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Studies on the evaporation of multicomponent droplets have revealed complex and
important physical mechanisms, induced by preferential phase change or mediated
by external vapour sources, e.g. occurrence of density-driven flows, phase separation,
transient Marangoni flow and solutal effects, etc. With the addition of hygroscopic salts,
the adhesive property of the droplet can be tuned, and the direction of water vapour
mass flux reversed. This paper focuses on the dynamics of hygroscopic aqueous solution
droplets, and analyses the interplay between different physical processes. Specifically, a
lubrication-type model is established with the assumption of a precursor film in front of
the three-phase contact line, which indicates qualitative agreement with our experimental
results, quantitatively with respect to the initial spreading rates and qualitatively with
respect to the overall behaviour. We derive the expression of absorptive mass flux
combining the balance of chemical potential across the solution–air interface and the
Hertz–Knudsen equation. Depending on the droplet state and the ambient condition,
evaporation or vapour absorption occurs. The evaporative/absorptive mass flux varies both
spatially and temporally as the droplet approaches equilibrium. It is demonstrated that
the dominating mechanisms, i.e. capillary, thermal Marangoni and solutal Marangoni,
compete with each other, and lead to diverse droplet dynamics at different stages of
evaporation or vapour absorption. The findings shed light on the physical processes within
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droplets with both positive and negative interfacial mass fluxes, and provide rational
explanations for the experimental observations.

Key words: drops, lubrication theory, condensation/evaporation

1. Introduction

Droplet spreading alongside mass transfer through interfacial phase change is a moving
boundary problem that involves the interaction of liquid and air with an impermeable solid
substrate. As a fundamental problem in fluid mechanics, droplet spreading exemplifies the
general problem of a moving contact line, which covers a lot of common phenomena in
our daily life and in industrial applications. In past decades, researchers have developed
a series of mathematical models for explicitly understanding the droplet dynamics during
this process.

In this research, we focus on the behaviours of one type of hygroscopic ionic solution
droplets with interfacial phase change. This kind of ionic solution, e.g. LiBr–H2O and
LiCl–H2O, exhibits the ability to absorb water vapour due to the adhesion of hygroscopic
ions to water molecules, and has been widely applied in innovative dehumidification (Liu,
Jiang & Qu 2007; Wang, Zhang & Li 2017) and water-harvesting systems (Wang, Zhang &
Li 2016; Ahmed et al. 2017). Depending on the humidity of the ambient air, evaporation or
vapour absorption takes place, and the salt concentration within the droplet changes. The
variation of salt concentration changes the vapour pressure difference between the droplet
surface and the surrounding air, which in turn affects the interfacial mass flux (Wang et al.
2019a) and the droplet dynamics.

Besides the difficulties shared by most moving boundary problems, the simulation of
droplets with a moving contact line presents additional complications (de Gennes 1985;
Bonn et al. 2009). At the liquid–solid interface, there is an inherent contradiction in
simultaneously assuming the no-slip boundary condition and expecting a displacement
between liquid and gas there; therefore, a force singularity will arise at the moving
contact line (Huh & Scriven 1971; Dussan & Davis 1974; Dussan 1979). Greenspan (1978)
developed a model for the movement of a small viscous droplet on a surface based on the
lubrication equations and applied the dynamic contact angle to describe the forces acting
on the fluid at the contact line. Ehrhard & Davis (1991) further developed Greenspan’s
model by taking account of the effects of gravitational force and thermocapillary force,
and generalized the relationship between the advancing contact angle and the speed of
the contact line based on the empirical correlations derived by previous researchers (e.g.
Tanner 1979; Cazabat & Stuart 1986; Chen & Wada 1989).

Subsequently, Haley & Miksis (1991) developed a lubrication model for droplet
spreading, which includes the effect of liquid slip on solid substrates, and relates the
dynamic contact angle with the velocity of the contact line. This approach, though, relies
on the use of reliable functions between the dynamic contact angle and the contact line
motion. The problem has been addressed later to some extent by a number of experimental
studies (Ehrhard 1993; Sedev et al. 1993; Eggers & Stone 2004; Blake 2006). Anderson
& Davis (1995) also took account of the effect of evaporation and developed a one-sided
model to describe the dynamics of a two-dimensional volatile liquid droplet on a uniformly
heated plate. A similar contact line model, albeit solving the full two-dimensional problem,
was used by Karapetsas et al. (2012) to predict the formation of travelling hydrothermal
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Dynamics of hygroscopic aqueous solution droplets

waves, arising from the temperature gradient as a result of natural evaporation, reported in
previous experimental work (Sefiane et al. 2008).

More recently, a similar explicit contact line model has been utilized to model the
spreading of more complex systems such as a surfactant-laden droplet spreading over solid
or liquid substrates (Karapetsas, Craster & Matar 2011a,b) and thermocapillary-driven
migration of thin droplets (Karapetsas, Sahu & Matar 2013; Karapetsas et al. 2014). A
different, less popular, approach that has been suggested in the literature is to connect the
macroscopic droplet bulk with the extending solid surface through a microscopic structure
(Shikhmurzaev 1997), referred to as the interface formation model in later studies (Sibley,
Savva & Kalliadasis 2012; Snoeijer & Andreotti 2013). The microscopic contact angle, as
part of the solution, is determined according to the contact line conditions arising from a
local mechanical balance with no assumptions required on its velocity dependence from
the experimental results. The interface formation model is more complex compared to the
former approach and is still subject to debates on its physical basis, while the exploration of
the microscopic physics, e.g. rolling or not, is effort-worthy and closest to a comprehensive
mathematical description.

Another popular approach, as adopted in this research, is based on the assumption of
a precursor film adsorbed at the gas–solid surface in front of the three-phase contact line
(TPCL) (de Gennes 1985). The precursor film is a result of the long-range intermolecular
interactions, in the range of a few hundred molecules, and has been verified experimentally
with the techniques of interference microscopy (Kavehpour, Ovryn & McKinley 2003),
fluorescence microscopy (Hoang & Kavehpour 2011) and atomic force microscopy (Xu
et al. 2004), amongst others. Owing to the existence of precursor film, a smooth transition
from the apparent contact angle to the flat solid surface is realized, thus avoiding the shear
stress singularity. As reported in the review by Bonn et al. (2009), this approach has been
utilized extensively to model perfectly wetting fluids, but it has also been successfully
applied to model cases with partial wetting (see e.g. Schwartz 1998; Schwartz & Eley
1998; Gomba & Homsy 2010) by introducing the effect of a non-zero contact angle through
a disjoining–conjoining pressure term.

To account for the effect of evaporation, Ajaev (2005), following a similar approach,
proposed a model based on the previous work of Moosman & Homsy (1980). Instead
of applying the correlations between droplet contact angle and the contact line motion,
Ajaev’s model assumed a microscopic adsorbed film in the dry area on the heated surface,
and that the adsorbed film is in thermodynamic equilibrium with both the vapour and
solid phases. Owing to the van der Waals effect, equilibrium can be achieved by non-zero
film thickness, thus avoiding the singularity at the contact line. In recent years, the latter
approach has been further developed to simulate the spreading and evaporation phenomena
of more complex droplets, such as those with nanoparticles (Matar, Craster & Sefiane
2007; Craster, Matar & Sefiane 2009), with colloidal suspensions (Maki & Kumar 2011),
as well as in the study of particle deposition in the presence of surfactants (Karapetsas,
Sahu & Matar 2016), and the evaporation of droplets consisting of binary mixtures (e.g.
ethanol–water) (Williams et al. 2021). Besides the development of lubrication-type models
for droplets with complex components, researchers have also developed models to simulate
the observed interfacial phenomena and the droplet motion under external forces (Espín &
Kumar 2014).

In recent years, studies on multicomponent droplets have revealed attractive physical
phenomena (Lohse & Zhang 2020) induced by the preferential evaporation of
individual components or mediated by external vapour sources, e.g. the occurrence of
density-driven flows (Edwards et al. 2018; Li et al. 2019), phase segregation/separation
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(Li et al. 2018; Li et al. 2020; Mao et al. 2020), the transient Marangoni flow and
solutal effects (Christy, Hamamoto & Sefiane 2011), etc. Specifically, in an evaporating
multicomponent droplet, the spatiotemporal variation of interfacial mass flux induces
the gradients of liquid density, temperature and concentration. The different physical
processes interact with each other, induce varying flow patterns with phase transitions,
and lead to various droplet dynamics and attraction–repulsion chasing behaviours of
neighbouring droplets in specific cases (Cira, Benusiglio & Prakash 2015). Owing to the
complex coupling of these physical processes, numerical models of the evaporation of
multicomponent droplets, to our knowledge, are rather limited. The few acknowledged
approaches include numerical models using the lubrication assumption (Diddens et al.
2017) and a finite element method with self-adapting mesh (Diddens 2017), which
simulate the evaporation of binary volatile droplets and ouzo droplets (ternary mixture
of a strongly hydrophobic essential oil, water and alcohol). Other trials also include the
numerical modelling of aqueous NaCl solution droplets with commercial computational
fluid dynamics software constrained to pinned droplets (Kang et al. 2013; Pradhan &
Panigrahi 2017).

