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PROPERTY L AND COMMUTING EXPONENTIALS IN
DIMENSION AT MOST THREE

GERALD BOURGEOIS

Abstract

Let A, B be two square complex matrices of the same dimension n ≤ 3. We show that the following
conditions are equivalent. (i) There exists a finite subset U ⊂ N≥2 such that for every t ∈ N \ U,
exp(tA + B) = exp(tA) exp(B) = exp(B) exp(tA). (ii) The pair (A, B) has property L of Motzkin and
Taussky and exp(A + B) = exp(A) exp(B) = exp(B) exp(A). We also characterise the pairs of real matrices
(A, B) of dimension three, that satisfy the previous conditions.
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1. Introduction

Throughout this paper, we denote by N the set of positive integers and by Z∗ the
set of nonzero integers. For every n ∈ N, In (0n, respectively) denotes the identity
matrix (the zero matrix, respectively) of dimension n. For X ∈Mn(C), s(X) denotes
its spectrum, that is, the set of its eigenvalues. Two matrices A, B ∈Mn(C) are said to
be simultaneously triangularisable (abbreviated to ST) if there exists P ∈ GLn(C) such
that P−1AP and P−1BP are upper triangular matrices.

It is well known that the map exp: Mn(C)→ GLn(C) is not a homomorphism. Thus
it would be interesting to determine the matrices A, B ∈Mn(C) such that:

(i) eAeB = eBeA = eA+B; or more simply
(ii) eAeB = eA+B.

Unfortunately, the complete solution of (i) is known only for n = 2 and n = 3 (see [7])
and the complete solution of (ii) is known only for n = 2 (see [6]). In [2], the author
dealt with square matrices A, B ∈Mn(C), n = 2 or 3, satisfying the following more
restrictive condition:

for every t ∈ N, exp(tA + B) = exp(tA) exp(B) = exp(B) exp(tA). (1.1)

The author concluded that these matrices are ST. It appears that the above conclusion
is wrong in the case of dimension three. Indeed, Jean-Louis Tu communicated to the
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author the counterexample

A0 = 2iπ

1 0 0
0 2 0
0 0 0

 , B0 = 2iπ

2 1 1
1 3 −2
1 1 0

 . (1.2)

Clearly A0, B0 are not ST. However, it is easy to see that, for every t ∈ C, the
eigenvalues of tA0 + B0 are the entries of its diagonal. Moreover, for every t ∈ N,
the eigenvalues of tA0 + B0 belong to 2iπZ and are distinct. Therefore, for every t ∈ N,

exp(A0) = exp(B0) = exp(tA0 + B0) = I3.

In [8], Motzkin and Taussky introduced property L, as follows.

D 1.1. A pair (A, B) ∈Mn(C)2 has property L if there exist orderings of the
eigenvalues (λ j) j≤n, (µ j) j≤n of A, B such that for all (x, y) ∈ C2,

s(xA + yB) = (xλ j + yµ j) j≤n.

R 1.2. If A, B are ST, then the pair (A, B) has property L. The converse is false
in general, except when n = 2 (see [8]).

Verifying that (A, B) has property L can be done by a finite rational procedure. Let
χU denote the characteristic polynomial of U ∈Mn(C).

P 1.3. Let A, B ∈Mn(C). If there are orderings of the eigenvalues
(λ j) j, (µ j) j of A, B and (ti)1≤i≤n−1 ∈ (C \ {0})n−1 pairwise distinct, such that, for every
1 ≤ i ≤ n − 1, one has s(tiA + B) = (tiλ j + µ j) j, then (A, B) has property L.

P. Clearly χtA+B(T ) = T n +
∑n

k=1 Pk(t)T n−k, where Pk is a polynomial of degree k.
For instance, consider Pn(t) = αntn + · · · + α0, where αn = ± det(A), α0 = ± det(B) are
known. For every 1 ≤ i ≤ n − 1 we know

∑n−1
j=1 α jti j. Solving a Vandermonde system,

we obtain the (α j)1≤ j≤n−1. In the same way, we calculate the coefficients of the
(Pk)1≤k≤n−1 and χtA+B is determined. We conclude easily that, for every t ∈ C,
s(tA + B) = (tλ j + µ j) j and, by a continuity argument, that (A, B) has property L. �

Recently, in [10, Proposition 4], de Seguins Pazzis proved the following result.

