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Abstract

The stochastic sequential assignment problem assigns distinct workers to sequentially
arriving tasks with stochastic parameters. In this paper the assignments are performed so
as to minimize the threshold probability, which is the probability of the long-run reward
per task failing to achieve a target value (threshold). As the number of tasks approaches
infinity, the problem is studied for independent and identically distributed (i.i.d.) tasks
with a known distribution function and also for tasks that are derived from r distinct
unobservable distributions (governed by a Markov chain). Stationary optimal policies
are presented, which simultaneously minimize the threshold probability and achieve the
optimal long-run expected reward per task.
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1. Introduction

Consider the sequential stochastic assignment problem (SSAP) introduced in [6], where
n workers are available to perform n independent, identically distributed (i.i.d.) sequentially
arriving tasks. The random variable Xj denotes the j th task value, and a value (success rate)
pi is associated with each worker. Whenever the ith worker is assigned to the j th task that
worker becomes unavailable for future assignments, with pixj denoting the expected reward
due to this assignment. The objective is to assign these n workers to n tasks so as to maximize
the expected total reward. It is shown in [6] that there exists numbers

−∞ = a0,n ≤ a1,n ≤ a2,n ≤ · · · ≤ an,n = +∞, (1.1)

such that the optimal choice in the initial stage is to assign the ith best available worker if the
random variable X1 falls within the ith highest interval. The SSAP has applications in several
areas and various extensions to the problem have been discussed in the literature. For example,
[10] studied a variation of the SSAP in aviation security screening systems, while [11] addressed
the problem of allocating sequentially arriving donor kidneys to patients on a transplant waiting
list. Another application of the SSAP is the asset selling problem [3], where there is a need to
choose the best offers out of a sequence of bids from potential buyers. Moreover,Albright [1]
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944 G. BAHARIAN AND S. H. JACOBSON

studied the SSAP with various task-arrival-time distributions. Nikolaev and Jacobson [9]
considered a variation of the SSAP in which the number of tasks are unknown until after
the arrival of the final task which followed a given probability distribution.

Implementing the optimal assignment policy for the SSAP, as described in [6], involves
calculating a new set of breakpoints upon the arrival of each task. The computation of these
breakpoints takes polynomial time but is cumbersome for large scale problems. For example,
consider an SSAP which allows passengers at an airport check-in to be assigned to the available
security resources based on their perceived individual threat level [9]. Assigning passengers
to security resources by recalculating the breakpoints every time a passenger arrives is not
practical, even for a small airport. Therefore, this paper focuses on the limiting behavior of
the {ai,n}, as n approaches ∞, so as to obtain practical solutions that can be implemented in
real world situations. The existing SSAP literature focuses on a risk neutral objective function,
seeking an assignment policy that maximizes the expected total reward. However, a risk neutral
policy is not always desirable since the probability distribution function (pdf ) of the total reward
may carry with it a high probability of low values. Consequently, there are instances when a
decision maker is interested in a stable reward and looks for a risk sensitive optimal assignment
policy.

Taking the above mentioned issues into consideration, this paper studies the limiting behavior
of the SSAP under a different objective function, called the threshold criterion. For a given
threshold (or target) τ , the goal is to find a policyφ∗ that minimizes the threshold probability: the
probability (or risk) of the long-run reward per task failing to achieve the target τ . Specifically,
the threshold criterion can be expressed as

inf
φ∈�P

{
lim sup
n→+∞

1

n
Rφn ≤ τ

}
,

where� is the set of all admissible policies and Rφn is the total reward obtained after assigning
all n tasks under policy φ. For simplicity, this problem is denoted as the LTSSAP since it
studies the limiting behavior of the target dependent SSAP. In this paper we study two versions
of this problem. The first version assumes that the sequentially arriving tasks are i.i.d. with a
known distribution function. The second problem then considers the case that the task values
are derived from r different distributions, where the successive distributions are governed by an
ergodic Markov chain. Once a task arrives in a given time period its value is observed; however,
the source of the distribution is unobservable. In both problems it is assumed that there exist k
worker categories, where the ith category consists of ri workers each with value pi such that∑k
i=1 ri = n. Stationary policies are presented for both problems, which apart from minimizing

