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Abstract

Suppose we are given a "Thue equation" f(x, y) = 1, where/is a binary form with coefficients
in a function field K of characteristic zero. A typical result is that i f / i s of degree at least 5
and has no multiple factors, then every solution x = (x, y) of the equation with components
in K has H (x) < 90H (/)+250^. Here g is the genus of K and H (x), H (/) are suitably defined
heights. No assumption is made that x be "integral" in some sense. As an application, bounds
are derived for "integral" solutions of hyperelliptic equations over K.

Subject classification (Amer. Math. Soc. (MOS) 1970): primary 10B40; secondary 10F45.
10 M 05, 12 A 90.

1. Introduction

Thue (1909) proved that if f(X, Y) is a form with rational coeflBcients and with at
least 3 distinct linear factors, then the equation

0.1) f(x,y) = l

has only a finite number of solutions in rational integers x,y. In fact there are
only finitely many rational solutions x,y whose denominators are composed of
powers of primes belonging to an arbitrary but fixed finite set Q of primes.
(Essentially Mahler (1933a, b).) This result continues to hold for number fields:
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386 Wolfgang M. Schmidt [2]

If the coefficients of/ lie in a number field K, then (1.1) has only finitely many
solutions x, y in K having v(x) > 0, v(y) > 0 for every valuation v of K which does
not belong to a given finite set <5 of valuations. Now consider a hyperelliptic
equation

(1.2) f=fix)

where/(Z) = a(X— o^*... (X—cxs)
e' with at least 3 odd exponents e^ It is a well-

known consequence (Siegel (1929)) of the results on Thue equations that if/(-SO
is a polynomial with coefficients in a number field K, then there are only finitely
many solutions x,y in K with v(x), v(y)^0 for all valuation v$<5.

All of the above results were originally derived from the non-effective method
of Thue which does not allow one to find explicit bounds for the solutions. Baker
(1968, 1969) was able to exhibit explicit bounds; more precisely, the "heights" of
x,y are bounded in terms of the degree and the heights of the coefficients of/.
These bounds enable one, at least in principle, to find all the solutions of (1.1) or
(1.2) which are "©-integral" in the sense that v(x)>0, v(y)>0 for v$<£>.

Next, let k be an algebraically closed field of characteristic zero, and let K = k(T)
be the field of rational functions over k in the variable T. Consider a Thue equation
(1.1) where now the coefficients of/lie in K, and consider possible solutions x,y
which lie in the ring k[T], that is, which are polynomials in T. Thue's method allows
one to conclude (see, e.g., Uchiyama (1961) that these solutions x,y are polynomials
of bounded degree. (One cannot assert the finiteness of the number of solutions, as
is shown by the example x3—!)? = 1, where k is the field of complex numbers
and where there are infinitely many solutions x, y in k.) More generally, let K be
a function field (of transcendence degree 1) over k, and let S be a finite set of
valuations of Kjk. Then if f(X, Y) has coefficients in K, the solutions x,y of (1.1)
which he in K and are S-integral have bounded height. Here the (additive) height
H(x) is defined by

where v runs through the valuations of K/k with value group Z, the rational
integers. (In the special case when K= k(T) and xek[T], we have v(x)^0 except
for the valuation vo(x) = -degx, so that here H(x) = degx.) Similar results
pertain for the hyperelliptic equation (1.2). If these results are derived by the
classical method of Thue, then no explicit bounds for H(x), H(y) can be given.

In (Schmidt (1976)) I used a more recent method of Osgood (1973, 1975) to
derive bounds for the heights of Thue equations in the special case when K = k[T]
and x,yek[T]. This will now be extended to function fields. We first have to
introduce some notation. Given a vector x = (xv ...,xn) with components in K,
write

v(x) = min (0, v(Xj),..., v(xn)).
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[3] Thue's equation over function fields 387

If/is a polynomial with coefficients in K, let \(f) be defined in terms of the vector
whose components are the coefficients of/. We define the height of x by

where v runs through the valuations of K/k with value group Z, and we define the
height H(/) of a polynomial in the obvious way. We note that

y(xj) + ... + \(xn) < v(x) < V(JO,

so that

) (/= 1,...,«)•

Observe that if K = k(T) and if x = (x1/y,...,xjy) with polynomials xlf ...,xn,
y in k[T] which are coprime though not necessarily coprime in pairs, then

H(x) = maxCdeg^deg*!, ...,degjcn).

THEOREM 1. Suppose K/k is a function field of genus g, and (l.l)isa Thue equation
over K, where the form f is of degree d without multiple factors. Then

(i) Ifd^ 5, every solution x = (x, y) with components in K has

(ii) If d^ 3 and if © is a finite set of valuations of K/k, then every Q-integral
solution has

H(x)^89H(f)+212g+\<5\-l,

where \Q\is the cardinality of Q.

In the above theorem, the condition that / have no multiple factors can be
relaxed.

No special importance is attached to the constants in our estimates, which could
be improved with some extra effort. The estimate (ii) on S-integral solutions is
not unexpected, but the estimate (i) is a surprise, since it is for all solutions with
components in K. That the heights H(x) of all these solutions of (1.1) are bounded
is known by the analogue of "MordelFs conjecture" for function fields, which
was proved by Manin (1963) and by Grauert (1965). (See also Samuel (1966).)
It is surprising that an estimate such as (i) comes out of the elementary arguments
of the present paper.

COROLLARY 1.1. Let a,b,c be non-zero polynomials lying in k[T] and having
degrees ̂  S. Then ifd^ 5, the solutions of

axd+byd+czd = 0

in coprime non-zero polynomials x,y,z in k[T] have degree at most 89S.
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Namely, set K = k(T), so that £ = 0, and set f(X,Y) = -(a/c)Xd-(b/c)Yd,
so that H(f) = max (deg a, deg ft, deg c)^: 8. By part (i) of the Theorem, the
solutions of f(x/z,y/z) = 1 in coprime elements x,y,z of k[T] have

max (deg JC, deg^, degz) = H(x/z,y/z) < 89H(/) < 89S.

COROLLARY 1.2. Suppose that the form f(X, Y) (of degree d*t3 and with distinct
factors) has coefficients in k[T] and that m^O lies in k[T], and let H(f,m) be the
maximum of the degrees ofm and of the coefficients off. Then the solutions x,y in
k[T] of

f(x,y) = m

have degrees not exceeding Z9H(J,m).

In particular, if m and the coefficients of/lie in the ground field k, then so do x,y.
The corollary follows from the second assertion of the theorem by the observation
that if m and the coefficients of / are coprime (as polynomials in T), then by
application of the sum formula (see (2.1)),

H(J,m) = -
V

where f0, ...,fd are the coefficients of/ and m~xfis the polynomial/divided by m.
This corollary was already shown in Schmidt (1976).

THEOREM 2. Let K/k be a function field of genus g, and let <5 be a finite set of
valuations of K/k. Let the polynomial f(X) have its coefficients and its roots in K,
and suppose that at least 3 of its roots have odd multiplicity. Then if x,y in K are
solutions of the hyperelliptic equation (1.2) and if x is Q-integral, then

Clearly this implies an estimate also for H(».

COROLLARY 2.1. Suppose m^=0 and the coefficients as well as the roots off(X)
lie in k[T], and let H(f, m) be the maximum of the degrees ofm and of the coefficients
off. Then the solutions of

(1.3) mf=f(x)

with xek[T], yek(T) have

(1.4) degx^lO«H(f,m)-

We simply apply the theorem with K = k(T), so that g = 0, and with S consisting
only of the valuation v0 = —deg, so that | <5| = 1, to obtain

degx = H(x)
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[5] Thue's equation over function fields 389

Here H ^ " 1 / ) = H(f,m) if, as we may suppose, m and the coefficients of /are
coprime. Now replacing T by Tl, we have to replace degx and H(f,m) by / times
themselves, so that we get /degx «S W(1H(J, m)+1). Since this is true for arbitrarily
large values of /, (1.4) follows.

