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Abstract

We prove a generalised super-adiabatic theorem for extended fermionic systems assuming a spectral gap only in
the bulk. More precisely, we assume that the infinite system has a unique ground state and that the corresponding
Gelfand—Naimark—Segal Hamiltonian has a spectral gap above its eigenvalue zero. Moreover, we show that a similar
adiabatic theorem also holds in the bulk of finite systems up to errors that vanish faster than any inverse power of
the system size, although the corresponding finite-volume Hamiltonians need not have a spectral gap.
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1. Introduction

We prove an adiabatic theorem for the automorphism group acting on the observable algebra of quasi-
local operators that describes the dynamics of an interacting fermionic quantum system on the lattice
Z¢ with short range interactions. For this we assume that the generator of the automorphism group,
the Liouvillian, has a unique ground state and that the Gelfand—Naimark—Segal (GNS) Hamiltonian
constructed from it has a spectral gap above zero.

Such systems are usually obtained by taking the thermodynamic limit A " Z¢ for a sequence of
systems defined on finite domains A ¢ Z¢. In [15] we prove an analogous adiabatic theorem assuming
a uniform gap for each finite system in such a sequence. A spectral gap above the ground state — that is,
a minimal energy for excitations — is characteristic for insulating materials. However, on finite domains
it is often the case that one-body states supported close to the boundary, so-called edge states, allow for
excitations with arbitrarily small energy and thus the corresponding finite-volume Hamiltonians have
no spectral gap. While in many models edge states can be suppressed by choosing appropriate boundary
conditions, our result shows that this is not a necessary condition for the adiabatic theorem to hold in
the thermodynamic limit. Moreover, we obtain an adiabatic theorem even for finite systems with edge
states by ‘restricting’ the infinite-volume result to the bulk of the finite system.

While a precise statement of our result requires considerable preparation, let us at least indicate a
few more details here. Let {H(’)\(t) Yaczd, 1 be a time-dependent family of Hamiltonians with local
interactions describing the system on finite domains A. It is known that under quite general conditions
(see, e.g., [7, 24]) the Heisenberg time evolution generated by H(/)\(t) at fixed r € I C R induces in the
thermodynamic limit A Z¢ a one-parameter group s > e!SEH ) of automorphisms on the observable
algebra A of quasi-local operators for the infinite system. Here L, (1) [[ -] := limy »za [H(’)\ (1), -] denotes
the Liouvillian, a densely defined derivation on .A. We assume that for each ¢ € I the Liouvillian
L, () has a unique ground state po(f). The most important innovation of our result is that we only
assume that the ‘infinite-volume Hamiltonian’ associated with po(¢) via the GNS construction has a
spectral gap above its ground state, whereas in all previous work on adiabatic theorems for extended
interacting systems' [3, 20, 28, 15] the gap assumption was imposed on the finite-volume Hamiltonians
Hi (1).

Let IIZ 1, D€ the cocycle of automorphisms on A generated by the time-dependent Liouvillian %E Ho()>
that is, the physical time evolution of the infinite system. The adiabatic parameter > O controls the
separation of two timescales: the internal timescale defined by the spectral gap and the timescale on
which the Hamiltonian varies; for example, due to time-dependent external fields. The asymptotic
regime i < 1 is called the adiabatic limit. The following infinite-volume version of the standard super-
adiabatic theorem is a special case of our result: There exist super-adiabatic states pg (1) on A that are
close to the instantaneous ground states po(¢) in the sense that

log (1)(A) = po(1)(A)| = O(y) forall AeDc A,

such that the evolution 2’ intertwines the super-adiabatic states to all orders in the adiabatic parameter
n; thatis, forall A € D C A,

lpg (10) U, [A]D) = pg (D (A)] = O(™). (1L.1)

The scope of the adiabatic theorem expands considerably when additive perturbations V() of
H(/)\(t) are also taken into account; for example, when justifying linear response theory with the help of
the adiabatic theorem [16]. Hence, our general results concern the dynamics generated by

HM4 (1) := HY (1) + eV (1)

INote that the result of [22] is not an adiabatic theorem in the usual sense.
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in the thermodynamic limit. Here V(¢) can be a sum-of-local-terms (SLT) operator; that is, a local
Hamiltonian like H, 6\ (1), or aLipschitz potential or a sum of both. Note that for the perturbed Hamiltonian
H"#(t) we do not even assume a spectral gap in the bulk, since many interesting perturbations, like a
linear potential across the sample, necessarily close the spectral gap of the unperturbed system when A
is sufficiently large. In this situation the ground states pg(¢) turn into resonances I1%(¢) with lifetime of
order O(¢™*) for the dynamics s +— e#¢®; that is for all n, m € N it holds that

|H5(t)(ei~YLH9<t)[[A]]) — H“;(;)(A)‘ =0 (8"(1 +8m|S|d+l)) _

These resonance states we call nonequilibrium almost-stationary states (NEASS) in this context. Our
adiabatic theorem, Theorem 3.4, then establishes the existence of super-adiabatic NEASSs IT¢-7 () on A
close to IT1¢(#) such that the adiabatic evolution llf, ;(:7 generated by %E H#(-) approximately intertwines
the super-adiabatic NEASSs in the following sense: for any n > d and forall A € D C A,

[T 1) QST TAD) = T2 (1) (4)] = O (n"‘d * ;—d) 12

uniformly for 7 in compact sets. While for € = 0 this statement reduces to the standard adiabatic theorem
(1.1), for 0 < & < 1 the right-hand side of (1.2) is small if only if also 7 is small, but not too small
compared to ¢; that is, /¢ <« 5 < 1 for some n € N. Physically, this simply means that the adiabatic
approximation breaks down when the adiabatic switching occurs at times that exceed the lifetime of
the NEASS, an effect that has already been observed in adiabatic theory for resonances before; see, for
example, [1, 11].

Our results build on a number of recent developments in adiabatic theory for extended lattice systems.
Bachmann et al. [3] showed how locality in the form of the Lieb—Robinson bounds [18] and the SLT-
inverse of the Liouvillian [14, 5] can be used to obtain uniform adiabatic approximations for extended
lattice systems with spectral gaps in finite volumes. Motivated by space-adiabatic perturbation theory
[27], in [28] one of us generalised the results of [3, 20] to situations where the spectral gap is closed;
for example, due to perturbations by external fields; that is, to NEASSs. In [15] we lifted the results
of [28] to states for the infinite system by taking a thermodynamic limit, using recent advances on the
thermodynamic limit of quantum lattice systems from [24]. Finally, the construction of the spectral flow
in the infinite volume with a gap only in the bulk by Moon and Ogata [22] provided the motivation and
a technical basis for the adiabatic theorem proved in this article.

As mentioned above, the adiabatic theorem has profound implications for the validity of linear
response theory in such systems and thus also for transport in topological insulators. We will not
discuss these questions here but instead refer to the recent reviews [16, 2] and to [19]. Note, however,
that all previous results listed above assume a uniform spectral gap of the Hamiltonians describing the
unperturbed finite size systems and are thus not applicable to topological insulators with boundaries.
Instead, periodic boundary conditions must be assumed. While one expects that in the absence of phase
transitions the effect of the boundaries is negligible, this must be proved, and we achieve this in this
article as far as the adiabatic approximation is concerned.

From a technical point of view, the mentioned adiabatic theorems are all based on the same pertur-
bative scheme, called adiabatic perturbation theory. The specific challenge for extended systems in the
thermodynamic limit is to control that under all of the algebraic operations used, the corresponding
operators remain in spaces of operators with good locality properties and with a good thermodynamic
limit. The critical operation to make adiabatic perturbation theory work as intended in (1.2) is the inver-
sion of the Liouvillian, the step at which the gap condition is needed. Good locality properties means,
very roughly speaking, that each member A" of an operator family {A"}, 7« can be written as a sum
AN = ¥, A ®; of uniformly bounded and uniformly local terms ®; and only the number of terms grows
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with the volume |A| of A. We call such operators SLT operators.? The main technical challenge is
thus the definition of suitable normed spaces of SLT operators, within which the adiabatic perturbation
scheme can be iterated an arbitrary number of times and, in particular, within which one can invert
the Liouvillian L, ;) under the assumption of a spectral gap in the bulk. Here we rely, up to small
modifications, on spaces already used in [3]. However, in order to control the thermodynamic limit in
a quantitative way that allows finally also statements about the bulk behaviour of finite systems with
boundary, we define a property called ‘having a rapid thermodynamic limit’ and need to show that this
property is preserved under the relevant algebraic operations as well.

More explicitly, this property improves the convergence and quasi-locality estimates of the dynamics,
the Liouvillian and the SLT-inverse of the Liouvillian from standard norm estimates to norms measuring
the quality of localisation (later called ‘f-norms’), which were introduced in [22]. Since the spectral
gap only appears in the bulk, the Liouvillian can finally only be inverted in the thermodynamic limit
(Proposition 3.3) and thus the perturbative scheme can only yield the adiabatic theorem after taking
that limit. This requires the improved quantitative control of the dynamics, the Liouvillian and the
SLT-inverse of the Liouvillian in the thermodynamic limit, which is guaranteed by assuming the above
property (Proposition 3.2). Besides this concept, our proof of the adiabatic theorem in the bulk heavily
relies on the idea of investigating the dynamics u;f ;(:7 A generated by H(’)\ and V¥ for different system
sizes A’ C A and taking A ' Z¢ and A’ " Z¢ separately.

We end the Introduction with a short plan of the article. In Section 2 we explain the mathematical
setup. In Section 3 we state the generalised adiabatic theorem in the infinite volume as in (1.2). We also
show that our general assumptions are indeed fulfilled for certain models of topological insulators. In
Section 4 we state the generalised adiabatic theorem for finite systems with a gap only in the bulk and
for observables A supported sufficiently far from the boundary. The latter is the result that applies to
large but finite systems with edge states that close the spectral gap. Section 5 contains the proofs of our
main results. Various technical details are collected in three appendices.

2. The mathematical framework

In this section, we briefly recall the mathematical framework relevant for formulating and proving our
results. More details and explanations are provided in [15].

2.1. The lattice and algebras of local observables

We consider fermions with 7 spin or other internal degrees of freedom on the lattice Z¢. Let Py(Z9) :=
{X c 7% : |X| < oo} denote the set of finite subsets of Z¢, where |X| is the number of elements in X,
and let

Ai={—k,...,+k}?

be the centred box of size 2k with metric d** (+, ). This metric may differ from the standard £ I_distance
d(-,-) on Z4 restricted to Ay if one considers discrete tube or torus geometries but satisfies the bulk-
compatibility condition

Vk e NVx,y € Ag : d™ (x,y) < d(x,y) and d™(x,y) = d(x, y) whenever d(x, y) < k.

For each X € Py(Z?), let Fx be the fermionic Fock space build up from the one-body space £2(X,C").
The C*-algebra of bounded operators Ay := L(Fx) is generated by the identity element 1 4, and the
creation and annihilation operators a} ;,ay,; for x € X and 1 < i < r, which satisfy the canonical

anti-commutation relations. Whenever X C X’, Ay is naturally embedded as a sub-algebra of Ax-.

20perators of this kind are often called ‘local Hamiltonians’, but this could lead to confusion, since by far not all operators
with this property, which occur in the following, play the physical role of a Hamiltonian.
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The algebra of local observables is defined as the inductive limit
Aloc = U Ax, and its closure A= Aloc”.”

