FUGLEDE-PUTNAM'S THEOREM FOR *p*-HYPONORMAL OR log-HYPONORMAL OPERATORS

ATSUSHI UCHIYAMA¹

Mathematical Institute, Tohoku University, Sendai 980-8578, Japan email: uchiyama@math.tohoku.ac.jp

and KÔTARÔ TANAHASHI²

Department of Mathematics, Tohoku Pharmaceutical University, Sendai 981-8558, Japan email: tanahasi@tohoku-pharm.ac.jp

(Received 11 December, 2000; accepted 8 May 2001)

Abstract. Let *T* be *p*-hyponormal or log-hyponormal on a Hilbert space \mathcal{H} . Then we have $XT = T^*X$ whenever $XT^* = TX$ for some $X \in \mathcal{B}(\mathcal{H})$. This is an extension of Patel's result. Also for *p*-hyponormal or log-hyponormal T^* , dominant *S* and any $X \in \mathcal{B}(\mathcal{H})$ such that XT = SX, we have $XT^* = S^*T$.

2000 Mathematics Subject Classification. 47A10, 47B20.

1. Introduction. For complex Hilbert spaces \mathcal{H} and \mathcal{K} , $\mathcal{B}(\mathcal{H})$, $\mathcal{B}(\mathcal{K})$ and $\mathcal{B}(\mathcal{H},\mathcal{K})$ denote the set of all bounded linear operators on \mathcal{H} , the set of all bounded linear operators on \mathcal{K} and the set of all bounded linear transformation from \mathcal{H} to \mathcal{K} respectively. Throughout this paper, \mathcal{H} and \mathcal{K} are Hilbert spaces, and Hilbert spaces mean complex Hilbert spaces. A bounded linear operator T on a complex Hilbert space \mathcal{H} is called *normal* if $T^*T = TT^*$. Also T is called *p*-hyponormal for p > 0 if $(T^*T)^p \ge (TT^*)^p$, log-hyponormal if T is an invertible operator which satisfies $\log(T^*T) \ge \log(TT^*)$. Throughout this paper, we consider the case where $p \in (0, 1]$. T is called hyponormal iff it is 1-hyponormal. We say that T is M-hyponormal for M > 0 if $(T - \lambda)(T - \lambda)^* \le M(T - \lambda)^*(T - \lambda)$ for all $\lambda \in \mathbb{C}$, and is *dominant* if $\operatorname{ran}(T-\lambda) \subset \operatorname{ran}(T-\lambda)^*$, for all $\lambda \in \mathbb{C}$. If T satisfies $|T^2| \geq T^*T$, then we say that T belongs to the class *A* (or simply, *T* is *class A*). We also say that *T* is *co-hyponormal*, co-M-hyponormal, co-dominant, co-p-hyponormal and co-log-hyponormal if T^* is hyponormal, M-hyponormal, dominant, p-hyponormal and log-hyponormal respectively. It is well known that *M*-hyponormal is dominant and also well-known that p-hyponormal and log-hyponormal are classA. By definition, the restriction of an *M*-hyponormal (resp. dominant) operator to an invariant subspace is always *M*-hyponormal (resp. dominant). The parallel results for *p*-hyponormal (resp. class A) have been obtained by the author ([18], [19]), i.e., it is true that the restriction of *p*-hyponormal (resp. class *A*) to an invariant subspace is always *p*-hyponormal (resp. classA).

The following Fuglede-Putnam's theorem is famous.

¹Research Fellow of the Japan Society for Promotion of Science.

²This research was supported by Grant-in-Aid Research 1 No. 12640187.

THEOREM. (Fuglede-Putnam's theorem [4], [12]). Let $A \in \mathcal{B}(\mathcal{H})$ and $B \in \mathcal{B}(\mathcal{K})$ be normal operators on Hilbert spaces \mathcal{H} and \mathcal{K} , respectively. Let $C \in \mathcal{B}(\mathcal{H}, \mathcal{K})$ be an operator which satisfies CA = BC. Then $CA^* = B^*C$.

Many mathematicians have extended this theorem to various classes of operators. The following is one of them.

THEOREM. (Duggal [3], Yoshino [21]) Let $A^* \in \mathcal{B}(\mathcal{H})$ be M-hyponormal and $B \in \mathcal{B}(\mathcal{K})$ be dominant. Let $C \in \mathcal{B}(\mathcal{H}, \mathcal{K})$ be an operator which satisfies CA = BC. Then $CA^* = B^*C$.

