
Bull. Aust. Math. Soc.
doi:10.1017/S0004972713000609

PROPERTY L AND COMMUTING EXPONENTIALS IN
DIMENSION AT MOST THREE

GERALD BOURGEOIS

Abstract

Let A, B be two square complex matrices of the same dimension n ≤ 3. We show that the following
conditions are equivalent. (i) There exists a finite subset U ⊂ N≥2 such that for every t ∈ N \ U,
exp(tA + B) = exp(tA) exp(B) = exp(B) exp(tA). (ii) The pair (A, B) has property L of Motzkin and
Taussky and exp(A + B) = exp(A) exp(B) = exp(B) exp(A). We also characterise the pairs of real matrices
(A, B) of dimension three, that satisfy the previous conditions.
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1. Introduction

Throughout this paper, we denote by N the set of positive integers and by Z∗ the
set of nonzero integers. For every n ∈ N, In (0n, respectively) denotes the identity
matrix (the zero matrix, respectively) of dimension n. For X ∈Mn(C), s(X) denotes
its spectrum, that is, the set of its eigenvalues. Two matrices A, B ∈Mn(C) are said to
be simultaneously triangularisable (abbreviated to ST) if there exists P ∈ GLn(C) such
that P−1AP and P−1BP are upper triangular matrices.

It is well known that the map exp: Mn(C)→ GLn(C) is not a homomorphism. Thus
it would be interesting to determine the matrices A, B ∈Mn(C) such that:

(i) eAeB = eBeA = eA+B; or more simply
(ii) eAeB = eA+B.

Unfortunately, the complete solution of (i) is known only for n = 2 and n = 3 (see [7])
and the complete solution of (ii) is known only for n = 2 (see [6]). In [2], the author
dealt with square matrices A, B ∈Mn(C), n = 2 or 3, satisfying the following more
restrictive condition:

for every t ∈ N, exp(tA + B) = exp(tA) exp(B) = exp(B) exp(tA). (1.1)

The author concluded that these matrices are ST. It appears that the above conclusion
is wrong in the case of dimension three. Indeed, Jean-Louis Tu communicated to the
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author the counterexample

A0 = 2iπ

1 0 0
0 2 0
0 0 0

 , B0 = 2iπ

2 1 1
1 3 −2
1 1 0

 . (1.2)

Clearly A0, B0 are not ST. However, it is easy to see that, for every t ∈ C, the
eigenvalues of tA0 + B0 are the entries of its diagonal. Moreover, for every t ∈ N,
the eigenvalues of tA0 + B0 belong to 2iπZ and are distinct. Therefore, for every t ∈ N,

exp(A0) = exp(B0) = exp(tA0 + B0) = I3.

In [8], Motzkin and Taussky introduced property L, as follows.

D 1.1. A pair (A, B) ∈Mn(C)2 has property L if there exist orderings of the
eigenvalues (λ j) j≤n, (µ j) j≤n of A, B such that for all (x, y) ∈ C2,

s(xA + yB) = (xλ j + yµ j) j≤n.

R 1.2. If A, B are ST, then the pair (A, B) has property L. The converse is false
in general, except when n = 2 (see [8]).

Verifying that (A, B) has property L can be done by a finite rational procedure. Let
χU denote the characteristic polynomial of U ∈Mn(C).

P 1.3. Let A, B ∈Mn(C). If there are orderings of the eigenvalues
(λ j) j, (µ j) j of A, B and (ti)1≤i≤n−1 ∈ (C \ {0})n−1 pairwise distinct, such that, for every
1 ≤ i ≤ n − 1, one has s(tiA + B) = (tiλ j + µ j) j, then (A, B) has property L.

P. Clearly χtA+B(T ) = T n +
∑n

k=1 Pk(t)T n−k, where Pk is a polynomial of degree k.
For instance, consider Pn(t) = αntn + · · · + α0, where αn = ± det(A), α0 = ± det(B) are
known. For every 1 ≤ i ≤ n − 1 we know

∑n−1
j=1 α jti j. Solving a Vandermonde system,

we obtain the (α j)1≤ j≤n−1. In the same way, we calculate the coefficients of the
(Pk)1≤k≤n−1 and χtA+B is determined. We conclude easily that, for every t ∈ C,
s(tA + B) = (tλ j + µ j) j and, by a continuity argument, that (A, B) has property L. �

Recently, in [10, Proposition 4], de Seguins Pazzis proved the following result.