P 1.4. A pair (A, B) ∈Mn(C)2 satisfying (1.1) has property L.

In this paper, we are interested in the converse of Proposition 1.4. We can wonder
whether the conditions eAeB = eBeA = eA+B and (A, B) having property L imply (1.1).
The answer is no. Indeed, the pair (A0, −2B0) (see (1.2)) has property L and exp(A0) =

exp(−2B0) = I3. Moreover, one has exp(tA0 − 2B0) = I3 if and only if t ∈ N \ {2, 3, 4}.
Therefore, (1.1) does not hold for this pair. Thus, we weaken (1.1) and define the
following condition:there exists a finite subset U ⊂ N≥2 such that, for all t ∈ N \ U,

exp(tA + B) = exp(tA) exp(B) = exp(B) exp(tA).
(1.3)
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We shall show that, in dimensions two and three, the pair of complex matrices (A, B)
satisfies (1.3) if and only if eA+B = eAeB = eBeA and (A, B) has property L. Finally, we
characterise the pairs of real matrices (A, B) of dimension three, that satisfy (1.3).

Studying expressions of the form tA + B is useful as shown by the following result.
Let A be an n × n matrix over C. Knowing the characteristic polynomial of the matrix
tA + X for each complex t and each n × n matrix X allows us to deduce Jordan’s form
of A (see [1]).

2. Property L and condition (1.3)

The following generalisation of the example (1.2) provides a partial converse of
Proposition 1.4.

P 2.1. Assume that A = diag(λ1, . . . , λn) ∈Mn(C) has n distinct eigenvalues
in 2iπZ, that B = [b jk] ∈Mn(C) is diagonalisable (where, for every j ≤ n, b j j ∈ 2iπZ)
and that the pair (A, B) has property L. Then the pair (A, B) satisfies (1.3).

P. Note that eA = In. According to [8, Theorem 1], for every t ∈ C,

s(tA + B) = (tλ j + b j j) j≤n.

Thus eB = In. Since for almost all t ∈ N, tA + B has n distinct eigenvalues in 2iπZ,
exp(tA + B) = In. �

D 2.2.

(1) The spectrum of A ∈Mn(C) is said to be 2iπ congruence-free (denoted by 2iπ
CF) if, for all λ, µ ∈ s(A), λ − µ < 2iπZ∗.

(2) Let log : GLn(C)→Mn(C) be the (noncontinuous) primary matrix function
associated to the principal branch of the logarithm, defined for z ∈ C∗ by
Im(log(z)) ∈ (−π, π] (see [3]). Thus, for every X ∈ GLn(C), s(log(X)) ⊂ {z ∈ C |
Im(z) ∈ (−π, π]}.

L 2.3. Let A ∈Mn(C). There exists a unique pair (F̃, ∆) ∈Mn(C)2 such that

A = F̃ + ∆, eF̃ = eA, e∆ = In and, for all λ ∈ s(F̃), Im(λ) ∈ (−π, π].

Moreover, both F̃ and ∆ are polynomials in A.

P. Necessarily, F̃ = log(eA). Let f : x ∈ U → ex ∈ C, where U is a complex
domain containing s(F̃). Then f is a holomorphic function such that f ′ is not zero
on U. Moreover, we can choose U such that f is one-to-one on U. According to [5,
Theorem 2], F̃ is a polynomial in eF̃ = eA. Therefore, F̃ is a polynomial in A. Let
∆ = A − F̃. Then AF̃ = F̃A and e∆ = eAe−F̃ = In. �

R 2.4. Note that s(F̃) is 2iπ CF, ∆ is diagonalisable and s(∆) ⊂ 2iπZ.
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In the following two results, we use the notation of Lemma 2.3.

L 2.5. Let (A, B) be a pair of n × n complex matrices such that eA+B = eAeB =

eBeA and AB , BA. Then log(eA) and log(eB) cannot be cyclic matrices.

P. Step 1. According to [9], s(A), s(B) are not 2iπ CF. Moreover, the equality

eA+Be−A = e−AeA+B = eB

implies that s(A + B) is not 2iπ CF. By Lemma 2.3, A = F̃ + ∆, B = G̃ + Θ, where
eF̃ = eA, eG̃ = eB and e∆ = eΘ = I3. Thus eF̃eG̃ = eG̃eF̃ . According to [11, Proof of
Theorem 1], F̃G̃ = G̃F̃.