the threshold probability, achieve the optimal long run expected reward per task. As opposed
to the policy described by [6] (see (1.1)) in which the number of breakpoints increases with n
and the (time-dependent) breakpoints are recalculated each time a task arrives, the assignment
policies presented in this paper are characterized by k−1 fixed (time-independent) breakpoints.
Comparing the value of each arriving task with these fixed breakpoints (regardless of the arrival
time) determines the worker class to which that task must be assigned.

In the existing literature, [4] and [2] addressed the limiting behavior of a special case of
SSAP (called the secretary problem) where pi ∈ {0, 1}. Specifically, [2] assumed that the task
values were generated by r different distributions, and once a task arrived, both its value and its
distribution were observed. However, the assumption that the underlying task distributions are
observable does not hold in most real world problems. Deviating from the existing literature,
the present paper considers the task distributions to be both unobservable and forming a hidden
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Markov chain. As an application of the problem with a hidden Markov chain, consider the
case where the task worth at time period j is denoted by Xj . It is safe to assume that the
task worth is dependent on the economic conditions upon the arrival of that task [8]. Clearly,
the economic conditions vary from time to time. Suppose that the changes in these economic
conditions are modeled by a Markov chain with state space S, where the states of the chain
represent the (unobservable) economic conditions. Specifically, assume that if the economic
condition upon the arrival of Xj is given by k ∈ S, then Xj is derived from the distribution
function Fk . Hence, we are dealing with an observable sequence of arriving tasks, where the
underlying (unobservable) economic conditions affect the tasks’ worth, with a Markov chain
modeling the transitions in economical conditions. Although [4] laid out the framework for
studying the limiting behavior of the SSAP, this paper takes on a different approach to the proof
for two reasons.

(i) Dealing with the LTSSAP involves studying the almost sure (a.s.) convergence of the
long-run reward per task, while the existing literature focuses on the convergence of the
long-run expected value of reward per task.

(ii) As mentioned in [5], the generalization of the problem with pi ∈ {0, 1} to the case with
arbitrary worker values is not possible using the approach applied in [4].

Consider an application of LTSSAP in aviation security, where sequentially arriving passengers
at an airport check-in are assigned to the available security resources. A random variable Xj
is associated with passenger j , denoting their threat (risk) value. The threat value is defined
as the probability of a passenger carrying a threat item. Upon arrival, a prescreening system
determines the passenger threat value and assigns them to either a non-selectee class (i.e. a
class of passengers who have been cleared of posing a threat) or a selectee class (i.e. the class
who have not been cleared). A security level is assigned to each class, denoting the probability
of detecting a passenger with a threat item. Let LS and LNS be the security levels associated
with the selectee and the non-selectee classes. Moreover, let γj = 1 and γj = 0 denote the j th
passenger assignment as a selectee and a non-selectee, respectively. The total security for this
setting is defined as

n∑
j=1

Xj [LSγj + LNS(1 − γj )].

At any airport it is critical to maintain a stable and reasonable level of continuous security
with a high probability of detecting threats. Therefore, the objective is to find a policy for
assigning passengers to classes as they check in so as to minimize the probability of the long-
run average security failing to achieve the target τ . In most of the real world settings the
distributions generating the passenger threat values are not observable. Moreover, threat values
of different passengers are likely to have been generated from different distributions. To see
how the model with unobservable distributions (involving a Markov chain) can be useful in this
setting consider a group of two or more passengers who are planning an attack. The passenger
threat values depend on one another in the sense that if one passenger is classified as a high risk
passenger (i.e. their threat value distribution assigns large probabilities to higher values), then
there is a high (or low, depending on the attack strategy) probability that the person standing
right behind them in the line is also a threat to the safety of the airport and other passengers.
In other words, the distribution generating the threat value of such a passenger has an affect
on the threat value of the passengers standing close to them in the line. This effect, and the
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underlying process governing the transition from one distribution to the other, can be captured
by a Markov chain.