COROLLARY 2.2. Suppose m^O and the coefficients (but not necessarily the roots)
°ffiX) He in k[T], and let H(f, m) be as above. Then ifd is the degree off in X, every
solution of (1.3) with xek[T], yek(T) has

(1.5) degx<WdH(f,m).

For the proof, set K=k(T), and let S o consist of the valuation v0 = —deg of
K/k, so that | <30| = 1. Further let Kx be obtained from K by adjoining the roots
off(X). The valuations of KJk extending v0 form a set ®x of cardinality | S x | ̂  A,
where-A is the degree of Kx over K. While m^f had height ~H.K{m~1f) < H(f, m)
over K, its height over Kx is H ^ m " 1 / ) = AH^w"1/) < AH(f, m) (see (2.11)
below). Finally (Lemma H), the genus of KJk is ^ (A -1 ) <///(/, m). So by
Theorem 2, the solutions x,y in Kx with x Si-integral have height

(1.6) HKl(x) < W(AH(f, m)+(A -1) dH(f, m)+A)

with respect to Kv Now if x, y are in K then HKl(x) = AHK(x) (see (2.11)), so that
upon dividing (1.6) by A we get

degx = HK(x) < W(dH(f, m) +1).

Using again the trick of replacing T by Tl we obtain (1.5).
For the more special equation

my2 = axd+b

the estimate for gx above can be improved to gx < Ai/(/, m) (see Lemma H), so
that the final estimate may be improved to

deg x < 106 • 2H(f, m) = 2 • 106 max (deg a, deg 6, deg m).

But Davenport (1965) had obtained

deg (axd - my2) > \((d- 2) deg x - deg a - deg m)+1

which holds unless axd—my2 — 0 or deg x = 0, which yields the much better estimate

(The condition, degx = 0, is not stated by Davenport.)
The reader will be required to know the rudiments of the theory of function

fields, including the Riemann-Roch Theorem.
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390 Wolfgang M. Schmidt [6]

2. Preliminaries

The additive version of the well-known product formula in Kjk is the "sum
formula"

(2.1)

for x^ 0 in K. Here v runs through the valuations of K/k with value group Z.
Besides the function v(x) introduced in the introduction, we shall need

v(x) = min (vixj,..., v(xj);

then v(x) = min(0,v(x)). Similarly define v(f) for a polynomial/. Put

and define H(f) in the obvious fashion. The sum formula shows that for
and/^ 0 we have H(x) > 0, H(J) > 0. Furthermore, #(Ax) = H(x) if A^ 0 is in K.
In particular, H(x) = 0 if x is proportional to a vector in &re. Conversely, if this is
not the case, then some ratio xjx^k, so that for some v we have xfaJx^^Q or
v(xt)^v(Xj), which has the consequence that H(x)>0.

Gauss' Lemma says that
v(f)+f(g)

for polynomials f,g, and this implies that H(fg) = H(f)+H(g). Repeated appli-
cation of Gauss' Lemma shows that if/(Z) =_/[,(Ar—a1)...(A

r—ad), and if v is
extended in some way to .£(«!, ...,ad), then

(2.2) v(J) = r(/o) + S min (0, K«i)) = ^(/o) + S
t-=l i=l

Thus if ĉ eAT, then

(2.3) H(«i) = -ST(«*)<-S(»(/)

It further follows from (2.2) that

(2.4) t < / K < / o O

more generally that

(2.5) K f X K / o - i x " * , - ^ (

The discriminant

^=/§d-2 n
is a polynomial of degree 2d— 2 in the coefficients of/, and hence

(2.6) v(D)Z(2d-2)v(f).
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[7] Thue's equation over function fields 391

Now D divided by (ĉ —<x̂ f is a polynomial of degree at most 2d— 2 in each <xit

so that by (2.5)
»(£/(«!-aa)2) > (2rf-2) i>(/)

and

(2.7)

In a similar way it is seen that

( 2 8 )

Finally, D divided by (/o(ai~a2) ••• (<H~0id))2 is a polynomial in each o^ of degree
at most 2d-A, so that by (2.5),

and

(2.9)

Now let L be an extension of K of degree A. Write V\ v if the valuation F of L/k
is an extension of the valuation v of K/k. If F has ramification index er over v,
the value group of Fis ey1 Z. But we now want our valuations to have value group
Z, and hence we renormalize Fto have value group Z, so that now V(x) = erv(x)
for xek. It is well known that

rw v

and therefore

(2.10) XV(x) = Av(x) and
F|o Fit)

if xeK and xeAT". If x e ^ " we may form both the height HK(x) defined over
K and the height H^x) defined over L. In view of (2.10) we have

(2.11) HL(x) = &HK(x).

Suppose f(X) = / o x A +--+. /A is irreducible over K, let a be a root of/, and let
L = K(a), so that [L : A"] = A. We claim that

(2.12) </") = (o)

for any valuation v of K/k. For if L' is the splitting field of/ over ĴT and if/ has
roots a = al5 Ota,..., aA in L', then every valuation V of L'/k has
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by (2.2). Given a valuation v of K/k and summing over all its extensions V' to L',
we obtain

(2.13) A't</-) = A'</-0)+i; S V ' W ,
i=l F'lo

where A' = [V : K], Since a = a11...,aA are conjugates,

£ S V'(«i) = A S V'(«) = A S S V'(a)
<=1 F'|» F'|» F|» F'lF

of £ of £ '

F|o

Dividing (2.13) and the last equation by A' we obtain (2.12).

3. Geometry of numbers in function fields

Let K be a function field (in one variable) over the ground field k. We allow
more generality in this section than in the rest of the paper: we assume k to be
algebraically closed in K, but k need not be algebraically closed or be of character-
istic zero. Prime divisors of K/k will be denoted by ^5. With fy is associated a
"place" of K/k with a residue class field which is a finite algebraic extension of k,
of a degree d(ty) called the degree of *|B. Also associated with ty is a valuation
i>sp with value group Z, the integers. The group of divisors is the free abelian
multiplicative group generated by the prime divisors. The definition of the degree
is extended from prime divisors to divisors in general by the rule that
d(WB) = d0S)+d08) for any divisors % 33. Further write v$($f) = n if 3̂ occurs
with exponent n in the representation of 21 as a product of prime divisors.

Define L(20 as the set of XeK having v%{X)^v^0) for every % Then*£(3T)
turns out to be a finite dimensional vector space over k; we denote its dimension
by /(5T). Riemann's Theorem (which is part of the Riemann-Roch Theorem)
asserts that

for a certain integer g depending only on K/k. The smallest integer g with this
property turns out to be non-negative and is called the genus of K/k.

It is known (Eichler (1963); see also Armitage (1967)) that the Riemann-Roch
Theorem is a consequence of the analogue of Minkowski's Geometry of Numbers
where integers and reals are replaced by polynomials and power series, respectively;
this new type of Geometry of Numbers was first studied by Mahler (1940). Our
next theorem contains both Riemann's Theorem and Mahler's analogue of
Minkowski's Linear Forms Theorem.
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[9] Thue's equation over function fields 393

Let ĵ} be a divisor and A = (ay) an (n x «)-matrix with entries in K^, the
completion of K with respect to Vy. Write Ly(A) for the set of n-tuples (xv.. .,xn) eKn

having

(3.1)

VyQtnl *! + •••+ {<*«„ Xn) > 0.

