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Abstract
This article describes a study of transitivity of preference and of transparent dominance with 220 participants who
judged each choice problem 4 times. It shows how a true-and-error model with 2 error terms per choice problem can
be applied to replicated data, to ask if violations of dominance or of transitivity are ‘real’ rather than due to random
response errors. These models allow one to estimate the incidence of systematic violations and of error rates.
The new data showed about 3% violations of transitivity, corrected for error. This incidence might be statistically
significant, but a skeptic might dismiss it as too small to build a theory upon. Tests of dominance found violations
with overall rates from 4% to 18%. As in previous research, violations of transparent dominance appeared almost
exclusively among people who systematically prefer ‘safe’ gambles (with low ranges of outcomes) over ‘riskier’
gambles with higher expected values when the ‘safe’ gamble was dominated by the higher-ranged gamble. For
those participants and choice problems, rates of violation were 28%–45%, corrected for error. It was theorized
that these violations of dominance may be due to a subgroup of risk-averse participants using a strategy in this
experiment to find ‘safe’ alternatives, without comparing outcomes between gambles.

1. Introduction

There are 2 principles of decision making that are regarded by many, but not all, theoreticians as
rational: dominance and transitivity. Dominance is the principle that if option A yields consequences
that are at least as good and sometimes better than the corresponding consequences for option B for
every state of the world, then one should prefer option A over B. Transitivity holds that if one prefers
X to Y and Y to Z, then one should prefer X to Z.

Transitivity and dominance are not only widely regarded as rational, they are also implied by certain
descriptive theories of decision making such as expected utility (EU) theory and cumulative prospect
theory (Tversky and Kahneman, 1992). However, other descriptive theories of risky decision making
satisfy transitivity but can violate dominance, such as the transfer of attention exchange (TAX) and
rank-affected multiplicative weights models (Birnbaum, 2008). Another group of theories can violate
transitivity and must satisfy dominance, such as the most probable winner (MPW) model (Blavatskyy,
2006; Butler and Blavatskyy, 2020; Butler and Pogrebna, 2018) and regret theory (Loomes and Sugden,
1982). Therefore, testing dominance and transitivity empirically allow psychologists to learn which
models can be ruled out or retained as possible descriptive theories of how people actually make
decisions.
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1.1. Background and purposes of the present study

Butler and Pogrebna (2018) constructed a set of choice problems in which systematic violations of
transitivity were observed. Their design used sets of 3 gambles (‘triples’) with 3 equally likely cash
prizes. For example: X = (15, 15, 3), Y = (10, 10, 10), and Z = (27, 5, 5), where X = (15, 15, 3)
represents a gamble with 2 equal chances to win 15 pounds and 1 equal chance out of 3 to win 3 pounds.
The choice problems were designed such that every choice compared a ‘safer’ option (with lower range
of outcomes) against a ‘riskier’ alternative (higher range) that had a higher expected value.

They were also devised such that X has better outcomes than Y for 2 of 3 branches, Y beats Z
on 2 branches, and Z beats X on 2 branches. If people choose gambles that are most likely to give
a better outcome, called the MPW strategy, they would choose X over Y, Y over Z, and Z over X,
violating transitivity. Although their experiment was designed to investigate this MPW model, and
some violations of this type were observed, Butler and Pogrebna (2018) reported that their results
showed more violations of the opposite type from those implied by MPW. Birnbaum (2020) reanalyzed
those data via the group true-and-error (TE) model and concluded that 4 of the 11 triples showed
evidence of small but significant violations of transitivity (Butler, 2020).

These 4 triples were later tested in a new study with 22 individuals who responded 60 times to each
choice problem (Birnbaum, 2023a), which allowed analysis via the individual TE model. Birnbaum
(2023a) concluded that although most individuals satisfied transitivity, 1 person showed violations
consistent with the MPW model, and 6 others showed evidence of intransitive behaviors in at least
one of the triples at least part of the time.

Birnbaum (2023a) also tested dominance using test trials interspersed among the transitivity trials
and found surprisingly high rates of violation by some individuals. There were 5 participants who
violated transparent dominance more than half the time, including 2 who violated dominance 60 times
out of 60 tests despite being almost perfectly self-consistent and transitive in their responses on 720
other trials with non-dominated choices.

In Birnbaum’s (2023a) dominance tests, a low-variance alternative was always dominated by a
higher-variance alternative. All 5 of the participants who violated dominance systematically preferred
‘safe’ (low-variance) alternatives on other choice problems not involving dominance. It was conjec-
tured that the experimental design testing transitivity may have induced a strategy in some individuals
to look for the ‘safe’ alternative, which left them vulnerable to violating dominance in tests where the
low-variance, ‘safe’ alternative was dominated. It was hypothesized that if choice problems were used
in which the ‘safe’ alternative was dominant, these people would likely satisfy dominance (Birnbaum,
2023a).

This article builds on the designs of Butler and Pogrebna (2018) and Birnbaum (2023a) to test this
new hypothesis about dominance violations and to reassess evidence of intransitive preferences, as
measured by a more general TE model than has been employed in previous research on transitivity.
The more general model allows 2 error rates per choice problem instead of 1. This study investigates
(1) whether violations of transitivity observed by Butler and Pogrebna (2018) and Birnbaum (2023a)
can be observed with a new, larger sample in order to check the estimated incidence with the more
complex TE model; (2) whether the rate of violation of transparent dominance will be significant and
higher among persons who most often prefer low-variance gambles (as previously reported); and (3)
whether the rate of dominance violations would be lower in new tests of dominance in which the lower-
variance alternative dominates the higher-variance alternative (compared against the case in which the
dominant gamble has the higher variance).

1.2. Dominance violations

Research on dominance has discovered situations in which a majority of college undergraduates
systematically violate first-order stochastic dominance (Birnbaum, 1999; Birnbaum and Navarrete,
1998). These violations were implied by configural weight models as fit to previous data (Birnbaum
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and Chavez, 1997), and the predicted violations were published before research had been done on
the problems (Birnbaum, 1997). For example, about 70% of college students choose G = ($96, 0.85;
$90, 0.05; $12, 0.10) over F = ($96, 0.90; $14, 0.05; $12, 0.05) even though F dominates G by first-
order stochastic dominance. When the gambles F and G are presented in canonical split form (in which
the number of branches of the gambles are equal and the probabilities of corresponding, ranked
branches are the same), it is found that the vast majority prefer the split form of the dominant
gamble; for example, F′ = ($96, 0.85; $96, 0.05; $14, 0.05; $12, 0.05) is preferred to G′ = ($96, 0.85;
$90, 0.05; $12, 0.05; $12, 0.05), satisfying dominance. Since F′ and G′ are equivalent to F and G,
respectively, except for splitting, this reversal of the majority preference is also a violation of coalescing
(a ‘splitting effect’).

Another line of research has found systematic violations of monotonicity, finding that when the
lowest consequence of a gamble is increased from 0 to a small positive amount, the judgment of value
of a gamble can actually decrease. Such violations have been found in judgment- and choice-based
certainty equivalents, but not in direct choice (Birnbaum, 1992, 1997; Birnbaum, Coffey, Mellers, and
Weiss, 1992; Birnbaum and Sutton, 1992; Birnbaum and Thompson, 1996; Mellers et al., 1992b). For
example, people offer a higher price to buy (and demand a higher price to sell) M = ($96, 0.9; $0) than N
= ($96, 0.9; $12), when these gambles are presented on separate trials intermixed among other gambles
to evaluate. These violations have been theorized to result from lower configural weight applied to the
outcome 0 than to small positive consequences (Birnbaum, 1997).