This paper is organized as follows. Section 2 provides an optimal assignment policy
for LTSSAP with i.i.d. task values from a known observable distribution. The problem of
unobservable task distributions, forming a hidden Markov chain, is addressed in Section 3.
Section 4 presents concluding remarks and future research directions.

2. The model: observable task distributions

Consider the SSAP with n tasks and k (fixed) worker categories, where the ith worker-
category consists of ri workers each with value pi . Let [.] denote the floor function where
[y] := max{m ∈ Z | m ≤ y}. Moreover, let πi be the fraction of total number of workers that
belong to categories i + 1 to k, and hence, αi := πi−1 − πi denotes the fraction of workers
assigned to class i, for i = 1, 2, . . . , k. For simplicity, the ith worker category is referred
to as type-i workers (or equivalently, class-i workers), with the size of the ith category given
by ri = [nπi−1] − [nπi] for i = 1, 2, . . . , k, where π0 = 1, πk = 0, and πi+1 < πi for
i = 0, 1, . . . , k − 1. Also, assume that pi+1 < pi for i = 1, 2, . . . , k.

Let Ai := (F−1(πi), F
−1(πi−1)] for i = 1, 2, . . . , k, where F is the distribution function

of task values. A taskXj is labeled a type-i task ifXj ∈ Ai . Consider a policy φL that assigns
the j th task to a class-i worker if Xj ∈ Ai . If the goal is to maximize the expected reward per
task as n → +∞, then it can be deduced from [4] that the optimal long-run expected reward
per task is given by

r∗ :=
k∑
j=1

(
pj

∫ F−1(πj−1)

F−1(πj )

xF (dx)

)
, (2.1)

with F−1(1) = +∞ and F−1(0) = −∞. Moreover, [5] proved that φL is the stationary policy
that achieves the optimal long-run expected reward per task, r∗, for this SSAP. In what follows,
we prove that this policy also optimizes the threshold probability for a given target value τ ;
specifically, it solves the LTSSAP and achieves the infimum in the following expression

inf
φ∈�P

{
lim sup
n→+∞

1

n
Rφn ≤ τ

}
, (2.2)

where Rφn is the total reward obtained after assigning all n tasks under policy φ. Note that
this policy consists of k − 1 (time independent) fixed breakpoints, where k does not change
as n → +∞, as opposed to the policy described by [6] in which the number of breakpoints
increases with n and the breakpoints are recalculated at each time period.

For a fixedn, letU(n)ri denote the number of tasks that arrive until ri tasks of type-i are obtained
and define U(n) := min{U(n)r1 , U

(n)
r2 , . . . , U

(n)
rk }. Observe that U(n)ri follows a negative binomial

distribution with parameters (ri, πi−1 −πi), since tasks are assumed to be i.i.d. Proposition 2.1
presents a useful property of U(n).

Proposition 2.1. It holds that

U(n)

n
→ 1 almost surely as n → +∞

Proof. Fix i ∈ {1, 2, . . . , k}, and recall that U(n)ri is a negative binomial random variable
with parameters (ri, πi−1 − πi), and hence, it can be represented as the sum of ri i.i.d.
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geometric random variables each having mean 1/(πi−1 −πi). The strong law of large numbers
(SLLN) implies that (U(n)ri /ri) → 1/(πi−1 − πi) almost surely as n → +∞ , which leads
to (U(n)ri /n) = (U

(n)
ri /ri)(ri/n) → 1 as n → +∞ almost surely. Recall that the minimum of

any two arbitrary functions f and g can be represented as min{f, g} = 1
2 (f + g − |f − g|).