Ly(A) is easily seen to be a vector space over k.
A matrix repartition stf will be a mapping S$->Ay from the set of prime divisors

into matrices such that Ay = I, the identity matrix, for all but finitely many <p.
We put

With stf we associate

which consists of (xlt ..;Xn) having (3.1) for each ^}, and which is obviously a
vector space over k. Writing l(s/) for dimkL(sf) we have

THEOREM 3. l(sf)>d(s/)+n-ng.

The case n = 1 is Riemann's Theorem. For if Ay — (txy) and if we put
% = Uyv¥a^\ then d($C) = d{sf) and L^H'1) = L(stf). Conversely, given 31 there
is an s& with d{s£) — d<^S) and L(J/) = L(%~x). The constant n—ng in the theorem
is best possible as may be seen by choosing suitable diagonal matrices Ay. If some
Ay is singular, then p(det^sp) =co, and the theorem asserts that l(sf) = co.
Many proofs are possible; we choose here to deduce everything from Riemann's
Theorem.

PROOF. The inductive step from n — 1 to n is as follows. We first reduce the case
where some Ay is singular to the case where each Ay is non-singular. If
Xx ax +... + An an = 0 is a non-trivial relation of linear dependence of the rows of
Ay, suppose without loss of generality that t>sp(Aj)>... >Vy(Xn). Then

with vQi^^O, and the n inequalities (3.1) follow from the first « —1 inequalities.
Continuing in this way we see that after reordering, the first rows of Ay, say r <n
rows, will be linearly independent, and the n inequalities (3.1) follow from the
first r inequalities. We can choose a non-singular A'y whose first r rows are the
same as those of Ay, and which has Vyi&et A'y) arbitrarily large. Let stf' be obtained
from s& by replacing each singular Ay by A'y. Then L(s/') = L(jtf') and

d(s#')+n—ng. Since we can make d(s/') arbitrarily large, we get l(sf) = oo.

https://doi.org/10.1017/S1446788700021406 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700021406


394 Wolfgang M. Schmidt [10]

We may thus suppose that each Ay is non-singular. Suppose without loss of
generality that ^ ( o i f O ^ " - ^ ^ ^ ? ' ) - Then for a given % the system (3.1) of
inequalities is equivalent to the one obtained by subtracting affllaUff* ^mes

ai?' xi + • • • + an?' *» fr°m as$' *i + • • • + a2^ x
n- We thus may suppose without loss

of generality that a^ ' = 0, and more generally that a^5' = ... = a{$' = 0. Then A%
is of the form

<***>

»

o js<!> ...

say.
We know from our induction hypothesis that («— l)-tuples (x2, •••,xn) having

(3.2) Vy(P^

for all 3̂ form a vector space L{3&)) over k of dimension

2

Suppose the matrices A% are distinct from / for S$ in the finite set II. Choose a
large positive integer c and write L(#) for the set of xxeShaving

-c for $ e n

By Riemann's Theorem, L(^) is a vector space of dimension

> c S

So if L{3§)+LC^) consists of «-tuples (xlt ...,xn) with

xxeIJ&) and
then

If c is chosen sufficiently large, then

(3.3)

for every ^Jell and every n-tuple in L(8B)+1Jfg)\ this follows from the fact that
(since B^ is non-singular) a<^)xi+... + a.^)xn is a linear combination of

f *„(/ = 2,...,»), so that »,(«<,*>*,+...+«{?»*„)>-c by (3.2).
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[11] Thue's equation over function fields 395

But of course what we want in L(sf) is that

(3.4) vv(oc[WXl+.

LEMMA A. Let S be a vector space over k consisting of certain n-tuples (xt, ...,xn)
with components in K, and suppose that

for some particular ty and every (x1,...,xn)eS. Then ifS' is the subspace ofS where

- ( / - 1 ) ,
we have

dim 5"> dim S-

Assuming the truth of the lemma, we may decrease c to c— 1 in (3.3) for one
particular Spell, to obtain a subspace S' of L(&&)+LC&) of dimension
^ dim (L(^)+£(#))-</0P). Gradually reducing c to 0 for this particular % we
get a subspace 5" of U@)+L(<g) of dimension > dim (Z-O^)+£(#))-a/(<P). If
we reduce c to 0 for every ^3eII, we obtain a subspace S" of dimension

dim 5" > dim (£($)+£(?))-c

Since Sm is contained in L{$f), the theorem will follow.
As for the lemma, it will suffice to show that any d(S$) +1 elements

xi — (xn> •••>xin) °f S n a v e a linear combination which lies in 5". Let j3 be so that
Vy(fi) = /. The image of j3(a^' xn+... + a<*>xin) under the place $ is an element
yi in the residue class field of ^5. This residue class field is of degree rf(^S) over k,
so that we have a non-trivial relation

c1y1+... + c<j(5p)+1yd(5p)+1 = 0

with coefficients in k. Thus setting

X = C 1 X 1 + ... +C(j(gj)+iXd((p)+1 = ( # ! , . . . , X , , ) ,

say, we have v^(a.^ jq +... + aj*> xn)) > 0, so that

andxeS".
The following is now obvious:

COROLLARY 3.1. Suppose that for each 3̂ the inequalities (3.1) are replaced by

(3.5)
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where the integers c ^ ' are zero with finitely many exceptions. Put

()
sp

The solutions (x1,...,xn)eKn of (3.5) form a k-vector space of dimension

>d(s/)-d(c)+n-ng.

4. Linear equations

From here on k will again be of characteristic zero and algebraically closed.
Let K/k be a function field of genus g.

THEOREM 4. Let Lx,...,Lsbe extensions of K of respective degrees A(l),..., A(s),
put d= A(l)+. . .+A(s) , and suppose that n>d. For i= 1, ...,s let y* = (ya,..-,yin)
be a non-zero vector in L% of height Hfa?) over Lt. Then there is a non-zero
x = (x1,...,xn)eKnwith

(4.1)

having

^ ... + H8(ys)+ng).

PROOF. All but finitely many valuations v of K/k are unramified in Lt, and all but
finitely many valuations F$ of LJk have

(4.2) min (F^F*), • •., V/yin)) = 0.

Pick a valuation v0 of K/k which is unramified in LVt...,Ls and such that for
i = l,...,s each extension Vt to Lt satisfies (4.2). Then v0 extends to A(/) distinct
valuations Va, ...,ViAH) in Lt. There are A(i) embeddings <pa, •••,<PiA(i) of Lt into
the completion K of K with respect to v0; write $?j3-(z) = z(i3). The valuations Vtj

are then given by V^z) = %(2(ii)) 0" = h —,s;j = 1,..., A(/)).
Consider the hnear form

If JG<U>, ...,fi(1A(1)) are linearly dependent, say c1Q
ai) + ... + cMl)&wi» = 0 with

CjEK, we may suppose that vo(cAil))^... <yo(ci). Dividing by cA(1) and changing
the notation we obtain

with D0(OJ)^0. Continuing in this fashion and reordering, we obtain linearly
independent forms fi(11), ...,fi(1$(1) ) such that each £( W ) is a combination of these
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[13] Thue's equation over function fields 397

forms with coefficients an = aft having vo(aft)>0. Next, if £ < U ) , . . . , £ ( 1 I 1 > ( 1 » ,