X GP()(Z‘])

with respect to the operator norm || - || is a C*-algebra, called the quasi-local algebra. The even elements
A* c A form a C*-subalgebra.
Also, note that for any X € Py(Z?) the set of elements Ag commuting with the number operator

,
—— * —— *
Nx = Z a,-ay = Z Zax,iax,i

xeX xeX i=1

forms a subalgebra of the even subalgebra; that is, A)I\(’ c Ay c Ax.
For any bounded, nonincreasing function f : [0, c0) — (0, c0) with lim,_,., f(¢) = 0 one defines the
set D} of all A € A" such that
1-E A
1(1 =B, ) [ ]]||)<OO o
f(k)

See Appendix C of [15] for a definition and summary of the relevant properties of the conditional
expectation E,, . As shown in Lemma B.1 of [22], D is a *-algebra and (D¢, || - || ) is a Banach space.
Although (Dy, || - ||r) is not a normed algebra, it follows from the proof of Lemma B.1 in [22] that
multiplication Dy x Dy — Dy, (A, B) = AB, is continuous. Note that in (2.1) and in the following we
write the argument of a linear map A O D — A in double brackets [[-]. This notation helps to structure
complicated compositions of maps with different types of arguments.

As only even observables will be relevant to our considerations, we will drop the superscript ‘** from
now on and redefine A := A*.

IAllF = llAll +Sup(
keN

2.2. Interactions and associated operator families

An interaction on a domain Ay is a map
DM {X C A} - AY L X o @M (X) € AY

with values in the self-adjoint operators. Note that the maps ®** can be extended to maps on the whole
Po(Z?) or restricted to a smaller Ay, trivially.

In order to describe fermionic systems on the lattice Z¢ in the thermodynamic limit, one considers
sequences @ = (dDAk ) wen Of interactions on domains Ay and calls the whole sequence an interaction.
An infinite-volume interaction is a map

¥ Py(Z9) > AN X o P(X) € AY,

loc?

again with values in the self-adjoint operators. Such an infinite-volume interaction defines a general
interaction ¥ = (WA%), _, by restriction; that is, by setting W% := W|p;(a,).
With any interaction ® one associates a sequence A = (A ); oy of self-adjoint operators

AN = AN (@) = Y DM (X) € AN
X CAx

A so-called F-function for the lattice Z¢ can be chosen as F(r) = ﬁ,
has a finite convolution constant. These properties remain valid for F, = { - Fy if one multiplies by a
bounded, nonincreasing and logarithmically superadditive weight function ¢ : [0, ) — (0, ). The

which is integrable and
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space of such weight functions is denoted by W, while we write S for the space of weight functions
decaying faster than any polynomial. An example for a function € S is the exponential £ (r) = e™*"
for some a > 0. The finite convolution constant associated with F is denoted by

Fe(d™(x,2)) Fg(d™(z,y))
Fr(dM(x,y))

Cy :=sup sup

keN x,yeAx €Mk

For any ¢ € W and n € Ny, a norm on the vector space of interactions is

@™ (X))l

“(D“(,n ‘=sup sup Z dAk_diam(X)nm.

1
kel x,y €2 x epy(z):
x,yeX

2.2)

In order to quantify the difference of interactions ‘in the bulk’, we also introduce for any interaction ®*
on the domain A; and any Ap; C A; the quantity

. [ (X) |

1™ Iz ay = sup diam (X)" —————,

cmlin x,yeAMX%: Fe(d(x,y))
x,yeX

where d and diam now refer to the £!-distance on Z¢. Note that these norms depend on the sequence of
metrics dQ on the cubes Ay ; that is, on the boundary conditions. While this will in general not be made
explicit in the notation, we add a superscript ° to the norm and to the normed spaces defined below if we
want to emphasise the use of open boundary conditions; that is, d* = d. The compatibility condition
for the metrics d* implies that ||¥||; ., < ||‘P||2n

Let B, , be the Banach space of interactions with finite ||- ||/ ,-norm. Clearly, By , € B, ,,» whenever
n > m. Not so obviously, for any pair £, ¢ € Sit holds that either B, ,, C B¢ , or B¢, C By, (or both)
for all n € Np; see Lemma A.1 in [20]. If B, ,, C B¢, for all n € Ny, then we say that £ dominates
and write { < £.

An operator family A is called an SLT operator family if ®4 € Bj o. Moreover, define

Brow= () Bem: Bsni=| B Bse:=[)Bsn

neNy eS neNy

as spaces of interactions used in the sequel. The corresponding spaces of operator families are denoted
as Ls n, L 00, Ls,n and L5 . Lemma A.1 in [20] shows that the spaces Bs , and therefore also Bs
are indeed vector spaces.

Let I C R be an open interval. We say that amap A : I — L, is smooth and bounded whenever it
is term-wise and point-wise smooth in 7 € I and if for all i € N, there exists /) € S such that /) = ¢
and sup,; I|%(I) noll £ n < oo. The corresponding spaces of smooth and bounded time-dependent
interactions and operator families are denoted by By s , and L; ; , and are equipped with the norm
1Pll7,z,n = sup,e; 1Pz ,n-

We say that A : | — L, is smooth and bounded if for any n € Ny there is a {, € S such that
A:I— L, ,is smooth and bounded and we write £; s o for the corresponding space (similarly for
E]’{‘oo and ﬁ]»g’n).
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2.3. Lipschitz potentials

For the perturbation we will allow external potentials v = (vAk i Ak > R) e that satisfy the Lipschitz
condition

Ak Ak
C, :=sup sup V2 () — v (y)|<oo

2.3)
keN x,yeAy dMe(x,y)

and call them Lipschitz potentials. With a Lipschitz potential v we associate the corresponding operator
sequence V,, = (VM) e defined by

AN Z vA(x)at -ay.

xeA

The space of Lipschitz potentials is denoted by V. As above, we add a superscript ° to the constant and
to the space of Lipschitz potentials if we want to emphasise the use of open boundary conditions; that
is, di = d. The compatibility condition for the metrics d** implies that C,, > Cj. Note that a Lipschitz
function v, : Z¢ — R defines, again by restriction, a Lipschitz potential in V° and we write vo, € V°
with a slight abuse of notation. We call v, an infinite-volume Lipschitz potential.

We say that the map v : I — V is smooth and bounded whenever it is term-wise and point-wise

smooth in ¢ € I and satisfies sup,¢; C i o <® for all i € Ny. The space of smooth and bounded
art

Lipschitz potentials on the interval I is denoted by Vr.
A crucial property of Lipschitz potentials is that their commutator with an SLT operator family is
again an SLT operator family (see Lemma 2.1 in [28]).

Lemma 2.1. Letv € V; and A € Ax. Then we have

sup sup [|[V M (s), A]|| < 1C,r diam(X)9* || A]|.
keN sel

For A € Ly ; n+a+1 it holds that

[@1avoill 1,20 < 3Cor 1PAll 1.2 m+as1

and hence, in particular, [A,V,] € Ly s n.

3. The adiabatic theorem for infinite systems with a gap in the bulk

The subject of our investigations is time-dependent Hamiltonians of the form
H?(r) = Hy(t) + eV (2)

for t € I c R. The unperturbed Hamiltonian Hy(7), defined in terms of its short-range infinite-volume
interaction W, is assumed to have a spectral gap in the bulk uniformly in 7, a notion to be made precise
in the following. This gap may be closed by the perturbation V(t) = V,_(t) + H;(t) consisting of a
Lipschitz potential and an additional short-range Hamiltonian, both defined on all of Z¢ through an
infinite-volume Lipschitz potential v, (respectively an infinite-volume interaction Wy, ).

Before we can formulate the precise assumptions and the statement of the theorem of this section,
we first need to discuss the definition and the properties of the infinite-volume dynamics generated
by H®(t). With the infinite-volume interactions one naturally associates sequences of finite-volume
systems, ¥g, = (Tﬁlﬁ)kew Yu, = (‘P;_\,T)keN, Voo = (Voola,)ken. The corresponding finite-volume
Hamiltonians H "k (¢) are self-adjoint and generate unique unitary evolution families II;\’ X (in the
Heisenberg picture) on the finite-volume algebras Aj, . It is shown, for example, in [7, 9, 24] that II;\Q

converges strongly on Ajq to a unique co-cycle of automorphisms U, ; on A whenever Hy, Hy € L 2.0
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However, for our proofs we need norm convergence of lI,A’ 5 to U, ¢ with respect to || - ||y -norms for
suitable decay functions f € S. With the next section in mind, where we consider finite systems with
a gap in the bulk, we now introduce a new property for general interactions (CDAk) cen Called rapid
thermodynamic limit. This property guarantees norm convergence of the unitary evolution families
generated by the corresponding operators. It extends the standard notion of having a thermodynamic
limit as used, for example, in Definition 2.1 in [15], by a quantitative control on the rate of convergence.
Definition 3.1 might seem unnecessarily complicated at first sight, but it balances two requirements:
On the one hand, the condition is strong enough, such that for interactions with a rapid thermodynamic
limit one can show that the induced finite-volume dynamics, derivations and the SLT inverse of the
Liouvillian converge to their infinite-volume limits in the norm of bounded operators between normed
spaces D, Dy C A of quasi-local observables with appropriate fi, fo € S (cf. Proposition 3.2).
Moreover, one obtains sufficient control of the rate of convergence of these induced operations within
the bulk (cf. Appendix B) in order to conclude an adiabatic theorem in the bulk of a finite-volume system
as formulated in Theorem 4.1. On the other hand, the condition of having a rapid thermodynamic limit
is sufficiently weak, so that it is preserved under all operations used in the perturbative construction
of super-adiabatic states (cf. Appendix C). Finally, it is satisfied by all physically meaningful models
known to us and, most important for the present section, it is satisfied by interactions arising from
restricting an infinite-volume interaction.

Definition 3.1 (Rapid thermodynamic limit of interactions and potentials).

a) A time-dependent interaction ® € B; s, is said to have a rapid thermodynamic limit with exponent
P <, D a7 P
v € (0, 1) if there exists an infinite-volume interaction ¥ € B; ¢.n Such that

VieNy, 3,C>0 VM eN Vk > M+AM” : 3.1)
d . .
sup |2 (‘P—@Ak)(t) Comny < CLOMY) = 8 (M),
tel )

We write ® "5 W in this case. Note that { € Simplies ¢, € S.

A time-dependent interaction ® € B; s, is said to have a rapid thermodynamic limit with
exponent y € (0, 1) if there exists £, € S such that ® € By ;, , has a rapid thermodynamic
limit with exponent y € (0, 1); a time-dependent interaction ® € B s is said to have a rapid
thermodynamic limit with exponent y € (0, 1) if for any n € N there exists ¢, € S such that
® € By ;,.» has a rapid thermodynamic limit with exponent y € (0, 1) (similarly for B; s « and
BI,S,n)'

A family of operators is said to have a rapid thermodynamic limit if and only if the corresponding
interaction does.

(b) A Lipschitz potential v € V; is said to have a rapid thermodynamic limit with exponent y € (0, 1)
if it is eventually independent of k; that is, if there exists an infinite-volume Lipschitz potential
Voo € V] such that

FA>0 VM eN Vk > M+AMY,t €1: voo(t,)|a,, = v (1, )|ay, -

. r.t.d. . .
We write v — v in this case.