Moreover, (U(n)/n) is the minimum over a finite number of almost surely convergent functions,
and hence, (U(n)/n) → 1 as n → +∞ almost surely, which completes the proof.

Applying the result in Proposition 2.1 we show that Theorem 2.1 proves the optimality of
φL for τ ∈ [−∞, r∗).

Theorem 2.1. Assume that τ < r∗. The infimum in (2.2) is achieved by a policy φL that assigns
the j th task to a type-i worker if Xj ∈ Ai and j ≤ U(n).

Proof. To prove the result, the total reward under φL, RφLn , is split into the reward obtained
up to time U(n) and the reward obtained after U(n), which are denoted by R(1)n and R(2)n ,
respectively. The superscript φL is dropped to simplify the notation. Observe that

1

n
R(1)n = 1

n

U(n)∑
i=1

k∑
j=1

pjXiI{Xi∈Aj } = U(n)

n
· 1

U(n)

U(n)∑
i=1

k∑
j=1

pjXiI{Xi∈Aj },

and note that

1

n

n∑
i=1

k∑
j=1

pjXiI{Xi∈Aj } → r∗ as n → +∞, (2.4)

almost surely by the SSLN. Moreover, U(n) ≥ min{r1, r2, . . . , rk}, and hence, U(n) → +∞
almost surely as n → +∞. This fact combined with (2.4) results in

1

U(n)

U(n)∑
i=1

k∑
j=1

pjXiI{Xi∈Aj } → r∗ as n → +∞ almost surely. (2.5)

Therefore, (R(1)n /n → r∗) almost surely as n → +∞, by (2.5) and Proposition 2.1. Moreover,

0 ≤ 1

n
R(2)n ≤ p1

(
1

n

n∑
i=1

Xi − 1

n

U(n)∑
i=1

Xi

)
→ 0 as n → +∞,

almost surely, by a similar argument. Therefore, (Rn/n) → r∗ almost surely as n → +∞
under φL, and it follows that PφL{lim supn→+∞(Rn/n) ≤ τ } = 0 since τ < r∗, completing
the proof.

Note that Theorem 2.1 along with the results in [5] imply that the policy φL achieves the
maximum long-run expected reward per task, while minimizing the risk of the long-run reward
per task failing to achieve a given target level. Theorem 2.2 proves a result which is useful in
solving the LTSSAP for target values greater than r∗. Before proceeding to Theorem 2.2 we
discuss the boundedness and integrability of task values in Assumption 2.1.

Assumption 2.1. There exists a random variable Y that is independent of the task values and
P{Xj ≤ Y } = 1 for j = 1, 2, . . ., where E[Y ] < +∞.
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948 G. BAHARIAN AND S. H. JACOBSON

Theorem 2.2. Consider a policy φB that assigns X(j) (the j th order statistic of X1, X2, . . . ,

Xn) to the j th best available worker. Under Assumption 2.1, it follows that

1

n
RφBn → r∗ almost surely as n → +∞. (2.6)

Proof. Note that the reward per task under φB can be expressed as

1

n
RφBn =

k∑
j=1

pj

(
1

n

[nπj−1]∑
i=[nπj ]+1

X(i)

)
,

while r∗ = ∑k
j=1 pjE[X1I{X1∈Aj }]. Therefore, to prove (2.6), it is sufficient to prove that

(1/n)
∑n
i=[nπ ]+1X(i) → E[X1I{X1∈A1}] as n → +∞ almost surely, for arbitrarily fixed 0 <

π < 1. Observe that (1/n)
∑n
i=1XiI{Xi≥F−1(π)} → E[X1I{X1≥F−1(π)}] as n → +∞ almost

surely by SLLN, and hence, it remains to show that

1

n

∣∣∣∣
n∑

i=[nπ ]+1

X(i) −
n∑
j=1

XjI{Xj≥F−1(π)}
∣∣∣∣ → 0 as n → +∞, (2.7)

almost surely. Define N(n) := ∑n
i=1 I{Xi≥F−1(π)}, and note that N(n)/n → 1 − π almost

surely as n → +∞. Consider the following two cases.