£(21>, ...,£(2A<2» are linearly dependent, say

«x £<U) + . . . + u9to £'(ia><1» + «i £( 2 1 ) + . . . + «A(2) £
(2A(2» = 0,

we may suppose that vo(uA(2)) <.. • sSt>0("i)>
 s o t n a t with a different notation we

obtain

£<2A(2)> = £<2) £(11) + _ + £(2)^ £UA<1» + fl(2) £(21) + _

with t>0(a,(2)) > 0. Continuing and reordering we obtain linearly independent forms
£(11>,...,£(W'(1»,£(21),...,fl(2a)(2» such that each £««> is a linear combination of
these forms in such a way that the coefficient aft of £<2I) has vo(aft)^O. It is
possible that each £<23> is a linear combination of £(11>, ...,£(1All>), in which case
A(2) 4 0. Repeating this process with the forms £(33), etc., we finally get linearly
independent forms £(11), ...,£(14>(1)), . . . ,£ ( s l ) , ...,£(s*(s) ) such that each £<«» is a
linear combination of the forms £<W) with h <, i and K /< O(A) where the coefficient

The equations £(i3)(x) = 0 (1 ^ r ^ j , l^j^A(i)) define a subspace of «-space
of dimension

) - . . .-®(s) = n - O = e,

say. After reordering of coordinates, the equations of this subspace will be

(4.3) xi = bixx1+...+biexe (i = e+l,...,n),

with coefficients bti having »0(6y) ̂  0.
Let Pi(i=\,...,s) be the smallest integer with Pi>A(i)~1Hi(yi), and define

(Pt+1 i f y = l ,

[P^ otherwise.

Let Q be the smallest integer with

(4.4) Q>e-H-% T.Ptf+Tig+1-n).

The system of inequalities

(4.5a)

(4.5b)

(4.5c)
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is a system such as (3.5) in Corollary 3.1. We have A% = I unless ^3 = *po, the
prime divisor belonging to v0. Moreover vo(detA^^0 since

min(t>0(j<f ), ...,Po(yg*>)) = mnO^y^, -,VtfO>fn)) = 0

by our choice of v0 below (4.2). Thus d(sf) ^ 0. Since each d(ty) = 1, since cj*> = 0
unless $ = ty0, and since

s <s>U)

we find that

d(sf) - d{c)+n - ng > 0.

By Corollary 3.1 there is a non-zero x = (xx, ...,xn)eKn with (4.5a), (4.5b), (4.5c).
Since each £<w> is a linear combination of £(11>, ...,£(1<I>(1)) with coefficients

afi having i;0(a<.̂ )^0> w e have

(4.6)

by (4.5b).
Now if Vx ranges over the valuations of Ljk,

> ASPo(fiW)(»))+ S
3=1 FiJUo

by (4.5a); and by (4.5b) and (4.6) this is

(4.7) > A(l) Px +1 + Smin (^(ju), . . . ,

since by our choice of v0 below (4.2) the minimum in (4.7) is zero if ^l^o. Since
A(l)P1+l>H1(y1), and by the definition of i?x(yi) we obtain

An appeal to the sum formula in LJk yields

(4.8) x1yu+...+xnyln = 0.

Since each £(2j) is a linear combination of £(11), ...,2aW)),2in), ...,fi(24>(2»,
since £(11)(x) = ... = £(111>(1»(x) = 0 by (4.8), and since the coefficient a'.2) of
in the combination has vo(a^f) > 0, we have
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by (4.5b). If 0(2) = 0, then

(4.9)

more generally fi(2j)(x) = 0, follows from (4.8). If 0(2) >0 we find that with V%

ranging over the valuation of LJk,

which again implies (4.9).
Continuing in this manner we see that (4.1) holds for each i, hence that

£<i3)(x) = 0 for each i,j. Thus (4.3) holds, which in conjunction with (4.5c) yields
vo(Xj)> -Q (j = 1,..-,«), so that by (4.5a) we get

(4.10) HK(x) = -Smin^Xi ) , ...,!;(*„))< -mm(vo(Xj), ...,vo(xn))^Q.
V

Now when O(i) > 0 we have

3=1

and
8 1>U)

S

- ( e - 1 ) .

By the definition of Q involving (4,4) we have

Q < er^H&J+...+Hs(ys)+ng),

and the theorem follows from (4.10) and from e = n—<b^n-d.

5. Construction of a differential equation

Let K/k be a function field. Assume that we are given an element TeK, T$k;
then T is transcendental over k. Thus we have the function fields

Each valuation v of K/k is the extension of some valuation u of k(T)/k; denote the
ramification index of v over u by ev. (v has value group Z and hence u has value
group eBZ.) The valuation M«, = — deg of k(T)/k with uJX) = — 1 will be called
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the "infinite valuation". Extensions of ux to K will be called "infinite valuations";
the other valuations of K/k will be called "finite". The divisor

s>= n ^r1.
v finite

where S$v is the prime divisor associated with v is the different. Its degree is

d($)= S (e . - l ) .
v finite

The derivation with respect to T in k(T) may be uniquely extended to a derivation
in K, and indeed in any finite algebraic extension of K. Denote the derivation of JC
by x' or by dx/dT.

LEMMA B. Suppose xeK. Then
(a) v(x')^v(x)+sv ifv is infinite,
(b) v(x')^v(x)—ev ifv is finite,
(c) v (JC') ̂  1 — £„ if v is finite and v(x) > 0.

PROOF. If v is infinite, then there is an embedding of K into a field k((Tv)) of
formal power series in a quantity Tv such that v{caT%+ca+1T%+1+...) = a and
T= 1/T%. Then v(dx/dTv)^v(x)-1 and v(dT/dTv) = -sv-1, so that

»(*') = p^fe/dF) = v(dx/dTv)-v(dT/dTv)>v(x) + ev.

If f is finite, then t;(r— c) = 0 for a unique ce t , and there is an embedding of K
into a field &((T»)) such that v(caT%+...) = a and T=c+T%. We have
v(dx/dTv)^v(x)-l and v(dT/dTv) = ev-l, whence i?(x')>v(x)-ev. But if v(x)^0
then v(dx/dTv) ̂  0, and t>(x') 5= 1 - ev.

COROLLARY B.I. Ifx = (x,y)eK2, then v(x'y-y'x)>2v(x)-v(X>).

PROOF. Note that v(z)^0 imph'es v(z')^ -v(T>). So if, say, v(x)>v(y), then
v(x'y-y'x) = r0^x/y)')>»0^)-»(3)) = 2i*x)-»(D).

An element x e ^ will be called integral (over &[T]) if f(x)>0 for every finite
valuation. Given a polynomial/(Z) with integral coefficients put

Hjf) = ~ S </);
o infin

then Hao(f)^H(f)>0. If E(Z,Z') is a "differential polynomial", define v(E) as
with every other polynomial, i.e. by v(E) = v(x) where the components of x are
the coefficients of E, and define the height H(E) in the obvious way.
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THEOREM 5. Suppose f(X) = p0X
d+ ...+pd is a polynomial whose coefficients

lie in K and are integral, and which has no multiple factors. Suppose t>\d. Then
there is a non-zero differential polynomial

E(Z,Z') = (m0Z'-2 + .

with coefficients mit «$ in K and height

H(E)^(2t-d)-1((d+t-2)H(f)+dHx(f)+dd(T>)+2tg)

such that every root a. off(in some extension of K) satisfies the differential equation

(5.1) £(a,a') = 0.

(Note that in the above inequality, dd(T>) is equal to d, the degree of/, times
</(£), the degree of the different £).)

PROOF. Letf(X) =fi(X)f2(X)...fs(X) be the factorization of/over K, and let
af be a root offi(i= l,...,s). It will be enough if (5.1) is satisfied by c ,̂ ...,as.
The root ô  lies in a field Lt of degree A(i) over K, where A(f) is the degree of/.