The theoretical explanations of these 2 cases described in this section (in terms of configural
weighting), however, are not applicable to the violations of transparent dominance observed in
Birnbaum (2023a). Further, the magnitude of the effects reported by Birnbaum (2023a), when assessed
over all participants, is much smaller than the other examples of dominance violation cited above.
Therefore, some additional statistical tools are required for their analysis.

1.3. The problem of response variability

When testing formal properties such as dominance or transitivity with fallible data, properties might
appear to be violated by random errors in responding. When confronted with the same choice problem
on different occasions, people often make different choice responses. How do we distinguish whether
violations of a principle are due to systematic behavior or instead to random errors in responding?

A family of models known as ‘TE’ models have been developed in a series of papers to address the
problem of distinguishing true violations from those that might be due to error (Birnbaum, 2004, 2008,
2010, 2013, 2023a, 2023b; Birnbaum et al., 2016; Birnbaum and Bahra, 2012a, 2012b; Birnbaum and
Gutierrez, 2007; Birnbaum and Quispe-Torreblanca, 2018; Birnbaum and Schmidt, 2008; Birnbaum
and Wan, 2020). Research using replicated designs analyzed by TE models concluded that most people
satisfy transitivity of preference, but a minority of participants can be found who exhibit systematic
deviations from transitivity in specially constructed designs (Birnbaum, 2023a; Birnbaum and Bahra,
2012b; Birnbaum and Diecidue, 2015; Birnbaum and Gutierrez, 2007).

The key idea in TE models is the use of replications to estimate error. When the same person is asked
to respond to the same choice problem on 2 occasions in the same brief session, suitably separated by
filler trials, it is assumed that true preferences remained the same and any differences in response are
due to error. How these assumptions can be used to measure error in order to test dominance is described
in the next section.

1.4. A test of dominance

Consider the choice problem displayed in Figure 1. There is an urn containing exactly 33 Red marbles,
33 White marbles, and 33 Blue marbles. A marble will be drawn blindly and randomly from the urn,
and its color will determine the participant’s prize depending on which option the participant chose. For
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Figure 1. An example choice problem, illustrating a test of transparent dominance.

example, if the participant chose the First Gamble and a Red marble is drawn, the prize would be $10,
but if the participant chose the Second Gamble, the prize for the Red marble would be only $8. First
Gamble dominates the Second Gamble because for any color of marble drawn, the prize is at least as
high and for 2 colors (Red or White), the prize is higher.

Suppose that this choice problem was presented among many other choice problems and it were
found that 25% of the expressed preferences violated dominance. Are such results evidence of
systematic bias or simply due to error? Of course, it is an intellectual ‘mistake’ or ‘error’ for a
participant to choose the Second Gamble, but the question is whether or not the 25% violations are due
to a flawed, but systematic decision rule as opposed to random errors, such as misreading the problem,
forgetting the information or decision, or accidentally pushing the wrong button. If a person were to
use a decision rule such as ‘choose a sure thing when one is available’: such a person might choose the
Second Gamble systematically without contrasting consequences for each event against those of the
First Gamble, which would violate dominance.

Figure 2 illustrates TE components in a choice problem. Suppose A and B represent 2 gambles in
a choice problem (such as the First and Second in Figure 1), and let � denote ‘truly chosen’, so that
A � B means A is systematically preferred to B. People who truly chose A � B might respond B by
random error with probability e, and those who prefer B � A might respond A with probability f.1

Let pA denote the probability that A � B in a certain population. The observed choice proportion,
P(A), might be used to make inferences about a population choice probability, p(A), but the question
is, can we estimate the true preference probability, pA, from the observed choice proportion or inferred
choice probability? No, because the choice probability is given as follows:

p(A) = pA(1 − e) + (1 − pA) f, (1)

so from p(A) we cannot estimate pA, unless we know or can estimate e and f.2
If someone were to assume that pA = 1 (e.g., that dominance is always satisfied), then the observation

of 25% violations would indicate that e = 0.25; alternatively, another person who assumed that
e = f = 0 might conclude that there are 25% true violations. However, these arbitrary conclusions
might be refuted by empirical evidence, if a better experiment (with replications) had been done.

1The preference relation, �, representing ‘true’ preference should not be given too much excess meaning; it is entirely
possible that the so-called ‘true’ preference relation may depend on the experimental context including experimental design
and instructions. Indeed, if someone pointed out the mistake, it is not assumed the person would persist in choosing A. Thus,
there may exist different ‘true’ relations, �k, in different contexts or with different instructional conditions, k. The point here is
to distinguish what is systematically driving choices in a particular experimental paradigm from what produces varied responses
in the same situation. Thus, the word ‘true’ should not be imbued with excess meaning, for example, that it is also ‘correct’, or
that it would be invariant with respect to context.

2The population probability, p(A) , is inferred from the observed choice proportion, P(A) . This inference should not be
confused with the relation of the true preference probability, pA, to the expressed preference probability, p(A) . In group TE theory,
where each participant serves in a brief session, pA represents the probability that a person holds the true preference, A � B, and
different people may hold different preferences. In individual TE theory, the same person may have different true preferences in
different sessions separated over time, so this parameter represents the probability that the individual has this preference state in
a session.
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Figure 2. True-and-error model of choice between A and B; pA is the probability to truly prefer A over
B; e and f are the probabilities to erroneously respond ‘B’ when A is truly preferred and to respond ‘A’
when B is truly preferred, respectively.

Table 1. Hypothetical data for a replicated choice problem.

Response in Response in Replicate 2 Row totals

Replicate 1 A′ B′

A 65 10 75
B 10 15 25

Column totals 75 25 100
Note: There are 75% responses for A in either replicate and 20% reversals between
replicates.

1.5. TE model with replications

Suppose that the same choice problem is presented twice to the same participants in the same brief
session, with both presentations suitably separated and embedded among a number of other filler trials.
There are 4 possible response patterns: a person might choose A both times (AA), B both times (BB),
switch from A to B (AB), or switch from B to A (BA).

Table 1 contains hypothetical data for 100 participants who responded twice to the same choice
problem. The marginals show that 75% chose A in either replicate, but 20% switched responses between
replications. Since there are 100 participants, these values can be interpreted as percentages.

Table 2 shows the theoretical probabilities of these 4 response patterns, p(AA), p(AB), p(BA), and
p(BB) according to the TE model of Figure 2, assuming that true preferences are the same and errors
on 2 replications have equal probability and are independent of each other. Table 2 shows that the
probabilities of the 2 types of reversal are implied to be equal to each other, p(AB) = p(BA), which can
be used to test these assumptions.

There are 3 parameters in the model, pA, e, and f, and there are 3 degrees of freedom in the data of
Table 1. The data of this design constrain the parameters, but the constraints do not impose a unique
solution. To illustrate these partial constraints, Figure 3 shows the fit of the TE model (Figure 2) to
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Table 2. TE4 analysis of replication of a single choice problem.

Response in Response in Replicate 2

Replicate 1 A B

A pA(1 − e) (1 − e) + (1 − pA) (f) (f) pA(1 − e) (e) + (1 − pA) (1 − f) (f)
B pA(1 − e) (e) + (1 − pA) (1 − f) (f) pA(e) (e) + (1 − pA) (1 − f) (1 − f)
Note: p(A) = pA (1 − e) + (1 − pA) (f) .