Trivially, an infinite-volume interaction ¥ € B;’ £ has a rapid thermodynamic limit with any expo-
nent y € (0, 1). Moreover, an interaction (respectively a Lipschitz potential) having a rapid thermody-
namic limit with exponent y € (0, 1) clearly has a thermodynamic limit in the sense of Definition 2.1
from [15] (see also Definition 3.7 from [24]) and thus the property of having a rapid thermodynamic
limit for the interaction (respectively potential) guarantees also the existence of a thermodynamic limit
for the associated evolution families and derivations as in Proposition 2.2 from [15] (see also Proposition
B.1 and Proposition B.6).
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Definition 3.1 also applies to time-independent interactions and potentials trivially and the inter-
actions in By ;s , and that the Lipschitz potentials in V; that have a rapid thermodynamic limit with
exponent y € (0, 1) form sub-vector spaces. We provide an equivalent characterisation of interactions
having a rapid thermodynamic limit in terms of a Cauchy condition in Lemma C.1.

The improved quasi-locality estimates as required for the proof of the adiabatic theorem in the infinite
volume, Theorem 3.4, are summarised in the following proposition. More detailed statements, which
make explicit the rate of convergence and also apply to the SLT operator families that appear in the
perturbative construction of the NEASS, are given in Appendix B. They are, however, only required for
the proof of the adiabatic theorem in finite volume (Theorem 4.1).

Proposition 3.2 (Rapid thermodynamic limit and quasi-locality estimates). Let Hy € L exp(-a -),0 and
v € V; both have a rapid thermodynamic limit with exponent v € (0,1), set H = Hy +V,, and let
W, s denote the bulk dynamics generated by the derivation (the Liouvillian) Ly () : D(Lu@)) — A
associated with H(t) at t € 1. Moreover, let Ty, be the SLT-inverse of the Liouvillian Ly, (see
Appendix A). The finite-volume versions for the cubes Ay are indicated by the superscript Ay.

Then the dynamics, the Liouvillian and the SLT-inverse of the Liouvillian preserve quasi-locality and
the finite-volume versions converge rapidly to their bulk versions in the following sense: For suitable
functions fi, f» € S (which may be different in every case below) it holds that

1. W, s : Dy — Dy, is a bounded operator and II o koo, U, s in the corresponding operator norm,
both uniformly for s, t in compacts.

k—o0

2. Dy € D(Luw), Law : Djy — Dy is a bounded operator and L 7 Ly in the

corresponding operator norm, both uniformly f0r tel

H (1)

3. Iuy) : Dfy — Dy is a bounded operator and T Lo, Ly (r) in the corresponding operator

H o (1)

norm, both uniformly fort € I.

The gap assumption for Hy in the bulk can be formulated via the GNS construction. Let W, € BZ,O
be an infinite-volume interaction and let L, denote the induced derivation on .A. A state w on A
is called a Lp,-ground state, iff w(A*Lp,(A)) > 0 for all A € D(Lp,). Let w be a Ly,-ground
state and (H,, 7, Q) be the corresponding GNS triple (#H,, a Hilbert space, 7., : A — B(H,) a
representation and Q,, € H,, a cyclic vector). Then there exists a unique densely defined, self-adjoint
positive operator Hy ., > 0 on H,, satisfying

T, (e FH[[A]) = efowr  (A)e oo and e THO0Q  =Q, (3.2)

forall A € Aandt € R. We call this H_,, the bulk Hamiltonian associated with Wg, and w. See [7] for
the general theory.

We can now formulate the assumptions of the main theorem. Recall that / € R denotes an open time
interval.

Assumptions on the interactions.

(1) Let Yh,, Y, € B exp -, be time-dependent infinite-volume interactions and vo, € V] be a
time-dependent 1nﬁn1te volume Lipschitz potential.

(12) Assume that the map I — BZ . .. 1+ Why (), is continuously differentiable.”

Moreover, we assume that Wy, has a unique gapped ground state in the following sense.
Assumptions on the ground state of ¥y, .
(G1) Uniqueness. For each ¢ € I, there exists a unique Lp,(;)-ground state po(z).

(G2) Gap. There exists g > 0 such that o (Ho ,, 1) (¢)) \ {0} C [2g,00) forall ¢ € .

3Note that this does not follow from ¥y, € B T exp(—a )00
term-wise and point-wise time derivatives (cf. Subsection 2.2).

as the spaces of smooth and bounded interactions are defined via
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(G3) Regularity. Forany f € Sand A € Dy, t — po(t)(A) is differentiable and there exists a constant
Cy such that for all A € Dy,

sup [po(1)(A)] < Cr || Ally .

tel

The assumptions (I1) and (I2) on the interactions are quite explicit and easily checked for concrete
models. Moreover, they are very general and hold for standard tight-binding models with short-range
interactions. The assumptions (G1)-(G3) on the ground state of Wy, are much harder to verify in
concrete models. Assuming uniqueness — that is, (G1) — the gap assumption (G2) holds, in particular,
if the finite-volume Hamiltonians have a uniform gap: that the gap persists in the thermodynamic limit
was shown, for example, in Proposition 5.4 in [4]. And the smoothness of expectation values of (almost)
exponentially localised observables as under item (G3) is a consequence of a uniform gap in finite
volumes (see Remark 4.15 in [22] and Lemma 6.0.1 in [21]). The uniqueness of the ground state as
required under (G1) has been shown, to our present knowledge, only in very specific quantum spin
systems. We will discuss the validity of our assumptions in more detail below.

The key role of the spectral gap condition is that it allows constructing an SLT-inverse of the
Liouvillian Ly, ;). Assuming a gap only in the bulk, as we do, means that the action of the Liouvillian
can only be inverted in the bulk. The following proposition shows that this is indeed a meaningful
concept. Its proof is given in Appendix A.

Proposition 3.3 (Inverting the Liouvillian in the bulk). Let ¥g, € BZXP(_a_) o be an infinite-volume

interaction and po a Ly,-ground state that satisfies the gap assumption (G2). Then forall A € A with
Zh,(A) € D(Ly,) and all B € A, we have

po([Lr, © I, [A] —iA, B]) = 0.

We now state our main theorem. Its proofis given in Section 5 and based on the statements summarised
in Proposition 3.2 and Proposition 3.3.

Theorem 3.4 (Adiabatic theorem for infinite systems with a gap in the bulk). Let Yy, Y, and v
satisfy (11), (12), (G1), (G2) and (G3). Denote by llf ;(:7 the Heisenberg time evolution on A generated

by #THS with
‘I"Hs = \PHO +8(VvoO + TH])

and adiabatic parameter n € (0,1] (¢f. Corollary B.2). Then for any €,n € (0,1] and t € I there exists
a near-identity automorphism B (t) = e'€<s51@) with Wge.n € B} s.co Such that the super-adiabatic
NEASS defined by

T7(1) 1= po(1) 0 B (1)
has the following properties:

1. II®" almost intertwines the time evolution.: For any n € N, there exists a constant C,, such that
forany t € I and for all finite X ¢ Z¢ and A € Ax C A,

[T (1) (U AT =TT (1) (A)]

8n+l + r]n+l

< Gy 77d+l

(11 = rol*") nANIXP. (3.3)

For any f € S the same statement (with a different constant C,,) holds also for all A € Dy after
replacing | All|X1? by [|All .
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2. T1%°7 js local in time: 8°-7(t) depends only on Wy = and its time derivatives at time t.

3. I1®%'7 is stationary whenever the Hamiltonian is stationary: if for some t € I all time derivatives of
Wy e vanish at time t, then T15 (1) = T150(¢).

4. T1%" equals the ground state po of Ly, whenever the perturbation vanishes and the Hamiltonian
is stationary: if for some t € I all time derivatives of Wy = vanish at time t and ¥y, () = 0 and
Voo (1) = 0, then TI® (1) = TIZ0(1) = po(t).

Let us discuss a class of Hamiltonians that are used to model Chern or topological insulators and
for which our assumptions can be shown or are expected to hold. Consider the unperturbed (time-
independent) Hamiltonian

H(/)\"’ = Z a, T(x—y)ay, + Z ayp(x)ay + Z afcaxW(dAk(x,y))a;ay — uUNp,. (34

X, yEAk xeA X, yeAr

Assume that the kinetic term T : Z¢ — L£(C”) is an exponentially decaying function with 7'(-x) =
T(x)*, the potential term ¢ : Z¢ — L(C”) is a bounded function taking values in the self-adjoint
matrices and the two-body interaction W : [0, 00) — L(C") is exponentially decaying and also takes
values in the self-adjoint matrices. Note that x — y in the kinetic term refers to the difference modulo
Ay if Ay is supposed to have a torus geometry.

It is well known that noninteracting Hamiltonians Hy — that is, with W = 0 — of the type (3.4) on
a torus (periodic boundary condition) have a spectral gap whenever the chemical potential y lies in
a gap of the spectrum of the corresponding one-body operator on the infinite domain. It was recently
shown [13, 10] that the spectral gap remains open when perturbing by sufficiently small short-range
interactions W # 0. On the other hand, the Hamiltonian Hy on a cube with open boundary condition in
general, no longer has a spectral gap because of the appearance of edge states.

Note that for either boundary condition the corresponding interactions have a rapid thermodynamic
limit and converge to the same infinite-volume interaction Wg, defined by T, ¢ and W on all of z4.
Thus, in the thermodynamic limit the different boundary conditions lead to the same infinite-volume
dynamics on the quasi-local algebra .A. More precisely, by application of, for example, Proposition 2.2
from [15], both sequences of dynamics are strongly convergent; that is,

A pviVA
o CHvan [ A] L2 rEmA] 22 e 4]

for any observable A € Ajqc.

The spectral gap for the finite-volume ground states (which we have for the torus geometry) implies
a spectral gap also for the GNS Hamiltonian associated to any limiting £y, -ground state, as it cannot
close abruptly in the thermodynamic limit (see Proposition 5.4 in [4]). Therefore, the Hamiltonian (3.4)
with open boundary conditions has a rapid thermodynamic limit and a gap only in the bulk. While
uniqueness of the ground state is expected to hold for such models, to our knowledge it has been shown
only for certain types of spin systems (cf. [29, 12, 25, 26, 17]).

A typical perturbation that is physically relevant is the adiabatic switching of a small constant electric
field. Theorem 4.1 then shows that the response in the bulk is local and independent of the boundary
condition. For more details on the implications for linear response, we refer to [16].

4. The adiabatic theorem for finite domains

Let®p, ®g, € Br exp(-a ), De interactions and v € Vy a Lipschitz potential, all with a rapid thermody-

rtd. rtd. rtd.
namic limit; that is, @y, — Yg,, ®u, — ¥u, and v — v. For the infinite-volume interaction Wy,
we require again existence of a unique gapped ground state as made precise in assumptions (G1)—(G3).
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However, in this section we prove an adiabatic theorem for the finite-volume dynamics of states p(/)\ k(1)
that are close to the infinite-volume ground state pg(t) in the bulk. More precisely, we require

(S) The sequence (p(/)\k (t))k oy Of states on Au, converges rapidly to po(#) in the bulk: there exist
C € R,m e Nand & € S such that for any finite X C 74, A e Ax and A D X,

po(1)(A) = p* (1) (A)] < CIIAIl diam(X)™ h(dist(X.Z4 \ Ag)).

sup
rel

While the sequence po(#)].4,, obtained by just restricting the infinite-volume ground state trivially
satisfies conditions (S), the adiabatic theorem below holds for super-adiabatic NEASS constructed from
any sequence satisfying (S). Most interesting for application would be a sequence of ground states
p(/)\ k() of the finite-volume Hamiltonians H(/)\ k(t). While (S) is expected to hold for any sequence of
finite-volume ground states for the models discussed in the previous section, the only result we are aware
of indeed proving such a statement is again for weakly interacting spin systems [29].