(i) If N(n) ≥ n − [nπ ], then the left hand numerator in (2.7) contains N(n) − n + [nπ ]
terms, all less than or equal to Y .

(ii) If N(n) < n − [nπ ], then the left hand numerator in (2.7) contains n − [nπ ] − N(n)

terms, each less than F−1(π).

Therefore,

1

n

∣∣∣∣
n∑

i=[nπ ]+1

X(i) −
n∑
j=1

XjI{Xj≥F−1(π)}
∣∣∣∣ ≤

∣∣∣∣n− [nπ ] −N(n)

n

∣∣∣∣(Y ∨ F−1(π)) → 0,

as n → +∞ almost surely by SLLN and the fact that Y < +∞ with probability one. This
completes the proof.

Using the result from Theorem 2.2, Corollary 2.1 solves (2.2) for τ ∈ [r∗,+∞).

Corollary 2.1. If τ ≥ r∗, then

inf
φ∈�P

{
lim sup
n→+∞

1

n
Rφn ≤ τ

}
= 1. (2.8)

Proof. Observe that PφB {lim supn→+∞(Rn/n) ≤ τ } = 1, by Theorem 2.2. Also

PφB

{
lim sup
n→+∞

1

n
Rn ≤ τ

}
≤ Pφ

{
lim sup
n→+∞

1

n
Rn ≤ τ

}
,

for any φ ∈ �, since no admissible policy can outperform φB , and hence, (2.8) follows.
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By Corollary 2.1, if the target value is greater than or equal to r∗, then all the admissible
policies perform the same in terms of minimizing the threshold probability, and hence, the
decision maker is indifferent in choosing between any two such policies. If the decision maker
intends to optimize the assignments so as to achieve the maximum long-run expected reward
per task, along with controlling risk level in the sense of (2.2), then they can opt to apply policy
φL.

3. The model: unobservable task distributions

Consider the LTSSAP with k worker categories, where the ith category consists of ri =
[nπi−1]− [nπi] workers, each with value pi . Assume that the task values are generated from r

different distributions, where the successive distributions are governed by an irreducible ergodic
time-homogeneous Markov chain with (known) transition probability matrixQ = (qij ) and an
invariant (stationary) distribution μ. The state of the Markov chain at time period j is denoted
by Zj , with S = {1, 2, . . . , r} being the state space of the Markov chain. Specifically, Zj = k

means that the j th task Xj is a random variable with distribution function Fk having support
B ⊆ [0,+∞). Upon the arrival of each task, its value is observed; however, the state of the
Markov chain (and hence, the distribution associated with the task value) is unobservable. The
goal is to arrive at an assignment policy that minimizes the threshold probability in (2.2).

Since task values are derived from r distinct distributions that are linked together through a
Markov chain, it follows that task values are no longer i.i.d., and hence, the approach presented
in Section 2 cannot be used. To solve this problem, let W = {Wj, j = 1, 2, . . .} be a discrete-
time Markov chain with state space S × B where Wj := (Zj ,Xj ), and note that only Xj is
observable at time period j . In the following, the chain W is proven to be positive recurrent,
implying that the strong law of large numbers holds for W . Then, it is shown that a stationary
policy similar to φL achieves the infimum in (2.2) and is optimal. Lemma 3.1 provides an
invariant distribution μ̄ for W .