Figure 3. Fit of true-and-error models as a function of the parameter, pA, the probability that A � B.
Solid line shows the fit of the 3-parameter model of Figure 2 (TE4), and the dashed line shows the fit of
the 2-parameter model with e = f (TE2).

Table 1 for fixed values of p. For each value of p, error rates are selected to minimize G, which is
defined as follows:

G = −2
∑

Oiln(Oi/Ei), (2)

where Oi and Ei are the observed and ‘expected’ (fitted) frequencies of the 4 response patterns. In this
case, the Oi are the entries of Table 1 and the Ei are the corresponding frequencies implied by Table 2;
e.g., the ‘expected’ frequency of AA responses is np(AA) from Table 2, where n = 100. Minimizing G
(aka G2) is equivalent to finding a maximum likelihood solution.

The solid curve in Figure 3 plots the best-fit value of G as a function of pA. The model fits Table 1
perfectly (G = 0) for a range of values, about 0.65 < pA < 0.85, where e and f trade off from e = 0.03
and f = 0.35 at pA = 0.65 to e = 0.10 and f = 0.16 at pA = 0.80 to achieve the perfect fit.

Although we cannot identify a unique best-fitting pA, e, and f, we can reject the model if we assumed
that pA = 1, as shown by the large G value in Figure 3. (The critical values of 𝜒2(1) and 𝜒2(2) are 6.34
and 9.21 with 𝛼 = 0.01.) That is, even though the 3-parameter model exhausted the df in the data, it
still imposes constraints that allow one to test specific hypotheses about certain specific values of pA.3
The assumption that pA = 1 corresponds to the null hypothesis that dominance is always satisfied in a
choice problem such as illustrated in Figure 1.

Furthermore, if we can assume that e = f, then the model is fully identified and testable; that
is, we can estimate both pA and e from the data, and we can test the model without specifying pA.

3By assuming a fixed value of pA, we have clawed back 1 df, rendering the special case testable. Note also that when pA is
fixed to 1, f drops out of the equations, leaving only 1 parameter to estimate. In sum, the TE model with pA = 1 might deserve
rejection, as in the example of Figure 3; it might fit acceptably by statistical standards; or it might even fit perfectly. For example,
if the 4 entries of Table 1 had been 64, 16, 16, and 4 (instead of 65, 10, 10, 4, respectively), then these data would be perfectly
consistent with TE with pA = 1 and e = 0.2.
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This 2-parameter model, in which each choice problem is allowed to have a different true probability
and a different error rate, is termed the TE2 model in Birnbaum and Quispe-Torreblanca (2018), and
the more complex model of Figure 2, with 2 error terms for each choice problem, is known as TE4.

With e = f, it follows from the equations (Table 2) that the sum of response reversals between
replicates is a quadratic function of e, as follows:

p(AB) + p(BA) = 2(1 − e)e. (3)

Because there are 20% reversals between replications in Table 1, e = 0.113.4 Once e is determined, pA
can be computed from the estimated binary choice proportion, substituted for p(A) in the expression,
p(A) = pA(1 − e) + (1 − pA)e. For Table 1, 0.75 = pA(1 − 0.113) + (1 − pA) (0.113), which implies
pA = 0.823. In practice, one solves for pA and e to fit all the data (e.g., all values in Table 1)
minimizing G. Because this TE2 model uses only 2 parameters, there remains 1 df to test the model.

The dashed line in Figure 3 shows the index of fit of TE2 to Table 1 as a function of pA; unlike TE4
which has multiple solutions, TE2 has a unique minimum at pA = 0.82. According to TE2, values of
pA in the range from about 0.75 to 0.90 are considered statistically acceptable, but values outside that
range are not, including pA = 1.5 Although both TE2 and TE4 achieve a perfect fit to this example, that
need not be the case. Both TE2 and TE4 would be rejected (binomial p < 0.01) if the entries of Table 1
were instead 65, 5, 20, and 10, for example, because both models imply that pAB = pBA.

In sum, if we replicate a single choice problem, we can use either TE4 or TE2 to test whether
violations of a property like dominance are ‘real’ (systematic), or instead might be due to random error.
Furthermore, if we can assume that e = f, we can uniquely estimate the incidence of true violations.

1.6. True-and-error model of transitivity

The issue of transitivity is important because descriptive theories disagree about whether transitivity
of preference can be systematically violated. Some important papers reviewing transitivity in terms
of empirical results, theory, or error analysis include Bhatia and Loomes (2017), Birnbaum (2023a),
Budescu and Weiss (1987), Cavagnaro and Davis-Stober (2014), Fishburn (1991), Gonzalez-Vallejo
(2002), Iverson and Falmagne (1985), Leland (1998), Loomes and Sugden (1982), Luce (2000),
Morrison (1963), Müller-Trede et al. (2015), Ranyard et al. (2020), Regenwetter et al. (2011), Rieskamp
et al. (2006), Sopher and Gigliotti (1993), and Tversky (1969).

Much of the empirical research on the descriptive accuracy of transitivity has been highly contro-
versial because that research has not used appropriate experimental designs coupled with appropriate
quantitative analyses that can actually diagnose whether transitivity violations are real or due to error
(Birnbaum, 2023a; Birnbaum and Wan, 2020). Birnbaum (2023a) and Birnbaum and Wan (2020) noted
that quantitative methods used in the past can easily conclude that data generated by an intransitive
process are ‘transitive’ or vice versa. Fortunately, TE models can be applied to separate the issue of
systematic violation of transitivity from that of error, but one needs to do a proper experiment with
replications to apply these methods.

Methods for analyzing transitivity via TE models have been presented in Birnbaum (2020, 2023a),
Birnbaum et al. (2016), Birnbaum and Bahra (2012a), Birnbaum and Diecidue (2015), Birnbaum and
Gutierrez (2007), Birnbaum and Schmidt (2008), and Birnbaum and Wan (2020). In these earlier papers,
however, it had been assumed that each choice problem has a different error rate, but it was assumed
ei = fi.

4The expression can be rewritten as 2e2 − 2e + p(AB) + p(BA) = 0; from Table 1, we estimate p(AB) + p(BA) = 0.2, so

e2 − e+ 0.1 = 0. The quadratic solutions to the equation, ax2 + bx+ c = 0, are given by the formula: x = −b±
√

b2−4ac
2a . In this case,

a = 1, b = −1, and c = 0.1, so the 2 solutions are x = 0.113 and x = 0.887. But 0 ≤ e < 1/2, so e = x = 0.113. If e > 1/2, it
would mean that participants are liars; that is, they are more likely to report the opposite of their true preferences than to report
true preferences.

5The horizontal part of the dashed curve for values of pA below 0.4 occurs because e is restricted to be less than 1/2.
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In this article, the more general model of Figure 2 where e need not equal f will be employed. It
has not yet been ruled out that this more complex error specification might allow transitive models to
be accepted that would have been rejected under the simpler models, despite simulations in Birnbaum
and Quan (2020) showing that conclusions regarding transitivity appear to be robust with respect to the
error specifications in TE models.

