PROPERTY L AND COMMUTING EXPONENTIALS IN DIMENSION AT MOST THREE

GERALD BOURGEOIS

(Received 25 October 2012; accepted 12 May 2013; first published online 28 June 2013)

Abstract

Let *A*, *B* be two square complex matrices of the same dimension $n \le 3$. We show that the following conditions are equivalent. (i) There exists a finite subset $U \subset \mathbb{N}_{\ge 2}$ such that for every $t \in \mathbb{N} \setminus U$, $\exp(tA + B) = \exp(tA) \exp(B) = \exp(B) \exp(tA)$. (ii) The pair (*A*, *B*) has property L of Motzkin and Taussky and $\exp(A + B) = \exp(A) \exp(B) = \exp(B) \exp(A)$. We also characterise the pairs of real matrices (*A*, *B*) of dimension three, that satisfy the previous conditions.

2010 *Mathematics subject classification*: primary 15A16; secondary 15A22, 15A24. *Keywords and phrases*: matrix exponential, matrix pencil, property L.

1. Introduction

Throughout this paper, we denote by \mathbb{N} the set of positive integers and by \mathbb{Z}^* the set of nonzero integers. For every $n \in \mathbb{N}$, I_n (0_n , respectively) denotes the identity matrix (the zero matrix, respectively) of dimension n. For $X \in \mathcal{M}_n(\mathbb{C})$, s(X) denotes its spectrum, that is, the set of its eigenvalues. Two matrices $A, B \in \mathcal{M}_n(\mathbb{C})$ are said to be simultaneously triangularisable (abbreviated to ST) if there exists $P \in GL_n(\mathbb{C})$ such that $P^{-1}AP$ and $P^{-1}BP$ are upper triangular matrices.

It is well known that the map exp: $\mathcal{M}_n(\mathbb{C}) \to \operatorname{GL}_n(\mathbb{C})$ is not a homomorphism. Thus it would be interesting to determine the matrices $A, B \in \mathcal{M}_n(\mathbb{C})$ such that:

(i) $e^A e^B = e^B e^A = e^{A+B}$; or more simply

(ii)
$$e^A e^B = e^{A+B}$$
.

Unfortunately, the complete solution of (i) is known only for n = 2 and n = 3 (see [7]) and the complete solution of (ii) is known only for n = 2 (see [6]). In [2], the author dealt with square matrices $A, B \in \mathcal{M}_n(\mathbb{C})$, n = 2 or 3, satisfying the following more restrictive condition:

for every
$$t \in \mathbb{N}$$
, $\exp(tA + B) = \exp(tA) \exp(B) = \exp(B) \exp(tA)$. (1.1)

The author concluded that these matrices are ST. It appears that the above conclusion is wrong in the case of dimension three. Indeed, Jean-Louis Tu communicated to the

^{© 2013} Australian Mathematical Publishing Association Inc. 0004-9727/2013 \$16.00

author the counterexample

$$A_0 = 2i\pi \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad B_0 = 2i\pi \begin{pmatrix} 2 & 1 & 1 \\ 1 & 3 & -2 \\ 1 & 1 & 0 \end{pmatrix}.$$
 (1.2)

Clearly A_0 , B_0 are not ST. However, it is easy to see that, for every $t \in \mathbb{C}$, the eigenvalues of $tA_0 + B_0$ are the entries of its diagonal. Moreover, for every $t \in \mathbb{N}$, the eigenvalues of $tA_0 + B_0$ belong to $2i\pi\mathbb{Z}$ and are distinct. Therefore, for every $t \in \mathbb{N}$,

$$\exp(A_0) = \exp(B_0) = \exp(tA_0 + B_0) = I_3.$$

In [8], Motzkin and Taussky introduced property L, as follows.