The aim of this work is to develop a detailed mathematical model with the help
of supporting experiments to fully reveal the behaviours of hygroscopic ionic solution
droplets with both evaporative and absorptive mass fluxes. Here, the model is developed
based on the lubrication theory, which fully accounts for the thermophysical properties
of the ionic solution and the state of the surrounding environment. The model allows
for the free motion of the TPCL by assuming a precursor film adsorbed at the solid
substrate. An expression for the interfacial mass flux is derived by combining the
Hertz–Knudsen equation with the fundamental thermodynamic equilibrium relationship
across the liquid–air interface. Detailed experiments are subsequently carried out, which
indicate a qualitative agreement with the numerical prediction.

In the following sections, the physical description and a detailed introduction to the
mathematical model are presented in § 2. In § 3, we outline the boundary conditions,
the initial conditions and the numerical method. Details of the fluid properties and
the numerical approaches are provided in the appendix. The numerical results and
discussions are then presented in § 4, including the evaporation of pure water droplets,
the evaporation and vapour absorption of hygroscopic solution droplets, followed by
a qualitative comparison with the experimental results. The concluding remarks and
research perspective are summarized in § 5.

2. Problem formulation

We take a lithium bromide aqueous solution (LiBr–H2O) droplet as an example. Owing
to the high adhesion force of Li+ ions and Br− ions to water molecules, the water
vapour pressure at the droplet surface is greatly reduced. Depending on the ambient
condition, the LiBr–H2O droplet either evaporates (at low ambient humidity) or absorbs
water vapour (at high ambient humidity). Preferential evaporation/absorption induces
concentration gradients, while the thermal effect along with water-vapour phase change
induces temperature variation within the droplet (Wang et al. 2020).

The mass transfer process can be divided into vapour diffusion on the air side,
water–vapour/vapour–water phase change at the interface, and solute diffusion within the
droplet. Compared to the liquid phase, the density, viscosity and thermal conductivity of
the gas phase are significantly smaller and can be neglected, namely, ρ̂v � ρ̂l, μ̂v � μ̂l
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Dynamics of hygroscopic aqueous solution droplets

cH2O,∞ cH2O,I
xH2O,I

xH2O (ẑ, r̂, θ, τ̂) (ρ̂, μ̂, k̂ , ĉp, D̂)

R̂0O
Solid

Ĥ0

Liquid: LiBr + H2O

Gas: dry air + water vapour

ẑ
θ

r̂

n

t

Precursor film

Figure 1. A sessile lithium bromide–water (LiBr–H2O) droplet in contact with humid air (mixture of dry
air and water vapour): Ĥ0/R̂0 � 1 is assumed, xw,l(ẑ, r̂, θ, τ̂ ) refers to the concentration of water inside the
droplet, xw,s refers to the concentration of water at the droplet interface, cH2O,I refers to the water vapour
concentration in the humid air layer near the droplet interface, cH2O,∞ refers to the water vapour concentration
in the air bulk (and is assumed as constant), and n and t denote the outward unit vectors acting in normal and
tangential directions to the interface, respectively. The centre of the droplet base in contact with the substrate,
O, is defined as the origin of the coordinates. A thin precursor film is assumed to exist on the solid surface in
front of the TPCL.

and k̂v � k̂l. Moreover, the mass diffusion rate in the gas phase is 103–104 times that in the
liquid phase (Dwater/air/DLiBr/LiBr−H2O ∼ 10−5/10−9 ∼ 104) (Cussler 2009). Therefore,
the concentration field of water vapour can be assumed to be homogeneous. Considering
the characteristics of ionic solution droplets, we reasonably apply a one-sided model,
which focuses on the physical processes within the ionic solution droplets. Compared to
the two-sided model (Sáenz et al. 2015) and 1.5-sided model (Hu & Larson 2002; Diddens
et al. 2017), the one-sided model is able to capture the main physical mechanisms in an
efficient way, while maintaining a modest computational cost. Additionally, the model
closely relates the interfacial mass flux with the ambient condition, and is able to capture
the influence of ambient temperature and humidity.

2.1. Governing equations

Shown in figure 1, we consider a thin droplet with aspect ratio ε = Ĥ0/R̂0 � 1. The
aqueous solution is considered as a Newtonian fluid and assumed incompressible. The
thermal properties of LiBr–H2O solution are approximated as a function of the solution
temperature and solute concentration (see appendix A). To remove the stress singularity
arising from the moving contact line, a precursor film is assumed to exist at the solid
surface in front of the TPCL. The precursor film is sufficiently thin so that the adsorption
of water molecules onto the substrate is enhanced by van der Waals interactions. Owing to
the extremely small thickness, the precursor film gets saturated and reaches environmental
equilibrium very quickly upon contact with the humid air.

A cylindrical coordinate system, (r̂, θ, ẑ), is applied to solve the velocity field,
û = (û, v̂, ŵ), where û, v̂ and ŵ correspond to the horizontal, azimuthal and vertical
components of the velocity field, respectively. The liquid–vapour interface is located at
ẑ = ĥ(r̂, t̂), while the liquid–solid and solid–vapour interfaces are located at ẑ = 0. The
liquid phase is governed by the following incompressible mass, momentum, energy and
concentration equations:

∇̂ · û = 0, (2.1)

ρ̂

(
∂û
∂ t̂

+ û · ∇̂û
)

= ∇̂ · Ê + ρ̂ĝG, (2.2)
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ρ̂ĉp

(
∂T̂
∂ t̂

+ û · ∇̂T̂

)
= ∇̂ · (k̂∇̂T̂), (2.3)

∂χH2O

∂ t̂
+ û · ∇̂χH2O = ∇̂ · (D̂H2O∇̂χH2O). (2.4)

Here D̂H2O denotes the mass diffusion coefficient of water molecules, χ̂H2O denotes the
water concentration in LiBr–H2O solution, and Ê refers to the total stress tensor at the
liquid side, defined as

Ê = −p̂I + μ̂(∇̂û + ∇̂ûT), (2.5)

where I denotes the identity tensor.
Along the droplet interface, the boundary equation of mass balance can be expressed

by the relationship between the velocity of the liquid solution, û, and the velocity of the
interface, ûs,

(û − ûs) · n = Ĵ
ρ̂
, (2.6)

where Ĵ denotes the interfacial mass flux of water vapour and ρ̂ denotes the density of the
solution near the droplet interface. The jump energy balance can then be derived by taking
account of the heat release at the liquid–vapour interface, expressed as

ĴL̂H2O + k̂∇̂T̂ · n = k̂g∇̂T̂g · n, (2.7)

where ρ̂g, ûg, k̂g and T̂g refer to the density, velocity, thermal conductivity and temperature
of the gas phase, respectively, and L̂H2O denotes the latent heat of vaporization or the heat
of absorption.

At the droplet surface, the transition of vapour molecules from liquid to gas phase
will generate an inward normal force, namely the vapour recoil effect, which has been
evidenced to be a destabilizing factor of interface dynamics (Burelbach, Bankoff & Davis
1988). Nevertheless, the recoil force is practically only important for applications where
very high mass fluxes are involved (Gad-el-Hak 2005). In this study, evaporation or vapour
absorption is driven by a vapour pressure difference of the order of several kilopascals.
Therefore, the inward or outward pressure exerted by vapour recoil is relatively weak and
resisted by the capillary and Marangoni effects. By ignoring the effect of vapour recoil
and inertia from the gas phase (μ̂v � μ̂l), a relation between the normal stress jump, the
surface tension, the mean curvature and the van der Waals interactions can be derived,
namely, the normal stress boundary balance:

−p̂ + n · τ̂ · n = 2κ̂ σ̂ + Π̂ − p̂g. (2.8)

Here p̂ is the pressure of the liquid phase, p̂g is the total pressure of the gas phase, τ̂ is the
shear stress tensor of the liquid phase, 2κ̂ = −∇̂s · n is twice the mean curvature of the
free surface and ∇̂s = (I − nn) · ∇̂ is the surface gradient operator. In (2.8), Π̂ denotes
the disjoining pressure accounting for intermolecular interactions near the contact line (de
Gennes, Hua & Levinson 1990),

Π̂ =
Â

6πĥ
3 , (2.9)

with Â being the dimensional Hamaker constant.
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Dynamics of hygroscopic aqueous solution droplets