Consider a test of transitivity with three choice problems, XY, YZ, and ZX. If we code 1 to represent
choice of the first listed option and 2 for choice of the second, there are 8 possible response patterns:
111, 112, 121, . . . , 222. For example, 111 is the intransitive pattern of choosing X over Y, Y over Z, and
Z over X; 222 is the opposite intransitive pattern, and the other 6 patterns are transitive. However, if we
present each choice problem twice (replicate), there are 64 possible response patterns for the 6 choice
problems.6

The observed frequencies of the 64 response patterns can be fit to the TE model of Figure 2.
In this case, there are 8 parameters representing the 8 possible true preference patterns,
p111, p112, p121, p122, p211, p212, p221, and p222, and 6 error rates, e1, e2, e3, f1, f2, and f3 for the 3 choice
problems. Since the 8 true preference pattern probabilities sum to 1, they consume 7 df, so the
parameters use 7 + 6 = 13 df. The 64 cell frequencies have 63 df because their probabilities also sum
to 1, so there are 63 − 13 = 50 df remaining to test the model.

The ‘expected’ (i.e., ‘fitted’ or ‘predicted’) frequency for the response pattern 212, on the first
replicate and the pattern 211 on the second (denoted 212, 211), for example, is given as follows:

E212,211 = n[p111 (e1)2(1 − e2)2(e3) (1 − e3)
+ p112 (e1)2(1 − e2)2(1 − f3) (f3)
+ p121 (e1)2(f2)2(e3) (1 − e3)
+ p122 (e1)2(f2)2(1 − f3) (f3) (4)

+ p211 (1 − f1)2(1 − e2)2(e3) (1 − e3)
+ p212 (1 − f1)2(1 − e2)2(1 − f3) (f3)
+ p221 (1 − f1)2(f2)2(e3) (1 − e3)
+ p222 (1 − f1)2(f2)2(1 − f3) (f3)],

where E212,211 is the ‘expected’ (‘fitted’) frequency (count) that people will respond with the 212 and
211 response patterns in the first and second replications of the session. Note that if a person has the true
preference pattern of 111, then she or he would have to make error e1 twice on the first choice problem,
make no error on the 2 presentations of the second problem, and make 1 error and 1 correct on the third
choice problem. If the true pattern were 212, then this response pattern could occur if the person made
only 1 error in the second replicate on the third choice problem. Note that when the true preference is
assumed to be 212, the first and third choice problems involve error terms, f1 and f3. Each ‘expected’
frequency is simply n times the theoretical probability, where n is the total count of responses. There
are 64 equations (including this one) for the 64 possible response patterns.

The TE2 model (in which ei = fi) is a special case of this TE4 model; TE2 uses 3 fewer
parameters, so these models can be compared by computing the difference in fit between the 2 models,
G(3) = G(53) − G(50). In theory, the difference asymptotically approaches a chi-squared distribution
with 3 df as n increases.

Within either TE2 or TE4, transitivity is a special case in which p111 = p222 = 0. The differences in
fit testing transitivity each have 2 df.

6The same notation can be used to refer to true preference patterns as to expressed (observed) preferences, but even with
64 response patterns in 2 replications, there are only 8 true preference patterns because it is assumed that people maintain the
same true preferences in both replications within a brief session. In individual TE theory, iTET, it is allowed that a person might
change true preferences between sessions, but it is still assumed that 2 replications within a session are governed by the same
true preferences.
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The nesting relationships among these 4 models are the same as in Birnbaum (2019, Figure 2),
except where ‘transitivity’ is substituted for ‘EU’. In particular, it is possible that data that would refute
transitivity with TE2 might be compatible with transitivity under TE4.

A spreadsheet employing Excel’s Solver to fit either TE2 or TE4 to a replicated test of transitivity is
included in the Supplementary Material to this article.7

2. Method

Participants made choices between pairs of gambles, each of which had 3 equally likely prizes. The
prize of a gamble is determined by the color of marble drawn blindly and randomly from a single urn
containing an equal number of red, white, and blue marbles.

Choices were displayed as in Figure 1, where rows represented the 2 choice alternatives, and
columns (colored red, white, and blue) represented the 3 possible outcomes. Numerical entries indicated
money prizes to be won if a marble drawn randomly from an urn was red, white, or blue. The urn
contained 33 red, 33 white, and 33 blue marbles. These displays are like those in Birnbaum (2023a)
and Birnbaum and Diecidue (2015).

2.1. Instructions and materials

Instructions, and one block of trials can be viewed at the following URL:

https://konstanzworkshop.neocities.org/CSUF22/MPW_01a.

Stimulus displays and Web forms were constructed and randomized using a free program, available
at the following URL:

http://psych.fullerton.edu/mbirnbaum/programs/ChoiceTableColorWiz2.htm.

2.2. Transitivity design

There were 4 triples of gambles, which showed the highest incidence of intransitive behavior in Butler
and Pogrebna (2018) and used in Birnbaum (2023a). The amounts (in dollars, instead of pounds) are as
follows:

Triple 1: X = (12, 12, 2); Y = (8, 8, 8); Z = (20, 4, 4).
Triple 2: X = (15, 15, 3); Y = (10, 10, 10); Z = (27, 5, 5).
Triple 3: X = (9, 9, 3); Y = (6, 6, 6); Z = (16, 4, 4).
Triple 4: X = (14, 14, 2); Y = (8, 8, 8); Z = (21, 6, 6).
Note that in all 4 triples, Y is always a ‘sure thing’ with the smallest EV; Z always has the highest

EV and greatest range; and X is intermediate in both EV and range. The MPW model favors X over Y,
Y over Z, and Z over X in all 4 triples.

There are 6 choice problems for each triple as follows: XY, YZ, and ZX; and YX, ZY, and XZ, where
XY and YX denote the same choice problem, except X is displayed in the first or second position. With
4 triples and 6 choice problems per triple, there are 24 experimental choice problems testing transitivity
in each block.

2.3. Dominance design

Four tests of transparent dominance were included in each block: D1: T = (10, 9, 8) versus
U = (8, 8, 8); D2: V = (10, 10, 7) versus W = (12, 12, 8); D3: A = (4, 4, 2) versus B = (8, 8, 8),

7Other software to analyze the TE models is available from the supplements to Birnbaum et al. (2016), Birnbaum and Quispe-
Torreblanca (2018), and Birnbaum and Wan (2020). Bayesian methods for analyzing TE models have been implemented by Lee
(2018) and Schramm (2020); see also Birnbaum (2019).
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D4: C = (8, 8, 8) versus D = (5, 5, 2). Note that in Choices D1 and D2, the wider range gamble is
dominant, whereas in D3 and D4, the wider range gamble is dominated.

2.4. Procedure

Each block consisted of 28 randomly ordered trials (choice problems) intermixed from both subdesigns.
When a block was completed, the participant pushed a button to submit the responses, and then

pressed another button to load the materials for the second block. Participants participated via the
WWW, and worked at their own paces.

Instructions stated that 3 participants would be selected at random to receive the prize of one of their
chosen gambles, so they should choose wisely. Procedures for determining prizes were similar to those
in Birnbaum and Diecidue (2015, Experiment 6), except contestants were not present and prizes were
sent as cash in the mail.

2.5. Participants

The participants were 260 undergraduates who completed 2 blocks (ages 18–38, with 76% ≤ 20 years;
24% males, 72% females, and 3% not responding) who participated in partial fulfillment of an
assignment in Introductory Psychology.

Because each of the 12 choice problems testing transitivity was replicated twice in each block
with display position (First or Second) counterbalanced, the number of consistent responses within
a block could range from 0 to 12; a person who mindlessly pushed the same button would show zero
consistency, and a person who pushed buttons randomly would be expected to have a score of 6 (50%
agreement). There were 40 participants who had low consistency in at least one block whose data were
analyzed separately, leaving 220 participants with mean consistency of 84% within-block agreement
between replicates of the 12 choices testing transitivity.