Lemma 3.1. The chain W admits an invariant measure μ̄, where

μ̄(k, E) := μ(k)Fk(E) for any k ∈ S and E ⊆ B. (3.1)

Proof. Let P{(l, x), (k, E)} denote the probability of transitioning from state (l, x) to state
(k, E), where (l, x) ∈ S × B. To prove the result we need to verify that for any k ∈ S and
E ⊆ B

μ̄(k, E) =
∫

B

r∑
l=1

P{(l, x), (k, E)}μ̄(l, dx), (3.2)

where μ̄ is given by (3.1). To do so, (3.1) is substituted into the right hand side of (3.2) as
follows ∫

B

r∑
l=1

μ̄(l, dx)P{(l, x), (k, E)} =
r∑
l=1

[
μ(l)

( ∫
B
Fl(dx)

)
qlkFk(E)

]

= Fk(E)

r∑
l=1

μ(l)qlk

= μ̄(k, E)

where the last equality follows from the fact that μ is an invariant measure for Z := {Zj , j =
1, 2, . . .}, and (3.2) is verified, completing the proof.
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Before we proceed to Corollary 3.2 some notation and definitions must be introduced, and
auxiliary results must be presented. In Corollary 3.2 we show that the SLLN holds for the chain
W (and hence, simplifies the proof of the desired results for the unobservable distributions case).

Definition 3.1. Let τ(k,E) := min{j ≥ 1 : Wj ∈ (k, E)} denote the first hitting of the set
(k, E), and define

L((l, x), (k, E)) := P(l,x){τ(k,E) < +∞} = P{W ever enters (k, E), starting from (l, x)},
for (l, x) ∈ S × B and (k, E) ⊂ S × B.

Definition 3.2. The chain W is ψ-irreducible, see [7, Chapter 4, page 89], if there exists a
measure ψ such that if ψ(k,E) > 0, then L((l, x), (k, E)) > 0 for any state (l, x) ∈ S × B.

Lemma 3.2. Fix an arbitrary state s0 ∈ S, and define ψ(k,E) := δs0(k)Fs0(E) for all k ∈ S
and E ⊆ B, where δs0(k) := I{k=s0}. The chain W is ψ-irreducible.

Proof. Fix k ∈ S and E ⊆ B such that ψ(k,E) > 0, and note that k = s0 and Fk(E) >
0. Since Z is irreducible, there exists n ≥ 1 such that Q(n)

lk := P{Zt+n = k | Zt = l} > 0,
for any l ∈ S. Therefore, P

(n)
(l,x){W ∈ (k, E)} = Q

(n)
lk Fk(E) > 0, for x ∈ B, and hence,

L((l, x), (k, E)) > 0, which proves that W is ψ-irreducible.

Assumption 3.1. There exists a small set (Ā, Ē) ⊂ S ×B, see [7, Chapter 5, page 109], such
that L((l, x), (Ā, Ē)) = 1 for all (l, x) ∈ S × B.

Corollary 3.1. The chainW is positive Harris recurrent under Assumption 3.1, see [7, Chapter
9, page 204, and Chapter 10, page 235].

Proof. W is a positive chain since it is ψ-irreducible and admits an invariant probability
measure μ̄. Moreover, Assumption 3.1 along with ψ-irreduciblity of W implies that the chain
is Harris recurrent (Proposition 9.1.7 in [7]).

Corollary 3.2 follows from Theorem 17.0.1 in [7] and proves that the SLLN holds true for
chain W under Assumption 3.1.

Corollary 3.2. For any function g defined on S × B,

1

n

n∑
j=1

g(Wj ) → μ̄(g) almost surely as n → +∞, if g satisfies μ̄(|g|) < +∞.

To define the optimal assignment policy, we first introduce some notation. Define F : B →
[0, 1] as F(a) := ∑r

j=1 μ(j)Fj (a), and note that F is a distribution function on B with
F (−1)(1) := +∞ and F (−1)(0) := −∞. Let r∗ be defined as in (2.1), with F being the
distribution function introduced above. As defined in Section 2, a task Xj is labeled type-i if
Xj ∈ Ai := (F−1(πi), F

−1(πi−1)]. Moreover, for a fixed n, let t (n)ri denote the number of tasks
that must arrive until ri tasks of type i are obtained and define t (n) := min{t (n)r1 , t (n)r2 , . . . , t (n)rk }.
Note that unlikeU(n)ri , t (n)ri is not distributed negative binomial, since the task values are no longer
assumed to be i.i.d. Unless otherwise mentioned, Assumption 3.1 holds throughout Section 3.
Proposition 3.1 discusses a useful property of t (n).