P 1.4. A pair (A, B) ∈Mn(C)2 satisfying (1.1) has property L.

In this paper, we are interested in the converse of Proposition 1.4. We can wonder
whether the conditions eAeB = eBeA = eA+B and (A, B) having property L imply (1.1).
The answer is no. Indeed, the pair (A0, −2B0) (see (1.2)) has property L and exp(A0) =

exp(−2B0) = I3. Moreover, one has exp(tA0 − 2B0) = I3 if and only if t ∈ N \ {2, 3, 4}.
Therefore, (1.1) does not hold for this pair. Thus, we weaken (1.1) and define the
following condition:there exists a finite subset U ⊂ N≥2 such that, for all t ∈ N \ U,

exp(tA + B) = exp(tA) exp(B) = exp(B) exp(tA).
(1.3)
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We shall show that, in dimensions two and three, the pair of complex matrices (A, B)
satisfies (1.3) if and only if eA+B = eAeB = eBeA and (A, B) has property L. Finally, we
characterise the pairs of real matrices (A, B) of dimension three, that satisfy (1.3).

Studying expressions of the form tA + B is useful as shown by the following result.
Let A be an n × n matrix over C. Knowing the characteristic polynomial of the matrix
tA + X for each complex t and each n × n matrix X allows us to deduce Jordan’s form
of A (see [1]).

2. Property L and condition (1.3)

The following generalisation of the example (1.2) provides a partial converse of
Proposition 1.4.

P 2.1. Assume that A = diag(λ1, . . . , λn) ∈Mn(C) has n distinct eigenvalues
in 2iπZ, that B = [b jk] ∈Mn(C) is diagonalisable (where, for every j ≤ n, b j j ∈ 2iπZ)
and that the pair (A, B) has property L. Then the pair (A, B) satisfies (1.3).

P. Note that eA = In. According to [8, Theorem 1], for every t ∈ C,

s(tA + B) = (tλ j + b j j) j≤n.

Thus eB = In. Since for almost all t ∈ N, tA + B has n distinct eigenvalues in 2iπZ,
exp(tA + B) = In. �

D 2.2.

(1) The spectrum of A ∈Mn(C) is said to be 2iπ congruence-free (denoted by 2iπ
CF) if, for all λ, µ ∈ s(A), λ − µ < 2iπZ∗.

(2) Let log : GLn(C)→Mn(C) be the (noncontinuous) primary matrix function
associated to the principal branch of the logarithm, defined for z ∈ C∗ by
Im(log(z)) ∈ (−π, π] (see [3]). Thus, for every X ∈ GLn(C), s(log(X)) ⊂ {z ∈ C |
Im(z) ∈ (−π, π]}.

L 2.3. Let A ∈Mn(C). There exists a unique pair (F̃, ∆) ∈Mn(C)2 such that

A = F̃ + ∆, eF̃ = eA, e∆ = In and, for all λ ∈ s(F̃), Im(λ) ∈ (−π, π].

Moreover, both F̃ and ∆ are polynomials in A.

P. Necessarily, F̃ = log(eA). Let f : x ∈ U → ex ∈ C, where U is a complex
domain containing s(F̃). Then f is a holomorphic function such that f ′ is not zero
on U. Moreover, we can choose U such that f is one-to-one on U. According to [5,
Theorem 2], F̃ is a polynomial in eF̃ = eA. Therefore, F̃ is a polynomial in A. Let
∆ = A − F̃. Then AF̃ = F̃A and e∆ = eAe−F̃ = In. �

R 2.4. Note that s(F̃) is 2iπ CF, ∆ is diagonalisable and s(∆) ⊂ 2iπZ.

72 G. Bourgeois [3]
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In the following two results, we use the notation of Lemma 2.3.

L 2.5. Let (A, B) be a pair of n × n complex matrices such that eA+B = eAeB =

eBeA and AB , BA. Then log(eA) and log(eB) cannot be cyclic matrices.

P. Step 1. According to [9], s(A), s(B) are not 2iπ CF. Moreover, the equality

eA+Be−A = e−AeA+B = eB

implies that s(A + B) is not 2iπ CF. By Lemma 2.3, A = F̃ + ∆, B = G̃ + Θ, where
eF̃ = eA, eG̃ = eB and e∆ = eΘ = I3. Thus eF̃eG̃ = eG̃eF̃ . According to [11, Proof of
Theorem 1], F̃G̃ = G̃F̃.