Step 2. Assume, for instance, that F̃ is a cyclic matrix. Then the commutant of F̃ is
C[F̃]. Thus G̃∆ = ∆G̃ and F̃ + ∆ + Θ, G̃ commute. From eF̃+G̃ = eF̃+∆+Θ+G̃, we deduce
that eF̃ = eF̃+∆+Θ. According to [4, Theorem 4], F̃(∆ + Θ) = (∆ + Θ)F̃. Therefore,
Θ ∈ C[F̃] and ∆Θ = Θ∆. This implies AB = BA, which is a contradiction. �

R 2.6. The next two results concern the equation

eA+B = eAeB = eBeA

in dimension three. The first one can be derived from [7, Case (I), pages 165–166].
However, the proof, dated 1954, is difficult to read. Thus we give an alternative proof.

P 2.7. Let (A, B) be a pair of 3 × 3 complex matrices such that eA+B =

eAeB = eBeA and AB , BA. If C3 is an indecomposable 〈A, B〉 module, then there exist
σ ∈ C and two 3 × 3 complex matrices ∆ and F, that are polynomials in A, such that
A = σI3 + ∆ + F and e∆ = I3, F2 = 03. In the same way, there are τ ∈ C and two 3 × 3
complex matrices Θ and G, that are polynomials in B, such that B = τI3 + Θ + G and
eΘ = I3, G2 = 03. Moreover, FG = GF.

P. We use the decompositions A = F̃ + ∆, B = G̃ + Θ. By Lemma 2.5, F̃ has an
eigenvalue σ with multiplicity at least two and its minimal polynomial has degree at
most two. By Step 1 of the proof of Lemma 2.5, it remains to show that (F̃ − σI3)2 =

03. We put F = F̃ − σI3. Then s(F) = {0, 0, ∗} and, up to similarity, F has one of the
following three forms:

F =

0 0 0
0 0 0
0 0 λ

 , where λ , 0,

F = 03,

or

F =

0 1 0
0 0 0
0 0 0

 .
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In the last two cases, we are done. Assume

F =

0 0 0
0 0 0
0 0 λ

 , where λ , 0.

In the same way as for F̃, we can prove that there is τ ∈ C such that G = G̃ − τI3 is
similar to one of the previous three forms. Note that

eF+G = eFeG = eA−σI3 eB−τI3 = eA+B−(σ+τ)I3 .

Thus, if Im(s(F + G)) ⊂ ( − π, π], then F + G = log(eA+B−(σ+τ)I3 ). Clearly F + G also
has an eigenvalue with multiplicity at least two and its minimal polynomial has degree
at most two. Since F,G commute, we obtain for G three possible values.

Case 1: G =
( 0 0 0

0 0 0
0 0 z

)
. Then C3 is a decomposable 〈A, B〉 module.

Case 2: G =
( 0 1 0

0 0 0
0 0 0

)
. Then F + G = log(eA+B−(σ+τ)I3 ) but its minimal polynomial has

degree three, which is a contradiction.

Case 3: G =
( ν 0 0

0 0 0
0 0 0

)
, where ν , 0. We have F + G = log(eA+B−(σ+τ)I3 ) and necessarily

ν = λ. Moreover, s(F + G) is 2iπ CF and eF+G = eF+G+∆+Θ. According to [4,
Theorem 4], F + G and ∆ + Θ commute. The commutativity conditions [F, ∆] =

0, [G, Θ] = 0, [F + G, ∆ + Θ] = 0 imply that ∆ and Θ are diagonal matrices and that
AB = BA. This is a contradiction. �

D 2.8. Using the notation of Proposition 2.7, we say that

a pair (A, B) ∈M3(C)2 has property (∗)

if the Jordan–Chevalley decompositions of A, B, A + B are in the form

A = (σI3 + ∆) + F, (2.1)

B = (τI3 + Θ) + G, (2.2)

A + B = ((σ + τ)I3 + ∆ + Θ) + (F + G) (2.3)

and satisfy

F2 = G2 = FG = GF = 03,

e∆ = eΘ = e∆+Θ = I3

and

[F, Θ] = [∆,G].
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P 2.9. If (A, B) ∈M3(C)2 satisfies

eA+B = eAeB = eBeA, AB , BA

and is such that C3 is an indecomposable 〈A, B〉 module, then the pair (A, B) has
property (∗). Conversely, if the pair (A, B) has property (∗), then eA+B = eAeB = eBeA.

