(\xi_\ell)$ are in G and hence (10) follows from condition b. Thus the claim is proved.

The claim implies that the class of $f: M \to B$ in the bordism group $\mathcal{N}_*(B)$ is algebraic. In view of (8) and (9) we can apply Theorem 2.4 to $f: M \to B$ (with $L = N \cup P$). Hence there exist a Zariski closed non-singular subvariety X of \mathbb{R}^{2m+1} , a smooth diffeomorphism $\varphi: M \to X$, and a regular map $g: X \to B$ such that $X = \varphi(M), \ \varphi(x) = x$ for all x in $N \cup P$, and f is homotopic to $g \circ \varphi$. Clearly, X is irreducible, the variety P being irreducible. In order to complete the proof it remains to show that $\varphi^*(\operatorname{Alg}^k(X)) = G$. We argue as follows. Since $g: X \to B$ is a regular map, we have $g^*(\operatorname{Alg}^k(B)) \subseteq \operatorname{Alg}^k(X)$. Hence using (3) and $f^* = (g \circ \varphi)^* = \varphi^* \circ g^*$, we obtain $G = f^*(\operatorname{Alg}^k(B)) = \varphi^*(q^*(\operatorname{Alg}^k(B))) \subset \varphi^*(\operatorname{Alg}^k(X)).$

 $G = f(\operatorname{Ing}(D)) = \psi(g(\operatorname{Ing}(D))) \subseteq \psi(\operatorname{Ing}(X)).$

Suppose there is an element w in $\operatorname{Alg}^k(X)$ such that $\varphi^*(w)$ is not in G. By (2), one can find i, $1 \leq i \leq s$, for which

$$\langle e_i^*(\varphi^*(w)), [N_i] \rangle \neq 0$$

If $\epsilon_i : N_i \hookrightarrow X$ is the inclusion map, then $\epsilon_i = \varphi \circ e_i$ and hence $\epsilon_i^*(w) = e_i^*(\varphi^*(w))$. It follows that

$$\langle \epsilon_i^*(w), [N_i] \rangle \neq 0$$

This contradicts Theorem 2.1, part i since $\epsilon_i^*(w)$ is in $\operatorname{Alg}^k(N_i)$, the map ϵ_i being regular. Thus $\varphi^*(\operatorname{Alg}^k(X)) = G$ and the proof is complete.

PROPOSITION 2.6. Let M be a compact smooth manifold of dimension m with $m \ge 2$. Let G be a subgroup of $H^{m-1}(M, \mathbb{Z}/2)$. Assume that G is generated by spherical cohomology classes. Then the following conditions are equivalent:

- a) There exist an algebraic model X of M and a smooth diffeomorphism $\varphi : M \to X$ such that $\varphi^*(\operatorname{Alg}^{m-1}(X)) = G.$
- b) $\langle u \cup w_1(M), [M] \rangle = 0$ for all u in G, and when m = 2, then in addition $\langle u_1 \cup u_2, [M] \rangle = 0$ for all u_1 and u_2 in G.

Furthermore, if condition b holds, then X in condition a can be chosen irreducible.

Proof. It follows from Theorem 2.1, part ii that condition a implies condition b. Suppose then that condition b holds. We prove below that condition a, with X irreducible, is satisfied. In the proof we assume that M is a smooth submanifold of \mathbb{R}^{2m+1} .

Let us set

$$\Gamma = \{ v \in H^1(M, \mathbb{Z}/2) \mid \langle u \cup v, [M] \rangle = 0 \text{ for all } u \text{ in } G \}, \ \Gamma = \{ u_1, \dots, u_s \}.$$

If n is sufficiently large and $A = \mathbb{P}^n(\mathbb{R}) \times \cdots \times \mathbb{P}^n(\mathbb{R})$ is the product of s copies of real projective n-space $\mathbb{P}^n(\mathbb{R})$, then there exists a smooth map $f: M \to A$ for which

$$\Gamma = f^*(H^1(A, \mathbb{Z}/2)).$$
(11)

Let u_1, \ldots, u_d be spherical cohomology classes generating G. Using the same notation as in (2.2), with k = m - 1, choose a smooth map $g_j : M \to B^{m-1}$ such that $g_j(M) \subset B_0^{m-1}$ and $g_j^*(H^{m-1}(B^{m-1}, \mathbb{Z}/2))$ is the subgroup of G generated by u_j . Note that (2.2) implies

$$G = g^*(H^{m-1}(B, \mathbb{Z}/2)) = g^*(\operatorname{Alg}^{m-1}(B)),$$
(12)

where $g = (g_1, \ldots, g_d) : M \to B = B^{m-1} \times \cdots \times B^{m-1}$.