Step 2. Assume, for instance, that F̃ is a cyclic matrix. Then the commutant of F̃ is
C[F̃]. Thus G̃∆ = ∆G̃ and F̃ + ∆ + Θ, G̃ commute. From eF̃+G̃ = eF̃+∆+Θ+G̃, we deduce
that eF̃ = eF̃+∆+Θ. According to [4, Theorem 4], F̃(∆ + Θ) = (∆ + Θ)F̃. Therefore,
Θ ∈ C[F̃] and ∆Θ = Θ∆. This implies AB = BA, which is a contradiction. �

R 2.6. The next two results concern the equation

eA+B = eAeB = eBeA

in dimension three. The first one can be derived from [7, Case (I), pages 165–166].
However, the proof, dated 1954, is difficult to read. Thus we give an alternative proof.

P 2.7. Let (A, B) be a pair of 3 × 3 complex matrices such that eA+B =

eAeB = eBeA and AB , BA. If C3 is an indecomposable 〈A, B〉 module, then there exist
σ ∈ C and two 3 × 3 complex matrices ∆ and F, that are polynomials in A, such that
A = σI3 + ∆ + F and e∆ = I3, F2 = 03. In the same way, there are τ ∈ C and two 3 × 3
complex matrices Θ and G, that are polynomials in B, such that B = τI3 + Θ + G and
eΘ = I3, G2 = 03. Moreover, FG = GF.

P. We use the decompositions A = F̃ + ∆, B = G̃ + Θ. By Lemma 2.5, F̃ has an
eigenvalue σ with multiplicity at least two and its minimal polynomial has degree at
most two. By Step 1 of the proof of Lemma 2.5, it remains to show that (F̃ − σI3)2 =

03. We put F = F̃ − σI3. Then s(F) = {0, 0, ∗} and, up to similarity, F has one of the
following three forms:

F =

0 0 0
0 0 0
0 0 λ

 , where λ , 0,

F = 03,

or

F =

0 1 0
0 0 0
0 0 0

 .

[4] Property L and commuting exponentials in dimension at most three 73
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In the last two cases, we are done. Assume

F =

0 0 0
0 0 0
0 0 λ

 , where λ , 0.

In the same way as for F̃, we can prove that there is τ ∈ C such that G = G̃ − τI3 is
similar to one of the previous three forms. Note that

eF+G = eFeG = eA−σI3 eB−τI3 = eA+B−(σ+τ)I3 .

Thus, if Im(s(F + G)) ⊂ ( − π, π], then F + G = log(eA+B−(σ+τ)I3 ). Clearly F + G also
has an eigenvalue with multiplicity at least two and its minimal polynomial has degree
at most two. Since F,G commute, we obtain for G three possible values.

Case 1: G =
( 0 0 0

0 0 0
0 0 z

)
. Then C3 is a decomposable 〈A, B〉 module.

Case 2: G =
( 0 1 0

0 0 0
0 0 0

)
. Then F + G = log(eA+B−(σ+τ)I3 ) but its minimal polynomial has

degree three, which is a contradiction.

Case 3: G =
( ν 0 0

0 0 0
0 0 0

)
, where ν , 0. We have F + G = log(eA+B−(σ+τ)I3 ) and necessarily

ν = λ. Moreover, s(F + G) is 2iπ CF and eF+G = eF+G+∆+Θ. According to [4,
Theorem 4], F + G and ∆ + Θ commute. The commutativity conditions [F, ∆] =

0, [G, Θ] = 0, [F + G, ∆ + Θ] = 0 imply that ∆ and Θ are diagonal matrices and that
AB = BA. This is a contradiction. �

D 2.8. Using the notation of Proposition 2.7, we say that

a pair (A, B) ∈M3(C)2 has property (∗)

if the Jordan–Chevalley decompositions of A, B, A + B are in the form

A = (σI3 + ∆) + F, (2.1)

B = (τI3 + Θ) + G, (2.2)

A + B = ((σ + τ)I3 + ∆ + Θ) + (F + G) (2.3)

and satisfy

F2 = G2 = FG = GF = 03,

e∆ = eΘ = e∆+Θ = I3

and

[F, Θ] = [∆,G].

74 G. Bourgeois [5]
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P 2.9. If (A, B) ∈M3(C)2 satisfies

eA+B = eAeB = eBeA, AB , BA

and is such that C3 is an indecomposable 〈A, B〉 module, then the pair (A, B) has
property (∗). Conversely, if the pair (A, B) has property (∗), then eA+B = eAeB = eBeA.