The tangential stress boundary condition indicates the balance between the shear stress
jump and the surface tension gradient. By ignoring the shear stress from the gas phase due
to apparently lower gas viscosity, we arrive at

n · Ê · t = ∇̂sσ̂ · t, (2.10)

where t refers to the outward vector that is tangential to the interface.
The concentration balance of water vapour over the interface is defined as

(1 − χH2O)ρ̂(û − ûs) · n + D̂H2O(n · ∇̂χH2O)ẑ=ĥ = 0. (2.11)

Combining with the jump mass balance, (2.6), the concentration balance boundary
condition becomes

D̂H2O(n · ∇̂χH2O)ẑ=ĥ = Ĵ(χH2O − 1). (2.12)

The motion of the free surface can be described with the kinematic boundary condition,
expressed as

∂ ĥ
∂ t̂

+ ûs
∂ ĥ
∂ r̂

+ v̂s

r̂
∂ ĥ
∂θ

= ŵs. (2.13)

Along the liquid–solid interface (ẑ = 0), no-slip and zero vertical concentration flux
boundary conditions are applied:

û = 0, ŵ = 0,
∂χH2O

∂ ẑ
= 0, T̂ = T̂w. (2.14a–d)

2.2. Derivation of interfacial mass flux
The governing equations can then be closed by the expression of the interfacial mass flux.
The Hertz–Knudsen equation is commonly used for predicting the mass flux induced by
evaporation or condensation towards a liquid–vapour interface. The equation relates the
mass flux with the difference between the actual vapour pressure at the droplet interface
and the equilibrium vapour pressure between the liquid and gas phases. The derived
equation (Plesset & Prosperetti 1976; Moosman & Homsy 1980) is expressed as

Ĵ =
√

m̂

2πk̂B

⎛
⎝αe

p̂v,e√
T̂L

S

− αc
p̂v,S√

T̂V
S

⎞
⎠ =

√√√√M̂H2O

2πR̂g

⎛
⎝αe

p̂v,e√
T̂L

S

− αc
p̂v,S√

T̂V
S

⎞
⎠ . (2.15)

Here m̂ denotes the mass of a water molecule, m̂ = M̂H2O/NA (with MH2O being the molar
mass of water and NA the Avogadro constant), k̂B denotes the Boltzmann constant, R̂g

denotes the gas constant, T̂S is the temperature of the liquid–air interface, p̂v,S is the
interfacial vapour pressure at the droplet surface, p̂v,e is the equilibrium vapour pressure
with the gas phase, and αe and αc are the mass accommodation coefficients of evaporation
and condensation, respectively.

In this model, the temperature at the liquid–air interface is considered as continuous,
T̂L

S = T̂V
S = T̂S, and we assume that the system is always near equilibrium, αe = αc = 1

and T̂S ≈ T̂g. Moreover, the LiBr–H2O solution is dealt with as an ideal solution, and
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thus the water vapour pressure follows Raoult’s law, p̂v,S = χH2Op̂v,sat, where p̂v,sat is the
saturation vapour pressure above pure water. Equation (2.15) then becomes

Ĵ = χH2Op̂v,sat

√√√√ M̂H2O

2πR̂gT̂g

(
p̂v,e
p̂v,S

− 1
)
. (2.16)

At thermodynamic equilibrium, the chemical potentials of the gas phase and liquid
phase across the liquid–air interface reach balance, and the following relation can be
derived based on the chemical balance relations (Atkins, De Paula & Keeler 2018):

ln
(

p̂v,e
p̂v,S

)
= M̂H2O

ρ̂H2OR̂gT̂g
( p̂ − p̂g)+ M̂H2OL̂H2O

R̂gT̂2
g

(T̂S − T̂g)+ ln
(
χH2O

χH2O,g

)
. (2.17)

As p̂v,S gets close to p̂v,e, we have ln(p̂v,e/p̂v,S) ≈ p̂v,e/p̂v,S − 1 for a quasi-static state,
and the absorptive mass flux is derived as

Ĵ = χH2Op̂v,sat

√√√√ M̂H2O

2πR̂gT̂g

(
M̂H2O

ρ̂H2OR̂gT̂g
( p̂ − p̂g)+ M̂H2OL̂H2O

R̂gT̂2
g

(T̂S − T̂g)+ ln
(
χH2O

χH2O,g

))
.

(2.18)

We note that, in the work of Shklyaev & Fried (2007), it is pointed out that the energy
transport across the liquid–air interface and the effective pressure that accounts for the
vapour recoil effect could influence the stability of an evaporating thin film. Nevertheless,
it is shown that these effects are only apparent for liquids with large evaporation mass
fluxes and small Prandtl numbers (Pr), e.g. molten metals. For normal volatile liquids
like water and the hygroscopic ionic solution in the present work, the inward or outward
pressure exerted by vapour recoil is relatively weak and resisted by other dominating
effects; therefore, the classical Hertz–Knudsen equation is sufficient to capture the effects
of key factors across the liquid–air interface.

2.3. Scaling and normalization
The governing and boundary equations are non-dimensionalized using the following
scaling:

û∗ = εη̂σχH2O

μ̂
, r̂ = R̂0r, ẑ = Ĥ0z, (û, v̂, ŵ) =

(
û∗u, û∗

v,
Ĥ0

R̂0
û∗w

)
,

ρ̂ = ρ̂H2Oρ, μ̂ = μ̂H2Oμ, σ̂ = σ̂H2Oσ, ĉp = ĉp,H2Ocp, k̂ = k̂H2Ok,

t̂ = R̂0

û∗ t, p̂ = p̂g + μ̂H2Oû∗R̂0

Ĥ2
0

p, Ĵ = ρ̂H2OD̂H2OχH2O

Ĥ0
J, T̂ = T̂ref + TT̂,

T̂ = ρ̂H2OD̂H2OL̂H2OχH2O

k̂H2O
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.19)

Here the maximal possible solutal Marangoni velocity, û∗ = εη̂σχH2O/μ̂, is applied as
the characteristic velocity of the system, η̂σ is the concentration coefficient of surface
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Dynamics of hygroscopic aqueous solution droplets

tension of the LiBr–H2O solution, and χH2O is the maximum possible concentration
difference within the droplet. The dimensionless groups that arise include the Reynolds
number, Re = ρ̂H2Oû∗Ĥ0/μ̂H2O, the Stokes number, St = ρ̂H2OĝGĤ3

0/μ̂H2Oû∗R0, the
Prandtl number, Pr = μ̂H2Oĉp,H2O/k̂H2O, the Péclet number, Pe = û∗R̂0ρ̂H2O/D̂H2O, the
evaporation number, E = D̂H2OR̂0χH2O/Ĥ2

0 û∗, the solutal Marangoni number, Ma =
μ̂H2Oû∗/εσ̂H2O = η̂σχH2O/σ̂H2O, the Hamaker constant, A = Â/6πμ̂H2Oû∗R̂0Ĥ0,

the Knudsen number, Kn = (ρ̂H2OD̂H2OχH2O/Ĥ0p̂v,sat)

√
2πR̂gT̂g/M̂H2O, and the

coefficients in the expression of the mass flux, δ = M̂H2Oμ̂H2Oû∗R̂0/ρ̂H2OR̂gT̂gĤ2
0 and

ψ = M̂H2OL̂H2OΔT̂/R̂gT̂2
g . The coefficients δ and ψ represent a measure of the Kelvin

effect and the effect of local temperature difference on the mass flux.
The dimensionless governing equations of mass, (r, θ , z)-momentum, energy and

concentration are derived as follows:

1
r
∂(ru)
∂r

+ 1
r
∂v

∂θ
+ ∂w
∂z

= 0, (2.20)

εRe
(
∂u
∂t

+ u
∂u
∂r

+ v

r
∂u
∂θ

− v2

r
+ w

∂u
∂z

)
= −∂p0

∂r
+ ∂

∂z

(
μ
∂u
∂z

)
, (2.21)

εRe
(
∂v

∂t
+ u

∂v

∂r
+ v

r
∂v

∂θ
+ uv

r
+ w

∂v

∂z

)
= −1

r
∂p
∂θ

+ ∂

∂z

(
μ
∂v

∂z

)
, (2.22)

p = −StρgGz + p0(r), (2.23)

εRePrcp

(
∂T
∂t

+ u
∂T
∂r

+ v

r
∂T
∂θ

+ w
∂T
∂z

)
= ∂

∂z

(
k
∂T
∂z

)
, (2.24)

∂χH2O

∂t
+ u

∂χH2O

∂r
+ v

r
∂χH2O

∂θ
+ w

∂χH2O

∂z

= 1
Pe

(
1
r
∂

∂r

(
r
∂χH2O

∂r

)
+ 1

r
∂

∂θ

(
1
r
∂χH2O

∂θ

)
+ 1
ε2
∂2χH2O

∂z2

)
.