We say that a closed linear subspace \mathcal{M} of \mathcal{H} , invariant under T, is a normal part of T if the restriction $T|_{\mathcal{M}}$ of T to \mathcal{M} is normal. It is a famous result of Stampfli [15] that every normal part of a dominant operator B is always a reducing subspace of B.

Recently, Patel [10] has proved the following result.

THEOREM. Let T be an injective p-hyponormal operator on \mathcal{H} with the property that every normal part of T reduces T. Let X be a bounded linear operator on \mathcal{H} such that $TX = XT^*$. Then $T^*X = XT$.

In this paper, we shall show that if T is p-hyponormal or log-hyponormal then every normal part of T is a reducing subspace of T. Consequently the conclusion of the theorem of Patel [10] above remains true without the assumption of injectivity or reduceness of the normal parts. Further, the conclusion of the theorem remains true if the hypothesis of p-hyponormality of the operator is replaced by that of loghyponormality. Finally we shall prove the following partial generalization of the theorem of Duggal [3] and Yoshino [21] stated above.

THEOREM. Let $A^* \in \mathcal{B}(\mathcal{H})$ be *p*-hyponormal or log-hyponormal and $B \in \mathcal{B}(\mathcal{K})$ be dominant. If $C \in \mathcal{B}(\mathcal{H}, \mathcal{K})$ and CA = BC, then $CA^* = B^*C$.

2. Preliminaries The following lemmas are well known except Lemma 3. For the sake of convenience, we state them without proof.

LEMMA 1. ([13]). If N is a normal operator on \mathcal{H} , then we have

$$\bigcap_{\lambda \in \mathbb{C}} (N - \lambda)\mathcal{H} = \{0\}$$

LEMMA 2. ([1], [17]). If T is p-hyponormal for 0 (resp. log-hyponormal) and <math>T = U|T| is the polar decomposition of T, then the Aluthge transform $\widetilde{T} = |T|^{\frac{1}{2}} U|T|^{\frac{1}{2}}$ of T is hyponormal if $p \ge \frac{1}{2}$ and $(p + \frac{1}{2})$ -hyponormal if $0 (resp. <math>\frac{1}{2}$ -hyponormal).

In [11], Patel showed that a *p*-hyponormal operator is normal whenever its Aluthge transform is normal. The following is an extension of Patel's result.

LEMMA 3. Let T be a p-hyponormal (respectively log-hyponormal) operator on \mathcal{H} and let U|T| be the polar decomposition of T. Let \mathcal{M} is a closed subspace of \mathcal{H} such that the Aluthge transform \widetilde{T} is of the form $\widetilde{T} = N \oplus T'$ on $\mathcal{H} = \mathcal{M} \oplus \mathcal{M}^{\perp}$, where N is a normal operator on \mathcal{M} . Then T and U are of the form $T = N \oplus T_1$ and $U = U_{11} \oplus U_{22}$, where T_1 is p-hyponormal (resp. log-hyponormal) and $N = U_{11}|N|$ is the polar decomposition of N.

In particular, if the Aluthge transform \widetilde{T} of T is normal, then T is normal.

Proof. For *p*-hyponormal or log-hyponormal T, it was shown by Aluthge [1] and Tanahashi [17] that

$$|\widetilde{T}| \ge |T| \ge |\widetilde{T}^*|.$$

Hence, we have

$$|N| \oplus |T'| \ge |T| \ge |N| \oplus |T'^*|$$

by assumption. This implies that |T| is of the form $|N| \oplus L$, for some positive operator L. Let $U = \begin{pmatrix} U_{11} & U_{12} \\ U_{21} & U_{22} \end{pmatrix}$ be the 2 × 2 matrix representation of U with respect to the decomposition $\mathcal{H} = M \oplus M^{\perp}$. Then the definition $\widetilde{T} = |T|^{\frac{1}{2}} U|T|^{\frac{1}{2}}$ means that

$$\begin{pmatrix} N & 0 \\ 0 & T' \end{pmatrix} = \begin{pmatrix} |N|^{\frac{1}{2}} & 0 \\ 0 & L^{\frac{1}{2}} \end{pmatrix} \begin{pmatrix} U_{11} & U_{12} \\ U_{21} & U_{22} \end{pmatrix} \begin{pmatrix} |N|^{\frac{1}{2}} & 0 \\ 0 & L^{\frac{1}{2}} \end{pmatrix}.$$