DEFINITION 1.1. A pair $(A, B) \in \mathcal{M}_n(\mathbb{C})^2$ has property L if there exist orderings of the eigenvalues $(\lambda_j)_{j \le n}, (\mu_j)_{j \le n}$ of A, B such that for all $(x, y) \in \mathbb{C}^2$,

$$s(xA + yB) = (x\lambda_i + y\mu_i)_{i \le n}$$

REMARK 1.2. If A, B are ST, then the pair (A, B) has property L. The converse is false in general, except when n = 2 (see [8]).

Verifying that (A, B) has property L can be done by a finite rational procedure. Let χ_U denote the characteristic polynomial of $U \in \mathcal{M}_n(\mathbb{C})$.

PROPOSITION 1.3. Let $A, B \in \mathcal{M}_n(\mathbb{C})$. If there are orderings of the eigenvalues $(\lambda_j)_j, (\mu_j)_j$ of A, B and $(t_i)_{1 \le i \le n-1} \in (\mathbb{C} \setminus \{0\})^{n-1}$ pairwise distinct, such that, for every $1 \le i \le n-1$, one has $s(t_iA + B) = (t_i\lambda_j + \mu_j)_j$, then (A, B) has property L.

PROOF. Clearly $\chi_{tA+B}(T) = T^n + \sum_{k=1}^n P_k(t)T^{n-k}$, where P_k is a polynomial of degree k. For instance, consider $P_n(t) = \alpha_n t^n + \dots + \alpha_0$, where $\alpha_n = \pm \det(A)$, $\alpha_0 = \pm \det(B)$ are known. For every $1 \le i \le n-1$ we know $\sum_{j=1}^{n-1} \alpha_j t_i^{j}$. Solving a Vandermonde system, we obtain the $(\alpha_j)_{1\le j\le n-1}$. In the same way, we calculate the coefficients of the $(P_k)_{1\le k\le n-1}$ and χ_{tA+B} is determined. We conclude easily that, for every $t \in \mathbb{C}$, $s(tA + B) = (t\lambda_j + \mu_j)_j$ and, by a continuity argument, that (A, B) has property L.

Recently, in [10, Proposition 4], de Seguins Pazzis proved the following result.

PROPOSITION 1.4. A pair $(A, B) \in \mathcal{M}_n(\mathbb{C})^2$ satisfying (1,1) has property L.

In this paper, we are interested in the converse of Proposition 1.4. We can wonder whether the conditions $e^A e^B = e^B e^A = e^{A+B}$ and (A, B) having property L imply (1.1). The answer is no. Indeed, the pair $(A_0, -2B_0)$ (see (1.2)) has property L and $\exp(A_0) = \exp(-2B_0) = I_3$. Moreover, one has $\exp(tA_0 - 2B_0) = I_3$ if and only if $t \in \mathbb{N} \setminus \{2, 3, 4\}$. Therefore, (1.1) does not hold for this pair. Thus, we weaken (1.1) and define the following condition:

there exists a finite subset
$$U \subset \mathbb{N}_{\geq 2}$$
 such that, for all $t \in \mathbb{N} \setminus U$,
 $\exp(tA + B) = \exp(tA) \exp(B) = \exp(B) \exp(tA).$
(1.3)

G. Bourgeois

[3]

We shall show that, in dimensions two and three, the pair of complex matrices (A, B) satisfies (1.3) if and only if $e^{A+B} = e^A e^B = e^B e^A$ and (A, B) has property L. Finally, we characterise the pairs of real matrices (A, B) of dimension three, that satisfy (1.3).

Studying expressions of the form tA + B is useful as shown by the following result. Let *A* be an $n \times n$ matrix over \mathbb{C} . Knowing the characteristic polynomial of the matrix tA + X for each complex *t* and each $n \times n$ matrix *X* allows us to deduce Jordan's form of *A* (see [1]).

2. Property L and condition (1.3)

The following generalisation of the example (1.2) provides a partial converse of Proposition 1.4.

PROPOSITION 2.1. Assume that $A = \text{diag}(\lambda_1, \ldots, \lambda_n) \in \mathcal{M}_n(\mathbb{C})$ has n distinct eigenvalues in $2i\pi\mathbb{Z}$, that $B = [b_{jk}] \in \mathcal{M}_n(\mathbb{C})$ is diagonalisable (where, for every $j \le n$, $b_{jj} \in 2i\pi\mathbb{Z}$) and that the pair (A, B) has property L. Then the pair (A, B) satisfies (1.3).