(2.25)

The boundary conditions at ẑ = ĥ(r̂, t̂) include the normal stress boundary balance
(2.26), the tangential stress boundary balance (2.27a,b), the kinematic boundary condition
(2.28), the jump energy balance (2.29), the concentration balance (2.30), and the
expression of mass flux across the droplet interface (2.31):

p0 = −ε
2σ

Ma

(
1
r
∂

∂r

(
r
∂h
∂r

)
+ 1

r2
∂2h
∂θ2

)
− A

h3 + StρgGh, (2.26)

τzr = 1
Ma

∂σ

∂r
, τzθ = 1

Ma
1
r
∂σ

∂θ
, (2.27a,b)

∂h
∂t

+ u
∂h
∂r

+ v

r
∂h
∂θ

− w + EJ = 0, (2.28)

J + k
∂T
∂z

= 0, (2.29)
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1
Pe

(
−∂h
∂r
∂χH2O

∂r
− 1

r2
∂h
∂θ

∂χH2O

∂θ
+ 1
ε2
∂χH2O

∂z

)
z=h

= EJ(χH2O − 1), (2.30)

Kn J = χH2O

(
δ(p0 − StρgGh)+ ψ(TS − Tg)+ ln

(
χH2O

χH2O,g

))
. (2.31)

Since the diffusion of salt ions within the aqueous solution is the dominating process,
the solute distribution in the vertical direction cannot be neglected (Pe ≈ O(ε−2)). In this
case, we apply the weak vertical diffusion approximation, i.e. the water concentration,
χH2O, is decomposed into a mean concentration independent of z plus a z axis fluctuation
with a zero vertical average, expressed in the following form (Warner, Craster & Matar
2004):

χH2O(r, θ, z, t) = χH2O,0(r, θ, t)+ χH2O,2(r, θ, t)
(

z2

h2 − 1
3

)
. (2.32)

With the weak vertical diffusion approximation, we are able to simplify the
concentration equation, while maintaining the key effects of solute diffusion and
convection in the vertical direction. By eliminating the terms multiplied by ε2 and applying
(2.32), the concentration equation and the concentration balance at the droplet interface
are derived as

∂χH2O,0

∂t
+ u

∂χH2O,0

∂r
+ v

r
∂χH2O,0

∂θ

+
(
∂χH2O,2

∂t
+ u

∂χH2O,2

∂r
+ v

r
∂χH2O,2

∂θ

)(
z2

h2 − 1
3

)
= 1

Pe′
∂2χH2O

∂z2 , (2.33)

1
Pe′

(
∂χH2O

∂z

)
z=h

= 2
Pe′h

χH2O,2 = EJ(χH2O,0 − 1)

1 − EJPe′h
3

. (2.34)

We further simplify the governing equations by applying the Kármán–Pohlhausen
approximation. This method integrates the governing equations from z = 0 to z = h, and
satisfies the governing equations on the average across the z direction instead of accurately
satisfying the governing equations at every mesh point. By doing this, the multiple variable
differentials are removed while the inertia and advection terms in the momentum and
energy equations remain. We define the integration forms of u, v and T over the z axis as

f =
∫ h

0
u dz, g =

∫ h

0
v dz, � =

∫ h

0
T dz. (2.35a–c)

By integrating over z, the integral forms of the continuity equation, r-momentum
equation, θ -momentum equation, energy equation and concentration equation for the weak
diffusion approximation are obtained:

∂h
∂t

= −EJ − 1
r
∂(rf )
∂r

− 1
r
∂g
∂θ
, (2.36)

εRe
(
∂f
∂t

+ 1
r
∂

∂r

(
r
∫ h

0
u2 dz

)
+ 1

r
∂

∂θ

(∫ h

0
uv dz

)
− 1

r

∫ h

0
v2 dz + u|hEJ

)

= −h
∂p0

∂r
+
[
μ
∂u
∂z

]h

0
,

(2.37)
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εRe
(
∂g
∂t

+ 1
r
∂

∂r

(
r
∫ h

0
uv dz

)
+ 1

r
∂

∂θ

(∫ h

0
v2 dz

)
+ 1

r

∫ h

0
uv dz + v|hEJ

)

= −h
r
∂p0

∂θ
+
[
μ
∂v

∂z

]h

0
,

(2.38)

εRePrcp

(
∂�

∂t
+ 1

r
∂

∂r

(
r
∫ h

0
uT dz

)
+ 1

r
∂

∂θ

(∫ h

0
vT dz

)
+ T|hEJ

)
=
[

k
∂T
∂z

]h

0
,

(2.39)

h
∂χH2O,0

∂t
+ f

∂χH2O,0

∂r
+ g

r
∂χH2O,0

∂θ
= EJ(χH2O,0 − 1)

1 − EJPe′h
3

. (2.40)

Finally, we derive specific expressions for u|h, [∂u/∂z]h
0,
∫ h

0 u2 dz, v|h, [∂v/∂z]h
0,∫ h

0 v
2 dz,

∫ h
0 uv dz, T|h, [∂T/∂z]h

0 and
∫ h

0 uT dz in the governing equations. We assume that
the variables, u, v and T, all follow the form of c3 + c2z + c1z2, and obtain the expressions
of each variable by applying the boundary conditions at z = 0 and z = h:

u =
(

3f
h2 − 1

2μMa
∂σ

∂r

)
z +

(
3

4μhMa
∂σ

∂r
− 3f

2h3

)
z2, (2.41)

v =
(

3g
h2 − 1

2μrMa
∂σ

∂θ

)
z +

(
3

4μrhMa
∂σ

∂θ
− 3g

2h3

)
z2, (2.42)

T = Tw +
(

3�
h2 − 3Tw

h
+ J

2k

)
z +

(
3Tw

2h2 − 3�
2h3 − 3J

4kh

)
z2, (2.43)

where

∂σ

∂r
= ησ

∂χH2O|h
∂r

+ ζσ
∂T|h
∂r

,
∂σ

∂θ
= ησ

∂χH2O|h
∂θ

+ ζσ
∂T|h
∂θ

. (2.44a,b)

By substituting (2.41)–(2.43) into (2.36)–(2.40), the integral forms of the five governing
equations are obtained, along with the normal stress balance equation and the equation of
interfacial mass flux. Seven independent unknown variables, h, p0, u, v, T, χH2O and J,
exist, which can be subsequently solved using the Galerkin method of weighted residuals
(appendix B).

3. Initial and boundary conditions

We consider an axisymmetric droplet with special focus on the parameter variations in
the r and z directions; hereafter all azimuthal terms present in the above equation will be
neglected. The finite-element Galerkin method (appendix B) is applied, and the variables
are approximated using quadratic Lagrangian basis functions�i. A one-dimensional mesh
is constructed along the r direction, and the governing equations are solved along with the
initial and boundary conditions.

In the region 0 ≤ r ≤ 1, the initial conditions of h, f, � and χH2O are set as

h(r, 0) = h∞ + 1 − r2, f (r, 0) = 0, �(r, 0) = h(r, 0)Tg, χH2O(r, 0)=0.40–1.00,

(3.1a–d)
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Z. Wang and others

where h∞ is the thickness of the precursor film, and is set as 10−3 at the initial moment.
The initial water concentration at the precursor layer, χH2O,∞,0, is assumed to be the same
as the droplet.

By setting the mass flux to zero in (2.31), considering solute conservation in the
precursor film region, and combining with (2.26), we can derive an implicit equation that
the thickness of the precursor film in the equilibrium state, h∞,eq, must satisfy:

Aδ
h3∞,eq

= ψ(TS − Tg)+ ln
(

h∞,eq − (1 − χH2O,∞,0)h∞,0

χH2O,gh∞,eq

)
. (3.2)

The initial conditions in the region of precursor film, r> 1, are given as

h(r, 0) = h∞, f (r, 0) = 0, �(r, 0) = h∞TW , χH2O(r, 0) = χH2O(0–1.0).
(3.3a–d)

It should be noted that, initially, we set the concentration to be uniform along the
droplet and at the precursor film to ensure a smooth concentration transition across the
TPCL and avoid numerical difficulties. Since the precursor film is very thin, a chemical
thermodynamic equilibrium establishes very quickly, and does not affect the dynamics of
the flow in any way; the film thickness remains in the same scale as the initial setting with
no important influence on the numerical results.