Hence, we have

$$N = |N|^{\frac{1}{2}} U_{11} |N|^{\frac{1}{2}},\tag{1}$$

$$|N|^{\frac{1}{2}}U_{12}L^{\frac{1}{2}} = 0, (2)$$

$$L^{\frac{1}{2}}U_{21}|N|^{\frac{1}{2}} = 0. (3)$$

If T is p-hyponormal, then $\operatorname{ran} U = \overline{\operatorname{ran} T} \subset \overline{\operatorname{ran} |T|}$. Since $\operatorname{Ker} U = \operatorname{Ker} T = \operatorname{Ker} |T|$ we also have

$$\operatorname{Ker} N \subset \operatorname{Ker} U_{11}, \operatorname{Ker} U_{21} \tag{4}$$

$$\operatorname{ran} U_{11}, \operatorname{ran} U_{12} \subset \overline{\operatorname{ran}} |N| = \overline{\operatorname{ran}} N \tag{5}$$

$$\operatorname{Ker} L \subset \operatorname{Ker} U_{12}, \operatorname{Ker} U_{22} \tag{6}$$

$$\operatorname{ran} U_{21}, \operatorname{ran} U_{22} \subset \overline{\operatorname{ran}} L. \tag{7}$$

(1), (4) and (5) imply that $N = U_{11}|N|$.

- (2), (5) and (6) imply that $U_{12} = 0$.
- (3), (4) and (7) imply that $U_{21} = 0$.

Hence U is of the form $U = U_{11} \oplus U_{22}$, and so we obtain

$$T = U|T| = U_{11}|N| \oplus U_{22}L = N \oplus T_1,$$

where $T_1 = U_{22}L$. The *p*-hyponormality of T_1 is immediate from that of *T*. Hence the assertion holds for *p*-hyponormal operators.

If T is log-hyponormal, then N and L are invertible, since T is invertible. Hence (1) implies $N = U_{11}|N|$ and (2), (3) imply that $U_{12} = 0$ and $U_{21} = 0$. By the same argument as above, we have the conclusion.

LEMMA 4. (Putnam [14]). Let $T \in \mathcal{B}(\mathcal{H})$, $D \in \mathcal{B}(\mathcal{H})$ with $0 \leq D \leq M(T-\lambda)$ $(T-\lambda)^*$ for all λ in \mathbb{C} , where M is a positive real number. Then, for every $x \in D^{\frac{1}{2}}\mathcal{H}$ there exists a bounded function $f : \mathbb{C} \to \mathcal{H}$ such that $(T-\lambda)f(\lambda) \equiv x$.

LEMMA 5. ([5], [6]). Every p-hyponormal and every log-hyponormal operator is classA.

LEMMA 6. (Löwner-Heinz's inequality [9], [8]). Let $A \in \mathcal{B}(\mathcal{H})$, $B \in \mathcal{B}(\mathcal{H})$. If $0 \le A \le B$ and $\delta \in (0, 1]$, then $0 \le A^{\delta} \le B^{\delta}$.

LEMMA 7. (Hansen's inequality [7]) If $A, B \in \mathcal{B}(\mathcal{H})$ satisfy $A \ge 0$ and $||B|| \le 1$, then $(B^*AB)^{\delta} \ge B^*A^{\delta}B$, for all $\delta \in (0, 1]$.

LEMMA 8. (Douglas's theorem [2]). For $A, B \in \mathcal{B}(\mathcal{H})$, the following are equivalent. (1) $AA^* \leq \lambda BB^*$.

- (2) $\operatorname{ran} A \subset \operatorname{ran} B$.
- (3) A = BC for some $C \in \mathcal{B}(\mathcal{H})$.

The following result is well known but we have been unable to find an explicit reference. A proof is included for completeness.

LEMMA 9. Let $\begin{pmatrix} A & B \\ B^* & C \end{pmatrix} \in \mathcal{B}(\mathcal{H} \oplus \mathcal{K})$ be a positive operator. Then $\operatorname{ran} B \subset rmA^{\frac{1}{2}}$. In fact, $B = A^{\frac{1}{2}}DC^{\frac{1}{2}}$, for some contraction $D \in \mathcal{B}(\mathcal{K}, \mathcal{H})$.

