Algebraic equivalence of cycles and algebraic models of smooth manifolds

W. Kucharz

Abstract

On a real algebraic variety there may exist an algebraic cycle that is algebraically equivalent to zero and whose cohomology class is non-zero. The group of such cohomology classes can be highly non-trivial. It is interesting since it allows one to detect cohomology classes, in complementary dimension, which cannot be represented by algebraic cycles.

1. Introduction and results

Throughout this paper the term real algebraic variety designates a locally ringed space isomorphic to an algebraic subset of \mathbb{R}^{n}, for some n, endowed with the Zariski topology and the sheaf of \mathbb{R}-valued regular functions. Morphisms between real algebraic varieties will be called regular maps. Basic facts on real algebraic varieties and regular maps can be found in [BCR98]. Every real algebraic variety carries also the Euclidean topology, which is determined by the usual metric topology on \mathbb{R}. Unless explicitly stated otherwise, all topological notions related to real algebraic varieties will refer to the Euclidean topology.

Let \mathcal{X} be a reduced quasiprojective scheme over \mathbb{R}. The set $\mathcal{X}(\mathbb{R})$ of \mathbb{R}-rational points of \mathcal{X} is contained in an affine open subset of \mathcal{X}. Thus if $\mathcal{X}(\mathbb{R})$ is dense in \mathcal{X}, we can regard $\mathcal{X}(\mathbb{R})$ as a real algebraic variety whose structure sheaf is the restriction of the structure sheaf of \mathcal{X}; up to isomorphism, each real algebraic variety is of this form.

Given a compact non-singular real algebraic variety X (as in [AK92, BCR98], non-singular means that the irreducible components of X are pairwise disjoint, non-singular and of the same dimension), we can find a non-singular quasiprojective scheme \mathcal{X} over \mathbb{R} with $\mathcal{X}(\mathbb{R})=X$ dense in \mathcal{X}. Then we have the cycle homomorphism

$$
c \ell_{\mathbb{R}}: Z^{k}(\mathcal{X}) \rightarrow H^{k}(X, \mathbb{Z} / 2)
$$

defined on the group $Z^{k}(\mathcal{X})$ of algebraic cycles on \mathcal{X} of codimension k : for any integral subscheme \mathcal{V} of \mathcal{X} of codimension k, the cohomology class $c \ell_{\mathbb{R}}(\mathcal{V})$ is Poincaré dual to the homology class represented by the subvariety $\mathcal{V}(\mathbb{R})$ of X assuming $\mathcal{V}(\mathbb{R})$ has codimension k in X, and otherwise $c_{\mathbb{R}}(\mathcal{V})=0[B H 61]$. The subgroup

$$
H_{\mathrm{alg}}^{k}(X, \mathbb{Z} / 2)=c_{\mathbb{R}}\left(Z^{k}(\mathcal{X})\right)
$$

of $H^{k}(X, \mathbb{Z} / 2)$ plays a fundamental role in real algebraic geometry (cf. [BK98] for a short survey of its properties and applications). We define

$$
\operatorname{Alg}^{k}(X)
$$

[^0]
W. Kucharz

the main object of our investigation here, to be the image under $c_{\mathbb{R}}$ of the subgroup of $Z^{k}(\mathcal{X})$ consisting of the cycles algebraically equivalent to 0 (we refer to [Ful84, Chapter 10] for the theory of algebraic equivalence). Thus, by definition, $\operatorname{Alg}^{k}(X)$ is a subgroup of $H_{\text {alg }}^{k}(X, \mathbb{Z} / 2)$. It readily follows that $H_{\text {alg }}^{k}(X, \mathbb{Z} / 2)$ and $\operatorname{Alg}^{k}(X)$ do not depend on the choice of \mathcal{X}. Note that $\operatorname{Alg}^{k}(X)$ can also be described as follows. An element u of $H_{\text {alg }}^{k}(X, \mathbb{Z} / 2)$ belongs to $\operatorname{Alg}^{k}(X)$ if and only if there exist a compact non-singular irreducible real algebraic variety T, two points t_{0} and t_{1} in T, and a cohomology class z in $H_{\text {alg }}^{k}(X \times T, \mathbb{Z} / 2)$ such that $u=i_{t_{1}}^{*}(z)-i_{t_{0}}^{*}(z)$, where given t in T, we let $i_{t}: X \rightarrow X \times T$ denote the map defined by $i_{t}(x)=(x, t)$ for all x in X, while

$$
i_{t}^{*}: H^{*}(X \times T, \mathbb{Z} / 2) \rightarrow H^{*}(X, \mathbb{Z} / 2)
$$

is the induced homomorphism (this does not force $u=0$, the parameter space T being possibly disconnected).

Why is the group $\operatorname{Alg}^{k}(X)$ of interest? It was R . Silhol who first demonstrated that $\operatorname{Alg}^{1}(X)$ is important for understanding of $H_{\text {alg }}^{1}(X, \mathbb{Z} / 2)$ [Sil82]. In [Kuc01] it is proved, among other things, that $\mathrm{Alg}^{1}(-)$ is a birational invariant. The group $\operatorname{Alg}^{k}(X)$ strongly influences the behavior of $H_{\text {alg }}^{n-k}(X, \mathbb{Z} / 2)$, where $n=\operatorname{dim} X$ [Kuc96, Kuc01]. Substantial constructions of [Kuc02], at the borderline between real algebraic geometry and differential topology, depend on $\mathrm{Alg}^{k}(-)$. For some remarkable properties of $\operatorname{Alg}^{k}(X)$ contained in [AK99, Kuc96] see also Theorem 2.1 in § 2. It is in general very difficult to compute $\operatorname{Alg}^{k}(X)$, except for the cases $k=0$ or $k=\operatorname{dim} X$ (cf. for example [AK99] to see how these trivial cases are settled). In this paper we investigate the groups $\operatorname{Alg}^{k}(X)$ as X runs through the class of varieties diffeomorphic to a fixed variety. Below we make this precise.