The parameters at the droplet centre satisfy the symmetric boundary conditions,
expressed as

∂h
∂r
(0, t) = 0, f (0, t) = 0,

∂�

∂r
(0, t) = 0,

∂χH2O

∂r
(0, t) = 0. (3.4a–d)

At the periphery of the solution domain, r = r∞, where r∞ is the length of the domain,
the boundary conditions are defined as

h(r∞, t) = h∞,
∂h
∂r
(r∞, t) = 0, f (r∞, t) = 0,

�(r∞, t) = h∞TW ,
∂χH2O

∂r
(r∞, t) = 0.

⎫⎪⎬
⎪⎭ (3.5)

4. Results and discussion

Representative conditions are chosen for the computation, as listed in tables 1 and 2.
The parameters are calculated according to the thermophysical properties of pure water,
LiBr solution and humid air (see appendix A). The droplets are small and thin, and
hence the surface tension is the dominating force of droplet dynamics, and the Reynolds
number is small. For simplicity and for suppression of the interfacial oscillations, we set
the Reynolds number as zero in the simulation of hygroscopic solution droplets, which
improves the simulation stability while maintaining the influences of all the dominating
physical mechanisms. The system is assumed to be at thermal equilibrium at the initial
moment. As interfacial phase change takes place, the latent heat induces temperature
variations, which in turn affect the interfacial mass flux as mathematically described by
(2.18).
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Dynamics of hygroscopic aqueous solution droplets

ε Tg Tw Re Pr Ma E
0.2 1.0 1.0 1 10 0.1 1.0 × 10−4

δ A ψ Pe St gG Kn
1.0 × 10−5 1.0 × 10−4 1.0 100 0.0368 1.0 1.0 × 10−5

Table 1. Base parameters for the simulation of pure water droplets, i.e. χH2O = 100 %.

ε Tg Tw Re Pr Ma E
0.2 1.0 1.0 0 10 0.1 1.0 × 10−6

δ A ψ Pe St gG Kn
1.0 × 10−6 1.0 × 10−4 0.1 100 0.0368 1.0 1.0 × 10−3

Table 2. Base parameters for the simulation of LiBr–H2O droplets, χH2O = 60 %.

0.2

0 0.5 1.0
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t = 0
t = 1
t = 6
t = 22
t = 42
t = 62
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200

0 0.5 1.0
r

J H
2
O

1.5 2.0

400

600
(b)(a)

Figure 2. Evolution of (a) droplet profile and (b) interfacial mass flux along with droplet evaporation at
representative moments of t = 0, 1, 6, 22, 42 and 62. (Pure water droplet with χH2O = 100 %, RH = 30 %,
and dimensionless parameters listed in table 1.)

4.1. Evaporation of pure water droplets
By setting the initial water concentration as 100 %, the model simulates the evaporation of
a pure water droplet. As indicated in figure 2(a), the droplet spreads at the initial moment
upon contact with the substrate driven by the capillary effect. On the other hand, the
evaporation of water (figure 2b) tends to recede the contact line, opposite to the effect
of capillary force. Moreover, the surface tension gradient induced by evaporative cooling
also retards the contact line (Marangoni stresses drive flow from the high-temperature
droplet edge to the low-temperature droplet centre). As the latter two effects (mainly the
evaporation effect here) outweigh the capillary effect, the contact line stops advancing,
and gradually recedes until the whole droplet dries out. The simulation results by setting
the water concentration as 100 % in this model correspond with the results from existing
models of pure water droplets (Anderson & Davis 1995; Ajaev 2005), which validates the
feasibility of the present model from the side.

Figure 3 indicates the evolution of droplet mass and the position of the contact line
versus time at various values of relative humidity (RH): 30 % RH, 45 % RH and 60 % RH.
At high RH, the vapour pressure difference between the droplet interface and the ambient
is small, and the droplet lifetime is correspondingly longer (figure 3a). On the other hand,
the water droplet spreads more apparently (figure 3b), which can be explained by the weak
thermal Marangoni effect and the slow water depletion at the TPCL.
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20 40 60

RH = 30%
RH = 45%
RH = 60%

Time

M
as

s

C
o
n
ta

ct
 l

in
e 

p
o
si

ti
o
n

80 100 20 40 60

Time

80 100

0.3

0.2

0.1 0.5

0

1.0

0

(a) (b)

Figure 3. (a) Mass variation of pure water droplet and (b) evolution of contact line position with time at RH
of 30 %, 45 % and 60 %. (Dimensionless parameters listed in table 1.)
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Figure 4. (a) Variation of droplet mass and (b) evolution of droplet profile in the r direction with time at
representative moments of t = 0, 0.75, 6, 32, 92, 450, 850 and 3000. (Here χH2O = 60 %, RH = 30 %, and
dimensionless parameters listed in table 2.)

4.2. Evaporation of hygroscopic solution droplets
For a hygroscopic solution droplet, the direction of mass flux depends on the
environmental conditions. At low RH, water vapour diffuses from the droplet surface
towards the ambient, causing the evaporation of the droplet. Shown in figure 4(a), the
droplet mass decreases due to water evaporation, and the evaporation rate slows down
along with time. The results correspond to the experimental results by Misyura (2017,
2018), where the evaporation rates of LiBr, LiCl, CaCl2 and MgCl2 solution droplets/layers
decrease as a consequence of increasing salt concentration.

Indicated by figure 4(b), fast spreading happens for a hygroscopic solution droplet in the
first few dimensionless time units, similar to the initial spreading of pure water droplets. As
evaporation goes on, a liquid film (thin, but much thicker than the precursor film) develops
at the TPCL. The film extends, thickens and gradually develops into a ripple-like shape
(figure 4b). At the same time, the central part of the droplet shrinks, and coalesces into
the peripheral thin ripple. The ripple gradually flattens into a completely extended film
across the computational domain, and reaches an equilibrium state after several thousand
dimensionless time units.

The droplet dynamics can be explained by the evolution of interfacial parameters. Shown
in figure 5(a), the evaporation mass flux distributes non-uniformly across the droplet
surface and varies with time. At the initial moments, the mass flux is the lowest near
the droplet centre and reaches a peak at the TPCL due to more efficient heat supply
from the substrate. In the region of the precursor film, the initial water concentration is
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Dynamics of hygroscopic aqueous solution droplets
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Figure 5. Evolutions of (a) mass flux, (b) interfacial temperature, (c) water concentration and (d) surface
tension across the droplet surface in the r direction with time at representative moments of t = 0, 0.75, 6, 32,
92, 450, 850, 1500 and 3000. (Here χH2O = 60 %, RH = 30 %, and dimensionless parameters listed in table 2.)

assumed to be the same as the bulk of the droplet, and therefore evaporation also happens
in this region. It is important to note, though, that the mass flux very quickly declines to
zero as the ultrathin precursor film reaches equilibrium with the ambient in the first few
dimensionless time units; the dynamics of the droplet at later stages is not affected by this
behaviour at very early stages. At all times, the large mass flux near the contact line causes
the fast decrease of water concentration in this region (figure 5c), which further slows
down the evaporation. As indicated by figure 5(a), the peak value of evaporation mass flux
declines with time, which differs from that of pure water droplets, where the peak value of
mass flux remains almost constant (figure 2b).

The effect of evaporative cooling causes the variation of interfacial temperature
(figure 5b). From the droplet centre towards the contact line, the surface temperature
increases due to the enhanced heat supply from the substrate. As evaporation goes on,
the droplet becomes thinner and the evaporation mass flux decreases. Therefore, the effect
of evaporation cooling weakens, and the interfacial temperature gradually reaches balance
with the ambient.

Owing to the non-uniform distribution of evaporation mass flux, i.e. peak value at the
TPCL and close to zero near the droplet centre, the water concentration is the lowest near
the TPCL (figure 5c), while it remains high near the droplet centre. In the later period,
the mass flux becomes more uniform (figure 5a), and the gradient of water concentration
gradually evens out until it reaches full equilibrium with the gas phase.

The surface tension is a function of both the interfacial temperature and the water
concentration. The coefficients in (A5) indicate that the surface tension is affected more
greatly by the solute concentration and less by the temperature. In the region near the
TPCL, the water concentration is the lowest, corresponding to the peak value of surface
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Figure 6. (a) Distribution of flow velocity at the droplet surface and (b) schematic of the main mechanisms
governing the evaporation of a hygroscopic aqueous solution droplet. The colour distribution within the droplet
indicates the field of water concentration (lighter colour corresponds to lower concentration of water). The
colour of the droplet surface indicates the distribution of interfacial temperature (red indicates high temperature,
and black indicates low temperature). The dotted lines with arrows present the direction and magnitude of the
interfacial mass flux. (Here χH2O = 60 %, RH = 30 %, and dimensionless parameters listed in table 2.)
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Figure 7. (a) Variation of droplet mass and (b) evolution of droplet profile during the vapour absorption
process. (Here χH2O = 60 %, RH = 90 %, ψ = 0.1, and dimensionless parameters listed in table 2.)

tension (figure 5d). The surface tension gradient and capillary pressure drive the liquid
away from the droplet centre and tend to flatten the droplet. As indicated by figure 6(a), the
overall flow velocity at the droplet surface, Us = u|z=h = 3f /2h + (h/4μMa)(∂σ/∂r), is
always positive throughout the evaporation process, which drives the continuous spreading
of the droplet.