PROOF. Note that $e^A = I_n$. According to [8, Theorem 1], for every $t \in \mathbb{C}$,

$$s(tA + B) = (t\lambda_j + b_{jj})_{j \le n}.$$

Thus $e^B = I_n$. Since for almost all $t \in \mathbb{N}$, tA + B has *n* distinct eigenvalues in $2i\pi\mathbb{Z}$, $\exp(tA + B) = I_n$.

DEFINITION 2.2.

- (1) The spectrum of $A \in \mathcal{M}_n(\mathbb{C})$ is said to be $2i\pi$ congruence-free (denoted by $2i\pi$ CF) if, for all $\lambda, \mu \in s(A), \lambda \mu \notin 2i\pi \mathbb{Z}^*$.
- (2) Let $\log: \operatorname{GL}_n(\mathbb{C}) \to \mathcal{M}_n(\mathbb{C})$ be the (noncontinuous) primary matrix function associated to the principal branch of the logarithm, defined for $z \in \mathbb{C}^*$ by $\operatorname{Im}(\log(z)) \in (-\pi, \pi]$ (see [3]). Thus, for every $X \in \operatorname{GL}_n(\mathbb{C})$, $s(\log(X)) \subset \{z \in \mathbb{C} \mid \operatorname{Im}(z) \in (-\pi, \pi]\}$.

LEMMA 2.3. Let $A \in \mathcal{M}_n(\mathbb{C})$. There exists a unique pair $(\tilde{F}, \Delta) \in \mathcal{M}_n(\mathbb{C})^2$ such that

$$A = \tilde{F} + \Delta, \quad e^F = e^A, \quad e^{\Delta} = I_n \quad and, for all \ \lambda \in s(\tilde{F}), \operatorname{Im}(\lambda) \in (-\pi, \pi].$$

Moreover, both \tilde{F} *and* Δ *are polynomials in* A*.*

PROOF. Necessarily, $\tilde{F} = \log(e^A)$. Let $f: x \in U \to e^x \in \mathbb{C}$, where U is a complex domain containing $s(\tilde{F})$. Then f is a holomorphic function such that f' is not zero on U. Moreover, we can choose U such that f is one-to-one on U. According to [5, Theorem 2], \tilde{F} is a polynomial in $e^{\tilde{F}} = e^A$. Therefore, \tilde{F} is a polynomial in A. Let $\Delta = A - \tilde{F}$. Then $A\tilde{F} = \tilde{F}A$ and $e^{\Delta} = e^A e^{-\tilde{F}} = I_n$.

REMARK 2.4. Note that $s(\tilde{F})$ is $2i\pi$ CF, Δ is diagonalisable and $s(\Delta) \subset 2i\pi\mathbb{Z}$.

In the following two results, we use the notation of Lemma 2.3.

LEMMA 2.5. Let (A, B) be a pair of $n \times n$ complex matrices such that $e^{A+B} = e^A e^B = e^B e^A$ and $AB \neq BA$. Then $\log(e^A)$ and $\log(e^B)$ cannot be cyclic matrices.

PROOF. Step 1. According to [9], s(A), s(B) are not $2i\pi$ CF. Moreover, the equality

$$e^{A+B}e^{-A} = e^{-A}e^{A+B} = e^{B}$$

implies that s(A + B) is not $2i\pi$ CF. By Lemma 2.3, $A = \tilde{F} + \Delta$, $B = \tilde{G} + \Theta$, where $e^{\tilde{F}} = e^{A}$, $e^{\tilde{G}} = e^{B}$ and $e^{\Delta} = e^{\Theta} = I_{3}$. Thus $e^{\tilde{F}}e^{\tilde{G}} = e^{\tilde{G}}e^{\tilde{F}}$. According to [11, Proof of Theorem 1], $\tilde{F}\tilde{G} = \tilde{G}\tilde{F}$.