All smooth (of class \mathcal{C}^{∞}) manifolds that appear here are paracompact and without boundary. By Tognoli's theorem [Tog73, BCR98], any compact smooth manifold M has an algebraic model, that is, there exists a non-singular real algebraic variety X diffeomorphic to M. We study how the groups $\operatorname{Alg}^{k}(X)$ vary as X runs through the class of algebraic models of M. The k th StiefelWhitney class of M will be denoted by $w_{k}(M)$, while $[M]$ will stand for the fundamental class of M in $H_{m}(M, \mathbb{Z} / 2), m=\operatorname{dim} M$. As usual, we use \cup and \langle,$\rangle to denote the cup product and scalar$ (Kronecker) product.
THEOREM 1.1. Let M be a compact smooth manifold of dimension m with $m \geqslant 2$. Given a subgroup G of $H^{1}(M, \mathbb{Z} / 2)$, the following conditions are equivalent:
a) There exist an algebraic model X of M and a smooth diffeomorphism $\varphi: M \rightarrow X$ such that $\varphi^{*}\left(\operatorname{Alg}^{1}(X)\right)=G$.
b) G is contained in the image of the reduction modulo 2 homomorphism $H^{1}(M, \mathbb{Z}) \rightarrow H^{1}(M, \mathbb{Z} / 2)$ and for each integer $\ell, 1 \leqslant \ell \leqslant m$, and all u_{1}, \ldots, u_{ℓ} in G, one has $\left\langle u_{1} \cup \cdots \cup u_{\ell} \cup w_{i_{1}}(M) \cup\right.$ $\left.\cdots \cup w_{i_{r}}(M),[M]\right\rangle=0$ for all non-negative integers i_{1}, \ldots, i_{r} with $i_{1}+\cdots+i_{r}=m-\ell$.
Furthermore, if condition b holds, then X in condition a can be chosen irreducible.
Our second result is the following.
Theorem 1.2. Let M be a compact connected smooth manifold of dimension m with $m \geqslant 3$. Given a subgroup G of $H^{m-1}(M, \mathbb{Z} / 2)$, the following conditions are equivalent:
a) There exist an algebraic model X of M and a smooth diffeomorphism $\varphi: M \rightarrow X$ such that $\varphi^{*}\left(\operatorname{Alg}^{m-1}(X)\right)=G$.
b) $\left\langle u \cup w_{1}(M),[M]\right\rangle=0$ for all u in G.

Theorems 1.1 and 1.2 are proved in $\S 2$. We also have another result of the same type, Theorem 2.5 in $\S 2$, dealing with certain subgroups G of $H^{k}(M, \mathbb{Z} / 2)$ for other values of k. Example 2.7 at the end of the paper shows how Theorems 1.1, 1.2 and 2.5 work in a special case.

Algebraic equivalence of cycles

2. Proofs

The groups $H_{\text {alg }}^{k}(-, \mathbb{Z} / 2)$ and $\operatorname{Alg}^{k}(-)$ have the expected functorial properties. If $f: X \rightarrow Y$ is a regular map between compact non-singular real algebraic varieties, then the induced homomorphism

$$
f^{*}: H^{*}(Y, \mathbb{Z} / 2) \rightarrow H^{*}(X, \mathbb{Z} / 2)
$$

satisfies

$$
f^{*}\left(H_{\mathrm{alg}}^{*}(Y, \mathbb{Z} / 2)\right) \subseteq H_{\mathrm{alg}}^{*}(X, \mathbb{Z} / 2) \quad \text { and } \quad f^{*}\left(\operatorname{Alg}^{*}(Y)\right) \subseteq \operatorname{Alg}^{k}(X)
$$

Furthermore,

$$
H_{\mathrm{alg}}^{*}(X, \mathbb{Z} / 2)=\bigoplus_{q \geqslant 0} H_{\mathrm{alg}}^{q}(X, \mathbb{Z} / 2)
$$

is a subring of the cohomology ring $H^{*}(X, \mathbb{Z} / 2)$, whereas

$$
\operatorname{Alg}^{*}(X)=\bigoplus_{q \geqslant 0} \operatorname{Alg}^{q}(X)
$$

is an ideal of $H_{\text {alg }}^{*}(X, \mathbb{Z} / 2)$. These assertions concerning $H_{\text {alg }}^{k}(-, \mathbb{Z} / 2)$ are proved in [BH61, BT82] and they immediately imply the corresponding assertions about $\mathrm{Alg}^{k}(-)$.

Recall that if M is a smooth manifold, then a cohomology class u in $H^{k}(M, \mathbb{Z} / 2), k \geqslant 1$, is said to be spherical, provided that $u=f^{*}(c)$, where $f: M \rightarrow S^{k}$ is a continuous (or equivalently smooth) map from M into the unit k-sphere S^{k} and c is the unique generator of the group $H^{k}\left(S^{k}, \mathbb{Z} / 2\right) \simeq \mathbb{Z} / 2$.

We shall make use of the following result.
Theorem 2.1. Let X be a compact non-singular real algebraic variety. Then:
i) $\langle u \cup v,[X]\rangle=0$ for all u in $\operatorname{Alg}^{k}(X)$ and v in $H_{\text {alg }}^{\ell}(X, \mathbb{Z} / 2)$, where $k+\ell=\operatorname{dim} X$;
ii) $\left\langle u \cup w_{i_{1}}(X) \cup \cdots \cup w_{i_{r}}(X),[X]\right\rangle=0$ for all u in $\operatorname{Alg}^{k}(X)$ and all non-negative integers i_{1}, \ldots, i_{r} with $i_{1}+\cdots+i_{r}=\operatorname{dim} X-k$;
iii) if $k=1$ or if $k=\operatorname{dim} X-1$ and X is connected, then every cohomology class in $\operatorname{Alg}^{k}(X)$ is spherical.

For the proof, the reader is referred to [Kuc96, Theorem 2.1] and [AK99, Theorem 1.1].
The next fact will also be very useful. Let B^{k} be a non-singular irreducible real algebraic variety with precisely two connected components B_{0}^{k} and B_{1}^{k}, each diffeomorphic to $S^{k}, k \geqslant 1$. For example, one can take

$$
B^{k}=\left\{\left(x_{0}, \ldots, x_{k}\right) \in \mathbb{R}^{k+1} \mid x_{0}^{4}-4 x_{0}^{2}+1+x_{1}^{2}+\cdots+x_{k}^{2}=0\right\}
$$

Let $B=B^{k} \times \cdots \times B^{k}$ and $B_{0}=B_{0}^{k} \times \cdots \times B_{0}^{k}$ be the d-fold products, and let $\delta: B_{0} \hookrightarrow B$ be the inclusion map. It is known [Kuc02, Example 4.5] that

$$
\begin{equation*}
H^{q}\left(B_{0}, \mathbb{Z} / 2\right)=\delta^{*}\left(H^{q}(B, \mathbb{Z} / 2)\right)=\delta^{*}\left(\operatorname{Alg}^{q}(B)\right) \quad \text { for all } q \geqslant 0 \tag{2.2}
\end{equation*}
$$

We now recall an important result from differential topology.
Theorem 2.3. Let P be a smooth manifold. Two smooth maps $f: M \rightarrow P$ and $g: N \rightarrow P$, where M and N are compact smooth manifolds of dimension d, represent the same bordism class in the unoriented bordism group $\mathcal{N}_{*}(P)$ if and only if for every non-negative integer q and every cohomology class v in $H^{q}(P, \mathbb{Z} / 2)$, one has

$$
\left\langle f^{*}(v) \cup w_{i_{1}}(M) \cup \cdots \cup w_{i_{r}}(M),[M]\right\rangle=\left\langle g^{*}(v) \cup w_{i_{1}}(N) \cup \cdots \cup w_{i_{r}}(N),[N]\right\rangle
$$

for all non-negative integers i_{1}, \ldots, i_{r} with $i_{1}+\cdots+i_{r}=d-q$.