Compared to common salt solution such as NaCl–H2O, the aqueous solution studied
in this paper exhibits hygroscopic properties. The vapour pressure at the droplet surface
decreases as salt accumulates. In the area near the TPCL, the evaporation mass flux
declines as the solution in this area becomes concentrated with dissolved salt. As a result,
liquid will not dry out quickly in this area (figure 6b), which leads to the formation and
development of the thin film/ripple indicated by figure 4(b).

4.3. Vapour absorption into hygroscopic solution droplets
At high environmental humidity, water vapour diffuses from the high-humidity air towards
the liquid–air interface. The initial rate of vapour absorption is high due to the large
pressure difference of water vapour. As the droplet becomes saturated, the driving force
for vapour diffusion weakens, and therefore the rate of vapour absorption decreases
(figure 7a).
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Figure 8. Schematic of the main mechanisms governing the vapour absorption into a hygroscopic aqueous
solution droplet, ψ = 0.1. The colour distribution within the droplet indicates the field of water concentration
(darker colour represents higher water concentration). The colour of the droplet surface indicates the
distribution of interfacial temperature (red indicates high temperature, and black indicates low temperature).
The dotted lines with arrows indicate the direction and magnitude of the interfacial mass flux.

Figure 7(b) shows the evolution of droplet profile along with vapour absorption based on
the dimensionless parameters listed in table 2. Upon contact with the substrate, the droplet
starts to spread along with the decrease of droplet height, indicated by curves t = 0, 1, 12,
32 and 92. The contact line stops advancing at about t = 150, then slowly recedes. The
contact line stops receding after several hundred dimensionless time units, then spreads
again (see the evolution of contact radius at ψ = 0.1 in figure 16b).

At the initial moment, the droplet, the substrate and the ambient air are in thermal
equilibrium, and the distribution of water concentration within the droplet is uniform.
Owing to the spatial distribution of interface curvature and droplet height, non-uniform
mass fluxes are induced. At the droplet centre, the curvature of the profile is zero, and the
droplet height is the largest (long distance for heat transfer into the substrate). In the region
near the contact line, the van der Waals force is considerable due to the extremely small
thickness of the liquid film, which enhances the adsorption of water vapour. Besides, the
short distance between the droplet surface and the substrate ensures efficient heat removal
into the substrate, which results in the high absorptive mass flux in the vicinity of the
contact line as shown in figure 8 and indicated by the simulation results in figure 9(a).

In this model, the initial water concentration at the precursor film is set to be the same
as the main body of the droplet. Therefore, in the first few dimensionless time units, the
absorptive mass flux is non-zero at the precursor film, while it decreases rapidly as the
ultrathin film quickly gets saturated due to water uptake. In the main body of the droplet,
the mass flux is small near the droplet centre, and reaches a peak near the TPCL. Along
with time, the peak value of mass flux decreases as the liquid in this area becomes saturated
with water.

The vapour–water phase change induces a temperature rise at the droplet surface. As
indicated by figures 8 and 9(b), the interfacial temperature near the droplet centre is the
highest since the pathway for heat dissipation into the substrate is much longer than that
near the TPCL. The non-uniform distribution of mass flux also induces a concentration
gradient across the droplet surface. In the area near the TPCL, the water concentration
is much higher than that near the droplet centre as indicated by figure 9(c) and by the
darker blue near the TPCL in figure 8. As a joint result of interfacial temperature and
water concentration, a gradient of surface tension is induced across the droplet surface as
indicated in figure 9(d), which subsequently affects the interior flow and determines the
droplet dynamics.

We further evaluated the integrated flow velocity at the droplet surface, Us, and
decomposed the flow velocity according to the dominating mechanism. The capillary
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Figure 9. Distribution of (a) interfacial mass flux, (b) interfacial temperature, (c) water concentration and
(d) surface tension across the droplet surface along with vapour absorption at representative moments of
t = 0, 0.75, 6, 32, 92, 450, 850, 1500 and 3000. (Here χH2O = 60 %, RH = 90 %, ψ = 0.1, and dimensionless
parameters listed in table 2.)

velocity, Uca, is induced by the capillary pressure due to the converging droplet profile
in the r direction, defined as Uca = −(h2/3μ)(∂p0/∂r). The solutal Marangoni velocity,
Ucg = −(h/2μMa)ησ (∂χH2O/∂r), is due to the gradient of water concentration at the
droplet surface, and the thermal Marangoni velocity, Utg = (h/2μMa)ζσ (∂Ts/∂r), is
induced by the gradient of interfacial temperature.

As indicated in figure 10(a), the capillary velocity depends on the curvature of the
droplet profile, and is always positive, indicating an outward capillary flow that tends to
spread the droplet. The effect of absorptive heating causes a temperature gradient, and
contributes to a positive thermal Marangoni flow towards the contact line, in the same
direction as the capillary effect (figure 10c). On the other hand, the arising concentration
gradient induces a gradient of surface tension, which tends to drag back the contact line as
indicated by the decomposed solutal Marangoni velocity in figure 10(b).

It can be seen that the relative strengths of capillary force, temperature gradient and
concentration gradient vary, and the dominating effect changes with time. In the initial
period, the gradient of water concentration is small, and the capillary effect dominates
the droplet motion, which causes the TPCL to advance in the initial stage. As vapour
absorption goes on, the concentration gradient gets larger, and the capillary effect weakens.
The solutal Marangoni effect induced by the concentration gradient gradually outweighs
the capillary effect and the thermal Marangoni effect (figure 8), and the droplet starts to
recede in the later period.

By adjusting the dimensionless parameters, we can further examine the interacting
results of those physical effects. In § 2.2, the interfacial mass flux, (2.31), is derived
as a function of concentration difference and temperature difference between the
droplet surface and the ambient. By reducing the value of ψ in (2.31) from 0.1
to 0.01, the contribution of temperature difference to mass flux decreases, while the
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Figure 10. Decomposed velocities in the r direction: (a) capillary velocity, (b) solutal Marangoni velocity,
(c) thermal Marangoni velocity and (d) overall flow velocity at the droplet surface at representative moments
of t = 0.75, 6, 32, 92, 450, 850, 1500 and 3000. (Here χH2O = 60 %, RH = 90 %, ψ = 0.1, and dimensionless
parameters listed in table 2.)
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Figure 11. Schematic of the main mechanisms governing the vapour absorption into a hygroscopic aqueous
solution droplet; results after reducing ψ from 0.1 to 0.01. The colour distribution within the droplet indicates
the field of water concentration (darker colour means higher water concentration). The colour of the droplet
surface indicates the distribution of interfacial temperature (red indicates high temperature, and black indicates
low temperature). The dotted lines with arrows indicate the direction and magnitude of the interfacial mass
flux.

contribution of concentration difference increases. As a result, the absorptive mass flux
at ψ = 0.01 distributes more uniformly across the droplet surface due to the more uniform
concentration distribution compared to the case of ψ = 0.1, indicated by figure 11.

Figure 12(a) indicates the spatiotemporal evolution of interfacial mass flux in the r
direction after reducing the value ofψ from 0.1 to 0.01. In the case ofψ = 0.01, the value of
absorptive mass flux at the apex of the droplet (r = 0) is much larger, and the distribution
of mass flux is more uniform. Therefore, the overall distribution of water concentration
is more uniform across the droplet surface, indicating weak solutal Marangoni effect
(figure 11).

912 A2-19

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

10
73

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.1073


Z. Wang and others

–250
0 2 4 6 8

–200

–150

–100

–50

0

50

0.5
0 2 4 6 8

0.6

0.7

0.8

0.9

1.0

0 2 4 6 8

10

20

30

40

0 2 4 6 8

0.9

1.0

1.1

1.2

0

0 2 4 6 8

0.1

0.2

0.3

0.4

0 2 4 6 8

0.2

0.4

0.6

0.8

1.0

Position of
contact lineJ H

2
O

Us h

χ
H

2
O

σ

t = 0
t = 0.75
t = 6
t = 32
t = 92
t = 450
t = 850
t = 1500
t = 3000

Ts

r r

(e)

(b)(a)

(c) (d )

( f )

Figure 12. Distribution of (a) interfacial mass flux, (b) interfacial temperature, (c) water concentration,
(d) surface tension, (e) flow velocity at the droplet surface and ( f ) droplet height in the r direction along
with vapour absorption at representative moments of t = 0, 0.75, 6, 32, 92, 450, 850, 1500 and 3000. (Here
χH2O = 60 %, RH = 90 %, ψ = 0.01, and other dimensionless parameters listed in table 2.)