Step 2. Assume, for instance, that \tilde{F} is a cyclic matrix. Then the commutant of \tilde{F} is $\mathbb{C}[\tilde{F}]$. Thus $\tilde{G}\Delta = \Delta \tilde{G}$ and $\tilde{F} + \Delta + \Theta$, \tilde{G} commute. From $e^{\tilde{F}+\tilde{G}} = e^{\tilde{F}+\Delta+\Theta+\tilde{G}}$, we deduce that $e^{\tilde{F}} = e^{\tilde{F}+\Delta+\Theta}$. According to [4, Theorem 4], $\tilde{F}(\Delta+\Theta) = (\Delta+\Theta)\tilde{F}$. Therefore, $\Theta \in \mathbb{C}[\tilde{F}]$ and $\Delta \Theta = \Theta \Delta$. This implies AB = BA, which is a contradiction.

REMARK 2.6. The next two results concern the equation

$$e^{A+B} = e^A e^B = e^B e^A$$

in dimension three. The first one can be derived from [7, Case (I), pages 165–166]. However, the proof, dated 1954, is difficult to read. Thus we give an alternative proof.

PROPOSITION 2.7. Let (A, B) be a pair of 3×3 complex matrices such that $e^{A+B} = e^A e^B = e^B e^A$ and $AB \neq BA$. If \mathbb{C}^3 is an indecomposable $\langle A, B \rangle$ module, then there exist $\sigma \in \mathbb{C}$ and two 3×3 complex matrices Δ and F, that are polynomials in A, such that $A = \sigma I_3 + \Delta + F$ and $e^{\Delta} = I_3$, $F^2 = 0_3$. In the same way, there are $\tau \in \mathbb{C}$ and two 3×3 complex matrices Θ and G, that are polynomials in B, such that $B = \tau I_3 + \Theta + G$ and $e^{\Theta} = I_3$, $G^2 = 0_3$. Moreover, FG = GF.

PROOF. We use the decompositions $A = \tilde{F} + \Delta$, $B = \tilde{G} + \Theta$. By Lemma 2.5, \tilde{F} has an eigenvalue σ with multiplicity at least two and its minimal polynomial has degree at most two. By Step 1 of the proof of Lemma 2.5, it remains to show that $(\tilde{F} - \sigma I_3)^2 = 0_3$. We put $F = \tilde{F} - \sigma I_3$. Then $s(F) = \{0, 0, *\}$ and, up to similarity, F has one of the following three forms:

$$F = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & \lambda \end{pmatrix}, \text{ where } \lambda \neq 0,$$

F = 0₃,

or

[4]

$$F = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

In the last two cases, we are done. Assume

$$F = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & \lambda \end{pmatrix}, \quad \text{where } \lambda \neq 0.$$

In the same way as for \tilde{F} , we can prove that there is $\tau \in \mathbb{C}$ such that $G = \tilde{G} - \tau I_3$ is similar to one of the previous three forms. Note that

$$e^{F+G} = e^F e^G = e^{A-\sigma I_3} e^{B-\tau I_3} = e^{A+B-(\sigma+\tau)I_3}.$$

Thus, if $\text{Im}(s(F + G)) \subset (-\pi, \pi]$, then $F + G = \log(e^{A+B-(\sigma+\tau)I_3})$. Clearly F + G also has an eigenvalue with multiplicity at least two and its minimal polynomial has degree at most two. Since *F*, *G* commute, we obtain for *G* three possible values.

Case 1: $G = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & z \end{pmatrix}$. Then \mathbb{C}^3 is a decomposable $\langle A, B \rangle$ module.

Case 2: $G = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$. Then $F + G = \log(e^{A+B-(\sigma+\tau)I_3})$ but its minimal polynomial has degree three, which is a contradiction.