W. Kucharz

For the proof, the reader is referred to [Con79, (17.3)].
If Y is a non-singular real algebraic variety, then a bordism class in $\mathcal{N}_{*}(Y)$ is said to be algebraic provided that it can be represented by a regular map $f: X \rightarrow Y$ of a compact non-singular real algebraic variety X into Y, cf. [AK81, AK92, BT80a, BT80b, BT82].

A topological real vector bundle on a real algebraic variety Y is said to admit an algebraic structure if it is topologically isomorphic to an algebraic subbundle of the trivial vector bundle with total space $Y \times \mathbb{R}^{p}$ for some p (cf. [BCR98] for various characterizations of such vector bundles and for their basic properties).

Given smooth manifolds N and P, we endow the set $\mathcal{C}^{\infty}(N, P)$ of all smooth maps from N into P with the \mathcal{C}^{∞} topology [Hir76] (in our applications N is always compact so it does not matter whether we take the weak \mathcal{C}^{∞} topology or the strong one).

Our basic tools include the following approximation theorem.
Theorem 2.4. Let M be a compact smooth submanifold of \mathbb{R}^{n} and let W be a non-singular real algebraic variety. Let $f: M \rightarrow W$ be a smooth map whose bordism class in $\mathcal{N}_{*}(W)$ is algebraic. Suppose that M contains a (possibly empty) Zariski closed non-singular subvariety L of \mathbb{R}^{n}, the restriction $f \mid L: L \rightarrow W$ is a regular map, and the restriction to L of the tangent bundle of M admits an algebraic structure. If $2 \operatorname{dim} M+1 \leqslant n$, then there exist a smooth embedding $e: M \rightarrow \mathbb{R}^{n}$, a Zariski closed non-singular subvariety X of \mathbb{R}^{n}, and a regular map $g: X \rightarrow W$ such that $L \subseteq X$ $=e(M), e \mid L: L \rightarrow \mathbb{R}^{n}$ is the inclusion map, $g|L=f| L$, and $g \circ \bar{e}$ (where $\bar{e}: M \rightarrow e(M)$ is the smooth diffeomorphism defined by $\bar{e}(x)=e(x)$ for all x in M) is homotopic to f. Furthermore, given a neighborhood \mathcal{U} in $\mathcal{C}^{\infty}\left(M, \mathbb{R}^{n}\right)$ of the inclusion map $M \hookrightarrow \mathbb{R}^{n}$ and a neighborhood \mathcal{V} of f in $\mathcal{C}^{\infty}(M, W)$, the objects e, X, and g can be chosen in such a way that e is in \mathcal{U} and $g \circ \bar{e}$ is in \mathcal{V}.
Proof. Precisely this formulation is in [Kuc02, Theorem 4.2]. It is based on very similar results of [AK81, AK92, BT80a, BT80b].

After these preparations we return to the main topic of our paper.
Theorem 2.5. Let M be a compact smooth manifold of dimension m. Let G be a subgroup of $H^{k}(M, \mathbb{Z} / 2)$, where $k \geqslant 1$. Assume that G is generated by spherical cohomology classes. If $2 k+1 \leqslant$ m, then the following conditions are equivalent:
a) There exist an algebraic model X of M and a smooth diffeomorphism $\varphi: M \rightarrow X$ such that $\varphi^{*}\left(\operatorname{Alg}^{k}(X)\right)=G$.
b) For every integer ℓ satisfying $\ell \geqslant 1$ and $\ell k \leqslant m$, one has

$$
\left\langle u_{1} \cup \cdots \cup u_{\ell} \cup w_{i_{1}}(M) \cup \cdots \cup w_{i_{r}}(M),[M]\right\rangle=0
$$

for all u_{1}, \ldots, u_{ℓ} in G and all non-negative integers i_{1}, \ldots, i_{r} with $i_{1}+\cdots+i_{r}=m-\ell k$.
Furthermore, if condition b holds, then X in condition a can be chosen irreducible.
Proof. It follows from Theorem 2.1, part ii that condition a implies condition b. Suppose then that condition b holds. We prove below that condition a, with X irreducible, is satisfied. We assume that M is a smooth submanifold of $\mathbb{R}^{2 m+1}$.

Let us set

$$
\begin{gathered}
\Gamma=\left\{v \in H^{m-k}(M, \mathbb{Z} / 2) \mid\langle u \cup v,[M]\rangle=0 \text { for every } u \text { in } G\right\}, \\
\Gamma=\left\{v_{1}, \ldots, v_{s}\right\} .
\end{gathered}
$$

Since $2 k+1 \leqslant m$, the homology class in $H_{k}(M, \mathbb{Z} / 2)$ Poincaré dual to v_{i} can be represented by a compact smooth submanifold N_{i} of M [Tho54, Théorème II.26]. Thus we have

$$
e_{i_{*}}\left(\left[N_{i}\right]\right)=v_{i} \cap[M],
$$

Algebraic equivalence of cycles

where $e_{i}: N_{i} \hookrightarrow M$ is the inclusion map and \cap stands for the cap product. We may assume that N_{1}, \ldots, N_{s} are pairwise disjoint. Note that

$$
\begin{equation*}
\left\langle e_{i}^{*}(u),\left[N_{i}\right]\right\rangle=\left\langle u \cup v_{i},[M]\right\rangle \quad \text { for all } u \text { in } H^{k}(M, \mathbb{Z} / 2) . \tag{1}
\end{equation*}
$$

Indeed standard properties of \cup, \cap,\langle,$\rangle (cf. for example [Dol72]) yield$

$$
\begin{aligned}
\left\langle e_{i}^{*}(u),\left[N_{i}\right]\right\rangle & =\left\langle u, e_{i_{*}}\left(\left[N_{i}\right]\right)\right\rangle \\
& =\left\langle u, v_{i} \cap[M]\right\rangle \\
& =\left\langle u \cup v_{i},[M]\right\rangle .
\end{aligned}
$$