Proposition 3.1. It holds that

t (n)

n
→ 1 almost surely as n → +∞
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Proof. It suffices to prove that for all i ∈ {1, 2, . . . , k}, (t(n)ri /n) → 1 almost surely as
n → +∞. To this end, arbitrarily fix i ∈ {1, 2, . . . , k}, and note that (ri/n) → πi−1 − πi as
n → +∞, and hence, it is enough to prove that

t
(n)
ri

ri
→ 1

πi−1 − πi
as n → +∞,

almost surely. Define Bi := {(Zj ,Xj ) : Xj ∈ Ai}, and note that t (n)ri is the random time of the
ri th visit to Bi for the chain W . On the other hand, since

μ̄(IBi
) =

r∑
u=1

μ(u)(Fu(F
−1(πi−1))− Fu(F

−1(πi))) = πi−1 − πi,

it follows from Corollary 3.2 that

1

n

n∑
j=1

IBi
(Wj ) → πi−1 − πi as n → +∞ almost surely.

Moreover, t (n)ri ≥ ri , and hence, t (n)ri → +∞ almost surely as n → +∞. Therefore

1

t
(n)
ri

t
(n)
ri∑
j=1

IBi
(Wj ) → πi−1 − πi as n → +∞,

almost surely, but
∑t

(n)
ri

j=1 IBi
(Wj ) = ri , implying that
ri

t
(n)
ri

→ πi−1 − πi as n → +∞,

almost surely, which completes the proof.

Applying the result in Proposition 3.1 we will show that Theorem 3.1 presents the optimal
policy for τ ∈ [−∞, r∗).

Theorem 3.1. Assume that τ < r∗. A policy φ̃L that assigns the j th task to a type-i worker if
Xj ∈ Ai and j ≤ t (n), achieves the infimum in (2.2).

Proof. The proof proceeds along the same lines as that of Theorem 2.1 and follows from
Corollary 3.2 and Proposition 3.1.

As in the observable distributions case, Theorem 3.1 along with the results in [5], imply that
the policy φ̃L achieves the maximum long-run expected reward per task, while minimizing the
risk of the long-run reward per task failing to achieve a given target level. Lemma 3.3 presents
a result, which helps with solving the problem for target values greater than or equal to r∗.

Lemma 3.3. Let X(j) denote the j th order statistic of tasks X1, X2, . . . , Xn, coming from r

different distributions {F1, F2, . . . , Fr}, where the successive distributions are unobservable
and governed by an irreducible ergodic Markov chain with invariant distribution μ. Thus,

1

n

n∑
j=[nπ ]+1

X(j) →
∫ +∞

F−1(π)

xF (dx) as n → +∞,

almost surely for any π ∈ (0, 1), where F(a) := ∑r
j=1 μ(j)Fj (a).

Proof. Taking Corollary 3.2 into consideration, the proof is similar to that of Theorem 2.2.
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Using the result in Lemma 3.3, Theorem 3.2 solves (2.2) and addresses the problem for
target values greater than or equal to r∗.

Theorem 3.2. If τ ≥ r∗, then infφ∈� P{lim supn→+∞ R
φ
n /n ≤ τ } = 1, under Assumption 2.1.

Proof. In light of Corollary 3.2, Proposition 3.1, and Lemma 3.3, the proof is analogous to
that of Theorem 2.2 and Corollary 2.1.