Case 3: $G = \begin{pmatrix} v & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$, where $v \neq 0$. We have $F + G = \log(e^{A+B-(\sigma+\tau)I_3})$ and necessarily $v = \lambda$. Moreover, s(F + G) is $2i\pi$ CF and $e^{F+G} = e^{F+G+\Delta+\Theta}$. According to [4, Theorem 4], F + G and $\Delta + \Theta$ commute. The commutativity conditions $[F, \Delta] = 0$, $[G, \Theta] = 0$, $[F + G, \Delta + \Theta] = 0$ imply that Δ and Θ are diagonal matrices and that AB = BA. This is a contradiction.

DEFINITION 2.8. Using the notation of Proposition 2.7, we say that

a pair
$$(A, B) \in \mathcal{M}_3(\mathbb{C})^2$$
 has property (*)

if the Jordan–Chevalley decompositions of A, B, A + B are in the form

$$A = (\sigma I_3 + \Delta) + F, \tag{2.1}$$

$$B = (\tau I_3 + \Theta) + G, \qquad (2.2)$$

$$A + B = ((\sigma + \tau)I_3 + \Delta + \Theta) + (F + G)$$
(2.3)

and satisfy

$$F^{2} = G^{2} = FG = GF = 0_{3},$$

$$e^{\Delta} = e^{\Theta} = e^{\Delta + \Theta} = I_{3}$$

and

$$[F, \Theta] = [\Delta, G].$$

PROPOSITION 2.9. If $(A, B) \in \mathcal{M}_3(\mathbb{C})^2$ satisfies

$$e^{A+B} = e^A e^B = e^B e^A, \quad AB \neq BA$$

and is such that \mathbb{C}^3 is an indecomposable $\langle A, B \rangle$ module, then the pair (A, B) has property (*). Conversely, if the pair (A, B) has property (*), then $e^{A+B} = e^A e^B = e^B e^A$.

PROOF. We use the notation and results of Proposition 2.7. Note that $\sigma I_3 + \Delta$ is diagonalisable, *F* is nilpotent and both are polynomials in *A*. Thus (2.1) and (2.2) are the Jordan–Chevalley decompositions of *A*, *B*. Moreover,

$$e^{A} = e^{\sigma}(I_{3} + F),$$

$$e^{B} = e^{\tau}(I_{3} + G),$$

and

$$e^{A+B} = e^{\sigma+\tau}(I_3 + F + G + FG),$$

with FG = GF. Thus F + G + FG is nilpotent. According to the proof of Proposition 2.7, $A + B = (\omega I_3 + \Sigma) + O$ with $O\Sigma = \Sigma O$, $e^{\Sigma} = I_3$, $O^2 = 0_3$. We have $e^{A+B} = e^{\omega}(I_3 + O)$ and then $e^{\omega} = e^{\sigma+\tau}$, O = F + G + FG. Finally, $O^2 = 0_3$ implies that $FG = 0_3$ and (2.3) is the Jordan–Chevalley decomposition of A + B. Since $\Delta + \Theta$ and F + G commute, $[F, \Theta] = [\Delta, G]$. Obviously, $e^{\Delta+\Theta} = I_3$. The last assertion is clear. \Box

We get the following result in dimension two.

THEOREM 2.10. A pair $(A, B) \in \mathcal{M}_2(\mathbb{C})^2$ satisfies (1.3) if and only if $e^{A+B} = e^A e^B = e^B e^A$ and (A, B) has property L.

PROOF. If (A, B) satisfies (1.3), then there exists $t_0 \in \mathbb{N}$ such that $e^{tA+B} = e^{tA}e^B = e^Be^{tA}$ holds for every $t \ge t_0$. According to Proposition 1.4, the pair (t_0A, B) has property L, as does (A, B). Assume now that $e^{A+B} = e^Ae^B = e^Be^A$, (A, B) has property L and $AB \ne BA$. According to [9], s(A) and s(B) are not $2i\pi$ CF and, since n = 2, A, B are diagonalisable. A homothety can be added to A or B and we may assume

$$A = \begin{pmatrix} 2i\pi\lambda & 0\\ 0 & 0 \end{pmatrix}, \quad s(B) = \{2i\pi\mu, 0\}, \quad \text{where } \lambda, \mu \in \mathbb{Z}^*.$$