The following theorem asserts that by assuming a spectral gap in the bulk for the infinite system one
obtains similar adiabatic bounds also for states of finite systems (without a spectral gap!) that are close
to the infinite-volume ground state in the bulk. As adiabaticity need not hold at the boundaries of the
finite systems, nonadiabatic effects arising at the boundary may propagate into the bulk. For this reason,
an additional error term appears, but it decays faster than any polynomial in the size of the finite system
for any fixed 7.

Theorem 4.1 (Adiabatic theorem for finite systems with gap in the bulk). Let @, D, € By exp(-a-),00

. . . . . . . L . rid.
be interactions and v € Vi a Lipschitz potential, all with a rapid thermodynamic limit; that is, ®y, —

Yh, PH, 'y Yy, and v i Voo. Let Wh,, Y, and ve satisfy (11), (12), (G1), (G2) and (G3). Moreover,

let (pgk (t))kEN satisfy (S). Forall k € N let lIf;(?’A" be the Heisenberg time evolution on Ay, generated
by

%Hs,Ak(t) - ,l, (H(/)\k(;)w(vé\k (t)+ka(t)))

with adiabatic parameter 1 € (0, 1]. Then for any e, € (0,1] and t € I there exists a near-identity
automorphism 1M (1) of Anp, such that the super-adiabatic NEASS defined by

Ha,n,Ak ([) = p(/)\k (l) OBS,U,Ak (Z)

has the following properties:

1. It almost intertwines the time evolution of observables in the bulk: There exists A > 0 such that
for any n € N there exists a constant C, and for any compact K C I and m € N there exists a
constant Cpy pm x such that for all k € N, all finite X C Ay, all A € Ax and all t, 1y € K,

[0

278 (1) QU7 M AT = T 1) (4) @1

8n+l + nn+l

< G 77d+]

(1410 = 10l) 141 1xP
~ d - 2d
+ o (140 dist 02\ Ao ) (1A diam(X)%.

2. It is local in time: 87k (1) depends only on H®™ and its time derivatives at time t.
3. Itis stationary whenever the Hamiltonian is stationary: if for some t € I all time derivatives of H*M
vanish at time t, then TI%"-k (1) = T15-0-Mk (7).
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4. It equals pé\ k(t) whenever the perturbation vanishes and the Hamiltonian is stationary: if for some
t € I all time derivatives of H®™ vanish at time t and V™ (t) = 0, then TI&12k (1) = TT&0Ak (1) =
A
Py« (1)

As mentioned before, the second term in the bound (4.1) arises when nonadiabatic transitions that
can occur in the boundary region propagate into the bulk. While we do not prove this explicitly, our
proof suggests that if the perturbations v, H; and Hy are supported in the bulk and if p(/)\k(t) is the
ground state of Hy(t), then this second part of the bound can be replaced by a term that is uniform in
time and 7. Finally, for the topological insulators discussed in the previous section, one expects that
excitations at the boundary cannot propagate into the bulk, since the chiral edge states do not couple
to states supported in the bulk. That is, in such systems we expect (4.1) to hold with the second term
replaced by a bound that is uniform in time and 7 even if the adiabatic perturbation acts also near the
boundary.

5. Proofs of the main results
5.1. Proof of the adiabatic theorem in the bulk

Proof of Theorem 3.4. The proof is an adaption of the strategies for proving the analogous theorem
for finite domains (see Theorem 5.1 in [28]) and its thermodynamic limit version (see Theorem 3.2 in
[15]). In order to cope with the new situation of ‘a gap only in the bulk’, we use and adapt techniques
originally developed in [22] and summarised in a modified way in Appendix B.

Before going into details, let us briefly outline the structure of the proof. We first construct a sequence
of densely defined derivations (£ A (1))jex such that for each n € N the state IT,”" (1) := po (1) o B,"" (1)

constructed from the automorphism

B (] =e im0 4]
generated by

n

EES;::JI(I) = Z 8j£A-J‘f»’I([) (51)

J=1

satisfies (3.3). The n-independent states I1%77(¢) are then obtained from a suitable resummation of the
asymptotic series (5.1) for n — oo.

In [28] the corresponding SLT operators Af"’ A (#) on finite domains A; are constructed from an
algebraic iterative scheme. Basically, we would like to apply the same scheme to construct the associated
derivations in the infinite volume with good control of the remainders that add up to the right-hand side
of (3.3). To do so, we first construct the coefficients A 7" () in finite volumes A; exactly as in [28],
where the perturbation is restricted to an even smaller volume Ay. Because of the absence of a spectral
gap in finite volume, however, the remainders are not small; that is, a bound like (3.3) does not hold.
The two main steps are now

(1) to show that the SLT operators Af’”’Al "M (£) have a rapid thermodynamic limit.*

(2) to show that (3.3) holds in the thermodynamic limit.

&,1m,0
) J
input the instantaneous Hamiltonian H(/)\’ (1), its time derivative Hé\" () and the perturbation V(t).

Part (1) is rather technical: The iterative construction of the operators A e (t) takes as an initial

. . . . . . . 2, 1,7,
4For this proof of the adiabatic theorem in the infinite volume it would suffice to show that the AZTAERE (1) have a

thermodynamic limit. The more precise control on the rate of convergence will be used only in the proof of the adiabatic theorem
in finite volume (Theorem 4.1).
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Then it proceeds (see (5.16) and (5.17)) by taking sums of commutators, further time derivatives and
applying the map 7 defined in Appendix B.3 and called, for simplicity, the inverse Liouvillian, although
it does not have this property in finite volumes. In Appendix C we show that all of these operations
preserve the property of having a rapid thermodynamic limit (see Lemma C.2, Lemma C.3 and Lemma
C.4) and thus also all A®7"** (¢) have a rapid thermodynamic limit.

Part (2) is now discussed in detail and we divide it into four steps.

(a) Decomposition of 157 (9) (U, o AT —1157(1)(A)

As a first step we construct a two-parameter family of automorphisms S;; AL A (t) where the unper-

turbed Hamiltonian Hy(¢) and the ‘perturbations’ V,,, H; and Hy enter on different scales A; and A
with [ > k.

To do so, we extend each restriction vk : A — R of the infinite-volume Lipschitz potential v,
to a function 7 : Z¢ — R in such a way that supp(#**) C Ay and #** satisfies the Lipschitz
condition (2.3) on all of Z4, possibly with a different but k-independent constant C:. Hence, phx
defines a Lipschitz potential on any A; with [ > 2k. Moreover, the corresponding operator satisfies

VA ¢ Ap, € Aloe €Dy forany I > 2k and all f € S.

B usr A (e denote the dynamics generated by H(’)\ ! +s(Vé\" +H{\") = H(/)\ "+eVM on Ay, with

adiabatic parameter n > 0. Similarly, let 8;;"" Ar-A (1) denote the automorphism on A,, constructed
from the inputs HM Ak i\k and Hé\" (cf. (5.16)) and define the state

I8 2= po(0) 0 B (1)

on Ay,. In the following we will consider H* := {H(/)\l + ng\" Hen for each fixed k € N as an SLT
operator and use, often implicitly, that the || - ||7, s ,-norms of the corresponding interactions are bounded
uniformly in k.

From now on, we drop the superscripts & and 5 and fix X € Py(Z%) and A € Ay. Then for any
[,k e Nwith X c A; and [ > 2k we can split the left-hand side of (3.3) as

[T, (10) (e 1, [A]) = T, (1) (A4)] <

Al M (t0) (U, toAk |IA]])| (5.2)

+

I (1) QM LA - TN ()| 53)
+ M (1) (4) = L, (0(4) (5.4)

We will now show that (5.2) and (5.4) can be made arbitrarily small by choosing /, k large enough. To
be precise, by this phrase we mean that for any 6 > O there exists Ns € N such that the corresponding
term is smaller than ¢ for all k > Ns and all [ > 2k. For (5.3) we show that it satisfies the bound (3.3),
up to terms that vanish in the limit / — oo for any k € N. Together these statements then imply (3.3).

(b) Thermodynamic limits of the automorphisms

To see that (5.2) and (5.4) are small for /, k large enough, we merely use that the involved automorphisms
have a thermodynamic limit. We only discuss (5.2) in some detail and estimate

|TL, (70) (U, , [A]) — TIp"™ (o) (UM [A])

T (1) (UM AT (5.5)

1,10

+

T (10) QM TAD = T () QUM [AD]. 5.6)
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The first term (5.5) can be made arbitrarily small by choosing / large enough. The precise argument
was carried out in the proof of Theorem 3.5 in [15] and is not repeated here. For the second term,
one combines Theorem 3.4 and Theorem 3.8 from [24] (see also Theorem B.2 from [15]) in the same
manner as in Proposition B.1. Using these statements and the construction procedure (see (5.16) and
(5.17)) of &S, = Z;?ZI P\ ; generating the automorphism ﬁﬁ”A", one obtains that (5.6) can be made
arbitrarily small by choosing /, k large enough. Note that the composition of the automorphisms can be
estimated with the aid of Lemma 4.1 from [15]. One can deal with (5.4) similarly.

(¢) Thermodynamic limit of the adiabatic approximation

We are now left to study the term (5.3) that compares the full time evolution with the adiabatic evolution
on the cube A; with the perturbations restricted to the smaller cube Ay. For this difference one obtains
an expansion in powers of & exactly like in the proof of Proposition 5.1 in [28]. However, in the absence
of a spectral gap of the finite-volume Hamiltonians, the coefficients up to order n are not identically
zero anymore. Instead, we need to show that they vanish as [ — oo for arbitrary k € N. To do so, we
will apply Proposition 3.3 and the technical lemmata in Appendix B, which have been summarised in
Proposition 3.2.
To begin, observe that for A € Ajqc,

t
T (1) UL AT =T () (4) = / dS%Po(S)( AROERIA PV | RCE)

)

According to Lemma B.3 and Lemma B.5, there exists a positive constant C;, such that

sup
k,leN

[ () 0 WM A]

5 < CyllAll4 (5.8)

uniformly for s,¢ in compacts and for suitable f; and f>. The bound in (5.8) is uniform in / and &,
since the constants on the right-hand side of the relevant estimates in Lemma B.3 and Lemma B.5 only
depend on the interaction norm, || - ||;.z,», and the constant, C;, of the Lipschitz potential, which are
both independent of / and k. However, the constant C,, diverges as i goes to zero. But this will be of no
concern for us, since we will use (5.8) only to show that certain quantities vanish in the thermodynamic
limit at a fixed value of > 0.