The bilinear map

$$
H^{k}(M, \mathbb{Z} / 2) \times H^{m-k}(M, \mathbb{Z} / 2) \rightarrow \mathbb{Z} / 2,(u, v) \rightarrow\langle u \cup v,[M]\rangle
$$

is a dual pairing [Dol72, p. 300, Proposition 8.13] and hence

$$
G=\left\{u \in H^{k}(M, \mathbb{Z} / 2) \mid\langle u \cup v,[M]\rangle=0 \text { for every } v \text { in } \Gamma\right\} .
$$

By applying Equation (1), we obtain

$$
\begin{equation*}
G=\left\{u \in H^{k}(M, \mathbb{Z} / 2) \mid\left\langle e_{i}^{*}(u),\left[N_{i}\right]\right\rangle=0 \text { for } 1 \leqslant i \leqslant s\right\} . \tag{2}
\end{equation*}
$$

We shall now successively modify M and N_{1}, \ldots, N_{s} to ensure that they satisfy some additional desirable conditions.

Let $\gamma_{n, m}$ denote the universal vector bundle on the Grassmannian $\mathbb{G}_{n, m}$ of m-dimensional vector subspaces of \mathbb{R}^{n}. Assuming that n is large enough, we can find a smooth classifying map $h_{i}: N_{i} \rightarrow$ $\mathbb{G}_{n, m}$ for the restriction $\tau(M) \mid N_{i}$ of the tangent bundle $\tau(M)$ of M (this means that the vector bundles $\tau(M) \mid N_{i}$ and $h_{i}^{*} \gamma_{n, m}$ are isomorphic). Recall that $\mathbb{G}_{n, m}$ is endowed with a canonical structure sheaf which makes it into a real algebraic variety in the sense of this paper [BCR98, Theorem 3.4.4] ($\mathbb{G}_{n, m}$ is an affine real algebraic variety according to the terminology used in [BCR98]). Moreover, $\mathbb{G}_{n, m}$ is non-singular [BCR98, Proposition 3.4.3] and every bordism class in $\mathcal{N}_{*}\left(\mathbb{G}_{n, m}\right)$ is algebraic [BCR98, Proposition 11.3.3; AK92, Lemma 2.7.1]. It follows that Theorem 2.4 can be applied to $h_{i}: N_{i} \rightarrow \mathbb{G}_{n, m}$ (with L empty) and hence modifying M, we may assume that N_{i} is a Zariski closed non-singular subvariety of $\mathbb{R}^{2 m+1}$ and $h_{i}: N_{i} \rightarrow \mathbb{G}_{n, m}$ is a regular map for $1 \leqslant i \leqslant s$.

Let u_{1}, \ldots, u_{d} be spherical cohomology classes generating G. Using the same notation as in (2.2), choose a smooth map $f_{j}: M \rightarrow B^{k}$ such that $f_{j}(M) \subseteq B_{0}^{k}$ and $f_{j}^{*}\left(H^{1}\left(B^{k}, \mathbb{Z} / 2\right)\right)$ is the subgroup of G generated by u_{j}. By (2.2), we have

$$
\begin{equation*}
G=f^{*}\left(H^{k}(B, \mathbb{Z} / 2)\right)=f^{*}\left(\operatorname{Alg}^{k}(B)\right), \tag{3}
\end{equation*}
$$

where $f=\left(f_{1}, \ldots, f_{d}\right): M \rightarrow B=B^{k} \times \cdots \times B^{k}$.
We assert that the maps $\left(f \mid N_{i}, h_{i}\right): N_{i} \rightarrow B \times \mathbb{G}_{n, m}$ and $\left(c_{i}, h_{i}\right): N_{i} \rightarrow B \times \mathbb{G}_{n, m}$, where $c_{i}: N_{i} \rightarrow B$ is a constant map sending N_{i} to a point in B_{0}, represent the same class in the bordism group $\mathcal{N}_{*}\left(B \times \mathbb{G}_{n, m}\right)$. By Theorem 2.3 and Künneth's theorem in cohomology, in order to prove the assertion it suffices to show that given cohomology classes ξ in $H^{p}(B, \mathbb{Z} / 2)$ and η in $H^{q}\left(\mathbb{G}_{n, m}, \mathbb{Z} / 2\right)$, we have
$\left\langle\left(f \mid N_{i}, h_{i}\right)^{*}(\xi \times \eta) \cup w_{j_{1}}\left(N_{i}\right) \cup \cdots \cup w_{j_{r}}\left(N_{i}\right),\left[N_{i}\right]\right\rangle=\left\langle\left(c_{i}, h_{i}\right)^{*}(\xi \times \eta) \cup w_{j_{1}}\left(N_{i}\right) \cup \cdots \cup w_{j_{r}}\left(N_{i}\right),\left[N_{i}\right]\right\rangle$ for all non-negative integers j_{1}, \ldots, j_{r} satisfying $j_{1}+\cdots+j_{r}=k-(p+q)$. Since $\left(f \mid N_{i}, h_{i}\right)^{*}(\xi \times \eta)=$ $\left(f \mid N_{i}\right)^{*}(\xi) \cup h_{i}^{*}(\eta)$ and $\left(c_{i}, h_{i}\right)^{*}(\xi \times \eta)=c_{i}^{*}(\xi) \cup h_{i}^{*}(\eta)$, the last displayed equality is equivalent to

$$
\begin{equation*}
\left\langle\left(f \mid N_{i}\right)^{*}(\xi) \cup h_{i}^{*}(\eta) \cup w_{j_{1}}\left(N_{i}\right) \cup \cdots \cup w_{j_{r}}\left(N_{i}\right),\left[N_{i}\right]\right\rangle=\left\langle c_{i}^{*}(\xi) \cup h_{i}^{*}(\eta) \cup w_{j_{1}}\left(N_{i}\right) \cup \cdots \cup w_{j_{r}}\left(N_{i}\right),\left[N_{i}\right]\right\rangle . \tag{4}
\end{equation*}
$$

We now justify Equation (4). If p is not a multiple of k, then $\xi=0$ and hence (4) holds. It remains to consider two cases: $(p, q)=(0, k)$ and $(p, q)=(k, 0)$. If $(p, q)=(0, k)$, then $\left(f \mid N_{i}\right)^{*}(\xi)=c_{i}^{*}(\xi)$,

W. Kucharz

which implies (4). If $(p, q)=(k, 0)$, then $c_{i}^{*}(\xi)=0$ and (4) is reduced to

$$
\begin{equation*}
\left\langle\left(f \mid N_{i}\right)^{*}(\xi) \cup h_{i}^{*}(\eta),\left[N_{i}\right]\right\rangle=0 . \tag{5}
\end{equation*}
$$

Since $f \mid N_{i}=f \circ e_{i}$, we have

$$
\left(f \mid N_{i}\right)^{*}(\xi) \cup h_{i}^{*}(\eta)=e_{i}^{*}\left(f^{*}(\xi)\right) \cup h_{i}^{*}(\eta)=\lambda e_{i}^{*}\left(f^{*}(\xi)\right),
$$

where $\lambda=0$ or $\lambda=1$. Hence Equation (5) follows from Equations (2) and (3). This means that Equation (4) always holds and therefore the proof of the assertion is complete.