Again, since n = 2, A and B are ST, that is, they have a common eigenvector. Thus we may assume $B = \begin{pmatrix} 2i\pi\mu & 1 \\ 0 & 0 \end{pmatrix}$ (replacing, if necessary, λ with $-\lambda$ or μ with $-\mu$). Note that $e^A e^B = e^{A+B}$ if and only if $\lambda + \mu \neq 0$. If $t \in \mathbb{N}$,

$$e^{tA}e^B = e^B e^{tA} = e^{tA+B},$$

except possibly if $t = -\mu/\lambda$.

[6]

REMARK 2.11. The pair

$$A = i\pi \begin{pmatrix} 1 & 0\\ 0 & -1 \end{pmatrix}, \quad B = \pi \begin{pmatrix} -11i & 6\\ 16 & 11i \end{pmatrix}$$

satisfies the condition $e^{A+B} = e^A e^B = e^B e^A$ but does not have property L.

Our main result, in dimension three, is as follows.

THEOREM 2.12. A pair $(A, B) \in \mathcal{M}_3(\mathbb{C})^2$ satisfies (1.3) if and only if $e^{A+B} = e^A e^B = e^B e^A$ and (A, B) has property L.

PROOF. We first suppose that (A, B) satisfies (1.3). Using the same argument as in the proof of the necessary condition of Theorem 2.10, we can verify that $e^{A+B} = e^A e^B = e^B e^A$ and (A, B) has property L.

Assume now that the pair (A, B) has property L, $AB \neq BA$ and

$$e^{A+B} = e^A e^B = e^B e^A.$$

If \mathbb{C}^3 is a decomposable $\langle A, B \rangle$ module, we are finished, using Theorem 2.10. Now, suppose that \mathbb{C}^3 is an indecomposable $\langle A, B \rangle$ module.

Step 1. The pair (*A*, *B*) has property (*). Using the notation of Proposition 2.9, we obtain, for every $t \in \mathbb{N}$,

$$e^{tA} = e^{t\sigma}(I_3 + tF),$$

$$e^{tA}e^B = e^Be^{tA} = e^{t\sigma+\tau}(I_3 + tF + G),$$

$$e^{tA+B} = e^{t\sigma+\tau}e^{t\Delta+\Theta}(I_3 + tF + G).$$

Thus $e^{tA+B} = e^{tA}e^B = e^Be^{tA}$ if and only if $e^{t\Delta+\Theta} = I_3$.

Step 2. The pair $(\Delta + F, \Theta + G)$ has property L. We consider the associated orderings $s(\Delta + F) = s(\Delta) = (\lambda_j)_{j \le 3}$ and $s(\Theta + G) = s(\Theta) = (\mu_j)_{j \le 3}$. If $t \in \mathbb{C}$, then $s(t(\Delta + F) + \Theta + G) = s((t\Delta + \Theta) + (tF + G)) = (t\lambda_j + \mu_j)_{j \le 3}$. Since $t\Delta + \Theta$ commutes with the nilpotent matrix tF + G, $s(t\Delta + \Theta) = (t\lambda_j + \mu_j)_{j \le 3}$ and the pair (Δ, Θ) has property L.

Step 3. Since $s(\Delta) \subset 2i\pi\mathbb{Z}$, $s(\Theta) \subset 2i\pi\mathbb{Z}$, if $t \in \mathbb{N}$, then $s(t\Delta + \Theta) \subset 2i\pi\mathbb{Z}$. Thus it remains to prove that, for almost all $t \in \mathbb{N}$, $t\Delta + \Theta$ is diagonalisable. If Δ and Θ commute, we are done.