At this point, a technical digression is necessary. In (5.8) and many times in the following, we will
consider (sequences of) automorphisms or derivations on the algebra A as (sequences of) bounded
operators between normed spaces (D, || - ||5) and (Dg, || - ||5) for ‘suitable’ fi, fo € S, where
f>» dominates fi; that is, fi < f>. The precise connection between f; and f, is quantified by the
corresponding lemmata in Appendix B and also depends on the weight function ¢ of the generator of
the automorphism (respectively derivation). In Lemma B.11 we show that relative to any fixed weight
function ¢ € S there exists a sequence (f;);jen of weight functions f; € S such that the pair f;, fi,1 is
‘suitable’ for all i € N; that is, that it can be used in all of the lemmata of Appendix B together with
any decay function ¢ < . Now in this proof we fix such a sequence (f;);en relative to the ‘worst’
weight function ¢, appearing in the construction at level z; that is, all (finitely many) SLT operators are
elements of £} o0 More precisely, let (f;);en be the sequence in S? constructed in Lemma B.11 for

L(N) = ¢y ([%J“/)% and R = C - 2" with some C < oo (a polynomial growth would also suffice, as
follows from the discussion in the proof of Lemma B.10). Hence, in the finitely many norm estimates
like (5.8) that will appear in the proof, we can just pick successive pairs f;, fi+1 from this sequence
fi < foa < f3-- < fi < fis1. As the precise weight function of the final target space plays no role in the
statement of the theorem, we do not keep track of this explicitly.
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We now return to (5.7). Assuming (G3), the derivative can be evaluated by using the linearity and
continuity of the involved maps. We find

d d

L pos) (B (5) 0 W AT = (3 po<s>) (B2 (5) 0 M4 4] (59)
+ po(s) ((% ﬁ”Ak(S)) OutA,’s’Ak[[A]]) (5.10)
* PO(S)( AOE (% uﬁé’“) IIA]])- (5.11)

The first term (5.9) can be evaluated with the help of the following lemma (cf. Equation (2.27) in [22]).
Its proof is given after the proof of the theorem.

Lemma 5.1 (Derivative of the ground state). Let f € Sand A € Dy. Then

Go(5)(A) =i /R dvw(v) /O " du po(s) (ﬁf-,o(s) o el Lo | A]]) _
Proceeding with (5.9) we obtain
(%Po(s)) ( noNE (s) 0 U [[A]]) (5.12)
- /Rdv wo) | " du pols) (LHom o Eri o Bt (s) o UL |[A]]) '
For (5.10) we get
po(s) (( d gt )) ’Ak[[A]]) (5.13)

0

and for (5.11)
po(s) ( nM(s) o (% N A‘) [[A]]) (5.14)
= = 2 o) ([ (b5 Ve (9) 5O e ) 0 ).

(i) Approximating (5.12): We now replace (5.12) by an expression involving the map Z defined in
Appendix A. Using that the function w appearing in its definition is even and that po(s) is a L (s)-
ground state, we have

/dv w(v)/ du po(s) (ﬁHO(S) o el LHo () oﬁﬁl\lsAk (s)o u;\,é’/\k I[A]])
R 0
+ pols) (|7 (g (o0, B (5) o M 4] (515
_ /dv w(v)/ du po(s) (e—iuﬁuo(s) o Ly s) © e LHy(s) o IBQ”Ak (s)o0 HQQ’A"’ |[A]])

LA
- [avw / dupo<s>( b o £ o el“‘:"o“)oﬁﬁlvAws)ou,A,;’Ak[[A]]).
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Using (5.8) together with Lemma B.9 and Lemma B .4, we see that this difference can be made arbitrarily
small for [, k large enough. More precisely, by the uniform bound in (5.8) (see also Lemma B.3 and
Lemma B.5), we have the convergence of the dynamics, Lemma B.4, as well as the convergence of
the derivation, Lemma B.9, both in suitable f-norms. Hence, we may replace (5.12) by the negative of
(5.15) up to an arbitrarily small error for /, k large enough.

(ii) Terms up to order n: In the second step, we expand the first entry of the commutator in (5.13)
and (5.14) together with the negative of (5.15) as in Proposition 5.1 of [28]. Having —i/n as a common
prefactor, we get

1 ApA ApA ApA ApA
. 1A . o 1Mk s 1Mk . 1Ak .
77/ dle ileS, ESQI’A" el/lsS,1 +e ieS, (H(/)\l +8VAk)elsSn + nIA] (H(/)\k)
0

n

_. g J pAiAx n+l pAr, Ak
—.H0 +Zs RJ. +& Rn+1 .

J=1

Inserting the leading order term Hé\’ back into the commutator in (5.14), we find that
lim po(s) [ (9,2 (5) 0w 4] )
= Jim po(s) (ﬁHOA’ (s OBt () o UL [[A]]) =Y

for any k € N and uniformly for s and ¢ in compacts. Here we used (5.8) and the fact that Lemma B.9
and continuity of po(s) imply that

Jim po(s) 0 Ly ) = po(s) © Lrages) =0

uniformly on bounded subsets of D .
The first-order term has the form

R/\ ,/\ . :/\ 4/\ ,/\ Z—/\ F'[A, ‘,/\ - . . :/\ 4/\ ,/\ R‘/\ ,/\
ll g ) 1110( ll k) (z l( Ok) k) - 1110( ll k) 1l ‘

All\l,/\k — M (VAk _ gI/\l (H(/)\k)) . (5.16)

With the aid of Lemma B. 10, it follows that, for any k € N, A{\’ Ak g convergent in a suitable f-norm as

I — oo. So, using Lemma B.9 and Lemma B.10, for any k € N, R?”Ak is also convergent in a suitable
f-norm and its limit is given by

il (I(g T(HM) - vAk)) + (;’ T(HM) - vAk) .
Thus, we get by using (5.8) and Proposition 3.3 that
lim po(s) ([RY (), B (5) o w4 ] ) =0

for any k£ € N and uniformly for s and ¢ in compacts.
The remainder terms R?”Ak (s) for j =2, ..., n have the form

A, Ak s pAr o A ALAK AL Ak
RO = i (AMM) 4 R
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Ap, Ak

where the operators Aj are determined inductively as

A;\I,Ak = 7N (Ié;_\h/\k) (5.17)

and Ié;.\l’/\" is composed of a finite number of iterated commutators of the operators Al/.\’ M and Al/.\’ A
i=1,...,j—1, with Hé\ ! and VAk S By this structure, we have with the aid of Lemma B.9, Lemma

B.10 and the continuity of multiplication in (Dy, || - || ) that R;.\”A" is convergent in a suitable f-norm
and we get

lim po(s) ([R5, (5) 0w 4] |) = 0
for j =2,...,n,any k € N and uniformly for s and ¢ in compacts by Proposition 3.3 and (5.8). So, the

coefficients up to order £" vanish in the limit / — oo.

(iii) Remainder term: In the last step, the remainder term involving RQJ’r’]Ak can be estimated as in the
proof of Proposition 5.1 and Theorem 5.1 in [28] by

8n+1

[ s oo ([R5 908 9 o 12 [[A]]])‘

n+l -1
<Z—Jr-1o] sup [( ) (s)(RﬁiaA"(s)),uﬁé’Ak[[A]]]”

n s€[to,t]

n+l n+l
<Gy (1+(9) )lt—tol(1+77_d|f—t0|d)||A|||X|2

E

8n+1 +nn+1 d )

< Co It =10l (1+ 1t = 10l) I ANIXP2,
n

where the constant C,, is independent of /, k € N and all other parameters (cf. [3, 20, 28]). More precisely,
the estimate follows from Lemma C.5 from [20]. Note that the bound in this Lemma only depends on
the the Lieb—Robinson velocity (B.1), the relevant interactions norms and the Lipschitz constant C3.

(d) Conclusion and resummation

Summarising our considerations, we have shown that for any n € N there exists a positive constant C,,
such that

n+l n+l

N , R & +7n
I a0) QU LA = T (0(A)] < G i = ol (11 = r0l) HANIXP.

The n-independent states [1%-7 that satisfy the estimate (3.3) can be constructed using Lemma E.3 and
Lemma E.4 from [15]. All other statements on IT;'" (¢) are clear by construction (as in [28]). O

Proof of Lemma 5.1. The proof of this identity in [22] uses the technical Lemmata 4.4, 4.5, 4.6, 4.12,
4.13, which we have adapted to our notion of interactions in Appendix B, Lemmata B.4, B.3, B.10, B.8
and B.9, respectively. Therefore, we only sketch the main arguments. Again, at each step, one chooses
suitable f-norms.

Let f € Sand A € Dy . First, using the spectral gap of the bulk Hamiltonian, one can show that

po(s) (T AT =0,

5Again, as shown in [28], A j is a polynomial in g of degree j with coefficients in L7 s, for every j € N.
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where 7 is defined in Appendix A. By application of the Duhamel formula, one arrives at
v .
po) () =i [ avw) [ dupn(s) (Lo o e Ema]).
R 0

Using (I2) in the form of Lemma B.8, (G3) and that po(s)(Lp,(s)[A]) = 0, since po(s) is the L, s)-
ground state, we have

Po(5) (Lrycs) [AD) + po(s) (ﬁHO(s)[[A]]) =0

5.2. Proof of the adiabatic theorem for finite domains

Proof of Theorem 4.1. We show that both terms on the left-hand side of (4.1) converge to their infinite-
volume limits with a rate given by the second term on the right-hand side of (4.1). Together with
Theorem 3.4, this implies the claim. Again, we do this first for fixed n and comment on the resummation
afterwards.

Fix X € Py(Z%) and A € Ax. Then for any k, < k; < k such that X c Ay, we obtain for the first
term in (4.1) that

M (1) QU AD = T (o) (T TAD)|
= oo o) (857 (10) 0 WM [AT) = py(a0) (B 0) o 77 AT )|
< [op* (o) (B (r0) o WP MAT) = ) o) (B (0) o 7 ]
+logr ) (B (10) 0 W LAT) = o3 (r0) (B2 (10) 0 27 4] )|
+ o) o) (17 (r0) 0 U AT) = py(r0) (877 (10) o 25 2 ] )

+potio) (B2 (r0) 0 WL AD) = pgt0) (857 (10) o 27 ]|

+pg(a0) (B 00) 0 W7 [AT) = py (o) (857 (r0) o 257 A] )|

< [ (i -2 ) gD (5.18)
+ (B 10) - ™ (10)) 0 U ]| 5.19)
+] (6% (t0) = potto)) (8™ (r0) o 27 ] 520
+| (877 0) = i) 0 1 4] 521)
(e - us) ) 522

For (5.18) and (5.22) we combine the estimates provided by Proposition B.1 and Corollary B.2 with
the trivial bound by 2||A|| using the following trivial inequality with @ =

0 < ¢ < min(a, b) = c<a®- b= forall ae(0,1). (5.23)
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This yields
(5.17) + (5.21) < C(t,10) || Al diam(X) @D exp (—a ndist(X,Z4\ Arkz_d,{p)y) ,

where C(t, t9) depends only on ¢, ty and H.

Since &S;;""7 € L]5.c0.c0 has a rapid thermodynamic limit with exponent y € (0, 1) by application of
Lemma C.2, Lemma C.3 and Lemma C.4, we have that for some ,, € Sin particular £S,,"”7 € L1 £, 0,00
has a rapid thermodynamic limit with exponent y € (0, 1). Hence, (5.19) and (5.21) can be estimated
using the ‘local decomposition technique’, (5.23), Proposition B.1 and Corollary B.2 as follows: For
ZcZ,let E% : Az — Az be the conditional expectation (on even observables!). Moreover, for a set
Y € Po(Z%) and 6 > 0, let Ys = {z € Z¢ : dist(z,Y) < &} be the “fattening’ of the set Y by §. Defining

(0) sl\k N7l
A EXVZ|1 10\nAk l‘ to . [[A]]

where v is the Lieb—Robinson velocity for min(a, a’) as in (B.1) and for j > 1,

A = (B ~ B ) u” M al,

Xyi-rgleiMry X g1k,

we can write lIz " *2 n[[A]] = Z‘;":O AU where the sum is always finite, since eventually X%It—tol+ in
Ak, = Ay, . Clearly, AWV e AX%\r—rolﬂ and we bound

diam (X g j+y) < C diam(X) (j +1) (1 7 - z0|) .