Since $\left(c_{i}, h_{i}\right): N_{i} \rightarrow B \times \mathbb{G}_{n, m}$ is a regular map, the assertion implies that the bordism class of $\left(f \mid N_{i}, h_{i}\right): N_{i} \rightarrow B \times \mathbb{G}_{n, m}$ in $\mathcal{N}_{*}\left(B \times \mathbb{G}_{n, m}\right)$ is algebraic. Theorem 2.4 can be applied to $\left(f \mid N_{i}, h_{i}\right): N_{i} \rightarrow B \times \mathbb{G}_{n, m}$ (with L empty) and therefore modifying M and f, we may assume that N_{i} is still a Zariski closed non-singular subvariety of $\mathbb{R}^{2 m+1}$ and $\left(f \mid N_{i}, h_{i}\right): N_{i} \rightarrow B \times \mathbb{G}_{n, m}$ is a regular map for $1 \leqslant i \leqslant s$. By construction, $\tau(M) \mid N_{i}$ admits an algebraic structure (being isomorphic to $\left.h_{i}^{*} \gamma_{n, m}\right)$. Note that $N=N_{1} \cup \cdots \cup N_{s}$ is a Zariski closed non-singular subvariety of $\mathbb{R}^{2 m+1}$ and

$$
\begin{gather*}
f \mid N: N \rightarrow B \text { is a regular map, } \tag{6}\\
\tau(M) \mid N \text { admits an algebraic structure. } \tag{7}
\end{gather*}
$$

We can further modify f so that it is constant on some open subset U of M which is disjoint from N and has a non-empty intersection with each connected component of M. Let P be a compact k-dimensional smooth submanifold of U such that each connected component of M contains a connected component of P, each connected component of P is diffeomorphic to S^{k}, and the restriction $\tau(M) \mid P$ is a trivial vector bundle. There is a smooth diffeomorphism σ of $\mathbb{R}^{2 m+1}$ such that $\sigma(x)=x$ for x in N and $\sigma(P)$ is a Zariski closed non-singular irreducible subvariety of $\mathbb{R}^{2 m+1}$. Replacing M by $\sigma(M)$, we may assume that P itself is a Zariski closed non-singular irreducible subvariety of $\mathbb{R}^{2 m+1}$.

Note that $N \cup P$ is a Zariski closed non-singular subvariety of $\mathbb{R}^{2 m+1}$. Since f is constant on P, it follows from (6) that

$$
\begin{equation*}
f \mid(N \cup P): N \cup P \rightarrow B \text { is a regular map. } \tag{8}
\end{equation*}
$$

Furthermore, in view of (7), we get

$$
\begin{equation*}
\tau(M) \mid(N \cup P) \text { admits an algebraic structure. } \tag{9}
\end{equation*}
$$

We claim that $f: M \rightarrow B$ and a constant map $M \rightarrow B$ sending M to a point in B_{0} represent the same class in the bordism group $\mathcal{N}_{*}(B)$. We verify the claim via Theorem 2.3. It suffices to show that given a positive integer q and a cohomology class ξ in $H^{q}(B, \mathbb{Z} / 2)$, we have

$$
\begin{equation*}
\left\langle f^{*}(\xi) \cup w_{i_{1}}(M) \cup \cdots \cup w_{i_{r}}(M),[M]\right\rangle=0 \tag{10}
\end{equation*}
$$

for all non-negative integers i_{1}, \ldots, i_{r} with $i_{1}+\cdots+i_{r}=m-q$. If q is not a multiple of k, then $\xi=0$ and Equation (10) holds. If $q=\ell k \leqslant m$, then ξ is a linear combination of cohomology classes of the form $\xi_{1} \cup \cdots \cup \xi_{\ell}$, where $\xi_{1}, \ldots, \xi_{\ell}$ are in $H^{k}(B, \mathbb{Z} / 2)$. By (3), the cohomology classes $f^{*}\left(\xi_{1}\right), \ldots, f^{*}\left(\xi_{\ell}\right)$ are in G and hence (10) follows from condition b . Thus the claim is proved.

The claim implies that the class of $f: M \rightarrow B$ in the bordism group $\mathcal{N}_{*}(B)$ is algebraic. In view of (8) and (9) we can apply Theorem 2.4 to $f: M \rightarrow B$ (with $L=N \cup P$). Hence there exist a Zariski closed non-singular subvariety X of $\mathbb{R}^{2 m+1}$, a smooth diffeomorphism $\varphi: M \rightarrow X$, and a regular map $g: X \rightarrow B$ such that $X=\varphi(M), \varphi(x)=x$ for all x in $N \cup P$, and f is homotopic to $g \circ \varphi$. Clearly, X is irreducible, the variety P being irreducible. In order to complete the proof it remains to show that $\varphi^{*}\left(\operatorname{Alg}^{k}(X)\right)=G$. We argue as follows. Since $g: X \rightarrow B$ is a regular map,

Algebraic equivalence of cycles

we have $g^{*}\left(\operatorname{Alg}^{k}(B)\right) \subseteq \operatorname{Alg}^{k}(X)$. Hence using (3) and $f^{*}=(g \circ \varphi)^{*}=\varphi^{*} \circ g^{*}$, we obtain

$$
G=f^{*}\left(\operatorname{Alg}^{k}(B)\right)=\varphi^{*}\left(g^{*}\left(\operatorname{Alg}^{k}(B)\right)\right) \subseteq \varphi^{*}\left(\operatorname{Alg}^{k}(X)\right)
$$

Suppose there is an element w in $\operatorname{Alg}^{k}(X)$ such that $\varphi^{*}(w)$ is not in G. By (2), one can find i, $1 \leqslant i \leqslant s$, for which

$$
\left\langle e_{i}^{*}\left(\varphi^{*}(w)\right),\left[N_{i}\right]\right\rangle \neq 0 .
$$

If $\epsilon_{i}: N_{i} \hookrightarrow X$ is the inclusion map, then $\epsilon_{i}=\varphi \circ e_{i}$ and hence $\epsilon_{i}^{*}(w)=e_{i}^{*}\left(\varphi^{*}(w)\right)$. It follows that

$$
\left\langle\epsilon_{i}^{*}(w),\left[N_{i}\right]\right\rangle \neq 0
$$

This contradicts Theorem 2.1, part i since $\epsilon_{i}^{*}(w)$ is in $\operatorname{Alg}^{k}\left(N_{i}\right)$, the map ϵ_{i} being regular. Thus $\varphi^{*}\left(\operatorname{Alg}^{k}(X)\right)=G$ and the proof is complete.