The polynomial f(X) is a function f(X, T) of X and of T; denote its partial
derivatives by fx,fT. In view of/ ta j =/(a i ; T) = 0 we have/c(ai)a^+/r(af) = 0,
and here fx(.ai) ¥" 0 since oct is not a double root of / . The desired equation
E(au oQ = 0 may therefore be written in the form

(5.2) o4-2/r(ai)/Ko+... +/r(ai)w<_2 + a | / s :(a i)«0+... +fx(pci)nl = 0.

This is a linear equation in the n = 2t unknowns mo,...,mt_2, no,...,nt. It is of the
type (4.1) if y4 is the vector whose components are

(5-3) <4~2/r(at). • • • »/r(«i)> °4/x:O

We need

LEMMA C. The height H^) ofyieLf satisfies

(5.4) fl&O < (rf+ f - 2) #(/!)+A(0 F

PROOF. Observe that ĉ  occurs at most to the exponent d in fT(at) and at most
rf— 1 in/z(ai), so that oij occurs at most to the exponent d+t— 1 in the components
of yt. But the only term where the exponent d+t— 1 occurs is dpoaf+t-1 in
Thus if F4 is any valuation ofLJk, then

) + (d+t-
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Observe that V^p0oL^^V^f) by (2.4). If F* is infinite (that is, if it is an extension
of Wco), Fi(/T) > Viif) by (a) of Lemma B, since Fi is an extension of an infinite
valuation of K. We always have Vi(fx) 3* Vf(/), so that for F4 infinite,

TO>W) + («/+f-2)min (0,7,(0,)).

If F, is finite, it is an extension of a finite valuation v of A/fc, and we have v(f) ^ 0,
and v(fT)>\-ev by (c) of Lemma B, so that Vi{f), Vjifx)>0 and

(1 — £„) e^. (Here Fi (like any valuation with cap V) has value group Z,
so that Vt(x) = eFju(jc) for xeK where eVi is the ramification index.) Therefore
if Vj, is finite,

V&d >{d+t-2)xxAn (0, V^))+(l-ev) ev.
Now

S S(l-«O«*, = A(i) S (l-£,) = -
« finite Vi\v v finite

and
S S nun (0, F ^ ) = 2 (-
v Vi\v v

by (2.12), where pi0 is the leading coefficient offt. Finally

S W f
cinlin Vi\v cinfin

Combining our estimates we obtain the desired (5.4).
Gauss' Lemma together with A(l)+...+A(s) = d yields

...+ H8(ys) <(«/+/- 2) H(J)+dHJf)+d- d(T>).

Theorem 5 is now an immediate consequence of Theorem 4.

COROLLARY 5.1. Whether f(X) in Theorem 5 has integral coefficients or not, we can
always find a differential polynomial E(Z,Z') with the desired properties and with

(5.5) H(E) ^ {It - d)-1 ((2d+1-2) H(f)+</(£) + (d+ 2t)g).

PROOF. Let vx be an arbitrary infinite valuation of K\k. By Riemann's Theorem
there is a A ̂  0 in K having

v(f)-g.

Putting/j = A/we have i?(/i) > 0 if v is finite, so that the coefficients of/i are integral.
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Moreover, #(/i) = H{f) and

= - S (v
vvatin

It will suffice to apply Theorem 5 tofv

Up to now T was fairly arbitrary. We now have

LEMMA D. For a suitable choice ofT,

(5.6)

PROOF. Pick an arbitrary prime divisor and denote it by $<„. By Riemann's
Theorem the elements TeK having

v(T)>0 i

form a vector space of dimension ^2 , which therefore contains an element T$k.
The divisor of T is

wheren^g+l and 9Ji is integral. The degree [K: k(T)] = n (Deuring (1972), § 11).
Now (see Eichler (1963), p. 150)

where t ) ' = n* ^P?"1 i s the "pseudo-different" of K over k(T). Thus

v inlin

since only v«> is infinite and sv = n. We get g = %(d(Ti)+n— 1)—n +1, and there-
fore d(T>) = 2 g + « -

6. Solutions of differential equations

Let k^k(T)sKbe as in the last section; again let X) be the different of K over
k[T], and rf(D) its degree.

THEOREM 5. Suppose oceK is a solution of a differential equation

(6.1) £(«,«') = M(a) a' -JV(a) = 0,

where M(X),N(X) are polynomials with coefficients in K and without common factor
of positive degree. Suppose the equation is not linear or Ricatti, that is, not with

https://doi.org/10.1017/S1446788700021406 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700021406


404 Wolfgang M. Schmidt [20]

degAf = 0 anddegN^l. Then

PROOF. Write M = m0X/'+...+mll, N = n0X
v+...+nv with mo,no#O. Fix a

valuation v of K/k at the moment, and suppose that

(6.2) v(M(a))>v(E).

Since a satisfies the equation

m0 a? +... + m^_x a. + (m^ - M (a)) = 0

whose coefficients have valuation ^ v(E), it follows from (2.4) that

If v is infinite (as defined in Section 5), we get v(a') > v(E) — I>(/M0) > 2(v(E)—^(
by part (a) of Lemma B. If v is finite, we obtain v(<x') > v{E)—v(mQ)—ev by part (b),
and if v(E)<v(m0) then this is > 2(v(E) - v(m0)) +1 - sv. If v(E) = v(m0), then
i>(a') > 1 - sv = 2(v(E) - v(m0)) +1 - sv by part (c) of Lemma B. Hence in all cases

v(oL')>2(v(E)-v(mQ))-v(Xi).

(Observe that v(E)^v(m0) by definition of v(E).) The differential equation (6.1)
implies that

(6.3) v(N(<x)) > v(M(oc)) + 2(v(E) - v(rn0)) - v(£).

The resultant R of M(X), N(X) may be written as

(6.4) R = M(X) V(X)+N(X) W(X),

where V(X), W(X) are certain polynomials defined in terms of determinaats. In
particular, V, W are of respective degrees < v— 1, [i— 1, and

Now since v(m0 a) ̂  v(E), it follows that

P C T 1 ^(a)) ̂ O + v - l+v-1) v(E), vimg-1 W(aj) Xjj. + v-1+fi-l) v(E).

Thus with

(6.3), (6.4) yield

v(rn% R) > v(M(oc)) + QJ. + v - 1 + w) t>(£) -
whence

(6.5) v(M(oc))^ -QJL+V- l)v(E)+w(v(mo)-v(E))+v(R)+v(X>).
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Since v(m0) > v(E), since V(R)^(JJ,+V)V(E) and since t>(2))>0, (6.5) is always true,
rrespective of (6.2).

Now either

6.6) v(m0 UP) < min (i>(/nx a?'1),..., vim^).

Then !>(moa'() = v(M{a)) and fxv{oi) = v(M(oi))-v(m0). Or if (6.6) is not true, then
>(m0 a.?) ̂  vinti a*"*) for some / (1< / < /x). Then i;(a*) > ̂ (/Wj)—t>(m0) > v(E) — v(m0),
vhence v(a)^v(E)—v(m0) and fiv(oc)^fi(v(E) — v(mQ)). So whether (6.6) is true or
lot,

JU min (0, v(oi)) > min (JJ.(V(E) - u(w0)), «(Af (a)) - v(m0)).

Jsing the sum formula for m§ M(a)~x we obtain

/xH(a) = - /xS min (0, v(a))
• •»

< -SminOt»(£:)-v(M(oc)), Qi-l)v(m0)).
V

nvolving (6.5) and once again the sum formula, we get

tH(a) < '%max(-(2n+v-l)v(E) + a)(v(mo)-v(E))+v(R)+v(5))
V

= 2 max ( - (2/x+v -1 + co) v(E) + v(T>), - v(R)+(1 - /x - a>) v(mj).
V

lecall that Et>»C£>) = d(£>), and note that

-v(R)+(l-n-w)v(m0) < -

;t then follows that

indif n>0, then

H(a) < p-i(2p + v + a, -1) H(E) + rf(D).