P. We use the notation and results of Proposition 2.7. Note that σI3 + ∆ is
diagonalisable, F is nilpotent and both are polynomials in A. Thus (2.1) and (2.2)
are the Jordan–Chevalley decompositions of A, B. Moreover,

eA = eσ(I3 + F),

eB = eτ(I3 + G),

and

eA+B = eσ+τ(I3 + F + G + FG),

with FG = GF. Thus F + G + FG is nilpotent. According to the proof of
Proposition 2.7, A + B = (ωI3 + Σ) + O with OΣ = ΣO, eΣ = I3, O2 = 03. We have
eA+B = eω(I3 + O) and then eω = eσ+τ, O = F + G + FG. Finally, O2 = 03 implies that
FG = 03 and (2.3) is the Jordan–Chevalley decomposition of A + B. Since ∆ + Θ and
F + G commute, [F, Θ] = [∆,G]. Obviously, e∆+Θ = I3. The last assertion is clear. �

We get the following result in dimension two.

T 2.10. A pair (A, B) ∈M2(C)2 satisfies (1.3) if and only if eA+B = eAeB = eBeA

and (A, B) has property L.

P. If (A, B) satisfies (1.3), then there exists t0 ∈ N such that etA+B = etAeB = eBetA

holds for every t ≥ t0. According to Proposition 1.4, the pair (t0A, B) has property
L, as does (A, B). Assume now that eA+B = eAeB = eBeA, (A, B) has property L and
AB , BA. According to [9], s(A) and s(B) are not 2iπ CF and, since n = 2, A, B are
diagonalisable. A homothety can be added to A or B and we may assume

A =

(
2iπλ 0

0 0

)
, s(B) = {2iπµ, 0}, where λ, µ ∈ Z∗.

Again, since n = 2, A and B are ST, that is, they have a common eigenvector. Thus we
may assume B =

( 2iπµ 1
0 0

)
(replacing, if necessary, λ with −λ or µ with −µ). Note that

eAeB = eA+B if and only if λ + µ , 0. If t ∈ N,

etAeB = eBetA = etA+B,

except possibly if t = −µ/λ. �

[6] Property L and commuting exponentials in dimension at most three 75
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R 2.11. The pair

A = iπ

(
1 0
0 −1

)
, B = π

(
−11i 6
16 11i

)
satisfies the condition eA+B = eAeB = eBeA but does not have property L.

Our main result, in dimension three, is as follows.

T 2.12. A pair (A, B) ∈M3(C)2 satisfies (1.3) if and only if eA+B = eAeB = eBeA

and (A, B) has property L.

P. We first suppose that (A, B) satisfies (1.3). Using the same argument as in the
proof of the necessary condition of Theorem 2.10, we can verify that eA+B = eAeB =

eBeA and (A, B) has property L.
Assume now that the pair (A, B) has property L, AB , BA and

eA+B = eAeB = eBeA.

If C3 is a decomposable 〈A, B〉 module, we are finished, using Theorem 2.10. Now,
suppose that C3 is an indecomposable 〈A, B〉 module.

Step 1. The pair (A, B) has property (∗). Using the notation of Proposition 2.9, we
obtain, for every t ∈ N,

etA = etσ(I3 + tF),

etAeB = eBetA = etσ+τ(I3 + tF + G),

etA+B = etσ+τet∆+Θ(I3 + tF + G).

Thus etA+B = etAeB = eBetA if and only if et∆+Θ = I3.

Step 2. The pair (∆ + F, Θ + G) has property L. We consider the associated orderings
s(∆ + F) = s(∆) = (λ j) j≤3 and s(Θ + G) = s(Θ) = (µ j) j≤3. If t ∈ C, then s(t(∆ + F) +

Θ + G) = s((t∆ + Θ) + (tF + G)) = (tλ j + µ j) j≤3. Since t∆ + Θ commutes with the
nilpotent matrix tF + G, s(t∆ + Θ) = (tλ j + µ j) j≤3 and the pair (∆, Θ) has property L.