Proposition 2.6. Let M be a compact smooth manifold of dimension m with $m \geqslant 2$. Let G be a subgroup of $H^{m-1}(M, \mathbb{Z} / 2)$. Assume that G is generated by spherical cohomology classes. Then the following conditions are equivalent:
a) There exist an algebraic model X of M and a smooth diffeomorphism $\varphi: M \rightarrow X$ such that $\varphi^{*}\left(\operatorname{Alg}^{m-1}(X)\right)=G$.
b) $\left\langle u \cup w_{1}(M),[M]\right\rangle=0$ for all u in G, and when $m=2$, then in addition $\left\langle u_{1} \cup u_{2},[M]\right\rangle=0$ for all u_{1} and u_{2} in G.
Furthermore, if condition b holds, then X in condition a can be chosen irreducible.
Proof. It follows from Theorem 2.1, part ii that condition a implies condition b. Suppose then that condition b holds. We prove below that condition a, with X irreducible, is satisfied. In the proof we assume that M is a smooth submanifold of $\mathbb{R}^{2 m+1}$.

Let us set

$$
\Gamma=\left\{v \in H^{1}(M, \mathbb{Z} / 2) \mid\langle u \cup v,[M]\rangle=0 \text { for all } u \text { in } G\right\}, \Gamma=\left\{u_{1}, \ldots, u_{s}\right\}
$$

If n is sufficiently large and $A=\mathbb{P}^{n}(\mathbb{R}) \times \cdots \times \mathbb{P}^{n}(\mathbb{R})$ is the product of s copies of real projective n-space $\mathbb{P}^{n}(\mathbb{R})$, then there exists a smooth map $f: M \rightarrow A$ for which

$$
\begin{equation*}
\Gamma=f^{*}\left(H^{1}(A, \mathbb{Z} / 2)\right) \tag{11}
\end{equation*}
$$

Let u_{1}, \ldots, u_{d} be spherical cohomology classes generating G. Using the same notation as in (2.2), with $k=m-1$, choose a smooth map $g_{j}: M \rightarrow B^{m-1}$ such that $g_{j}(M) \subset B_{0}^{m-1}$ and $g_{j}^{*}\left(H^{m-1}\left(B^{m-1}, \mathbb{Z} / 2\right)\right)$ is the subgroup of G generated by u_{j}. Note that (2.2) implies

$$
\begin{equation*}
G=g^{*}\left(H^{m-1}(B, \mathbb{Z} / 2)\right)=g^{*}\left(\operatorname{Alg}^{m-1}(B)\right), \tag{12}
\end{equation*}
$$

where $g=\left(g_{1}, \ldots, g_{d}\right): M \rightarrow B=B^{m-1} \times \cdots \times B^{m-1}$.
We can choose f and g so that the map $(f, g): M \rightarrow A \times B$ is constant on some open subset U of M which has a non-empty intersection with each connected component of M. Let C be a compact smooth curve in U such that each connected component of M contains a connected component of C and the restriction $\tau(M) \mid C$ is trivial. There is a smooth diffeomorphism σ of $\mathbb{R}^{2 m+1}$ such that $\sigma(C)$ is a Zariski closed non-singular irreducible curve in $\mathbb{R}^{2 m+1}$. Replacing M by $\sigma(M)$, we may assume that C itself is a Zariski closed non-singular irreducible curve in $\mathbb{R}^{2 m+1}$.

We assert that the maps $(f, g): M \rightarrow A \times B$ and $(f, c): M \rightarrow A \times B$, where $c: M \rightarrow B$ is a constant map sending M to a point in B_{0}, represent the same class in the bordism group $\mathcal{N}_{*}(A \times B)$. By Theorem 2.3 and Künneth's theorem in cohomology, in order to prove the assertion it suffices to show that given cohomology classes ξ in $H^{p}(A, \mathbb{Z} / 2)$ and η in $H^{q}(B, \mathbb{Z} / 2)$, we have

$$
\left\langle(f, g)^{*}(\xi \times \eta) \cup w_{i_{1}}(M) \cup \cdots \cup w_{i_{r}}(M),[M]\right\rangle=\left\langle(f, c)^{*}(\xi \times \eta) \cup w_{i_{1}}(M) \cup \cdots \cup w_{i_{r}}(M),[M]\right\rangle
$$

W. Kucharz

for all non-negative integers i_{1}, \ldots, i_{r} satisfying $i_{1}+\cdots+i_{r}=m-(p+q)$. Since $(f, g)^{*}(\xi \times \eta)=$ $f^{*}(\xi) \cup g^{*}(\eta)$ and $(f, c)^{*}(\xi \times \eta)=f^{*}(\xi) \cup c^{*}(\eta)$, the last displayed equality is equivalent to

$$
\begin{equation*}
\left\langle f^{*}(\xi) \cup g^{*}(\eta) \cup w_{i_{1}}(M) \cup \cdots \cup w_{i_{r}}(M),[M]\right\rangle=\left\langle f^{*}(\xi) \cup c^{*}(\eta) \cup w_{i_{1}}(M) \cup \cdots \cup w_{i_{r}}(M),[M]\right\rangle . \tag{13}
\end{equation*}
$$