According to the properties of the conditional expectation on even observables (see Lemma C.2 from
[15]) and using the Lieb—Robinson bound (Proposition B.1) in combination with (5.23), we have

1A || < min (ClANIXIe™ ™), 2|Al]) < Coy AlIX| e

with @1 € (0, 1). Thus, with the aid of Corollary B.2 and using again (5.23), we get

(65" o) = 7 a0 o w7 4] < ZI)( T8 (1) - g )| [ 4|
< Cay. o | All diam(X) (@@ *@2 (] 4yl — o) (D@ 222 ([ = AkTT] - ko),

where a1, a; € (0, 1), since the sum

[

Z e~ min(a,a’)j(j + 1)(d+1)a2 < o0
Jj=0

is finite for every choice of @y, @; € (0, 1). Therefore, we arrive at
(5.18) +(5.20) < Cay, s | All diam(X) D@ (147 — 1) (4022 222 (Tk) = Ak} T = ko).

For (5.20), we perform the local decomposition twice. Using the notation from above, we define

A,

: e,n,\ :
AVY =By, 0B 0]AY]
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and fori > 1
A = (B, = Bang ) 0" )4

X,'ﬂ/\k] Xi—lm/\k]

Hence, we can write

&,1n,A &,1m,Ak o &e,n,A\ . > .
B (1) o TR A] = Y BT ) [AV] = D AU

j=0 i,j=0
and the sums are always finite. Using this form, it can be estimated with the same methods as above by
(5.19) < Cay.ap.allA]l diam(X)" @+ @) (147! |1 = 19]) 420 (K = k1),

where a1, as, a3 € (0, 1).
Analogously, we estimate the second term on the left-hand side of (4.1) by

M @) - @) < (g 0 - g 0) 14 (5.24)
+ |(PQ “(n - po(t)) (ﬁﬁ’"’Ak3 (t)[[A]])| (5.25)

+ (870 - " ) 11| (5.26)
for k3 < k to be chosen and A € Ax such that X C Ag,. As above, we get
(5.23) +(5.25) < CollAlldiam(X) @D £ (dist(X, 2 \ Aftg-a)
with @ € (0, 1) and
(5.24) < Cay,anllAll diam(X)m @D e por (g f3),

with a1, @y € (0, 1). Now, we choose

. d _
. L dist(x.z \;\(k)) /lk7|

ko= |k -

2 (dist (X, Z4 \ A (k)) - /lk7)|
3

k3 =

L dist (X, 24\ A (h)) - /lk7|
5 ,

which satisfy k > k; > ky and k > k3, as well as ky > %, ky > % and k3 > k for k large enough.
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Putting everything together and choosing the a-parameters appropriately, we have shown that

H;::JI»Ak (to)(ug’"’Ak [AD - Hf’U’Ak (f)(A)‘

t,ty
< |07 (10) QUET AT - 11577 () (A)]
+ [T () (UF M [ AT) - n,f"7(ro)<ui;;’[[A]1>| + T2 (£) (A) = TS (1) (A)
8n+] + n+l
<C, T e to] (1+ ]t = 10]9) |1A] X2

- 77d+1
~ d -m 2d
+ Comx (1+77dist(X,Z \ Aoty J)) Al diam(X)2,

for all m € N and compact K c I, which is a valid estimate for all A € Ax with X c Ay after a
possible adjustment of C. The n-independent states 157" (¢) that satisfy the estimate (4.1) can again
be constructed using Lemma E.3 and Lemma E.4 from [15]. All other statements on IT,;"” A (t) are
clear by construction (as in [28]). ]

A. Inverting the Liouvillian in the bulk

In this Appendix, we prove Proposition 3.3. First note that there exists a nonnegative, even function
w e L'(R) with ||w||; = 1 and

sup [s|"|w(s)| < oo, Vn € Ny,
seR

such that its Fourier transform

w(k) = \/% /Re_iks w(s)ds

satisfies supp(w) C [—1, 1]. An explicit function w having all of these properties is constructed in [5].
For any g > 0 (spectral gap of Hy), set

we(s) =gw(gs).
It is clear that wy is nonnegative, even, L!'-normalised and, moreover,

supp(Wg) C [—g.gl.

We drop the subscript g from now on. Let Hy € L exp(-a-),0 have a rapid thermodynamic limit and
define bounded linear maps

Ak
j;\k Ao A A /ds w(s) ety [A].
R
5 ik
I;\" Ao A A /dsw(s)/ due "HO[A],
R 0
for every s € I and k € N. The corresponding ‘bulk’ versions are defined as
J A—-A A /ds w(s) eiSL”W)[[A]],
R
L, A-> A A /ds w(s)/A du "“ro) [A].
R 0
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The integrals can be understood as Bochner integrals on (A, || - ||) by the continuity of s — &' LHy o [A]
for any A € A (see Proposition B.1). The map Z; is called the SLT-inverse of the Liouvillian, which is
justified by Proposition 3.3 and Lemma C.4. See Appendix D of [15] for a definition of the SLT-inverse
of the Liouvillian on interactions.

Proof of Proposition 3.3. We drop the subscript Hy of £ and Z from Proposition 3.3 to simplify notation.
We prove this proposition using the GNS representation of po. Let Po, = [€5,) (€2,| be the projection
on the GNS state and let Z,, be the GNS version of the inverse Liouvillian; that is,

N
Tp(A) = / dsw(s) / dueMor Ae™Moro, A € B(H,y,),
R 0
and J,,, analogously, where Hy ,, is the GNS Hamiltonian. Then we have

po (i[L o I[[A]]’ B]) = i<gp0» [ﬂpo (Lo I'[A]])’ ”p()(B)]QPo)-

Since Z [A]| € D(L), we have by Theorem 4 from [6] that for all B € D(L),

(Qpy, [7mp (L 0 Z[AD. Tpo (B)]Rp) = 1(Qpy, [[Ho,p9, Tpy @2 Y DIE Tpo (B)]Q2p)
= i<Qp0’ [[HO,po’Ipo(ﬂpo(A))]’ﬂpo(B)]on>'

By application of Proposition 6.9 from [24], we get

i[HO,p()’Ipo(ﬂpo(A))] = jpo(ﬂpo (A)) — Tpy (A)’

that is, we inverted the Liouvillian up to J, (7, (A)). But, again with the aid of Proposition 6.9 from
[24] and using the cyclicity of the trace, we have

(Qpys [Ty (0 (A)), 7oy (B) 120

tr(Pay, [Ty (7py (A)). 70y (B)])
(7, (B) [Pay,y > Tpo (s (A))]) = 0.

=0

By using the GNS representation again, we also have
(Qp» [0y (A), 71y (B)] p) = po([A, BI).
We thus showed that for all B € D(L),
po([£oZ[A] -iA,B]) =0.

By density of D(L) in A and continuity of pg : A — C, the equality holds for all B € A. O

B. Quasi-locality estimates

In this appendix we show how to control the actions of automorphisms, derivations and inverse Liou-
villians generated by SLT operators with a rapid thermodynamic limit on spaces Dy C A of quasi-local
observables of the infinite system.

Let us briefly summarise the structure of and the motivation for the following results. To control the
adiabatic approximation in the thermodynamic limit we need to consider the actions of automorphisms,
derivations and inverse Liouvillians also on the spaces Dy introduced in [22]. Parts of the statements
of the required lemmata, Lemmata B.3, B.4, B.5, B.§, B.9, and B.10, were established already in
[22], however, without explicit uniformity and only for SLT operators defined by restrictions of a fixed
interaction on Py(Z?). The SLT operators A j appearing in the adiabatic expansion are not of this form,
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even if we would assume this form for our original Hamiltonian. Thus, we generalise the results of
[22] to SLT operators having a thermodynamic limit and make the uniformity explicit. In addition,
we prove norm convergence of automorphisms and derivations in spaces of bounded operators from
(Dgiu - ls) to (D, |l - 1l 5) in the thermodynamic limit. For this, however, the quantitative notion of
rapid thermodynamic limit is required.

As starting points, we first establish the convergence of automorphisms in the thermodynamic limit
as in [24] but with additional quantitative control on the rate of convergence implied by the condition
that the generator has a rapid thermodynamic limit (Proposition B.1 and Corollary B.2). Similarly,
we prove quantitative estimates on the rate of convergence of derivations in the thermodynamic limit
(Proposition B.6 and Corollary B.7).

B.1. Dynamics

Since we refer to the Lieb—Robinson bounds several times in this work, we restate them for convenience
of the reader in the following proposition. Its only novel content is, however, the implications on the
rate of convergence of automorphism groups for generators with a rapid thermodynamic limit.

Proposition B.1 (Lieb—Robinson bound and convergence of dynamics). Let Hy € L s 0 and v € V;
both have a thermodynamic limit (see Definition 2.1 in [15]) and set H := Hy +V,,.. For A € Ax, define
the local dynamics as

UNLA] = UM (1,5)" AUM (1, 5)
where UMk (t, 5) is the solution to the Schrodinger equation
id%UAk (t,8) = HAx (t)UAk (t,5)

with UM (s, s) = id. There exists C < co such that for all A € Ax and B € Ay with X,Y C Ay and all
k €N,

[ Al B]|| < c A mingxi, e v-siiem bcog @ises (X, v)).
If Hy € Ly exp(-a-),0 for some a > 0, one defines the Lieb—Robinson velocity via
Va 1= 207 Cexp(-a) | P, ll1 exp(-a-).0 (B.1)
and obtains the more transparent bound
{2141, B[ < CHANIBI min(|x1, ) eeal-si=is o,

If Hy and v have a rapid thermodynamic limit with exponent v € (0, 1), then there exist 11 > 0,
A3 € (0,1) and C < oo such that for all I,k e Nwithl > k, X C Ay and A € Ay,

H(u;\lv _ ui\lé)ﬂA]]H < C A diam(X)d“ e2C( [t=s|l|PH, ||1,z,0|t — s

x £y (dist™ (X A \ A ko 12:.41) ) - (B2)

In every case above, the constant C depends only on {, ||®@g,ll1,¢z,0 and the Lipschitz constant C,.
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Proof. The first part is the standard Lieb—Robinson bound (see [18] for the first proof; for fermionic
systems, see [9], [23]). Invoking the estimate

sup [ (AT - 4| < (207 1@s, 2.0+ 2Cur) It = sllIAll diam(x)

keN

for any A € Ay (see Theorem 3.8 in [24] and Lemma 2.1), the estimate (B.2) with the first alternative in
the maximum is a consequence of Theorem 3.4 and Theorem 3.8 in [24] by choosing Aps = Afr_a, 177
with A; from Definition 3.1 (respectively the alternative characterisation in Lemma C.1). The second
alternative can easily be concluded from the first and is used in the proofs of the lemmata below. O

As a consequence of (B.2), (Hﬁ’; [A]ken is a Cauchy sequence in (A, || - ||) for every A € Ajq.

By density, the limits U, ([A] := limg—e lIt/} K[ A] define a co-cycle U, ¢ of automorphisms on A (the
bulk dynamics) and the map I X I — A, (t,s) — U, s[A] is continuous for every A € A.°6

As the finite-volume metrics @™ (-,-) are compatible in the bulk, we obtain the corresponding
statements for the bulk dynamics.

Corollary B.2 (Infinite-volume dynamics). Under the conditions of Proposition B.1 there exists C < oo,
such that for all X,Y € Py(Z4), A € Ax and B € Ay

[[[@ [ AT, B]|| < CIlIAIlIBI min(|X[, [Y]) >l =s1I®rollrcoz(dist(X, ).