3. Results

3.1. Tests of dominance

The first 4 rows of Table 3 show the numbers of participants (out of 220) who had each response pattern
in 2 replications of the 2 tests of dominance. For example, the first row (for choice problem D1) shows
that 145 participants (out of 220) satisfied dominance on both replications (AA); 22, 19, and 34 violated
it only on the second replication (AB), only on the first (BA), or violated dominance on both replications
(BB), respectively. There were thus 22+19+(2) (34) = 109 total violations out of 440 choice responses,
or 25%, which is shown in the column labeled ‘Resp viol’, representing response violations.

The column in Table 3 labeled ‘𝜒2(1)Indep’ is the standard chi-squared test of response indepen-
dence, which is the assumption that the probability of a conjunction of responses is the product of the
marginal probabilities of those responses; that is, p(AA) = p(A)p(A). Because the critical value of
𝜒2 (1) is 6.34 with 𝛼 = 0.01, we can reject the hypothesis that responses are independent in the first
4 rows of Table 3.

Independence is implied to be violated by the TE models, except in special cases, such as when
pA = 1, which implies p(A) = 1 − e, so p(AA) = (1 − e) (1 − e) = p(A)p(A). Note also that if pA = 1,
p(BB) = e2 < p(AB) = p(BA) = e(1 − e); that is, the probability of a repeated violation should be
less than that of a reversal of preference between violation and satisfaction of dominance. The large 𝜒2

for violation of independence occur when the frequency of BB exceeds that of AB and BA, indicating
pA < 1.

The next column in Table 3, labeled ‘G(1)TE2’, displays the G tests of the TE2 model (e = f), which
has 1 df and is asymptotically chi-squared distributed. As can be seen in the table, all of these G(1)
values are much less than corresponding tests of response independence and all show good fits to the
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Table 3. Response patterns in replicated tests of dominance and TE analysis.

Test Resp 𝜒2(1) G(1) Est. Est. G(2)
(n) AA AB BA BB viols Indep TE2 1 − pA e pA ≡ 1 DIFF

D1 (220) 145 22 19 34 0.25 55.10 0.22 0.18 0.10 50.39 50.17
D2 (220) 160 22 14 24 0.19 49.58 1.79 0.12 0.09 42.34 40.55
D3 (220) 189 10 7 14 0.10 74.26 0.53 0.07 0.04 45.81 45.28
D4 (220) 188 13 11 8 0.09 25.53 0.17 0.04 0.06 16.50 16.33
D1 (89) 36 14 9 30 0.47 20.98 1.10 0.45 0.15 22.50 21.40
D2 (89) 48 13 8 20 0.34 20.66 1.20 0.28 0.14 21.29 20.09
D3 (89) 69 5 5 10 0.17 31.94 0.00 0.12 0.06 25.04 25.04
D4 (89) 70 7 7 5 0.13 9.44 0.00 0.06 0.09 7.18 7.18
D1 (131) 109 8 10 4 0.10 7.10 0.22 0.03 0.07 5.29 5.07
D2 (131) 112 9 6 4 0.09 10.96 0.60 0.03 0.06 7.61 7.01
D3 (131) 120 5 2 4 0.06 35.14 1.33 0.03 0.03 16.59 15.26
D4 (131) 118 6 4 3 0.06 14.97 0.40 0.02 0.04 8.23 7.83
Note: Critical 𝜒2 (1) = 6.64 and 𝜒2 (2) = 9.21 for 𝛼 = 0.01.

data, even though the number of parameters estimated (and thus the df) is the same as for the tests of
independence. The best-fit parameter estimates of the TE2 model are shown in the next columns, labeled
‘1− pA’ and ‘e’, representing the probability of systematic violation of dominance and of random error,
respectively.

The next to last column in Table 3 is a G(2) test of the TE model with the assumption that pA = 1;
this test is the same in either TE2 or TE4 because when pA = 1, the parameter f drops out of the
equations. The last column in Table 3, labeled ‘DIFF’, shows the differences, G(2) − G(1), which test
if pA = 1. These indicate that the violations of transparent dominance, estimated to range from 4% to
18% in the 4 choice problems of the first 4 rows, are significantly greater than 0, because all 4 values
well exceed the critical value of 6.64 with 𝛼 = 0.01.

Participants were subdivided according to their modal response patterns in the tests of transitivity.
There were 89 participants who most often preferred ‘sure things’ when presented in these non-
dominated choice problems, 77 of whom most often preferred the lower range option in any non-
dominated choice. That left 131 who did not show one of these modal response patterns.

These two subgroups of data were then analyzed separately, shown by the next 2 groups of 4 rows
each. For the group of 89 who prefer ‘sure things’, the estimated true rates of violation were 0.45
and 0.28 for D1 and D2, corrected for error, which are similar to the findings in Birnbaum (2023a)
and seem ‘large’ for tests of transparent dominance. The estimated violation rates for the other 131
participants are only around 0.03 for the 4 problems. These data for D1 and D2 therefore are consistent
with Birnbaum’s (2023a) findings that relatively large rates of violation of transparent dominance can
be observed, and that these high violations are mainly found in people who appear to favor ‘safer’ (i.e.,
lower-ranged) gambles in non-dominated choice problems.8

Among the 89 participants who favor ‘safer’ gambles in non-dominated choices, the rates of
violation of dominance for D3 and D4 are lower, 0.12 and 0.06, respectively, compared to 0.45 and
0.28 for D1 and D2. Although D3 and D4 have lower rates, as hypothesized, 12% violations for D3

8The 𝜒2 and G tests in the last 6 rows of Table 3 are based on cases where one or more expected cell frequencies are ≤ 5; these
statistics might therefore be considered dubious to compare with the theoretical chi-squared distribution. Nevertheless, Fisher
exact tests were also significant in the last 6 rows, with p < 0.01 in all cases except D1(131) where p = 0.025, so even these
small rates of 2%–3% estimated violations might be due to more than chance.
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Table 4. Crosstabulation. Frequencies of response patterns in first (rows) and second
(columns) replications, aggregated over participants, choice triples, and sessions.

Response pattern in Replicate 2

Rep 1 111 112 121 122 211 212 221 222 Sum

111 15 23 7 11 6 5 3 1 71
112 15 200 6 33 4 44 1 10 313
121 10 4 248 44 2 2 15 5 330
122 5 38 41 143 1 8 4 14 254
211 8 5 5 1 61 35 10 3 128
212 9 62 0 9 44 352 5 17 498
221 3 1 23 3 6 5 35 6 82
222 2 13 4 7 4 18 10 26 84

Sum 67 346 334 251 128 469 83 82 1,760

Modal 6 40 46 29 12 77 8 2 220
Note: Total n = 1,760 = 220 Participants by 4 Triples by 2 Sessions, each based on 6 responses (3 choices problems by 2
repetitions) per triple. The pattern 111 is the intransitive pattern predicted by most probable winner rule.

still seems surprisingly high for this risk-averse group, since choosing the ‘safer’ alternative in D3 or
D4 would have satisfied dominance.9

For the group of 131, the rates of violation for D3 and D4 are low in all tests (3% or lower) and the
discrepancy (comparing D3 and D4 to D1 and D2) is not as pronounced as for the group of 89.