Proof. Let $\begin{pmatrix} A & B \\ B^* & C \end{pmatrix}$ be a positive operator on $\mathcal{H} \oplus \mathcal{K}$. Then for every $\begin{pmatrix} x \\ v \end{pmatrix} \in \mathcal{H} \oplus \mathcal{K}$, we have

$$0 \leq \left(\begin{pmatrix} A & B \\ B^* & C \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}, \begin{pmatrix} x \\ y \end{pmatrix} \right) = \left\| A^{\frac{1}{2}} x \right\|^2 + 2Re\langle x, By \rangle + \left\| C^{\frac{1}{2}} y \right\|^2.$$

This implies that

$$\left\|A^{\frac{1}{2}}x\right\|^{2}-2\left|\langle x, By\rangle\right|+\left\|C^{\frac{1}{2}}y\right\|^{2}\geq 0, \text{ for every } x\in\mathcal{H} \text{ and } y\in\mathcal{K}.$$

If we replace *y* by *ty* for t > 0, then we have

$$t^{2} \left\| C^{\frac{1}{2}} y \right\|^{2} - 2t |\langle x, By \rangle| + \left\| A^{\frac{1}{2}} x \right\|^{2} \ge 0$$
, for all $t > 0$,

and this is equivalent to

$$|\langle x, By \rangle| \le ||A^{\frac{1}{2}}x|| ||C^{\frac{1}{2}}y||$$
, for all $x \in \mathcal{H}$ and $y \in \mathcal{K}$.

By the inequality above, we see that

$$\operatorname{ran} A^{\frac{1}{2}} \times \operatorname{ran} C^{\frac{1}{2}} \ni \left(A^{\frac{1}{2}}x, C^{\frac{1}{2}}y \right) \mapsto \langle x, By \rangle \in \mathbb{C}$$

is a continuous sesqui-linear form (with its norm less than or equal to 1) and so it can be extended uniquely to a continuous sesqui-linear form on $\operatorname{ran} A^{\frac{1}{2}} \times \operatorname{ran} C^{\frac{1}{2}} = \operatorname{ran} A \times \operatorname{ran} C$. Hence, there exists a contraction $D' \in \mathcal{B}(\operatorname{ran} C, \operatorname{ran} A)$ such that

$$\langle x, By \rangle = \langle A^{\frac{1}{2}}x, D'C^{\frac{1}{2}}y \rangle$$
 for all $x \in \mathcal{H}$ and $y \in \mathcal{K}$,

by Riesz's representation theorem. Let $P \in \mathcal{B}(\mathcal{K})$ be the orthagonal projection onto ranC and let D = D'P. Then $D \in \mathcal{B}(\mathcal{K}, \mathcal{H})$ and

$$\langle x, By \rangle = \langle A^{\frac{1}{2}}x, DC^{\frac{1}{2}}y \rangle$$
, for all $x \in \mathcal{H}$ and $y \in \mathcal{K}$.

Thus we have $B = A^{\frac{1}{2}}DC^{\frac{1}{2}}$. This completes the proof.

It is well known, by [16], that a hyponormal operator which is quasi-similar to a normal operator is always normal. The following is an extension of this result to the case of *p*-hyponormal or log-hyponormal operators.

THEOREM 1. Let T be p-hyponormal or log-hyponormal, N be normal on \mathcal{H} and \mathcal{K} respectively. Let $X \in \mathcal{B}(\mathcal{K}, \mathcal{H})$ be injective with dense range which satisfies TX = XN. Then $T^*X = XN^*$.

Proof. First, we prove the case in which T is p-hyponormal and $p \ge \frac{1}{2}$. The p-hyponormality of T implies that KerT reduces T. Also KerN reduces N, since N is normal. Using the orthogonal decompositions $\mathcal{H} = [|T|\mathcal{H}] \oplus \ker T$ and $\mathcal{K} = [N\mathcal{K}] \oplus N$, we can represent T and N as follows.

$$T = \begin{pmatrix} T_1 & 0\\ 0 & 0 \end{pmatrix} \tag{8}$$

$$N = \begin{pmatrix} N_1 & 0\\ 0 & 0 \end{pmatrix},\tag{9}$$

where T_1 is injective and *p*-hyponormal on $[|T|\mathcal{H}]$ and N_1 is injective and normal on $[N\mathcal{H}]$. The assumption TX = XN implies that X maps N to ran $T \subset [|T|\mathcal{H}]$ and KerN to KerT. Hence X is of the form

$$X = \begin{pmatrix} X_1 & 0\\ 0 & X_2 \end{pmatrix},\tag{10}$$

where $X_1 \in \mathcal{B}([N\mathcal{K}], [|T|\mathcal{H}]), X_2 \in \mathcal{B}(\text{Ker}N, \text{Ker}T)$. Since TX = XN, we have that