We can choose f and g so that the map $(f, g) : M \to A \times B$ is constant on some open subset U of M which has a non-empty intersection with each connected component of M. Let C be a compact smooth curve in U such that each connected component of M contains a connected component of C and the restriction $\tau(M)|C$ is trivial. There is a smooth diffeomorphism σ of \mathbb{R}^{2m+1} such that $\sigma(C)$ is a Zariski closed non-singular irreducible curve in \mathbb{R}^{2m+1} . Replacing M by $\sigma(M)$, we may assume that C itself is a Zariski closed non-singular irreducible curve in \mathbb{R}^{2m+1} .

We assert that the maps $(f,g): M \to A \times B$ and $(f,c): M \to A \times B$, where $c: M \to B$ is a constant map sending M to a point in B_0 , represent the same class in the bordism group $\mathcal{N}_*(A \times B)$. By Theorem 2.3 and Künneth's theorem in cohomology, in order to prove the assertion it suffices to show that given cohomology classes ξ in $H^p(A, \mathbb{Z}/2)$ and η in $H^q(B, \mathbb{Z}/2)$, we have

$$\langle (f,g)^*(\xi \times \eta) \cup w_{i_1}(M) \cup \dots \cup w_{i_r}(M), [M] \rangle = \langle (f,c)^*(\xi \times \eta) \cup w_{i_1}(M) \cup \dots \cup w_{i_r}(M), [M] \rangle$$

W. KUCHARZ

for all non-negative integers i_1, \ldots, i_r satisfying $i_1 + \cdots + i_r = m - (p+q)$. Since $(f, g)^*(\xi \times \eta) = f^*(\xi) \cup g^*(\eta)$ and $(f, c)^*(\xi \times \eta) = f^*(\xi) \cup c^*(\eta)$, the last displayed equality is equivalent to

$$\langle f^*(\xi) \cup g^*(\eta) \cup w_{i_1}(M) \cup \dots \cup w_{i_r}(M), [M] \rangle = \langle f^*(\xi) \cup c^*(\eta) \cup w_{i_1}(M) \cup \dots \cup w_{i_r}(M), [M] \rangle.$$
(13)

If q is not a multiple of m-1, then $\eta = 0$ and hence Equation (13) holds. If q = 0, then $g^*(\eta) = c^*(\eta)$ and (13) is also satisfied. It remains to consider the following three cases: (p,q) = (1, m-1), (p,q) = (0, m-1), and (p,q) = (0, 2) with m = 2. In each of these cases $c^*(\eta) = 0$. If (p,q) = (1, m-1), then (13) is reduced to

$$\langle f^*(\xi) \cup g^*(\eta), [M] \rangle = 0$$

which holds in view of (11), (12), and the definition of Γ . If (p,q) = (0, m-1), then (13) is equivalent to

$$\langle f^*(\xi) \cup g^*(\eta) \cup w_1(M), [M] \rangle = 0,$$

which follows from (12) and condition b (note that $f^*(\xi) \cup g^*(\eta) = \lambda g^*(\eta)$, where $\lambda = 0$ or $\lambda = 1$). If (p,q) = (0,2), m = 2, then $f^*(\xi) \cup g^*(\eta) = \lambda g^*(\eta)$, where $\lambda = 0$ or $\lambda = 1$, and (13) is equivalent to

$$\langle \lambda g^*(\eta), [M] \rangle = 0.$$

The last equality follows from condition b since η is a linear combination of cohomology classes of the form $\eta_1 \cup \eta_2$, where η_1, η_2 are in $H^1(B, \mathbb{Z}/2)$, and in view of (12), $g^*(\eta_1)$, $g^*(\eta_2)$ are in G. This completes the proof of (13) and hence the assertion holds.

We shall now prove that

the bordism class of
$$(f,g): M \to A \times B$$
 in $\mathcal{N}_*(A \times B)$ is algebraic. (14)

Since every bordism class in $\mathcal{N}_*(A)$ is algebraic [AK92, Lemma 2.7.1], in view of Theorem 2.4, there exist a Zariski closed non-singular subvariety Y of \mathbb{R}^{2m+1} , a smooth diffeomorphism $\psi : M \to Y$, and a regular map $\overline{f}: Y \to A$ such that f is homotopic to $\overline{f} \circ \psi$. Clearly, $(f,c): M \to A \times B$ and $(\overline{f}, c \circ \psi^{-1}): Y \to A \times B$ represent the same bordism class in $\mathcal{N}_*(A \times B)$. Note that $(\overline{f}, c \circ \psi^{-1}): Y \to A \times B$ is a regular map, $c \circ \psi^{-1}: Y \to B$ being constant. Hence (14) follows from the assertion proved above.