Step 3. Since s(∆) ⊂ 2iπZ, s(Θ) ⊂ 2iπZ, if t ∈ N, then s(t∆ + Θ) ⊂ 2iπZ. Thus it
remains to prove that, for almost all t ∈ N, t∆ + Θ is diagonalisable. If ∆ and Θ

commute, we are done.
We assume that ∆ and Θ do not commute. Suppose that, for an infinite number of

values of t ∈ N, t∆ + Θ is not diagonalisable. Then, for these values of t, (tλ j + µ j) j≤3

contains at least two equal elements. Thus, for instance, for an infinite number
of values of t, tλ1 + µ1 = tλ2 + µ2. This implies that λ1 = λ2 and µ1 = µ2 and we
may assume that these eigenvalues are 0. Therefore, the associated orderings are
s(∆) = {0, 0, λ}, where λ ∈ 2iπZ∗, and s(Θ) = {0, 0, µ}, where µ ∈ 2iπZ∗. We may
assume that ∆ = diag(0, 0, λ). According to [8, Theorem 1],

Θ =

 W

(
u
v

)
(
p q

)
µ

 ,

76 G. Bourgeois [7]
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where W is a nilpotent 2 × 2 matrix and u, v, p, q are complex numbers. We know that
Θ and ∆ + Θ are diagonalisable, that is, their rank is one and λ + µ , 0. It remains to
show that, for almost all t ∈ N, rank(tA + B) = 1 and tλ + µ , 0.

Case 1. W =
( 0 1

0 0
)
. Therefore, rank(Θ) = 1 implies p = v = 0, µ = qu. It follows that

rank(∆ + Θ) = 1 implies λ = 0, which is a contradiction.

Case 2. W = 03. Therefore, rank(Θ) = rank(∆ + Θ) = 1 implies that

pu = pv = qu = qv = 0.

The previous condition implies that rank(t∆ + Θ) = 1, except if t = −µ/λ. �

C 2.13. Let A, B be square complex matrices of the same dimension at most
three, such that (A, B) has property L and eA+B = eAeB = eBeA. Then there exists α ∈ N
such that, for every integer t < [−α, α], etA+B = etAeB = eBetA and eA+tB = eAetB = etBeA.

P. Since A, B play the same role, it is sufficient to show the first part of the
assertion. Note that eB = e−AeA+B = eA+Be−A and (−A, A + B) has property L. Then
for t ∈ N large enough, e(1−t)A+B = e(1−t)AeB = eBe(1−t)A. �

3. The real case

If n = 2, we have the following result.

P 3.1 [2, Theorem 1]. Let A, B ∈M2(R) be such that there exists a finite
subset U ⊂ N≥2 such that, for all t ∈ N \ U,

exp(tA + B) = exp(tA) exp(B).

Then AB = BA.

However, if n = 3 there exist real pairs of matrices satisfying (1.3) that are not ST.

P 3.2. Let A, B ∈M3(R) be such that C3 is an indecomposable 〈A, B〉
module. Then the following two conditions are equivalent.

(i) The pair (A, B) satisfies (1.3) and AB , BA.
(ii) There exist σ, τ ∈ R such that the pair (A − σI3, B − τI3) is simultaneously

similar to the pair
 0 −2πk 0
2πk 0 0
0 0 0

 ,
 −ρ −2πl + θ −α
2πl + θ ρ β

2γ 2δ 0


 ,

where k, l ∈ Z∗ and α, β, γ, δ, ρ, θ are not all zero real numbers such that

γβ + αδ = 0, δρβ + γθβ + αγρ − αδθ = 0, ρ2 + θ2 + 2(βδ − αγ) = 0.
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P. Let (A, B) be a real pair satisfying (1.3) and AB , BA. We use the notation
of Proposition 2.9. We may assume σ = τ = 0. Since s(A) = s(∆) is not 2iπ CF and
e∆ = I3, s(A) is in the form {2iπk, −2iπk, 0}, where k ∈ Z∗. Thus F = 0 and A = ∆ is
diagonalisable over C. In the same way, s(B) = {2iπl, −2iπl, 0}, where l ∈ Z∗. Note
that (A, B) is simultaneously similar over R to (R, S ), where

R =

 0 −2πk 0
2πk 0 0
0 0 0

 , S = [si, j].

According to Theorem 2.12, if t ∈ R, then s(tR + S ) = {2iπ(tk + l), −2iπ(tk + l), 0}
(replacing, if necessary, l with −l). This is equivalent to:

for every t ∈ R, χtR+S (T ) = T 3 + 4π2(tk + l)2T.

We obtain an algebraic system in the unknowns (si, j)i, j. Solving this system, we obtain
the required form for S . �
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