We assume that Δ and Θ do not commute. Suppose that, for an infinite number of values of $t \in \mathbb{N}$, $t\Delta + \Theta$ is not diagonalisable. Then, for these values of t, $(t\lambda_j + \mu_j)_{j \le 3}$ contains at least two equal elements. Thus, for instance, for an infinite number of values of t, $t\lambda_1 + \mu_1 = t\lambda_2 + \mu_2$. This implies that $\lambda_1 = \lambda_2$ and $\mu_1 = \mu_2$ and we may assume that these eigenvalues are 0. Therefore, the associated orderings are $s(\Delta) = \{0, 0, \lambda\}$, where $\lambda \in 2i\pi\mathbb{Z}^*$, and $s(\Theta) = \{0, 0, \mu\}$, where $\mu \in 2i\pi\mathbb{Z}^*$. We may assume that $\Delta = \text{diag}(0, 0, \lambda)$. According to [8, Theorem 1],

$$\Theta = \begin{pmatrix} W & \begin{pmatrix} u \\ v \end{pmatrix} \\ (p \quad q) \quad \mu \end{pmatrix},$$

where *W* is a nilpotent 2 × 2 matrix and *u*, *v*, *p*, *q* are complex numbers. We know that Θ and $\Delta + \Theta$ are diagonalisable, that is, their rank is one and $\lambda + \mu \neq 0$. It remains to show that, for almost all $t \in \mathbb{N}$, rank(tA + B) = 1 and $t\lambda + \mu \neq 0$.

Case 1. $W = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$. Therefore, rank(Θ) = 1 implies p = v = 0, $\mu = qu$. It follows that rank($\Delta + \Theta$) = 1 implies $\lambda = 0$, which is a contradiction.

Case 2. $W = 0_3$. Therefore, rank(Θ) = rank($\Delta + \Theta$) = 1 implies that

$$pu = pv = qu = qv = 0.$$

The previous condition implies that $\operatorname{rank}(t\Delta + \Theta) = 1$, except if $t = -\mu/\lambda$.

COROLLARY 2.13. Let A, B be square complex matrices of the same dimension at most three, such that (A, B) has property L and $e^{A+B} = e^A e^B = e^B e^A$. Then there exists $\alpha \in \mathbb{N}$ such that, for every integer $t \notin [-\alpha, \alpha]$, $e^{tA+B} = e^{tA}e^B = e^B e^{tA}$ and $e^{A+tB} = e^A e^{tB} = e^{tB}e^A$.

PROOF. Since *A*, *B* play the same role, it is sufficient to show the first part of the assertion. Note that $e^B = e^{-A}e^{A+B} = e^{A+B}e^{-A}$ and (-A, A + B) has property L. Then for $t \in \mathbb{N}$ large enough, $e^{(1-t)A+B} = e^{(1-t)A}e^B = e^Be^{(1-t)A}$.

3. The real case

If n = 2, we have the following result.

PROPOSITION 3.1 [2, Theorem 1]. Let $A, B \in \mathcal{M}_2(\mathbb{R})$ be such that there exists a finite subset $U \subset \mathbb{N}_{\geq 2}$ such that, for all $t \in \mathbb{N} \setminus U$,

$$\exp(tA + B) = \exp(tA) \exp(B).$$

Then AB = BA.

However, if n = 3 there exist real pairs of matrices satisfying (1.3) that are not ST.

PROPOSITION 3.2. Let $A, B \in \mathcal{M}_3(\mathbb{R})$ be such that \mathbb{C}^3 is an indecomposable $\langle A, B \rangle$ module. Then the following two conditions are equivalent.

(i) The pair (A, B) satisfies (1.3) and $AB \neq BA$.