If Hy and v have a rapid thermodynamic limit, there exist 11 > 0, Ay € (0, 1) such that

[ — LA <C Al diam(x)d 26 sl o, — g
X {y(dist(X, 74 \ Amax{[k—/llkﬂ,[/lz-k]})-
In both cases above, the constant C depends only on ¢, ||®m, |1 ,¢.0 and the Lipschitz constant C,,.

We are now ready to prove generalisations of Lemma 4.4 and Lemma 4.5 from [22].

Lemma B.3 (Quasi-locality of dynamics I). Let Hy € Ly exp(-a.),0 and v € Vy both have a thermo-
dynamic limit, set H = Hy +V,, and let W, 5 denote the infinite-volume dynamics generated by H. Let
f1, f2 1 [0,00) — (0, 00) be bounded, nonincreasing functions with lims_,, f;(s) =0 fori = 1,2, such
that’”

e 2s
'/0‘ ds Wg(S)—f2(4VaS) < 00,

su —f](N_L%J) < o0 su —Ndﬂe_aL%J <
NEATY! R SN ’

where wg is defined in Appendix A.

Then W, s : Dy — Dy, is a bounded operator and the sequence II;\?’ : Dy — Dy of operators
is uniformly bounded, both uniformly for s and t in compacts. More precisely, there is a nonnegative,
nondecreasing function b, g : [0, 00) — [0, 00) such that

e s[ATlls < b p(lt = sDIAll; and ;U%Iluﬁfillf\]]llﬁ < by p(lr=sDIAl 5
€

6A similar argument based on a weaker version of (B.2) allows the same conclusion under the weaker assumption of H having
a thermodynamic limit.
7Here, v, denotes the Lieb—Robinson velocity from (B.1).
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forall A € Dy. Moreover, we have that

/ dtswg(s) by 5(s) < 0.
0

Besides the indicated dependence on fi and f, the function by, 5 only depends on a, || @, |1 exp(-a ),0
and the Lipschitz constant C,,.

Proof. The proof is analogous to the one of Lemma 4.5 from [22]. Let A € Dy. Then, as U,  is an
automorphism,

10 s[ATI = Al < [|A]l5-
From Corollary B.2 in combination with Lemma C.2 from [15], for N, k € N with k < N, we obtain

[(1 = EBay) o Wi s[A]| < (1 =Bay) o Wy s 0 Ba [A]| + 211(1 = Ea [ AT
< CllAN K |1 = s| e Calt=s 20T 2 1A 1 (K).

For N € N with 4v,|t — 5| < N, we use this bound with k = N — | | to estimate
||(1 _EAN) o ut,sI[A]]“ <C ||A||Nd+1 ea(Va\t—S\—LN/ZJ) + 2 ”A”ﬁfl (N _ L%J)

< (CNd”e‘“ 7], 2, (N oy ))||A||ﬁ.

On the other hand, for N € N with 4v|t — 5| > N, we simply have
[(1 = Eay) o Wes[AT| < 21IAII < 2]1All-

Hence, summarising our investigations, we obtain

N
2 sup (ﬁ(N—L%J))_l_C wp (Nd+leaL§J )
H(N) H(N) ’
I, [Alllp <|1+max{ N . Nt Al
t—s
fo(dvalt = s))

= by (|t = s 1Al

Xdvg |t-s|>1

The claim follows by the requirements on f; and f,. The uniform boundedness of lItAgV can be proven
in the same way. O

Lemma B.4 (Quasi-locality of dynamics II). Let Hy € Ly exp(-a-),0 and v € Vy both have a rapid
thermodynamic limit with exponent y € (0,1), set H = Hy +V,, and let U, s denote the dynamics
generated by H. Let f1, f> : [0, 00) — (0, c0) be bounded, nonincreasing functions with limg_,«, f;(s) =
0, fori = 1,2, such that

fl(l.%]) Nd+] e’a(N*L%J)y
lim ——=— =0 and lim -0
N —o0 fz(N) N —oo0 fZ(N)

Then ;s : Dy — Dy andlI : Dy, — Dy, are bounded operators andlI Now, U, s in operator
norm, uniformly for s,t in compacts In particular, for each A € Dy, (t, s) - U, s[A] is continuous
with respect to the norm || - || . This also holds for (¢, s) — el LH
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Proof. The proof is inspired by the one of Lemma 4.4 in [22]. Let A € Dy,. From Corollary B.2, we have

oy - woran] < (e - w) 0By IIA]]H

+

(123 =) o (1B 1A

4]
C N |r — sleaCalt=s=AN=LEDM ) 41 4 24 (LaN/2)) 1Al
(€ N¥#1jr = sleeCalr=s-AN-LEDN Loy (AN /2))) Al

IA

IA

Similarly, again applying Corollary B.2 with 1 = A, for M < [%J , we have

H(l _Ep,,) o (uﬁg - u,,s) [[A]]H

< + EAM o (uﬁls\] - ut,s) ° EAL%J [[A]]H

(uﬁg - u,,s) °En iy 4]

+4

(E/\L%J - 1)[[A]]H
< 2C N |t — s e Calt=sl=AN=LEE D 4| 4 4 £ (LAN/2]) (1Al

< (20N jr = sl EANLEDY g (Lan/2))) 1Al

On the other hand, by application of Proposition B.1 and Corollary B.2 in combination with Lemma
C.2 from [15], for M > |_’ITNJ, we have

IA

H(l - EAM) o IIQQV o EAI_MJ [[A]]” C”A”Mde“("a|t_s|_(M—I_%J)7)
2

C”A||Mdea(vaIt—SI—(M—|_¥J)’/).

IA

H(l _EAM) Out’s OEAL%J [[A]]H

Therefore, for M > [%J, we have

(- Ban o (- ) Al

< 2C||A|| M? e@Cali=s=-M=LE DM 4 £ (LM /2]) || Al
< (20 M ot =OLED 4 £y (LM /2D)) AN

By collecting the estimates above and using the conditions on f; and f>, we find that

|y - 1al

5 < hes(N)All5,
where h; (N) — 0 as N — oo uniformly for s and ¢ in compacts. O

Lemma B.5 (Quasi-locality of conjugation with unitaries). Let S € L; s o have a thermodynamic limit
and let €% denote the automorphism on A defined by

. AN
e“sOA] = Jim elﬂS(k’)ﬂA]] = lim e "¢ (1) 4 iS™ (@)

k—o0
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for A € Ajoc. Let f1, fo : [0, 00) — (0, 00) be bounded, nonincreasing functions with lim,_,«, f;(t) =0,
fori=1,2, such that

AW - 18] N (%))
o v I A )

. AN
Then e'“sw Dy — Dy, is a bounded operator and the sequence efsw Dy — Dy, of operators is
uniformly bounded, both uniformly int € 1. More precisely, there exists a constant Cy, j, such that

PPN
elLS?tl) [[A]]

sup [|e“s@[A]|| 4 < Cs.pllAll; and  sup sup
tel NEeN tel

5 < CrhpllAllg
forall A € Dy, Besides the indicated dependence on fi and f>, the constant Cy, 5 only depends on {
and the norm ||S||1 ¢ 0.

Proof. As a conjugation with unitaries can be viewed as a time evolution at a frozen time, we have by
application of Corollary B.2 and Lemma C.2 from [15] (analogous to the proof of Lemma 4.5 in [22])
that

”(1 - EAN) © eiﬂsu) [[A]]” < “(1 - EAN) o eiﬁsm o EAk [[A]]” +2 ”A - EAk [[A]]”
< CANKYE(N = k) +2]|All; f1 (k)

for N,k € N with k < N, uniformly in # € I. Using this bound with k = N — | & | yields the claim. The

A
ic N .
boundedness of e can be proven in the same way. O

B.2. Derivations

Proposition B.6 (Commutator bounds and convergence of derivations). Let Hy € L; ;0 and v € Vy
both have a thermodynamic limit. Define the induced family of local derivations as

LM Ay, > Ap, Ao L[A] = [HY (1) + VR (1), A
Then for all k € N and for all X,Y C Ay, A € Ax and B € Ay it holds that
sup ILA[ATI < C [|All diam(X)**",
te

sup ILLMTATL B]I| < 2C ||A]| || B]| diam(X)¥*! £ (dist™* (X, Y)).
te

If Hy and v have a rapid thermodynamic limit with exponent v € (0, 1), then there exist 1 > 0,
A3 € (0,1) and C < oo such that for all [,k e Nwithl > k, X Cc A (k) and A € Ay,

sup £ [A] - L[ ATl < € | A]l diam(X)™" ¢, (dist™ O, Ar \ Ak, 07, 41))) -
te

In every case above, the constant C only depends on ¢, ||®p, 1,0 and C,.

Proof. Involving Lemma 2.1, the first and second estimates are clear from Example 5.4 in [24]. The
first alternative of the third estimate is proven analogous to Theorem 3.8 (ii) in [24] and choosing
Apr = Afg-a k7 with A1 from Definition 3.1 (respectively the alternative characterisation from Lemma
C.1). The second alternative can easily be concluded from the first. This latter form is used in the proof
of the lemmata below. O
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As a consequence, (E;\" (A))xen is a Cauchy sequence for all A € Ajo. uniformly for # € I. The
limiting derivation (L,, D(L;)) is closable (see Proposition 3.2.22 and Proposition 3.1.15 in [8]) and its
closure (denoted by the same symbol) is called the bulk derivation generated by H = Hy +V, att € I.

Since the finite-volume metrics d™*(-,-) are compatible in the bulk, we obtain the corresponding
statements also for the bulk derivation.

Corollary B.7 (Infinite-volume derivation). Under the conditions of Proposition B.6, there exists and
C < oo such that for all X,Y € Po(Z4), A € Ax and B € Ay,

sup I1£:[ATIl < C [|A]l diam(X)**!,
te

sup ILL[AL Bl < 2C | Al |BI] diam(X)“*'¢ (dist(X, Y)).

If Hy and v have a rapid thermodynamic limit, there exist 11 > 0, Ay € (0, 1) such that
sup [[(£; — L[ ATl < C |||l diam(X)**' Z,, (diSt(X, z? \Amax{l'k—/llk‘/'l,[/12~k'|})) :
sel

In every case above, the constant C depends only on {, ||®p, ;1,70 and C,.

The following two lemmata generalise Lemma 4.12 and Lemma 4.13 from [22]. Here we use that

whenever ¥, € B} exp(—a).0 satisfies (I2),

- lpH() (to)

W, (1) = W, (0) o
H% xp(ca0 =0 (B.3)

t—1p

lim b(6) := lim  sup
5—0 6—0 t.toel
0<|t—ty|<6

Lemma B.8 (Quasi-locality of derivations I). Let Hy € Ly ;o and v € Vy both have a thermodynamic
limit, set H = Hy +V,, and let Ls : D(Lg) — A be the bulk derivation generated by H at s € I. Let
f1, fo : [0,00) — (0, ) be bounded, nonincreasing functions with tlim fi(t) =0, fori = 1,2, such that

D e+ D fi (k) < o0
k=1

and

Xy (R DT v - 4
N - e

Then Dy C D(L,) and L; : Dy, — Dy, is a bounded operator and the sequence ,C;\N :Dj — Dp of
operators is uniformly bounded, both uniformly int € I. More precisely, there is a constant Cy 5 > 0
such that

sup |L,[A]llp < Cri sllAllg and sup sup LMV [A]lls < Cj pllAll
tel NEeN tel

for all A € Dy,. Besides the indicated dependence on fi and f>, the constant Cy, 5 only depends on ¢,
1P myllr,¢,0 and Cy.