P. We use the notation and results of Proposition 2.7. Note that σI3 + ∆ is
diagonalisable, F is nilpotent and both are polynomials in A. Thus (2.1) and (2.2)
are the Jordan–Chevalley decompositions of A, B. Moreover,

eA = eσ(I3 + F),

eB = eτ(I3 + G),

and

eA+B = eσ+τ(I3 + F + G + FG),

with FG = GF. Thus F + G + FG is nilpotent. According to the proof of
Proposition 2.7, A + B = (ωI3 + Σ) + O with OΣ = ΣO, eΣ = I3, O2 = 03. We have
eA+B = eω(I3 + O) and then eω = eσ+τ, O = F + G + FG. Finally, O2 = 03 implies that
FG = 03 and (2.3) is the Jordan–Chevalley decomposition of A + B. Since ∆ + Θ and
F + G commute, [F, Θ] = [∆,G]. Obviously, e∆+Θ = I3. The last assertion is clear. �

We get the following result in dimension two.

T 2.10. A pair (A, B) ∈M2(C)2 satisfies (1.3) if and only if eA+B = eAeB = eBeA

and (A, B) has property L.

P. If (A, B) satisfies (1.3), then there exists t0 ∈ N such that etA+B = etAeB = eBetA

holds for every t ≥ t0. According to Proposition 1.4, the pair (t0A, B) has property
L, as does (A, B). Assume now that eA+B = eAeB = eBeA, (A, B) has property L and
AB , BA. According to [9], s(A) and s(B) are not 2iπ CF and, since n = 2, A, B are
diagonalisable. A homothety can be added to A or B and we may assume

A =

(
2iπλ 0

0 0

)
, s(B) = {2iπµ, 0}, where λ, µ ∈ Z∗.

Again, since n = 2, A and B are ST, that is, they have a common eigenvector. Thus we
may assume B =

( 2iπµ 1
0 0

)
(replacing, if necessary, λ with −λ or µ with −µ). Note that

eAeB = eA+B if and only if λ + µ , 0. If t ∈ N,

etAeB = eBetA = etA+B,

except possibly if t = −µ/λ. �
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R 2.11. The pair

A = iπ

(
1 0
0 −1

)
, B = π

(
−11i 6
16 11i

)
satisfies the condition eA+B = eAeB = eBeA but does not have property L.

Our main result, in dimension three, is as follows.

T 2.12. A pair (A, B) ∈M3(C)2 satisfies (1.3) if and only if eA+B = eAeB = eBeA

and (A, B) has property L.

P. We first suppose that (A, B) satisfies (1.3). Using the same argument as in the
proof of the necessary condition of Theorem 2.10, we can verify that eA+B = eAeB =

eBeA and (A, B) has property L.
Assume now that the pair (A, B) has property L, AB , BA and

eA+B = eAeB = eBeA.

If C3 is a decomposable 〈A, B〉 module, we are finished, using Theorem 2.10. Now,
suppose that C3 is an indecomposable 〈A, B〉 module.

Step 1. The pair (A, B) has property (∗). Using the notation of Proposition 2.9, we
obtain, for every t ∈ N,

etA = etσ(I3 + tF),

etAeB = eBetA = etσ+τ(I3 + tF + G),

etA+B = etσ+τet∆+Θ(I3 + tF + G).

Thus etA+B = etAeB = eBetA if and only if et∆+Θ = I3.

Step 2. The pair (∆ + F, Θ + G) has property L. We consider the associated orderings
s(∆ + F) = s(∆) = (λ j) j≤3 and s(Θ + G) = s(Θ) = (µ j) j≤3. If t ∈ C, then s(t(∆ + F) +

Θ + G) = s((t∆ + Θ) + (tF + G)) = (tλ j + µ j) j≤3. Since t∆ + Θ commutes with the
nilpotent matrix tF + G, s(t∆ + Θ) = (tλ j + µ j) j≤3 and the pair (∆, Θ) has property L.