On the other hand, the large absorptive mass flux at the droplet centre induces a large
temperature gradient across the droplet surface (figure 12b), as a result of the non-uniform
pathway for heat removal into the substrate. Consequently, the combined effect of thermal
Marangoni flow and capillary flow outweighs the solutal Marangoni effect (figure 11),
and results in an overall outward flow towards the TPCL. As indicated in figure 12(e), the
flow velocity at the droplet surface is positive throughout the absorption process, which
explains the continuous droplet spreading indicated by figure 12( f ).

It can be seen that the interfacial mass flux is sensitive to the coefficient settings
in its mathematical derivation. When the value of ψ is large (0.1), the mass flux is
highly non-uniform due to the more apparent influence of interfacial temperature. The
non-uniform distribution of mass flux causes the accumulation of water in the region
near the TPCL, and induces a strong solutal Marangoni flow towards the droplet centre.
When ψ is small, e.g. 0.01, the mass flux is more strongly affected by the solute
concentration. In this case, the distribution of absorptive mass flux is more uniform, and
the induced gradient of solute concentration is small. The combined effect of outward
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Figure 13. (a) Evolution of droplet profile at ψ = 0.05 and (b) variation of droplet mass with time at
ψ = 0.01, 0.02, 0.03, 0.05 and 0.1. (Here χH2O = 60 %, RH = 90 %, and other parameters listed in table 2.)

thermal Marangoni flow and capillary flow outweighs the inward solutal Marangoni effect,
and induces the continuous droplet spreading in this case.

We further checked the droplet dynamics with other values of ψ between 0.01 and 0.1.
In those cases, intermittent spreading and receding of the droplet are observed, e.g. when
ψ = 0.05 as indicated by figures 13(a) and 16(b). Additionally, as indicated by figure 13(b),
droplets at small values ofψ , e.g. 0.01 and 0.02, indicate a higher rate of vapour absorption
than those at large values, e.g. ψ = 0.05 and 0.1. This is because, at small values of ψ , the
interfacial mass flux distributes more uniformly across the droplet surface, and therefore
the effective area of vapour absorption is larger. As a result, the integral value of interfacial
mass flux across the droplet interface is large.

Additional experiments with controlled conditions are further carried out to verify the
numerical results. For a detailed introduction to the experimental set-up, the reader is
referred to our previous work (Wang et al. 2019b). An experimental slide glass with
roughness of Sq = 0.012 μm (characterized with a three-dimensional optical laser scanning
microscope, Olympus LEXT OLS4000, Japan) is applied as the substrate (figure 14a). The
glass is further processed with hydrophilic plasma treatment (PIB-10, Vacuum Device Co.
Japan) for 3 min, which generates a nanoscale high surface energy layer (figure 14b), and
a complete spreading of pure water droplet is observed after the treatment with contact
angle close to 0° (figure 14c). The hydrophilicity of the processed surface can last for
several hours according to our test. We set the condition of the environmental chamber as
90 % RH and 25 °C, and start the experiments when a steady condition is obtained. A 54
wt.% LiBr solution is applied for the experiments, and the observation finishes after the
droplet reaches equilibrium with the ambient. The experiments are performed following
the same procedures, with good repeatability, and representative experimental data are
presented here.

The results show that the droplet volume increases following a saturation trend,
indicating a decreasing rate of vapour absorption, which corresponds to the simulation
results (figure 13b). The initial contact angle of the droplet is ca. 17° ± 3°; then the TPCL
of the droplet advances rapidly with an apparent decrease of the contact angle as vapour
absorption takes place (figure 15). The process slows down as the absorptive mass flux
becomes weak, and the droplet reaches equilibrium after approximately one hour. In the
previous literature, apparent droplet spreading has been reported when depositing a droplet
on a solid substrate (Mitra & Mitra 2016). Rapid droplet spreading happens due to the
competition between the capillary driving forces and the viscous dissipation, which can
be described by Tanner’s law (Tanner 1979): R(t) ∼ t1/10. The time scale of the spreading
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Figure 14. (a) Characterization of the glass substrate (Sq = 0.012 μm), (b) plasma treatment and
(c) wettability characterization with a pure water droplet on slide glasses before and after the plasma
treatment.
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Figure 15. (a) Representative evolution trend of the contact angle and (b) snapshots of the droplet profile for
a 54 wt.% LiBr–H2O droplet on a plasma-treated superhydrophilic substrate at 25 °C and 90 % RH.

is of the order of milliseconds for low-viscosity liquids, such as water in air on borosilicate
glass substrates or hexadecane on copper and/or glass (de Ruiter et al. 2017). However, in
this research, the LiBr–H2O droplet spreads gradually with a time scale of 102–103 s, much
longer than that of the reported early-stage viscous spreading.

We note that the salt concentration of the droplet decreases due to water uptake, which
could cause a decrease in the surface tension and therefore the decrease of the contact
angle. However, as revealed by the theoretical analysis in our previous work (Wang et al.
2019b), the decrease of the interfacial surface tension by concentration decrease itself
cannot account for the large decrease in the contact angle.

According to the variation of droplet contact radius in the logarithmic coordinate, i.e.
R(t) ∼ tn, the droplet spreading during vapour absorption can be divided into three stages
(figure 16a). The first stage of spreading happens in the first ∼10 s, with a spreading
exponent of n = 0.015 ± 0.005. The second-stage spreading happens in the following
hundreds of seconds, and the spreading exponent n = 0.093 ± 0.006. The contact line
motion slows down at the final stage, with the spreading rate gradually decreasing to zero
as the droplet reaches equilibrium with the ambient.

Correspondingly, figure 16(b) indicates the numerical results of the droplet contact
radius along with time in the logarithmic coordinates for different values of ψ . At small
values of ψ , e.g. 0.01 and 0.02, continuous droplet spreading is observed. Qualitatively,
the spreading trend of the droplet corresponds to the experimental results, with a lower
spreading rate at the initial stage, then speeds up as vapour absorption goes on, and
finally slows down as the droplet reaches equilibrium with the ambient at the final stage.
Quantitatively, the spreading rate of droplets at the dominating second stage corresponds
to the experimental results especially at larger values of ψ , as indicated by the statistics
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Figure 16. Evolution of droplet contact radius with time: (a) experimental results in normal (blue) and
logarithmic (red) coordinates and (b) simulation results for ψ = 0.01, 0.02, 0.025, 0.03, 0.04, 0.05 and 0.10
in logarithmic coordinates.

in table 3. For ψ at large values, e.g. ψ ≥ 0.025, the distribution of mass flux is highly
non-uniform. In this case, the arising solutal Marangoni effect can be strong enough to
outweigh the capillary effect, the thermal Marangoni effect and the interface replacement
by water uptake, resulting in the spreading–retracting–spreading behaviour of the droplet.

With the mathematical model, we indicate that the capillary effect dominates the droplet
spreading at the initial stage, while the thermal Marangoni and solutal Marangoni effects
become apparent and play a dominating role on the droplet dynamics at the later stage.
The arising thermal Marangoni flow and solutal Marangoni flow, along with the interface
replacement due to water uptake, interplay with each other, which are strong enough to
affect the contact line motion and account for the spreading rate at the later stages.

5. Concluding remarks

A lubrication-type model is established to simulate the behaviours of hygroscopic ionic
solution droplets during evaporation and vapour absorption. It shows that the interfacial
mass flux of ionic solution droplets is greatly affected by the variation of solute
concentration, and decreases with time as evaporation or vapour absorption takes place,
which corresponds to the variation of droplet volume in existing experimental studies
(Misyura 2017; Wang et al. 2019a,b). At low-humidity conditions, evaporation happens.
The interfacial mass flux concentrates in the vicinity of the contact line (figure 4a)
and induces a gradient of solute concentration from the water-rich drop centre to the
salt-accumulating drop edge. Additionally, due to the hygroscopic property of the LiBr
salt, further evaporation is suppressed near the contact line. The arising solutal Marangoni
effect along with the capillary effect generate an outward flow, which drives the continuous
advance of the contact line.