Now suppose that

By our assumption that the differential equation be neither linear nor Ricatti we
jet [i > 0. Further

= 6/U.+2
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and
(

as desired.
If v>2ju+2, we use the method of Osgood (1975) and Schmidt (1976). We set

a = I/a and we obtain a differential equation M{&) &' = #(<£) for a, of the same
type and same height: H(E) = H(E). But now the degrees p.,v have v<2j&+2.
We obtain H(a) = H(oc)^8H(E)+d(T)).

7. Solutions of the Thue Equation

We are interested in solutions x,yeK of

Rx,y) = 1,

where/is a form of degree d^ 3, without multiple factors and with coefficients in K.
We further suppose that/(Z, Y) is not divisible by X or by Y; this can always be
achieved by a linear change of variables with coefficients in k, and such a change of
variables will not affect heights. Then

f(X, Y) =MX-ai Y)...{X-ad Y) = g^X- Y)...(fldX- Y)

Again let Te K be transcendental over k. Assuming t> \d we can apply Corollary
5.1 to the polynomial f(X, 1) to construct a certain differential polynomial

E(Z,Z') = M(Z)Z'-N(Z) =

having Efo,a^ = 0(/ =\,...,d). Putting

G(Z,Z', W, W) = W'E(ZIW,(Z/W)')

= K Z ' - 2 + ...+m<_2fF'-2)(Z' W-W'Z)-(n0Z'+...+ntW
t)

we have G^,^, 1,0) = 0 and G(l,0,pi}p'J = 0 (i = 1,...,«/).

LEMMA E. Suppose x,yeK with

(7.1) ir(JC,>')=l onrf (7(x,x',y,

(i) TAe/i ift<d—l, the point x = (x,j) has height

(7.2) H(x) < (d-t-1)"1

(ii) Ift<dandifx is <5-integral for a finite set <5 of valuations, then

(7.3) n

PROOF. Write ^(p) = (d-2)v(f)-iv(D) where Z) is the discriminant off(X, 1),
and also of/(I, Y). We begin with the observation that by the sum formula and
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by (2.6),

2 min (0, #;)) = 2 min (\v{D), (d-2) v<J))
V V

(7.4) ^ E min {{d-1) v(f), (d- 2) v(f))

V

= -(</-1)H(/).

Now let X be the set of valuations having

dv(x)>4,(v),

and X' the set with dv(x)<ip(v). Then

(7.5) S v(x)=

Next, let ve%'. Suppose that

(7.6)

say. Let v be extended in some way to a valuation of the field Kfa, ...,<xd), and
suppose without loss of generality that

(7.7) v(x-a1y)>...>v{x-ady).

Then

and therefore

0 = p(l) = v(f(x,y)) = v

which by (2.9) is

< lv(D)-(d-2)v(J)+v(yd) + ti^-ix/y)).

We obtain

(7.8) tfai - (*/>)) ̂  (d- 2) v(f) - lv(D) - dv(j),

whence

by (7.6) and since D S S ' . Using (7.6) again we find that v(x/y)^0, v(ptj)>0. Taking
the derivative we obtain

https://doi.org/10.1017/S1446788700021406 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700021406


408 Wolfgang M. Schmidt [24]

by Lemma B, and therefore

> v(E)+#>) - dv(x) -1 - v(X>),
which in turn yields

(7.9) v(G(x,x',y,y'))>v(E)+f(v)-(d-t)v(x)-l-vCZ>).

This holds for ve%'. On the other hand, for every v,

(7.10) v(G(x,x',y,y'))>v(E) + tv(x)-v(5>)

by Corollary B.I. For veZ' we combine (7.9) and (7.10) to obtain

(7.11) min(id-t)v(x)+l,-tv(x))

>-v(G(x,x',y,y'))+v(E)-v(2»+min(0,iKvy).

(i) Now if d>t+1, we observe that

min ((d- t-\)v,0)> min ((d- t)v+l,-tv)

for every integer v, so that (7.11) yields

(d-t-l) 2 v(x)>- 2 v(G(x,x',y,y'))+ 2 v(E)- 2 <£)+ 2 min (0, #;)).
«EI' »€ X' ve%' v e X' D e l '

Using (7.5) and the sum formula for G(;C,;C',J,J/) we have

(d-t-l)%y(x)> 2 t;(G(x,x',j,/))+ 2 »(£)- S K2))+

Utilizing (7.10), (7.5) and (7.4) we obtain

> S v(E) +1 £ P(X) - 2 i;(D) + 2 min (0, #»))
t) D e l « »

^ - H(E) - (2d- 2) H(/) -

and (7.2) follows,
(ii) On the other hand if d> t, we observe that

rmn ((rf-0 f, 0) Ss min ((rf-0 0 +1, - ft>) - So

for all integers v, where 8V = 1 if v<0 and §„ = 0 otherwise. For (3-integral x
the number of v with t>(x)<0 is at most | S|, so that (7.11) yields

(d-t) 2 < x ) > - 2 C?(x,x',^/)+ S v(E)- 2
veZ' veZ' veZ' veZ'
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Continuing as in the case (i) we get

(d-t)Xv(x)>-H(E)-(2d-2)H(f)-d(S>)-\®\
V

and (7.3).

8. Proof of the theorem on Thue equations

Pick TeK according to Lemma D such that d(T>) <3g. Set

where e = 0 if d=Q (mod3), s = 1 if d= 1 (mod3) and e = - 1 if rfs2 (mod3).
Then t is integral with d/2<t<dfor d^3 and d/2<t<d-l for </^5. Construct a
differential polynomial £(Z,Z') according to Corollary 5.1, so that by (5.5),

H(E)<(d+2e)-1((id+e-6)H(f)+(l6d+2s)g).

If, say, d=2 (mod3), we have

H(E) < {d- 2)-1 ((Sd- 7) H(J)+(16rf- 2)^).

The right-hand side is a decreasing function of d, and substituting d = 5 we get

(8.1) # ( £ ) < lli/(/)+26>.

This estimate is also valid if d=0 or d= 1 (mod3). Define G(Z,Z', W, W) as in
Section 7.

It will suffice to consider solutions of the Thue equation f(x,y) = 1 with
At first we shall assume that

(8.2)

so that G(x,x',y,y')^0. If d> 5, part (i) of Lemma E yields

H(x) ̂  H (E)+3g+(d-e- 3)"1 (6d- 6) H(f).

It is easily seen that for d^5 the factor (d— s—3)~1(6d—6) is at most 12, so that
by (8.1),

(8.3) U(x)^23H(/)+29g.

If rfjs 3 and x is S-integral, part (ii) of Lemma E yields

H(x) < H(E)+3g+1S | + id- e)-1 (6d- 6) H(/).

The factor in front of H(/) is at most 6, and an appeal to (8.1) gives

(8.4) H
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Next, assume that

(8.5) E(x/y,(x/yy) = 0.

We may write E(Z,Z') = g(Z)E1(Z,Z'), where

EX(Z) = M(Z)Z'-N(Z)

and where M(Z),N(Z),g(Z) are polynomials such that M(Z),N(Z) have no
common factor. Clearly H(E) = H(EJ+H(g), and therefore H(EJ, H(g) < H(E).
Now if g(x/y) = 0, then

(8.6) H

by (2.3). The other possibility is that

(8.7) Ei(x/y,

If this differential equation in x/y is not linear or Ricatti, then by Theorem 5,

which then in view of (8.6) holds whenever (8.5) is true. Now f(x,y) = 1 yields
0 = v(f(x,y))>v(f)+dv(x), or -v(x)^d~1v(f). Further since H(x) = H(x/y),

H(x) = - 2 min (0, v(x)) = - 2 p(x) - 2 min (0, - i<x))

«: # ( x ) - r f - 1 2 min (0, t</-))

and substituting (8.1) we obtain

(8.8) H(x)^89H(/)+211g.