3.2. Tests of transitivity

Table 4 shows a cross-tabulation of response patterns in 2 replicates, aggregated over participants,
choice triples, and blocks. Each response pattern represents 6 responses (3 choice problems with 2
replications). For example, the entry of 15 in row 111 and column 111 indicates that there were 15
occasions (out of 1,760) in which a participant chose X over Y, Y over Z, and Z over X on both
replicates of a choice triple in a block. This response pattern, 111, is the intransitive cycle implied by
the MPW model (for all 4 triples).

The diagonal entries in Table 4 represent frequencies of repeating the same response pattern in both
replicates, and the off-diagonal entries are cases where at least 1 of the 3 choice problems produced
opposite responses in the 2 replicates. The row and column sums (totals) represent frequencies of
response patterns in the first and second replications, respectively.

The last row at the bottom of Table 4, labeled ‘Mode’, shows the number of individuals who showed
each modal response pattern, aggregated over triples, replicates, and blocks.

The most frequently observed and repeated pattern is 212, which is the transitive pattern implied
by the TAX model with its ‘prior’ parameters. Those parameters were roughly estimated in 1996
(described in Birnbaum and Chavez, 1997) and used to make predictions for new studies for the next
quarter century (Birnbaum, 1997, 2008, 2020, 2023a). The 212 pattern was also the most frequently

9The estimated error rates are also larger for the group of 89 who preferred ‘safer’ gambles. This result leads one to ask:
suppose we selected by within-session consistency; would people with higher consistency have a lower rate of estimated true
violations? The answer is no. Participants were selected who achieved at least 71%, 79%, or 88% consistency to define 3
subgroups. The TE2 model was then fit in each subgroup, as in Table 3. It was found that the estimated average rate of violations
for D1 and D2 increased from 38% to 42%–51% as self-consistency increased, and violation rates for D3 and D4 decreased
slightly (from 10% to 9.5%–9%, respectively). Thus, there is no evidence that more reliable people would be more likely to
satisfy dominance in D1 and D2.
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Table 5. Indices of fit for four models of
Table 4.

TE Transitivity Difference

model Trans Free G(2)

TE2 145.9 85.9 60.0
TE4 131.7 74.7 57.0

Diff G(3) 14.2 11.2
Note: ‘Trans’ indicates transitive; ‘Free’ includes all
transitive and intransitive patterns.

observed modal pattern by individuals. This pattern was also the pattern estimated to be most frequent
in each Triple when separately analyzed, and was most frequent in previous studies by Butler and
Pogrebna (2018) and by Birnbaum (2023a). It is also the response pattern consistent with preference
for ‘safer’ (lower range) gambles, despite the lower EV.

Table 4 shows that second most frequently repeated pattern was the transitive pattern, 121, which
is the response pattern implied if people chose the gamble with the higher expected value (EV). Other
frequently observed patterns include 112, consistent with selecting the gamble with the higher median
and 122, which could be compatible with a ‘sufficing’ interpretation (Birnbaum, 2020, 2023a). The least
frequent response patterns are the 2 intransitive patterns, 111 and 222. Although 8 of 220 participants
showed one of these intransitive patterns as their most frequent response pattern (3.6%), only 3 of these
8 showed one of these patterns more often than 5 times out of 16 possible (4 triples by 2 blocks by 2
replicates).

Table 5 shows the fit of TE models to the data in Table 4. The 64 entries in Table 4 have 63 df.
The TE4 model with all parameters free uses 8 estimates of probabilities of the preference patterns
(p111, p112, . . . , p222) and 6 error terms (e1, e2, e3, f1, f2, f3), which consume 13 df, leaving 50 df to test
the model. The TE2 model is a special case of TE4 in which ei = fi, so it has 3 additional df. Within
each version of the TE model, the transitive special cases assume p111 = p222 = 0, and thus leave an
additional 2 df. Assuming large n and assuming that responses across sessions by the same person were
independent, the G should follow a chi-squared distribution with 50–55 df for these 4 models.

The difference in fit between TE2 and TE4 has 3 df, and the difference between each TE model and
its transitive special case has 2 df. However, the G tests are likely inflated by small frequencies in many
cells and the fact that each participant served in 2 blocks and 4 choice triples; therefore, some caution
should be exercised when comparing these G values against the theoretical chi-squared distribution. If
we take these tests in Table 5 at face value, caveats notwithstanding, both tests of transitivity far exceed
the critical 𝜒2(2) = 9.2 for 𝛼 = 0.01, indicating that transitivity can be rejected, whereas the test of
TE4 against TE2 exceeds the critical 𝜒2(3) = 11.3 with 𝛼 = 0.01 in the transitive case, but it falls just
short of the critical value for the TE model with all parameters free. Examining the predictions of TE4
and TE2 against the empirical values in Table 4, the improvement of TE4 over TE2 is not impressive.
However, even if TE4 does not provide a substantially better fit to data compared to TE2, it is important
to evaluate TE4 for both transitive and intransitive cases, because of its theoretical potential to yield
a transitive solution that might be compatible with data. In this case, though, it did not change the
conclusions regarding transitivity.

Table 6 shows the best-fit parameters of 4 TE models fit to the data in Table 4. To save space in the
table, estimated probabilities are displayed as percentages; for example, 09 indicates 0.09. According
to either TE2 or TE4, the sum of probabilities of the 2 intransitive preference patterns is only 3%.
Although the incidence of intransitive behavior appears minimal, it is statistically significant; even if
we adopted the conservative procedure of dividing each G difference in Table 5 by 8 (4 triples by
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Table 6. Parameter estimates for true and error models fit to Table 4.

Model e1 e2 e3 f1 f2 f3 p111 p112 p121 p122 p211 p212 p221 p222

TE2 Trans 09 09 10 (09) (09) (10) (0) 20 22 15 06 34 04 (0)
TE2 Free 09 07 10 (09) (07) (10) 01 20 22 14 06 33 03 02
TE4 Trans 07 11 13 12 05 09 (0) 20 22 12 07 35 04 (0)
TE4 Free 06 09 12 12 06 09 01 19 22 12 07 34 04 02
Note: Values displayed as percentages, so 09 indicates 0.09. Parameters shown in parentheses are fixed or constrained.

2 blocks per participant), we can see that the G test would indicate ‘significant’ deviations from the
transitive models, since the critical value of 𝜒2(2) = 5.99 with 𝛼 = 0.05. A further analysis of this
statistical issue is presented for each block and each triple in the Appendix.

Even if it is statistically significant, the estimate is only 3% intransitive behavior. For comparison, the
data of Butler and Pogrebna (2018) had 18% violations, averaged over 11 triples used in that study (44%
violations in the 4 triples selected with the highest levels of violation in that study, which obviously
includes capitalization on chance). Birnbaum (2023a) found 14% violations for those same 4 selected
triples in a study with 30 sessions. Thus, the finding here of only 3% is substantially lower than observed
for the same triples in previous, similar studies.

The same analyses were conducted for each triple of choice problems separately. In all 4 triples, the
estimate of intransitive preferences under either TE2 or TE4 was 4% or less. Triple 4 showed the largest
evidence of intransitive preferences, with estimated 1% of 111 and 3% of 222 intransitive preference
patterns. The G(50) for the TE4 model was 54.01 with all parameters free, and it was 80.4, when it was
assumed that p111 = p222 = 0, yielding G(2) = 26.4, more than double the critical value required for
statistical significance (p < 0.01). The TE2 model fit nearly as well as TE4, G(53) = 55.3, which is
not significantly worse than the fit of TE4. The transitive special case of TE2 had G(55) = 82.62.