By construction, $(f,g): M \to A \times B$ is constant on C and $\tau(M)|C$ is a trivial vector bundle. Thus (14) allows us to apply Theorem 2.4 to $(f,g): M \to A \times B$ (with L = C). Therefore there exist a Zariski closed non-singular subvariety X of \mathbb{R}^{2m+1} , a smooth diffeomorphism $\varphi: M \to X$, and a regular map $(\alpha, \beta): X \to A \times B$ such that $X = \varphi(M), \ \varphi(x) = x$ for all x in C, and (f,g) is homotopic to $(\alpha, \beta) \circ \varphi = (\alpha \circ \varphi, \beta \circ \varphi)$. Obviously, X is irreducible, the curve C being irreducible.

It remains to prove $\varphi^*(\operatorname{Alg}^{m-1}(X)) = G$. Since $\beta : X \to B$ is a regular map, we have $\beta^*(\operatorname{Alg}^{m-1}(B)) \subseteq \operatorname{Alg}^{m-1}(X)$. Making use of $g^* = (\beta \circ \varphi)^* = \varphi^* \circ \beta^*$ and (12), we get

$$G = g^*(\operatorname{Alg}^{m-1}(B)) = \varphi^*(\beta^*(\operatorname{Alg}^{m-1}(B))) \subseteq \varphi^*(\operatorname{Alg}^{m-1}(X)).$$

Suppose there exists w in $\operatorname{Alg}^{m-1}(X)$ such that $\varphi^*(w)$ is not in G. We obtain a contradiction as follows. The bilinear map

$$H^{m-1}(M, \mathbb{Z}/2) \times H^1(M, \mathbb{Z}/2) \to \mathbb{Z}/2, \ (u, v) \to \langle u \cup v, [M] \rangle$$

is a dual pairing [Dol72, p. 300, Proposition 8.13] and hence one can find an element v in Γ with $\langle \varphi^*(w) \cup v, [M] \rangle \neq 0$. By (11), we have $v = f^*(z)$ for some z in $H^1(A, \mathbb{Z}/2)$. Since $f^* = (\alpha \circ \varphi)^* = \varphi^* \circ \alpha^*$, we get $v = \varphi^*(\alpha^*(z))$. Thus $\langle \varphi^*(w) \cup \varphi^*(\alpha^*(z)), [M] \rangle \neq 0$, which yields

$$\langle w \cup \alpha^*(z), [X] \rangle \neq 0. \tag{15}$$

Note that $\alpha^*(z)$ is in $H^1_{\text{alg}}(X, \mathbb{Z}/2)$, the map $\alpha : X \to A$ being regular and $H^1(A, \mathbb{Z}/2) = H^1_{\text{alg}}(A, \mathbb{Z}/2)$. Hence (15) contradicts Theorem 2.1, part i. The proof is complete. Proof of Theorem 1.1. Obviously, every spherical cohomology class with coefficients in $\mathbb{Z}/2$ is the reduction modulo 2 of a cohomology class with coefficients in \mathbb{Z} . Therefore it follows from Theorem 2.1, parts ii and iii that condition a implies condition b. Suppose condition b holds. The first part of condition b guarantees that every cohomology class in G is spherical [Hu59, p. 49, Theorem 7.1]. Thus condition a, with X irreducible, holds by virtue of Theorem 2.5 and Proposition 2.6 (Proposition 2.6 is required only when m = 2).

Proof of Theorem 1.2. We already know that, by Theorem 2.1, part ii, condition a implies condition b. Suppose condition b is satisfied. Since M is connected, given u in $H^{m-1}(M, \mathbb{Z}/2)$ with $\langle u \cup w_1(M), [M] \rangle = 0$, we get $u \cup w_1(M) = 0$. The last equality implies that the homology class in $H_1(M, \mathbb{Z}/2)$ Poincaré dual to u can be represented by a compact smooth curve in M with trivial normal vector bundle, cf. for example [BK89, p. 599]. This in turn implies that u is spherical [Tho54, Théorème II.1]. Hence every cohomology class in G is spherical. In view of Proposition 2.6, condition a, with X irreducible, holds.

We conclude the paper with an example.

Example 2.7. Let $T^m = S^1 \times \cdots \times S^1$ be the *m*-fold product with $m \ge 2$. Clearly, $H^{\ell}_{\text{alg}}(T^m, \mathbb{Z}/2) = H^{\ell}(T^m, \mathbb{Z}/2)$ for all $\ell \ge 0$ and hence, by Theorem 2.1, part i,

$$\operatorname{Alg}^k(T^m) = 0 \text{ for all } k \ge 0.$$

On the other hand, let G be a subgroup of $H^k(T^m, \mathbb{Z}/2)$ and suppose that one of the following conditions is satisfied:

- i) k = 1 and $G \neq H^1(T^m, \mathbb{Z}/2)$;
- ii) k = m 1 and $m \ge 3$;
- iii) $k \ge 1, 2k+1 \le m, m$ is not divisible by k, and G is generated by spherical cohomology classes;
- iv) $m = k\ell$, where ℓ is an integer satisfying $\ell \ge \max\{2m/(m-1), \dim_{\mathbb{Z}/2} G+1\}$, and G is generated by spherical cohomology classes.