There remains the case when the differential equation (8.7) is linear or Ricatti.
Let v be a valuation of K/k, extended in some way to a valuation of Kfa,...,ad),
and suppose that (7.6) and (7.7) hold, so that (7.8) is true. If the differential equation
is linear, then any three solutions z, zx, z2 have

z—z-,
= cZ2-Z1

with cek, whence v(z—zj = v(z2—z1). In particular, with z = x/y, zx = c ,̂ z2 =
we have v((xly—<x^ = v(a2—aj, hence by (2.7)

(8.9) v((x/y) - «0 < MD) -(d-l) v(f).
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If the differential equation is Ricatti, then any four solutions z,z1,z2,z3 have

z—
z

-z1lz2-z1_
~zz\ Z2~ZZ

vith cek, whence v(z—z1)+v(z2—z3) — v(z—z3)+v(z2—zj. In particular,

v((x/y) -<*,)+»(«2 - as) = K(*/j) ~ 03)+»(«a - ai)-

f »((*/.)>)-ai^i^aa-a!), then again (8.9) by (2.7). Otherwise

(<*3 ~ ai) a n d v((x/y) - a3) = i;(a3 - a j ,

io that v((x/y) — a1) = t ;^—a1) + i;(a2—a^) — i ; ^ —03), and (2.8) yields (8.9) again.
Combining (8.9) with (7.8) we obtain

dv(y)>(2d-3)v(f)-v(D).

rhis is true under the sole condition (7.6), that is v(x) ^ v(y). A similar estimate
lolds under the condition that v(x) < v(y). Therefore

dmin (0, v(x), v(y)) > min (0, (2d- 3) v(f) - v(D)),

md using the sum formula for D we obtain

- S min did- 2) v(f), (2d- 3) v(f)) (by (2.6))

i\fter division by d we have

;8.10) H(x)«s2H(/).

If «/> 5 we may combine (8.3), (8.8) and (8.10) to obtain part (i) of Theorem 1.
[f d^3 and x is S-integral we combine (8.4), (8.8) and (8.10) to obtain

(8.11) H(x)<89H(/)+211*+|©|.

The desired part (ii) of Theorem 1 follows immediately if g> 0. If g = 0, then
K = k(T) for some T. We may suppose that v0 = — deg lies in Q. For if cek and
the valuation v with v(T-c) = 1 lies in 6 , replace T by ^^(T-c)-1. The
extension field L = ^ ( r 1 ^ ) = A:(r1/7t) has again genus 0, but H^x) = «H(x) and
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HjrX/) = «H(/). Since v0 is completely ramified in L, the set <5L of extensions of
elements of S to I, has cardinality \QL\^n(\Q\-l) + l. Thus by (8.11), applied
inL,

«H(x) = H L \

Since n is arbitrary, H(x) < 89H(/)+1 <51 - 1 .

9. Some genus estimates

LEMMA F. Let K/k be afunctionfield of genus g. Let zbeinK but not a square in K.
Then L = K(*Jz) has genus

PROOF. We have (Eichler (1963), Ch. III.3, formula (10))

gL = g(L/K) + [L:K]g = g(L/K)+2g

where (Eichler (1963), formula (9))

and g(X>L/K) is the ramification index of L over K. It is (Eichler (1963), Ch. III.2,
formula (36)) equal to Y,v{ev— 1) where V runs through the valuations of L/k
and er is the ramification index of Fover K. Suppose that the principal divisor (z)
in K is of the form

with distinct prime divisors <px,...,^Sr, Gx,...,Zit. Then a prime divisor 3̂ will
ramify in the extension field L precisely if 5̂ is equal to some S^t with odd at, or
to some jQy with odd bp and moreover the ramification index is 2 in this case. So

Now
H(z) = Hx(z) = - 2 min (0, v(z)) = bx+...+bt

We obtain g{£>L/K)<2H(z), whence g(LIK)^H(z) — 1, whence the lemma.

LEMMA G. Z-ef .£/£ 6e afunctionfield of genus g, and let zx, z2, z3 ie /n K with
heights Ufa) ^ H where H^l. Then L = K(Jzl9 /̂z2, ̂ 3) ^ ^ genus

(9.1)

A is the degree [L: K].
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PROOF. The field JLj = K(yjzj) has by the preceding lemma genus

This holds even if zx is a square in K, for then g^ = g^lg^lg+H—l. Now
H i j ^ ^ 2 H K ( z ^ ^ 2 H , so that a second application of Lemma F yields
g2^2g1+2H— 1 for the genus g2 of Ki^z^,^Zg), and therefore

A third application of Lemma F yields

If A = 1 we have gL = g, if A = 2 we have gL<:2g+H— 1, if A = 4 we have
£ L < 4 £ + 4 # - 3 , and if A = 8 then gL^ig+l2H-7. The estimate (9.1) is true
in each case.

LEMMA H. Let f(X) =f0X
d+...+fd be a polynomial whose coefficients are

polynomials in T (they lie in k[T]) of degree ^m. Let K be the splitting field off
over k(T), and A the degree ofK over k(T). Then Kjk has genus

In the special case whenf(X) =f0X
d+fd,

PROOF. We may suppose that the roots of /are distinct. If cek and fo(c)^ 0,
D(c) T̂ O where D is the discriminant, then we claim that the valuation with
v(T-c) = 1 is unramified in K. For let al5 ...,ad be the roots of/(Z) =f(X,T).
(We recall that/is a polynomial in Talso. The splitting field is K = k(T, <*!,..., <xd).)
The roots off(X,c) are d distinct elements ax,...,ad in k. Pick cx,...,cd in k such
that

generates K over k(T) and that the d\ numbers

where a runs through the permutations of 1,..., d, are distinct. The field polynomial
of a over k(T) is a divisor of

where aa = c1aail) + ... + cdxa(d). The image of the latter polynomial in the
residue class field associated with v is TlaiX—a^), hence has distinct roots, and

https://doi.org/10.1017/S1446788700021406 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700021406


414 Wolfgang M. Schmidt [30]

hence also the image of the field polynomial of a has distinct roots. Hence v is
indeed unramified.

Now degfo+degD^m+(2d— 2)m = (2d— l)m, and being overly generous and
allowing for the valuation »„ = — deg, we see that at most (2d— \)m+1 valuations
v of k(T) ramify in K. If v does ramify, the sum of ev— 1 over the extensions V
is at most A - 1 . So in the notation of Eichler ((1963), Ch. III.2 (36)),

-1 ) «2d-1) m +1).

Again (Eichler (1963), Ch. III.3 (5)),

In the more special case there are at most 2m valuations v which ramify in K.
One obtains #(3))<A— l)-2m and therefore

10. Solutions of the hyperelliptic equation

In the equation

(10.1) /=/(*)

set/(Z) =f1(X)g\X) where fx{X) is square free and where the leading coefficient
of g is 1. Then if v is any valuation, v(g) < 0, whence

v(f) = min (0, v(f)) = min (0, v(JJ+2v(g)) < min (0, vifj) = v(/i),

and therefore H C / ^ ^ H ^ . Since/(x) is a square in AT precisely when/x(x) is, we
may replace / by fx. Since by hypothesis / contains at least three linear factors
which occur to an odd power, d e g / ^ 3 . Thus we may suppose without loss of
generality that f is square free of degree d^3. Write

We remark that if !£ is any set of valuations, then

ffo f)

= - 2 v(f)- E v(fo)< - S y(f) = H</).
VeZ

Given a solution of (10.1) where x,yeK and x is ©-integral, we define divisors
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Sfti. $ii (i = 1, ••-, d) by the rule that the principal divisor

%,

and that

(—v(x—oj) if »(x—<xi)<0 and o^<3,

0 otherwise.