If q is not a multiple of $m-1$, then $\eta=0$ and hence Equation (13) holds. If $q=0$, then $g^{*}(\eta)=c^{*}(\eta)$ and (13) is also satisfied. It remains to consider the following three cases: $(p, q)=(1, m-1),(p, q)=$ $(0, m-1)$, and $(p, q)=(0,2)$ with $m=2$. In each of these cases $c^{*}(\eta)=0$. If $(p, q)=(1, m-1)$, then (13) is reduced to

$$
\left\langle f^{*}(\xi) \cup g^{*}(\eta),[M]\right\rangle=0,
$$

which holds in view of $(11),(12)$, and the definition of Γ. If $(p, q)=(0, m-1)$, then (13) is equivalent to

$$
\left\langle f^{*}(\xi) \cup g^{*}(\eta) \cup w_{1}(M),[M]\right\rangle=0,
$$

which follows from (12) and condition b (note that $f^{*}(\xi) \cup g^{*}(\eta)=\lambda g^{*}(\eta)$, where $\lambda=0$ or $\lambda=1$). If $(p, q)=(0,2), m=2$, then $f^{*}(\xi) \cup g^{*}(\eta)=\lambda g^{*}(\eta)$, where $\lambda=0$ or $\lambda=1$, and (13) is equivalent to

$$
\left\langle\lambda g^{*}(\eta),[M]\right\rangle=0 .
$$

The last equality follows from condition b since η is a linear combination of cohomology classes of the form $\eta_{1} \cup \eta_{2}$, where η_{1}, η_{2} are in $H^{1}(B, \mathbb{Z} / 2)$, and in view of $(12), g^{*}\left(\eta_{1}\right), g^{*}\left(\eta_{2}\right)$ are in G. This completes the proof of (13) and hence the assertion holds.

We shall now prove that

$$
\begin{equation*}
\text { the bordism class of }(f, g): M \rightarrow A \times B \text { in } \mathcal{N}_{*}(A \times B) \text { is algebraic. } \tag{14}
\end{equation*}
$$

Since every bordism class in $\mathcal{N}_{*}(A)$ is algebraic [AK92, Lemma 2.7.1], in view of Theorem 2.4, there exist a Zariski closed non-singular subvariety Y of $\mathbb{R}^{2 m+1}$, a smooth diffeomorphism $\psi: M \rightarrow Y$, and a regular map $\bar{f}: Y \rightarrow A$ such that f is homotopic to $\bar{f} \circ \psi$. Clearly, $(f, c): M \rightarrow A \times B$ and $\left(\bar{f}, c \circ \psi^{-1}\right): Y \rightarrow A \times B$ represent the same bordism class in $\mathcal{N}_{*}(A \times B)$. Note that $\left(\bar{f}, c \circ \psi^{-1}\right)$: $Y \rightarrow A \times B$ is a regular map, $c \circ \psi^{-1}: Y \rightarrow B$ being constant. Hence (14) follows from the assertion proved above.

By construction, $(f, g): M \rightarrow A \times B$ is constant on C and $\tau(M) \mid C$ is a trivial vector bundle. Thus (14) allows us to apply Theorem 2.4 to $(f, g): M \rightarrow A \times B$ (with $L=C$). Therefore there exist a Zariski closed non-singular subvariety X of $\mathbb{R}^{2 m+1}$, a smooth diffeomorphism $\varphi: M \rightarrow X$, and a regular map $(\alpha, \beta): X \rightarrow A \times B$ such that $X=\varphi(M), \varphi(x)=x$ for all x in C, and (f, g) is homotopic to $(\alpha, \beta) \circ \varphi=(\alpha \circ \varphi, \beta \circ \varphi)$. Obviously, X is irreducible, the curve C being irreducible.

It remains to prove $\varphi^{*}\left(\operatorname{Alg}^{m-1}(X)\right)=G$. Since $\beta: X \rightarrow B$ is a regular map, we have $\beta^{*}\left(\operatorname{Alg}^{m-1}(B)\right) \subseteq \operatorname{Alg}^{m-1}(X)$. Making use of $g^{*}=(\beta \circ \varphi)^{*}=\varphi^{*} \circ \beta^{*}$ and (12), we get

$$
G=g^{*}\left(\operatorname{Alg}^{m-1}(B)\right)=\varphi^{*}\left(\beta^{*}\left(\operatorname{Alg}^{m-1}(B)\right)\right) \subseteq \varphi^{*}\left(\operatorname{Alg}^{m-1}(X)\right)
$$

Suppose there exists w in $\operatorname{Alg}^{m-1}(X)$ such that $\varphi^{*}(w)$ is not in G. We obtain a contradiction as follows. The bilinear map

$$
H^{m-1}(M, \mathbb{Z} / 2) \times H^{1}(M, \mathbb{Z} / 2) \rightarrow \mathbb{Z} / 2,(u, v) \rightarrow\langle u \cup v,[M]\rangle
$$

is a dual pairing [Dol72, p. 300, Proposition 8.13] and hence one can find an element v in Γ with $\left\langle\varphi^{*}(w) \cup v,[M]\right\rangle \neq 0$. By (11), we have $v=f^{*}(z)$ for some z in $H^{1}(A, \mathbb{Z} / 2)$. Since $f^{*}=(\alpha \circ \varphi)^{*}=$ $\varphi^{*} \circ \alpha^{*}$, we get $v=\varphi^{*}\left(\alpha^{*}(z)\right)$. Thus $\left\langle\varphi^{*}(w) \cup \varphi^{*}\left(\alpha^{*}(z)\right),[M]\right\rangle \neq 0$, which yields

$$
\begin{equation*}
\left\langle w \cup \alpha^{*}(z),[X]\right\rangle \neq 0 . \tag{15}
\end{equation*}
$$

Note that $\alpha^{*}(z)$ is in $H_{\mathrm{alg}}^{1}(X, \mathbb{Z} / 2)$, the map $\alpha: X \rightarrow A$ being regular and $H^{1}(A, \mathbb{Z} / 2)=H_{\mathrm{alg}}^{1}(A, \mathbb{Z} / 2)$. Hence (15) contradicts Theorem 2.1, part i. The proof is complete.

Algebraic equivalence of cycles

Proof of Theorem 1.1. Obviously, every spherical cohomology class with coefficients in $\mathbb{Z} / 2$ is the reduction modulo 2 of a cohomology class with coefficients in \mathbb{Z}. Therefore it follows from Theorem 2.1, parts ii and iii that condition a implies condition b. Suppose condition b holds. The first part of condition b guarantees that every cohomology class in G is spherical [Hu59, p. 49, Theorem 7.1]. Thus condition a, with X irreducible, holds by virtue of Theorem 2.5 and Proposition 2.6 (Proposition 2.6 is required only when $m=2$).