Then there exist an algebraic model X of T^m and a smooth diffeomorphism $\varphi: T^m \to X$ such that

$$\varphi^*(\mathrm{Alg}^k(X)) = G.$$

Indeed, since the tangent bundle to T^m is trivial, we have $w_i(T^m) = 0$ for all $i \ge 1$. Furthermore, if either of conditions i or iv is satisfied, $m = k\ell$, and u_1, \ldots, u_ℓ are in G, then $u_1, \cup \cdots \cup u_\ell = 0$. Thus X and φ with the required property exist in view of Theorems 1.1, 1.2 and 2.5.

References

- AK81 S. Akbulut and H. King, The topology of real algebraic sets with isolated singularities, Ann. Math. 113 (1981), 425–446.
- AK92 S. Akbulut and H. King, Topology of real algebraic sets, Math. Sci. Res. Inst. Publ. 25 (Springer, Berlin, 1992).
- AK99 M. Abánades and W. Kucharz, Algebraic equivalence of real algebraic cycles, Ann. Inst. Fourier (Grenoble) 49 (1999), 1797–1804.
- BCR98 J. Bochnak, M. Coste and M.-F. Roy, *Real algebraic geometry*, Ergebnisse der Math. und ihrer Grenzgeb. Folge (3), vol. 36 (Springer, Berlin 1998).
- BH61 A. Borel and A. Haefliger, La classe d'homologie fondamentale d'un espace analytique, Bull. Soc. Math. Fr. 89 (1961), 461–513.
- BK89 J. Bochnak and W. Kucharz, Algebraic models of smooth manifolds, Invent. Math. 97 (1989), 585–611.

Algebraic equivalence of cycles

- BK98 J. Bochnak and W. Kucharz, On homology classes represented by real algebraic varieties, Banach Center Publications, vol. 44 (Banach Center, Warsaw, 1998), 21–35.
- BT80a R. Benedetti and A. Tognoli, Théorèmes d'approximation en géométrie algébrique réelle, Publ. Math. Univ. Paris VII 9 (1980), 123–145.
- BT80b R. Benedetti and A. Tognoli, On real algebraic vector bundles, Bull. Sci. Math. (2) **104** (1980), 89–112.
- BT82 R. Benedetti and A. Tognoli, *Remarks and counterexamples in the theory of real vector bundles and cycles*, Lecture Notes in Mathematics, vol. 959 (Springer, Berlin 1982), 198–211.
- Con79 P. E. Conner, *Differentiable periodic maps*, 2nd edn, Lecture Notes in Mathematics, vol. 738 (Springer, Berlin, 1979).
- Dol72 A. Dold, Lectures on algebraic topology, Grundlehren Math. Wiss., vol. 200 (Springer, Berlin, 1972).
- Ful84 W. Fulton, Intersection theory, Ergebnisse der Math. und ihrer Grenzgeb. Folge (3), vol. 2 (Springer, Berlin, 1984).
- Hir76 M. Hirsch, Differential topology, Graduate Texts in Mathematics, vol. 33 (Springer, Berlin, 1976).
- Hu59 S. T. Hu, *Homotopy theory* (Academic Press, New York, 1959).
- Kuc96 W. Kucharz, Algebraic equivalence and homology classes of real algebraic cycles, Math. Nachr. 180 (1996), 135–140.
- Kuc01 W. Kucharz, Algebraic equivalence of real divisors, Math. Z. 238 (2001), 817–827.
- Kuc02 W. Kucharz, Algebraic cycles and algebraic models of smooth manifolds, J. Algebraic Geom. 11 (2002), 101–127.
- Sil82 R. Silhol, A bound on the order of $H_{n-1}^{(a)}(X,\mathbb{Z}/2)$ on a real algebraic variety, Lecture Notes in Mathematics, vol. 959 (Springer, Berlin, 1982), 443–450.
- Tho
54 R. Thom, Quelques propriétés globales de variétés différentiables, Comment. Math. Helv. 28 (1954),
 17–86.
- Tog73 A. Tognoli, Su una congettura di Nash, Ann. Scuola Norm. Sup. Pisa Sci. Fis. Mat. (3) 27 (1973), 167–185.

W. Kucharz kucharz@math.unm.edu

Max-Planck-Institut für Mathematik, Vivatsgasse 7, 53111 Bonn, Germany

Current address: Department of Mathematics and Statistics, University of New Mexico, Albuquerque, New Mexico 87131-1141, USA