We next define ^,93* by the rule that 9^ = 3lf 93* and that (̂SBi) = 0 or 1 for
every valuation v. In particular this implies that

(10.3)

LEMMA I.

(0

(ii) Forv$<5 and v(J) > 0,
d

£y <Ae discriminant off.

PROOF, (i) Since v(x) > 0 for v $ (3, we have

min (0, D(X—aj) = min (0,
whence by (2.2),

= - S min(0, »(*-oO) = - S min(0, Ko^) = -v(flfQ).
i <

(ii) Suppose S ^ i ^ ^ i ) = z> 1, so that f(5Bf) = 1 for z values of i between 1
and d; say, v08t) = z for ZG3 with |2S| = z. Then v(x—a^^l for / e 3 and

aj)> 1 for iJe^S, so that

On the other hand by (2.5),

2v(ft1)+ 22 v(cci-ocj)^(2d-2)v(f)>0,
i<3

so that
v(D)>z(z-\)

and therefore t?(D) > z if z> 2.
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There remains the case when z = 1. By (10.3), (2.5), we have

= vV° n (.x-
and therefore the divisor

has valuation >z = 1. But this divisor equals (/(x))/(9l ... SLj)2, so is a complete
square, and hence has valuation at least 2. Since vffix... 83 d) = z = 1, we find that

Suppose that, say, v(aj <... «S ̂ (aj < 0 < t>(aa+1) <... < v(ad), where possibly a = 0.
Then

and
- 2) *(«,) + (2rf- 4) ^

v(aa)) >2d-2>l=z.

v i

COROLLARY I.I.

(0

(ii)

PROOF, (i) By the construction of SDt̂  and by Lemma I, the double sum in
question is

- S v(f/U
S

which is at most H(/) by remark (10.2).
(ii) By the construction of 33* and by Lemma I, the double sum in question is

< 2 v(D)+d £ 1
<5 S

or »(/)<0

or«(/)<0

D(/)<0

-2)H(/).
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Write

(10.4) Oi = j:v(%).
V

By Riemann's Theorem there is a non-zero y^K with

for »# v0,

where v0 is some arbitrary valuation picked in advance. Define zi by the equation

(10.5) x-on

LEMMA J.

S

PROOF. H(Z<) = H(l/z<) = H(^/(*-aj)), so that

= -2min(0 ,

= - S min (0,

max (0, at)

An appeal to Corollary I.I yields

and Lemma J.
It is a consequence of the lemma that there are three among zl,...,zd whose

heights do not exceed

This yields the

COROLLARY J.I. After suitable ordering of zx, ...,zd, we have

(/= 1,2,3).
14
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11. Proof of the theorem on hyperelliptic equations

Let t,i be quantities with £f = z{ (i = 1,2,3), L the extension field L = K(X\, £2, £g),
A the degree A = [L: K] and gL the genus of L/k. It follows from Corollary J.I
and Lemma G that

(11.1) ft;<A(14H(O+5|e| + l<te).

Valuations v of Kaie extended to valuations Fof L. We normalize these valuations
V to have again value group Z. Let QL be the set of valuations V which extend
valuations v of S.

Put

so that by (10.5),

(11.2)

for every cyclic permutation (i,j,h) of 1,2,3).

LEMMA K.

(i) 2
r5

(ii) 2

PROOF.

(0 F0?i) > min

and for F^ S x this is greater than or equal to

So
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by Corollary 1.1.
(ii) 2 V(rli)= 2 F ( % ^ ) - 2

rS rS FS

by (11.2) and part (i), applied to fy in place of %. Now

-« , ) = A 2 «<«*-«,) = - A 2

by (2.4) and by remark (10.2), and (ii) follows.

LEMMA L. There are et, ̂  (i = 1,2,3) in L with

(11.3) m = e5iVi 0-= 1,2,3)

and with

(11.4) HifoJ) < 10AH(f) + 5A | S | + 5 ^ .

PROOF. Pick some particular valuation Vo $ QL. We will find et with

(11.5) Vto»lV(ri forr^F0,

(11 -6) V0(£i) > Wotii) ~ 2AH(/) - A | S | -gL.

Namely, the number of F^ QL with F ^ ) ^ 0 is ^ 2AH(/) by the preceding lemma,
hence the total number of F with F ( % ) ^ 0 is sS2AH(/) +1 S x | <2AH(/) + A| S |.
Hence if we replace the righthand sides of (11.5), (11.6) by the next largest integers,
the sum will be < —gL, so that by Riemann's Theorem in L there is indeed a non-
zero ef in L having (11.5) and (11.6). If now t]'t is defined by (11.3), we obtain

= -2min(0,
F

= -min(0,5F0(ei)-F0(>?i))

LEMMA M. Putting
A = 30AH(/) + 15A | S | + 1 5 ^ ,

B = 446A+1055^+AH(/),
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we have

PROOF. Let %L be the subset of QL where

and %L~ the subset of ZL where minCFOx), V(e^), V(e^))<0. For VeZL we have
(using 2.4))

(11.7) Vie^mv^&Vi^-

From the definition of ijl5 -q2, r]3,

and therefore

iz = 0.
This is a Thue equation over L with coefficients rfv -rj'2, rj'3 in the variables sje3, ejsg.
The height of this Thue equation is

v

by Lemma L. Theorem 1 yields

Smin(F(e1/e3),

We obtain

min (F(e1/e3), K(e*/%), 0) + S _ ̂ 3 )

2H^ i+ i ^ S Ĉ/7/o)»

and here

S n/7/o) > 2 min (0, V(M>) = A Smin (0, v(f/f0)) > - bSSJ).

Since
Smin(F(1?i), V(V2), V(v'3),0)> -A,
v

we get

-446^-1055^-AH(0
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All our arguments so far go through with £3 replaced by — £3, whence -q^, t]2, TJ3

replaced by y2t,2+yslz = Vi> ~yaU-yi£v Ji ^1-^2^2 = %. respectively. This
change does not affect %L; but since -qx is changed into rj^ we get

min(0,KGh),Kfl?1))5> .2 min (0, V(Vl)) + S min(0, F ^ ) ^ - 2 5 ,
FS Ve%i

and therefore

min(0, F ^ ^ , F ( y 3 Q ) ^ - 4 5 .

Now \(x)^Y(x—0(2)4-V(o2), and taking the sum over valuations F in %L and
observing (2.3), (2.11) we obtain

(11.8) 2 Y(x)>-4B-AH(f).

Recall the definition of XL and define 1HL to be the set of valuations Fe <5L

with F(^3)^^F(a2—ocj). By changing f2 iQto — £2 every statement about %L goes
into a statement about 3iL, so that in particular (11.8) is true with %L replaced by
SR£. In view of F(ij3%) = F(a2-a1), every VeQL belongs to either ZL or 3{L,
and we obtain

F

So

The proof of Theorem 2 is now immediate. By (11.1) and by Lemma M we
have Hi(jc)sS106A(H(/)+g+|S|), whence the desired result as a consequence
of (2.11).

ADDED IN PROOF. Recently B. Dwork (private communication) has obtained
Corollary 1.1 for d~^4, and with a better bound on the degree. In fact he deals
with more general equations axdl+byd*+czd:> = 0. On the other hand it may be
seen that the method of the present paper in the special case of the equations of
Corollary 1.1 requires only d^4 and yields better estimates than stated.
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