Step 3. Since s(∆) ⊂ 2iπZ, s(Θ) ⊂ 2iπZ, if t ∈ N, then s(t∆ + Θ) ⊂ 2iπZ. Thus it
remains to prove that, for almost all t ∈ N, t∆ + Θ is diagonalisable. If ∆ and Θ

commute, we are done.
We assume that ∆ and Θ do not commute. Suppose that, for an infinite number of

values of t ∈ N, t∆ + Θ is not diagonalisable. Then, for these values of t, (tλ j + µ j) j≤3

contains at least two equal elements. Thus, for instance, for an infinite number
of values of t, tλ1 + µ1 = tλ2 + µ2. This implies that λ1 = λ2 and µ1 = µ2 and we
may assume that these eigenvalues are 0. Therefore, the associated orderings are
s(∆) = {0, 0, λ}, where λ ∈ 2iπZ∗, and s(Θ) = {0, 0, µ}, where µ ∈ 2iπZ∗. We may
assume that ∆ = diag(0, 0, λ). According to [8, Theorem 1],

Θ =

 W

(
u
v

)
(
p q

)
µ

 ,
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where W is a nilpotent 2 × 2 matrix and u, v, p, q are complex numbers. We know that
Θ and ∆ + Θ are diagonalisable, that is, their rank is one and λ + µ , 0. It remains to
show that, for almost all t ∈ N, rank(tA + B) = 1 and tλ + µ , 0.

Case 1. W =
( 0 1

0 0
)
. Therefore, rank(Θ) = 1 implies p = v = 0, µ = qu. It follows that

rank(∆ + Θ) = 1 implies λ = 0, which is a contradiction.

Case 2. W = 03. Therefore, rank(Θ) = rank(∆ + Θ) = 1 implies that

pu = pv = qu = qv = 0.

The previous condition implies that rank(t∆ + Θ) = 1, except if t = −µ/λ. �

C 2.13. Let A, B be square complex matrices of the same dimension at most
three, such that (A, B) has property L and eA+B = eAeB = eBeA. Then there exists α ∈ N
such that, for every integer t < [−α, α], etA+B = etAeB = eBetA and eA+tB = eAetB = etBeA.

P. Since A, B play the same role, it is sufficient to show the first part of the
assertion. Note that eB = e−AeA+B = eA+Be−A and (−A, A + B) has property L. Then
for t ∈ N large enough, e(1−t)A+B = e(1−t)AeB = eBe(1−t)A. �

3. The real case

If n = 2, we have the following result.

P 3.1 [2, Theorem 1]. Let A, B ∈M2(R) be such that there exists a finite
subset U ⊂ N≥2 such that, for all t ∈ N \ U,

exp(tA + B) = exp(tA) exp(B).

Then AB = BA.

However, if n = 3 there exist real pairs of matrices satisfying (1.3) that are not ST.

P 3.2. Let A, B ∈M3(R) be such that C3 is an indecomposable 〈A, B〉
module. Then the following two conditions are equivalent.

(i) The pair (A, B) satisfies (1.3) and AB , BA.
(ii) There exist σ, τ ∈ R such that the pair (A − σI3, B − τI3) is simultaneously

similar to the pair
 0 −2πk 0
2πk 0 0
0 0 0

 ,
 −ρ −2πl + θ −α
2πl + θ ρ β

2γ 2δ 0


 ,

where k, l ∈ Z∗ and α, β, γ, δ, ρ, θ are not all zero real numbers such that

γβ + αδ = 0, δρβ + γθβ + αγρ − αδθ = 0, ρ2 + θ2 + 2(βδ − αγ) = 0.
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P. Let (A, B) be a real pair satisfying (1.3) and AB , BA. We use the notation
of Proposition 2.9. We may assume σ = τ = 0. Since s(A) = s(∆) is not 2iπ CF and
e∆ = I3, s(A) is in the form {2iπk, −2iπk, 0}, where k ∈ Z∗. Thus F = 0 and A = ∆ is
diagonalisable over C. In the same way, s(B) = {2iπl, −2iπl, 0}, where l ∈ Z∗. Note
that (A, B) is simultaneously similar over R to (R, S ), where

R =

 0 −2πk 0
2πk 0 0
0 0 0

 , S = [si, j].

According to Theorem 2.12, if t ∈ R, then s(tR + S ) = {2iπ(tk + l), −2iπ(tk + l), 0}
(replacing, if necessary, l with −l). This is equivalent to:

for every t ∈ R, χtR+S (T ) = T 3 + 4π2(tk + l)2T.

We obtain an algebraic system in the unknowns (si, j)i, j. Solving this system, we obtain
the required form for S . �
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