Additional details of the separate analyses for each triple are included in the Appendix and
Supplementary Material; overall, the results of separate analysis of the triples appear consistent with
the conclusions that the transitive 212 pattern was most frequent for all triples, that intransitive behavior
was probably ‘real’ but minimal, that the TE2 model fits almost as well as TE4. Consistent with
simulations by Birnbaum and Quan (2020), the choice of TE model for these real data did not appear
to affect conclusions regarding transitivity.

The data for the 40 unreliable participants were analyzed separately. Aggregating over triples, as in
Table 4, there were only 6 instances (out of 320 possible occasions) in which a participant repeated
an intransitive response pattern in a block. The TE4 and TE2 models estimated the probability of
intransitive response patterns to be 0.003 and 0.0, respectively, with 0.97 or more of the probability
concentrated in 3 transitive response patterns, 121, 122, and 212 in both solutions. The estimated error
rates ranged from 0.25 to 0.50 for TE4 and from 0.37 to 0.39 for TE2. Thus, although the error rates
were higher for these participants, there was no evidence of systematic violation of transitivity in this
group.

4. Discussion

The tests of transparent dominance corroborate 2 findings observed in Birnbaum (2023a) and reveal
a new result: first, violations of transparent dominance, while infrequent, are statistically significant
when analyzed for all participants; second, violations of dominance are mainly found among people
who systematically preferred the ‘safer’ gambles in other choice problems and are very rare for other
participants; third, the new tests show that violations are much less frequent when the ‘safe’ gamble is
dominant rather than when the ‘safe’ gamble is dominated by the ‘risky’ gamble.
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4.1. Why violate transparent dominance?

I suspect that these violations of transparent dominance may be the result of the experimental design
in which almost every trial paired a ‘safe’ gamble against a ‘riskier’ one with higher expected value.
Brunswik (1956) theorized that humans adapt their behavior to the environment; in the environment
of an experiment, stimulus designs will affect the behavior that the experiment is designed to explore.
Brunswik thought that between-subjects designs totally isolate the participant from the variation and
co-variation of the important variables. He found systematic factorial designs an improvement but
thought that these must induce zero correlations among factors, and so he favored hybrid design, in
which a factorial design is modified to remove unrepresentative combinations of variables. Ultimately,
he argued against systematic design in favor of representative design, in which stimuli and situations
are sampled from the environment to which generalization was desired.

Birnbaum (1975) reviewed several studies using systextual design, in which the context is system-
atically manipulated; these studies show that the direction of a main effect of a variable can even be
reversed by systematically changing the correlation between that variable and the stimulus to be judged.
Mellers et al. (1992a) showed that by systematically changing the selection of stimuli presented in a
study, one could change the rank order of judgments of a set of common stimuli (preference order),
consistent with the theory that the experimental context caused a change in the model or process by
which the information was combined.

Thus, it is not implausible that the Butler and Pogrebna (2018) design, in which every choice fit
the same recipe, may induce a decision strategy in some risk-averse participants to seek the low-
range option without contrasting outcomes between gambles, a strategy that would lead them to violate
dominance on trials in which the ‘safe’ gamble was dominated by the alternative.

Choosing gambles with lower range, without comparing consequences between gambles, would
perhaps be an easy way to find ‘safe’ gambles in the Butler and Pogrebna design, but can induce people
to violate dominance, if a choice problem is included in which the ‘safe’ gamble is dominated by the
‘risky’ gamble. This strategy for this experimental design would produce the 212 response pattern in
tests of transitivity.

How would a person detect and satisfy dominance in a choice problem such as in Figure 1? If one
compared the consequences on each branch (for each color of marble) of the gamble, one could detect
dominance by counting the number of branches that are equal or favor one gamble over the other. Then
choose the alternative with the greater number of winning branches. Ironically, such a strategy that can
detect and satisfy dominance could also lead to violations of transitivity. If one chooses the gamble
with the greater number of contrasts that favor one gamble over the other, one would violate transitivity
in the design testing transitivity here with the response pattern, 111. With equally likely branches, this
strategy is equivalent to the MPW model (aka, ‘majority rule’) that was used to design the studies of
Birnbaum and Diecidue (2015) and of Butler and Pogrebna (2018).

4.2. Few violations of transitivity

Although Birnbaum (2023a) and Butler and Pogrebna (2018) found evidence of 18% and 14%
systematic violations of transitivity, the present data contained only very small incidence of intransitive
behavior, about 3%, including about 1% of the MPW type and 2% of the opposite (‘regret’) type. These
estimates were similar whether the TE2 model (used in previous analyses) or the TE4 model was used
to provide these estimates while correcting for error.

Although the TE4 model fits the data only slightly better than TE2, the main reason to use this
analysis is to find out whether or not the conclusions regarding violations of transitivity might be
altered when 2 error rates are allowed for each choice problem instead of 1. In this case, the estimates
of intransitive behavior are virtually the same for both TE2 and TE4, so one would draw the same
conclusions about transitivity from either analysis.
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Because the rates of violation are lower in this study than in 2 previous studies with similar design
analyzed via TE models, it seems worthwhile to review some possible reasons that may be responsible
for the difference in results.

Differences between the methods of Birnbaum (2023a) and Butler and Pogrebna (2018) were
discussed in Birnbaum (2023a). Butler and Pogrebna (2018) used choices between independent
gambles, whereas Birnbaum (2023a) and this study used fully dependent gambles. If anything, use
of dependent gambles should enhance intransitive behavior, because it is easier to determine the MPW
with dependent than with independent gambles, where one would have to work out the probabilities of
the combinations of outcomes possible under independent plays of the 2 gambles. Similarly, it is easier
to conceive of regrets when the outcomes are clearly dependent on a common event.

The instructions used here and in Birnbaum (2023a) called attention to contrasts in value between
consequences for events, which was also intended to promote any tendencies to use MPW or a regret
strategy, both of which can lead to intransitive cycles. So, one would have reasoned before doing the
study that such instructions would increase tendencies to use strategies that can be intransitive. Post
hoc, one might speculate that instructions may have done something in the opposite direction, but it is
hard to construct a coherent theoretical argument.

In this study, participants with low self-consistency were separated from the main analysis. When
they are analyzed separately, the unreliable participants showed no evidence of intransitive behavior,
and when they are combined with the main group, the estimated incidence of intransitive behavior is
decreased by a trivial amount (still rounds to 3%), so no conclusions are altered by inclusion of the
unreliable participants (see the Supplementary Material).

The stimulus materials, instructions, and participant recruitment were the same here as used in
Birnbaum (2023a), so the lower incidence found here compared to that study is unlikely due to these
experimental features.

An important difference between this study and that of Birnbaum (2023a) is that Birnbaum (2023a)
had many blocks of trials, whereas this study had only 2. The intransitive behavior in Birnbaum (2023a)
emerged in a number of participants only after many sessions, so the shorter experiment here may not
have allowed as much intransitive behavior to develop as was found in that study. However, this study
is comparable in length to that of Butler and Pogrebna (2018), which found the highest rate of violation
of the 3 studies.

A second difference with Birnbaum (2023a) is in the experimental designs: the additional tests of
dominance included in this study (not present in Birnbaum, 2023a may have reduced the incidence of
intransitive choices; indeed, Choices D3 and D4 depart from the confound of EV and range used in
both previous studies that had higher reported incidence.