According to Theorem 3.2, and similar to the observable distributions case, the decision
maker is indifferent in the choice between any two arbitrary admissible policies, when mini-
mizing the threshold probability with τ ∈ [r∗,+∞). A prudent choice is to apply the policy
φ̃L in this case.

Note that the optimal policy for LTSSAP (i.e. φL for i.i.d. task values and φ̃L for tasks with
unobservable distributions) assigns the best α1 percent of the tasks to the best workers, the
second best α2 percent of the tasks to the second best workers, and so on. Moreover, [5] proved
that the same policy maximizes the long-run expected reward per task. A natural question to
ask is whether there exist other classes of objective functions, for which this policy is optimal.
To answer this question, Theorem 3.3 analyzes SSAP under the following objective function

inf
φ∈� lim sup

n→+∞
P

{
1

n
Rφn ≤ τ

}
, (3.4)

and verifies that φL and φ̃L optimize (3.4) for τ ∈ (−∞, r∗).

Theorem 3.3. If τ < r∗, then φL and φ̃L achieve the optimality in (3.4) for the observable and
the unobservable distributions case, respectively.

Proof. Recall from Theorem 2.1 and Theorem 3.1 that the reward per task under φL and
φ̃L converges to r∗ almost surely as n → +∞, which implies convergence in probability.
Therefore,

P

{
1

n
RφLn ≤ τ

}
≤ P

{∣∣∣∣1

n
RφLn − r∗

∣∣∣∣ > r∗ − τ

}
→ 0 as n → +∞,

implying limn→+∞ P{RφLn /n ≤ τ } = 0. Therefore, φL achieves the infimum in (3.4). A
similar argument proves the optimality of φ̃L for the unobservable distributions case.

Theorem 3.4 proves that if the given target value is greater than r∗, then the decision maker has
no preference in choosing between the set of admissible policies, under the objective function
introduced in (3.4). Recall that this is also the case when solving the LTSSAP.

Theorem 3.4. If τ > r∗, then infφ∈� lim supn→+∞ P{Rφn /n ≤ τ } = 1, under Assumption 2.1,
for both the observable and the unobservable distributions cases.

Proof. Recall from Theorem 2.2 that the long-run reward per task under φB equals r∗ almost
surely. On the other hand, no policy can do better than the infeasible policy φB . Therefore,

lim sup
n→+∞

1

n
Rφn ≤ lim

n→+∞
1

n
RφBn = r∗ < τ (3.5)

almost surely for any arbitrarily fixed policy φ ∈ �. It follows from (3.5) and the definition of
limsup that P{lim infn→+∞{Rφn /n ≤ τ }} = 1, which implies that

1 = lim sup
n→+∞

P

{
1

n
Rφn ≤ τ

}
≥ P

{
lim inf
n→+∞

{
1

n
Rφn ≤ τ

}}
for all φ ∈ �,
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and the claim is proven for the observable distributions case. The same argument proves the
result for the unobservable distributions case.

4. Conclusion

This paper studies the SSAP with k fixed worker classes as the number of tasks (denoted byn)
approaches ∞, where the aim is to minimize the threshold probability. This objective function
diverges from the risk-neutral objective function studied in the existing SSAP literature. Two
versions of the problem are studied that are based on the distribution function of task values
being either observable or unobservable. Simple stationary optimal policies are presented for
both problems, as opposed to the time-dependent policy described in [6]. These stationary
optimal policies not only maximize the long-run expected reward per task but also minimize
the risk of failing to achieve a given threshold value.

This paper incorporates a Markov-modulated dependency that is simultaneous between the
task values and the uncertainty in the task distribution functions of the model studied. Further
research is required to address other types of uncertainty in the SSAP where there are a large
number of tasks. One example can be the case where the number of arriving tasks is not known
a priori and follows a given probability distribution. Another challenge is shifting the attention
from the i.i.d. sequence of tasks to a more general case with dependent task values, where the
value of the current task depends on the whole sequence of its preceding tasks.
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