In the case of vapour absorption, the distribution of absorptive mass flux is quite
sensitive to the setting of coefficients in the expression for the interfacial mass flux.
The latter is a clear indication that the relative strength of the capillary effect and
the induced solutal and thermal Marangoni effects may result in significantly different
droplet behaviours, ranging from continuous spreading or receding to the formation of
ripples. Experiments on a plasma-treated superhydrophilic substrate indicate an apparent
spreading of the LiBr–H2O droplet during vapour absorption. The decrease in the contact
angle cannot simply be accounted for by the slight variation of the static contact angle
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ψ Stage I Stage II Stage III Stage IV Stage V

0.01 t = 0–3; n = 0.114 t = 3–1000; n = 0.186 t = 1000–3000; n = 0.070 — —
0.02 t = 0–3; n = 0.090 t = 3–200; n = 0.175 t = 200–3000; n = 0.068 — —
0.025 t = 0–3; n = 0.078 t = 3–100; n = 0.179 t = 100–400; n = 0.069 t = 400–1800; n =−0.118 t = 1800–3000; n = 0.043
0.03 t = 0–3; n = 0.101 t = 3–100; n = 0.168 t = 100–250; n = 0.070 t = 250–1400; n =−0.232 t = 1400–3000; n = 0.034
0.04 t = 0–3; n = 0.102 t = 3–70; n = 0.156 t = 70–170; n = 0.062 t = 170–800; n =−0.331 t = 800–3000; n = 0.032
0.05 t = 0–2; n = 0.102 t = 2–70; n = 0.138 t = 70–150; n = 0.028 t = 150–650; n =−0.369 t = 650–3000; n = 0.043
0.10 t = 0–2; n = 0.102 t = 2–65; n = 0.111 t = 65–100; n = 0.025 t = 100–550; n =−0.311 t = 550–3000; n = 0.043

Table 3. Numerical results of droplet spreading rate at different stages of vapour absorption (χH2O = 60 %, RH = 90 %) for ψ = 0.01, 0.02, 0.025, 0.03, 0.04, 0.05 and
0.10.
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induced by the decrease of solute concentration, and is more probably related to the
non-uniform distribution of interfacial temperature and solute concentration in a dynamic
way. The trend of contact line movement qualitatively corresponds to the numerical results,
and the spreading rate at the dominating stage matches quantitatively with the numerical
values at proper settings of ψ , indicating the decisive role of the solutal and thermal
Marangoni effects on droplet dynamics during the main process of vapour absorption.

To summarize, the hygroscopic ionic solution droplets with interfacial phase change
exhibit rather complex dynamics due to the interplay of many interacting physical
processes, e.g. contact line receding and advancing, evaporative cooling and absorptive
heating, thermal Marangoni and solutal Marangoni effects, etc. Our model also indicates
that, despite the small size of the ionic solution droplet, the solutal and thermal Marangoni
stresses induced by preferential evaporation or vapour absorption can be strong enough to
affect the contact line motion and dominate the droplet dynamics. In existing experimental
studies, the strong solutal Marangoni effect due to the interaction of neighbouring droplets
(binary volatile components) has been evidenced to induce the chasing, coalescence and
repulsion between droplets (Cira et al. 2015). With an external vapour source (ethanol),
the Marangoni convection due to preferential adsorption can also lead to the drainage
of the droplet centre and therefore can split the droplet (Kabi, Pal & Basu 2020).
The present work provides theoretical support to the crucial role of the Marangoni
effects in these experimental observations. With an extensive understanding of the fluid
dynamic properties of the hygroscopic solution, we are also able to discover more
possibilities for its application in micro energy systems and in the humidity control of
microenvironments. A more complete mathematical description involving the vapour field
and droplet interactions will be developed in our further research.
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Appendix A. Fluid properties

For simplification, the specific heat capacity ĉp, density ρ̂, thermal conductivity k̂ and
viscosity μ̂ of LiBr–H2O solution are approximated as function of the solute concentration
(Lee et al. 1992; Patek & Klomfar 2006). The surface tension of the LiBr–H2O solution,
σ̂ , is approximated by an empirical correlation of salt concentration and temperature
(Yao, Bjurstroem & Setterwall 1991). The dimensionless values of the solution properties
are calculated using the properties of pure water at 20 °C and 1 atm as the benchmark.
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ĉp,H2O ρ̂H2O k̂H2O σ̂H2O η̂cp η̂ρ η̂k η̂σ ζ̂σ â1 b1 b2
4.18 998.2 0.598 72.75 −3.94 1231.5 −0.324 43.5 −0.205 316.4 −447.5 314.8

Table 4. Dimensional fitting coefficients of solution properties.

ηcp ηρ ηk ησ ζσ a1 b1 b2
−0.943 1.234 −0.542 0.598 −0.0069 314.8 −447.5 314.8

Table 5. Dimensionless fitting coefficients of solution properties.

Ĥ0 (m) R̂0 (m) ρ̂H2O (kg m−3) μ̂H2O (Pa s) χH2O η̂σ (N m−1)

3.0 × 10−4 1.5 × 10−3 9.98 × 102 1.005 × 10−3 0.54 4.44 × 10−2

D̂H2O ĉp,H2O k̂H2O σ̂H2O M̂H2O R̂g
(m2 s−1) (J kg−1 K−1) (W m−1 K−1) (N m−1) (kg mol−1) (J mol−1 K−1)

1.2 × 10−9 4.180 × 103 0.5984 7.275 × 10−2 1.8 × 10−2 8.314

T̂g (K) p̂v,sat (Pa) û∗ (m s−1) Â (J) (Henry 2004) L̂H2O (J kg−1) T (K)
293.15 2.3 × 103 4.77 3.69 × 10−20 2.257 × 106 2.441

Table 6. Basic parameters used for dimensionless number calculations.

Thus the following equations hold:

ĉp = ĉp,H2O + η̂cpχLiBr, cp = 1 + ηcpχLiBr, (A1a,b)

ρ̂ = ρ̂H2O + η̂ρχLiBr, ρ = 1 + ηρχLiBr, (A2a,b)

k̂ = k̂H2O + η̂kχLiBr, k = 1 + ηkχLiBr, (A3a,b)

μ̂ = â1

χ2
LiBr + b1χLiBr + b2

, μ = a1

χ2
LiBr + b1χLiBr + b2

, (A4a,b)

σ̂ = σ̂H2O + η̂σ χLiBr + ζ̂σ (T̂ − T̂ref ), σ = 1 + ησχLiBr + ζσT. (A5)

The values of the fitting coefficients are listed in tables 4 and 5. Other thermophysical
properties for calculating the dimensionless numbers are listed in table 6.

Appendix B. Numerical method

The finite element method is applied to solve the system of governing equations. By
applying the weighted residual to the integral forms of the governing equations, the
Galerkin weak forms of six governing equations are derived with six independent
variables, h, p0, u, T, χH2O and J:

R =
∫ (

∂h
∂t
φi + EJφi − f

∂φi

∂r

)
r dr + (rfφi)

r=r∞
r=0 , (B1)
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R =
∫ {

εRe
[
∂f
∂t
φi + u|hEJφi −

(∫ h

0
u2 dz

)
∂φi

∂r

]
+ h

∂p0

∂r
φi −

(
μ
∂u
∂z

)h

0
φi

}
r dr

+
[
εRe

(
r
∫ h

0
u2 dz

)
φi

]r=r∞

r=0
, (B2)

R =
∫ [

εRePrcp

(
∂�

∂t
φi + T|hEJφi −

(∫ h

0
uT dz

)
∂φi

∂r

)
−
(

k
∂T
∂z

)h

0
φi

]
r dr

+
[
εRePrcp

(
r
∫ h

0
uT dz

)
φi

]r=r∞

r=0
, (B3)

R =
∫ (

h
∂χH2O,0

∂t
φi + f

∂χH2O,0

∂r
φi − EJ(χH2O,0 − 1)

1 − EJPe′h
3

φi

)
r dr, (B4)

R =
∫ [(

p0 − StρgGh + A
h3

)
Ma
ε2σ

φi − ∂h
∂r
∂φi

∂r

]
r dr +

(
r
∂h
∂r
φi

)r=r∞

r=0
, (B5)

R =
∫ (

Kn J − χH2O

(
δ(p0 − StρgGh)+ ψ(TS − Tg)+ ln

(χH2O

RH

)))
φir dr. (B6)

The initial contact radius of the droplet is set as 1.0, and the length of the computational
domain is set as 8.0 in the analysis of interfacial parameters. In the calculation of spreading
rate, we extend the computational domain to 32.0, which ensures the free motion of the
droplet contact line. The domain is discretized along r with 800 equally spaced nodes.
At each time step, we apply the Newton–Raphson method to obtain the solution across
the computational domain progressively. The solution evolves forwards with an adaptive
time interval, which adjusts according to the maximum residual errors of the governing
equations from the previous time step. The computation stops automatically as the droplet
mass decreases to zero in the case of pure water droplets. In the case of LiBr–H2O droplets,
the computation stops after the droplet reaches equilibrium with the ambient.
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