Proof of Theorem 1.2. We already know that, by Theorem 2.1, part ii, condition a implies condition b. Suppose condition b is satisfied. Since M is connected, given u in $H^{m-1}(M, \mathbb{Z} / 2)$ with $\left\langle u \cup w_{1}(M),[M]\right\rangle=0$, we get $u \cup w_{1}(M)=0$. The last equality implies that the homology class in $H_{1}(M, \mathbb{Z} / 2)$ Poincaré dual to u can be represented by a compact smooth curve in M with trivial normal vector bundle, cf. for example [BK89, p. 599]. This in turn implies that u is spherical [Tho54, Théorème II.1]. Hence every cohomology class in G is spherical. In view of Proposition 2.6, condition a, with X irreducible, holds.

We conclude the paper with an example.
Example 2.7. Let $T^{m}=S^{1} \times \cdots \times S^{1}$ be the m-fold product with $m \geqslant 2$. Clearly, $H_{\text {alg }}^{\ell}\left(T^{m}, \mathbb{Z} / 2\right)=$ $H^{\ell}\left(T^{m}, \mathbb{Z} / 2\right)$ for all $\ell \geqslant 0$ and hence, by Theorem 2.1 , part i,

$$
\operatorname{Alg}^{k}\left(T^{m}\right)=0 \text { for all } k \geqslant 0
$$

On the other hand, let G be a subgroup of $H^{k}\left(T^{m}, \mathbb{Z} / 2\right)$ and suppose that one of the following conditions is satisfied:
i) $k=1$ and $G \neq H^{1}\left(T^{m}, \mathbb{Z} / 2\right)$;
ii) $k=m-1$ and $m \geqslant 3$;
iii) $k \geqslant 1,2 k+1 \leqslant m, m$ is not divisible by k, and G is generated by spherical cohomology classes;
iv) $m=k \ell$, where ℓ is an integer satisfying $\ell \geqslant \max \left\{2 m /(m-1), \operatorname{dim}_{\mathbb{Z} / 2} G+1\right\}$, and G is generated by spherical cohomology classes.

Then there exist an algebraic model X of T^{m} and a smooth diffeomorphism $\varphi: T^{m} \rightarrow X$ such that

$$
\varphi^{*}\left(\operatorname{Alg}^{k}(X)\right)=G
$$

Indeed, since the tangent bundle to T^{m} is trivial, we have $w_{i}\left(T^{m}\right)=0$ for all $i \geqslant 1$. Furthermore, if either of conditions i or iv is satisfied, $m=k \ell$, and u_{1}, \ldots, u_{ℓ} are in G, then $u_{1}, \cup \cdots \cup u_{\ell}=0$. Thus X and φ with the required property exist in view of Theorems 1.1, 1.2 and 2.5.

References

AK81 S. Akbulut and H. King, The topology of real algebraic sets with isolated singularities, Ann. Math. 113 (1981), 425-446.
AK92 S. Akbulut and H. King, Topology of real algebraic sets, Math. Sci. Res. Inst. Publ. 25 (Springer, Berlin, 1992).
AK99 M. Abánades and W. Kucharz, Algebraic equivalence of real algebraic cycles, Ann. Inst. Fourier (Grenoble) 49 (1999), 1797-1804.
BCR98 J. Bochnak, M. Coste and M.-F. Roy, Real algebraic geometry, Ergebnisse der Math. und ihrer Grenzgeb. Folge (3), vol. 36 (Springer, Berlin 1998).
BH61 A. Borel and A. Haefliger, La classe d'homologie fondamentale d'un espace analytique, Bull. Soc. Math. Fr. 89 (1961), 461-513.

BK89 J. Bochnak and W. Kucharz, Algebraic models of smooth manifolds, Invent. Math. 97 (1989), 585-611.

Algebraic equivalence of cycles

BK98 J. Bochnak and W. Kucharz, On homology classes represented by real algebraic varieties, Banach Center Publications, vol. 44 (Banach Center, Warsaw, 1998), 21-35.
BT80a R. Benedetti and A. Tognoli, Théorèmes d'approximation en géométrie algébrique réelle, Publ. Math. Univ. Paris VII 9 (1980), 123-145.
BT80b R. Benedetti and A. Tognoli, On real algebraic vector bundles, Bull. Sci. Math. (2) 104 (1980), 89-112.

BT82 R. Benedetti and A. Tognoli, Remarks and counterexamples in the theory of real vector bundles and cycles, Lecture Notes in Mathematics, vol. 959 (Springer, Berlin 1982), 198-211.
Con79 P. E. Conner, Differentiable periodic maps, 2nd edn, Lecture Notes in Mathematics, vol. 738 (Springer, Berlin, 1979).
Dol72 A. Dold, Lectures on algebraic topology, Grundlehren Math. Wiss., vol. 200 (Springer, Berlin, 1972).
Ful84 W. Fulton, Intersection theory, Ergebnisse der Math. und ihrer Grenzgeb. Folge (3), vol. 2 (Springer, Berlin, 1984).
Hir76 M. Hirsch, Differential topology, Graduate Texts in Mathematics, vol. 33 (Springer, Berlin, 1976)
Hu59 S. T. Hu, Homotopy theory (Academic Press, New York, 1959).
Kuc96 W. Kucharz, Algebraic equivalence and homology classes of real algebraic cycles, Math. Nachr. 180 (1996), 135-140.

Kuc01 W. Kucharz, Algebraic equivalence of real divisors, Math. Z. 238 (2001), 817-827
Kuc02 W. Kucharz, Algebraic cycles and algebraic models of smooth manifolds, J. Algebraic Geom. 11 (2002), 101-127.

Sil82 R. Silhol, A bound on the order of $H_{n-1}^{(a)}(X, \mathbb{Z} / 2)$ on a real algebraic variety, Lecture Notes in Mathematics, vol. 959 (Springer, Berlin, 1982), 443-450.

Tho54 R. Thom, Quelques propriétés globales de variétés différentiables, Comment. Math. Helv. 28 (1954), 17-86.

Tog73 A. Tognoli, Su una congettura di Nash, Ann. Scuola Norm. Sup. Pisa Sci. Fis. Mat. (3) 27 (1973), 167-185.
W. Kucharz kucharz@math.unm.edu

Max-Planck-Institut für Mathematik, Vivatsgasse 7, 53111 Bonn, Germany
Current address: Department of Mathematics and Statistics, University of New Mexico, Albuquerque, New Mexico 87131-1141, USA

[^0]: Received 22 May 2002, accepted in final form 5 November 2002.
 2000 Mathematics Subject Classification 14P25, 14C25.
 Keywords: real algebraic variety, algebraic cycle, cohomology class.
 The paper was written at the Max-Planck-Institut für Mathematik in Bonn, whose support and hospitality are gratefully acknowledged.
 This journal is © Foundation Compositio Mathematica 2004.