(ii) There exist $\sigma, \tau \in \mathbb{R}$ such that the pair $(A - \sigma I_3, B - \tau I_3)$ is simultaneously similar to the pair

$$\left(\begin{pmatrix} 0 & -2\pi k & 0 \\ 2\pi k & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} -\rho & -2\pi l + \theta & -\alpha \\ 2\pi l + \theta & \rho & \beta \\ 2\gamma & 2\delta & 0 \end{pmatrix} \right),$$

where $k, l \in \mathbb{Z}^*$ and $\alpha, \beta, \gamma, \delta, \rho, \theta$ are not all zero real numbers such that

$$\gamma\beta + \alpha\delta = 0, \quad \delta\rho\beta + \gamma\theta\beta + \alpha\gamma\rho - \alpha\delta\theta = 0, \quad \rho^2 + \theta^2 + 2(\beta\delta - \alpha\gamma) = 0.$$

G. Bourgeois

PROOF. Let (A, B) be a real pair satisfying (1.3) and $AB \neq BA$. We use the notation of Proposition 2.9. We may assume $\sigma = \tau = 0$. Since $s(A) = s(\Delta)$ is not $2i\pi$ CF and $e^{\Delta} = I_3$, s(A) is in the form $\{2i\pi k, -2i\pi k, 0\}$, where $k \in \mathbb{Z}^*$. Thus F = 0 and $A = \Delta$ is diagonalisable over \mathbb{C} . In the same way, $s(B) = \{2i\pi l, -2i\pi l, 0\}$, where $l \in \mathbb{Z}^*$. Note that (A, B) is simultaneously similar over \mathbb{R} to (R, S), where

$$R = \begin{pmatrix} 0 & -2\pi k & 0\\ 2\pi k & 0 & 0\\ 0 & 0 & 0 \end{pmatrix}, \quad S = [s_{i,j}].$$

According to Theorem 2.12, if $t \in \mathbb{R}$, then $s(tR + S) = \{2i\pi(tk + l), -2i\pi(tk + l), 0\}$ (replacing, if necessary, *l* with -l). This is equivalent to:

for every
$$t \in \mathbb{R}$$
, $\chi_{tR+S}(T) = T^3 + 4\pi^2(tk+l)^2T$.

We obtain an algebraic system in the unknowns $(s_{i,j})_{i,j}$. Solving this system, we obtain the required form for *S*.

Acknowledgements

The author thanks D. Adam and R. Oyono for many valuable discussions; he thanks the referee for his careful reading of the paper.

References

- L. Baribeau and S. Roy, 'Caractérisation spectrale de la forme de Jordan', *Linear Algebra Appl.* 320 (2000), 183–191.
- G. Bourgeois, 'On commuting exponentials in low dimensions', *Linear Algebra Appl.* 423 (2007), 277–286.
- [3] N. J. Higham, Functions of Matrices: Theory and Computation (SIAM, Philadelphia, PA, 2008).
- [4] E. Hille, 'On roots and logarithms of elements of a complex Banach algebra', *Math. Ann.* 136 (1958), 46–57.
- [5] R. Horn and G. Piepmeyer, 'Two applications of the theory of primary matrix functions', *Linear Algebra Appl.* **361** (2003), 99–106.
- [6] K. Morinaga and T. Nôno, 'On the non-commutative solutions of the exponential equation $e^x e^y = e^{x+y^y}$, J. Sci. Hiroshima Univ. Ser. A **17** (1954), 345–358.
- [7] K. Morinaga and T. Nôno, 'On the non-commutative solutions of the exponential equation $e^{x}e^{y} = e^{x+y}$, II', J. Sci. Hiroshima Univ. Ser. A **18** (1954), 137–178.
- [8] T. S. Motzkin and O. Taussky, 'Pairs of matrices with property L', Trans. Amer. Math. Soc. 73 (1952), 108–114.
- [9] Ch. Schmoeger, 'Remarks on commuting exponentials in Banach algebras. II', Proc. Amer. Math. Soc. 128(11) (2000), 3405–3409.
- [10] C. de Seguins Pazzis, 'On commuting matrices and exponentials', Proc. Amer. Math. Soc. 141 (2013), 763–774.
- [11] E. M. E. Wermuth, 'Two remarks on matrix exponentials', *Linear Algebra Appl.* **117** (1989), 127–132.

GERALD BOURGEOIS, GAATI, Université de la Polynésie Française, BP 6570, 98702 FAA'A, Tahiti, Polynésie Française e-mail: bourgeois.gerald@gmail.com