A third difference is that Birnbaum (2023a) used fewer participants: perhaps the incidences of
3% violations observed in a sample of 220 is closer to the population value than estimate of 14%
in Birnbaum (2023a) with only 22 participants. Whatever the reason for the smaller incidence of
intransitive behavior compared to two previous studies, it is worth keeping in mind that very few
studies using other designs have claimed to find more than modest incidences of violation of transparent
dominance or transitivity.

This study had small financial incentives. It is traditional to theorize that increasing or decreasing
financial incentives might increase or decrease either error rates or true violations of ‘rational’ principles
like transitivity or dominance. Because systematic intransitive behavior would allow a person to
become a ‘money pump’, it is often argued that a rational person should become more transitive when
larger prizes are available. In contrast, one can also argue that a person might find the strategy to select
the MPW to seem the ‘right thing’ to do when large prizes are involved (Butler and Blavatskyy, 2020;
Butler and Pogrebna, 2018).

Large prizes might induce people to be careful and thus reduce error rates, or they might induce
excitement, which might increase error rates. It could be argued that the effect of financial incentives
might be non-monotonic in increasing or decreasing error rates or violations of ‘rational’ principles.
As far as I am aware, no proper study has yet been done in which error rates have been appropriately
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separated from true violation rates to systematically examine the effects of financial incentives on both
true preferences and on error rates.

5. Concluding comments

In summary, we can draw the following ‘big picture’ view of the results: small incidences of violations
of transitivity and dominance can be detected and estimated using TE models. They may be real,
but perhaps strongly influenced by the context provided by the stimuli presented in the experiment.
Violations of transitivity or dominance observed in specially designed studies may be real, but
second-order effects, analogous to friction in physics labs. Systematic violations of basic equations in
science are often observed, and basic equations often fit better in a vacuum, in low gravity, with low
temperatures, or with other special conditions. Thus, these small incidence violations may be real but
not indicative of the principles by which people generally make decisions. In contrast, other paradoxes
of choice, such as the Allais paradoxes and violations of stochastic dominance have proven to occur
with large incidence, and to be robust to variation of methods and resistant to attempts to eliminate
them by changing features of the experiments (Birnbaum, 1999, 2004, 2005, 2008) or even by training
designed to help people satisfy first-order stochastic dominance (Quispe-Torreblanca et al., 2022). Such
phenomena seem to be ones that a theoretician must be able to account for in any viable descriptive
theory of behavior.

It might be comforting to some that violations of principles like dominance or transitivity are
relatively rare by college undergraduates (4%–18% violations of dominance and 3%–4% violations
of transitivity). But these violations, even if rare, will remain discomforting to theoreticians who would
hope to use the same model to describe all people. If one theorizes models in which a person computes
a utility for a gamble and compares utilities, violations might mean that at least some of the participants
in our studies are using models or strategies that are not compatible with such a process, so that a
complete description of behavior may have to concede that different people are using different models
in the same study or even that the same person may use different strategies or models in different
experimental contexts.

Appendix: A note on statistical significance

The TE models indicate that the amount of intransitive behavior, averaged over triples, blocks, and
participants, is about 3%. This is a very small figure, and it seems reasonable for a skeptic to ask: what
exactly in the data indicates that there is more intransitive behavior than ‘chance’, aside from the finding
that the statistical index of the transitive model is ‘significantly’ worse than the fit of the TE model that
allows intransitive preference patterns?

One way to address this question is to compute how often we expect to see intransitive response
patterns repeated and compare that expectation against the observed frequency. How often do we expect
to see someone show the 111 or 222 pattern on 2 replications of the same choice triple? In order to
repeat any response pattern in this study, the participant must use opposite buttons on randomly ordered
trials. The experimental counterbalancing insures that a repeated response pattern cannot be achieved
by mindlessly pushing the same button, which would produce opposite patterns between 2 replications.

A simple calculation illustrates how to calculate predictions under a null hypothesis. Suppose there
were only one true preference pattern, 212, for a particular triple ( p212 = 1); that is, Y = (10, 10, 10) �
X = (15, 15, 3), Y = (10, 10, 10) � Z = (27, 5, 5), and X = (15, 15, 3) � Z = (27, 5, 5). Suppose also
that the error terms are ei = fi = 0.10 for all i. It follows that the probability to show the 222 pattern is
as follows:

p(222, 222) = p212 (1 − e)2(e)2(1 − e)2 = (1) (.9)2(.1)2(.9)2 = 0.00656, (5)
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Table 7. Predicted probabilities of repeated violations of transi-
tivity and frequencies of obtained violations.

Model Pattern Observed

Triple Block TE2 TE4 111 222 Sum

1 1 0.0059 0.0059 0 5 5*
1 2 4 0 4*
2 1 0.0046 0.0046 2 2 4*
2 2 2 1 3
3 1 0.0062 0.0065 1 5 6*
3 2 2 2 4†
4 1 0.0060 0.0065 2 4 6*
4 2 2 7 9*
Note: Total n = 220 per Block.
*Indicates binomial p < 0.05.
†Triple 3 Rep 2 is significant for TE2 only.

where p(222, 222) is the probability to repeat the 222 pattern in both replications, given that 212 is the
only true preference pattern, p212 = 1. Similarly, the probability to repeat the 111 pattern is e2(1 − e)2

e2 = 0.00008. The probability of the union of both intransitive patterns is then 0.00664. In a single block
with 2 replications with 220 independent participants, we expect to see only 1.46 repeated patterns, on
average. The binomial probability that 5 or more people (out of 220) would have a repeated intransitive
pattern is 0.016. So, if we observed 5 or more, we could reject the null hypothesis with p < 0.05. Five
out of 220 is less than 3% of the sample. As will be shown, even when we fit the full TE models to the
data, the numbers will work out close to this example case.

When either TE2 or TE4 is fit separately to a Triple’s data with the assumption that p111 = p222 = 0,
we can use the parameter estimates to calculate p(111) + p(222), the predicted frequency of repeated
violations of transitivity. These can be compared to the actual number of violations by means of the
binomial distribution for each Triple and block.

Table 7 shows the probabilities calculated under the null hypothesis for p(111) + p(222) under the
TE2 and TE4 models. The observed number of replicated violations of 111 and 222 patterns is shown,
along with their sum. The sum has been compared to the binomial distribution, with n = 220. In every
triple and session, the observed number exceeds the expectation, and in all except 2 of 8 cases (Triple 2
Rep 2 and Triple 3 Rep 2), the probability to observe the observed number or greater is less than 0.05.
(In the case of Triple 3 Rep 2, 4 is significant according to TE2 but not according to TE4.)

These are very small incidences, but they are significant. There is an argument that could be made to
discount statistical significance: if the estimates of the error terms are too small, then the significance
level is also too small. Perhaps these error estimates could be underestimated because unreliable
participants were excluded.

I think that this analysis illustrates issues inherent in research that presents only a statistical test of
significance without estimating incidence or magnitude of an effect. An effect can be small and also
statistically significant.

In my opinion, a 3% estimate of violations of transitivity may be statistically ‘significant’ but not
represent an effect that a general theory of decision making should be built upon.

Supplementary material. An Excel program to fit TE4 to a test of transitivity is included in the Supplementary Material. The
Supplementary Material for this article can be found at https://doi.org/10.1017/jdm.2023.43.

Data availability statement. The data are available in the Supplementary Material to this article, in the same Excel file that
contains a README sheet describing the data, supplementary analyses, and worksheets containing programs implementing the
Solver to fit TE models.
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