In particular, let Hy be given by an infinite-volume interaction Wy, € B} exp(=a-),0 that satisfies (12).
Then, with b(8) defined in (B.3), it follows that

A
sup - sup || Lor TAYl <) Cr 4 1A
NG% t,[[)gl W‘H()(m)[ ]] ) fi-f ” ”f]
0<|t—to|<6 h

https://doi.org/10.1017/fms.2021.80 Published online by Cambridge University Press


https://doi.org/10.1017/fms.2021.80

30 Joscha Henheik and Stefan Teufel

and

L mo-me g )[[A]]H b(6) Cri p 1Al -

=7

sup ‘
t,toel
0<|t—tp|<6

Proof. The proof of this lemma is analogous to the one of Lemma 4.12 in [22]. By application of
Corollary B.7, for any A € Dy and N, M € N with N > M, we have

N-1

”ﬁt ° (EAN - EAM)I[A]]” = Z 'Ct o (EAk+1 - EAk)[[A]]

N-
Z (k + D)PY(Bp,., —Ea)[A]l
=M

N-

<2c| )] k+1)d+1f1(k)) A5 (B.4)
k=M

This implies that (£; o Ea, [A])vew with A € Dy, is a Cauchy sequence in .A; hence, there exists a
limit. Moreover, Ex ,, [A] converges to A in || - ||. Since the derivation is closed, A € Dy belongs to the
domain D(L;) of L, and

ﬁ; I]:A]] = ]\}ll}noo Cl o EAN [[A]]
Hence, Dy; € D(L;). Similar to the estimate in (B.4), one obtains
L AT < €2 G+ D™ fi(k) + 1] Al
k=1

for any A € Dy by considering a limit. Now, we are left to estimate
I(1-Eay) o Li[AJll = lim [I(1 = Eay) o Ly 0 Eny [A]

Et o (E/\M _EA[ﬂJ +EALﬂJ)[[A]] —EAN o£, o (E/\M _EALﬂJ +EALNJ)[[A]]H
2 2 2 2

= lim
M —o0
< 21‘/}12100 ||£l o (EAM _EAL%J)[[A]]” + ”(l _EAN) ° Es OEAL%J[[A]]”
<ac( 3 G+ DPAK) + NN = |5 ]) 14l
k=%

In the last line we used Corollary B.7 together with Lemma C.2 from [15]. Hence, we have proven the
claim. The boundedness of the sequence E?” can be proven in the same way. O

Lemma B.9 (Quasi-locality of derivations II). Let Hy € L; ;o and v € V; both have a rapid thermo-
dynamic limit with exponent y € (0,1), set H = Hy +V,, and let L, : D(L;) — A be the derivation
generated by H at t € I. Let fi, f» : [0,00) — (0,00) be bounded, nonincreasing functions with
5h_)n@lmfl(s) =0, fori = 1,2, such that

D+ DI (k) < 00
k=1

https://doi.org/10.1017/fms.2021.80 Published online by Cambridge University Press


https://doi.org/10.1017/fms.2021.80

Forum of Mathematics, Sigma 31

and

Z];”:Lﬁj(k+l)d+l\/ﬁ(k) Nd+l§7(N—|_%_])
lim 2 = lim =
N> fZZ(N) N> f22(N)

N —c0

Then Dy, C D(L;), L; : D — Dy, and E?N : Dy — Dy are bounded operators and Lo 225
in operator norm uniformly for all t € 1. In particular, for each A € Dy, t — L;(A) is continuous with
respect to the norm || - || 5.

Proof. The proof of this lemma is analogous to the one of Lemma 4.13 in [22]. From Corollary B.7,
combined with Lemma B.8, we have for A € Dy, that

e, - £ ) Al
(c, - c,AN) o (1 -EAL%) [A] (z:t —,c,AN) OEAL%[[A]]H
<2C 7 oll (1-En uy ) [ATlLgz + CIAIN £ (aN - LaN/2])

< (207 2 (AQAN/2D) + VAAN/2])) + CN™ &, (N = LaN/2)) ) 1Al

< +

which vanishes as N — oo. Therefore,

lim sup ;Ct - E?NH K(D_fl,A) =0.

N—oo sep
Furthermore, for A € Dy, we have by application of Lemma B.8 that
(=2 o (2 - ) 141]

(M)
2C 77 2 PLAN/2DIANL g7 for M > |4

<
4C 2 (AUAN 2D+ (AN [2)) J#2C N1 & (AN =N 2))
EANT2D)

lAll5, for M < L%J

which implies the claim. O

B.3. Inverse Liouvillian

Finally, we show that also Z, defined in Appendix A preserves quasi-locality of observables. Similar
statements hold for 7;. The following lemma generalises Lemma 4.6 from [22].

Lemma B.10 (Quasi-locality of the inverse Liouvillian). Let Hy € Lg exp(-a-),0 have a thermodynamic

limit. For fi, f> as in Lemma B.3, I; : Dy — Dy, is a bounded operator and the sequence If\” :Dp —
Dy, is uniformly bounded, both uniformly in t € 1. More precisely, there exists a positive constant C, 5
such that for all A € Dy,

sup [|Z:[A]lls < Ch 5llAllg;  and  sup sup III?N[[A]]IIf2 < Ch.5llAllg-
rel NeN tel

Besides the indicated dependence on fi and f>, the constant Cy g only depends on a and
”q)O ”I,exp(—a -,0-
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If Ho has a rapid thermodynamic limit with exponent y € (0, 1) and if the functions fiand f satisfy,
N —
in addition, the requirements of Lemma B.4, then I;\N —— 7, in operator norm uniformly int € I.

The above statements also hold for the derivatives (;‘TkkI, (respectively (;%If” ) after suitably replacing
the conditions on f1 and f, from Lemma B.3 and Lemma B.4.

Proof. The first part of this lemma is a simple consequence of Lemma B.3 using the properties of the
function b g. The second part follows from Lemma B.4 and Lemma B.3 in combination with the
dominated convergence theorem.

The statements on the derivatives follow with the aid of Lemma B.3, Lemma B.4, Lemma B.8 and
Lemma B.9 by noticing that the first derivative is given by

—I,[[A]] —1/ds w(s) s> / duu/ dr elI=)usLrgm o Ly o el s [A]

and the higher derivatives have a similar form More precisely, for this first derivative, sufficient
conditions on f; and f, for the boundedness of 4 3Lt : Dy — Dy, are given by

R (252
d m’
/o ) ) AT v

) Z:’:L%J(k + 1)d+l\/ﬁ(k) ) Nd+le—a%
lim 5 = lim — =0
N —oo f2 (N) N —oo fZ (N)

This follows by application of Lemma B.3 with (fj, \/E ), Lemma B.8 with (\/7 , f22) and again Lemma
B.3 with ( f22, f2). For higher derivatives, the powers of fj in the conditions above get (polynomially)
decreased, whereas the powers of f, and ¢ get (polynomially) increased. Using Lemma B.9, one can

. . . . N —00
easily establish sufficient conditions on f| and f> for the convergence dt—kIAN d 0 I, in operator

norm involving even higher (respectively lower) powers of f>, s and fj. O

B.4. Sequences of suitable weight functions

Lemma B.11. Let v, > 0 (Lieb—Robinson velocity), { € S, R € (1,) and define the set Slg of
‘admissible’ functions as

R ) Nd+1 éf(N)
SR {feS}/ dtwg(s)(f(4vas)) < oo, A}@Q{)W:O .

Then there exists an infinite sequence ( fj)J N C 81; satisfying

Nk D £
W T P =0 Yope]

+,R] and VjeN.

Proof. According to Lemma A.1 from [20], 823 is nonempty. So, pick any f € S? and set

fi(s) = ()T
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for any j € N. Obviously, f; € S? and we estimate

LIS IR | (v
2 k ld+1 (k)R JJALVT A
fir1(N)B = k:LZ;J( + DTS (k) i (VE
£ (NJ2)

1 1 Noc
e P AL/ i)
! fis1(N/2)?R !
uniformly in @, 8 € [%, R] and for any j € N. In the second inequality, we used that f},; is logarithmi-
cally superadditive and f;(1 /2)# > 0. O

C. Operations preserving the rapid thermodynamic limit

In this appendix, we verify that operator families that are obtained by taking commutators and inverse
Liouvillians (see Appendix A) of operator families and Lipschitz potentials having a rapid thermody-
namic limit again have a rapid thermodynamic limit with the same exponent. The following statements
are slight modifications of technical lemmata from [15].

Lemma C.1 (Alternative characterisation of having a rapid thermodynamic limit). The time-dependent
interaction ® € By s , has a rapid thermodynamic limit if and only if it satisfies the following Cauchy

property:
VieNyg 34,C>0 VM eN Vk, I > M+AM” :
d ~ i
sup | (@ = @) (1) || 0,y < €0 (M) = €8 (01).
tel i
Proof. The proof is completely analogous to the one of Lemma D.1 in [15]. O

Lemma C.2 (Commutator of SLT operators). Let A, B € Ly s n+a have a rapid thermodynamic limit
with exponent y € (0, 1). Then the commutator [A, B] € L ., also has a rapid thermodynamic limit
with exponent . In particular, if A, B € L1 s, both have a thermodynamic limit with exponent vy, then
[A, B] € L} 5.0 also has a thermodynamic limit with exponent 7.

Proof. Using Lemma C.1, the proof is completely analogous to the one of Lemma D.2 in [15]. O

Lemma C.3 (Commutator with Lipschitz potential). Let A € L ;s n+a+1 and v € Vy both have a rapid
thermodynamic limit with exponent y € (0, 1). Then the commutator [A,V,] € Ly s » also has a rapid
thermodynamic limit with exponent y. In particular, if A € L] s« has a rapid thermodynamic limit
with exponent vy, then [A,V,] € L1 s.« also has a rapid thermodynamic limit with exponent 7.

Proof. Using Lemma C.1, the proof is completely analogous to the one of Lemma D.3 in [15]. O
Lemma C.4 (Inverse Liouvillian). Let H € Ly cxp(-a .),co and B either an SLT operator in L s,.c or a

Lipschitz potential. Assume that H and [H, B] € L1 s.co both have a rapid thermodynamic limit with
exponenty € (0,1). Then Ty (B) € L1 5. also has a rapid thermodynamic limit with exponent vy.

Proof. Using Lemma C.1, the proof is analogous to the one of Lemma D.4 in [15]. But there is one
crucial point to take care of: One arrives at
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H(AQ{ - A,Ank) [@L (Y)]]H <VI-1
344AM«ﬁmnavdH¢2%YﬂiJéOn)PXT)+CKT)-(H¢Huhﬁm_a%ox

x( sup Z Fexp(=a (dA’(x, y)) + sup Z Fexp(-a ) (dAk (x,y)) )

YEAM xeAP\Apy YEAM xeAp\Apy

+ | Fepanll |0 -0

2
exp(—a ~),O,AM/)] ’

where we choose M’ = M + MY (i.e., A — A+ 1 in Definition 3.1, respectively Lemma C.1) and
T = Sﬁ%;n’ such that the term in the square brackets decays faster than any polynomial as M — oo. So,
after a possible adjustment of £ € S, which is legal by Lemma A.1 in [20], the proof comes to an end
in the same manner as in Lemma D.4 in [15]. ]
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