$$T_1 X_1 = X_1 N_1. (11)$$

Since X is injective with dense range, X_1 is also injective with dense range. Put $W = X_1^* |T_1|^{\frac{1}{2}}$. Then $W : [|T|\mathcal{H}] \to [N\mathcal{K}]$ is a one-to-one mapping which has dense range and satisfies $W\widetilde{T}_1^* = N_1^*W$. Here \widetilde{T}_1 is the Aluthge transform of T_1 . Since \widetilde{T}_1 is hyponormal, for every $x \in (\widetilde{T}_1^*\widetilde{T}_1 - \widetilde{T}_1\widetilde{T}_1^*)^{\frac{1}{2}}\mathcal{H}$, there exists a bounded function $f : \mathbb{C} \to \mathcal{H}$ such that $(\widetilde{T}_1^* - \lambda)f(\lambda) \equiv x$, for all $\lambda \in \mathbb{C}$, by Lemma 4. Hence

$$Wx = W\left(\tilde{T}_1^* - \lambda\right) f(\lambda)$$

= $\left(N_1^* - \lambda\right) W f(\lambda)$
 $\in \operatorname{ran}\left(N_1^* - \lambda\right)$, for all $\lambda \in \mathbb{C}$.

By Lemma 1, we have Wx = 0, and hence x = 0 because W is one-to-one. This implies that \tilde{T}_1 is normal. By Lemma 3, T_1 is normal and therefore $T = T_1 \oplus 0$ is also normal. The assertion is immediate from Fuglede-Putnam's theorem.

Next, we prove the cases in which T is p-hyponormal for $p \leq \frac{1}{2}$ or log-hyponormal. Let T_1, N_1, X_1 and W be as above. Then \widetilde{T}_1 is $\frac{1}{2}$ -hyponormal and $W^* : [N\mathcal{K}] \to [|T|\mathcal{H}]$ is a one-to-one mapping with dense range that satisfies

$$\widetilde{T}_1 W^* = W^* N_1.$$

By using a previous argument we see that \tilde{T}_1 is normal. Hence T_1 is normal by Lemma 3. This implies that T is normal. The assertion follows by Fuglede-Putnam's theorem.

3. Main theorems In order to obtain our generalization of Patel's result [10] discussed earlier we require some preliminary lemmas.

LEMMA 10. (Stampfli-Wadhwa [16]) Let $T \in \mathcal{B}(\mathcal{K})$ be dominant and $S \in \mathcal{B}(\mathcal{K})$ be co-hyponormal. If $W \in \mathcal{B}(\mathcal{H}, \mathcal{K})$ is a one-to-one mapping with dense range and WS = TW, then T and S are normal.

LEMMA 11. Let $T = \begin{pmatrix} T_1 & S \\ 0 & T_2 \end{pmatrix}$ be a class A operator on $\mathcal{H} = \mathcal{M} \oplus \mathcal{M}^{\perp}$, where \mathcal{M} is a T-invariant subspace such that the restriction $T_1 = T|_M$ is normal. Then the range of S is included in Ker T_1 . In particular, if T is injective, every normal part of T reduces T.

Proof. Let *P* be the orthogonal projection onto \mathcal{M} . Then we have

$$\begin{pmatrix} T_1^*T_1 & 0\\ 0 & 0 \end{pmatrix} = PT^*TP \le P|T^2|P \quad \text{(since } T \text{ is class}A\text{)}$$
$$\le \begin{pmatrix} (T_1^{*2}T_1^2)^{\frac{1}{2}} & 0\\ 0 & 0 \end{pmatrix} \quad \text{(by Hansen's inequality)}$$
$$= \begin{pmatrix} T_1^*T_1 & 0\\ 0 & 0 \end{pmatrix} \quad \text{(since } T_1 \text{ is normal)}.$$

Let $|T^2| = \begin{pmatrix} X & Y \\ Y^* & Z \end{pmatrix}$ be the 2 × 2 matrix representation of $|T^2|$ or $\mathcal{H} = \mathcal{M} \oplus \mathcal{M}^{\perp}$. Then we have $X = T_1^* T_1$ by the inequality above. Since $|T^2|^2 = T^{*2}T^2$, we have

$$\begin{pmatrix} X^2 + YY^* & XY + YZ \\ ZY^* + Y^*X & Y^*Y + Z^2 \end{pmatrix} = \begin{pmatrix} T_1^{*2}T_1^2 & T_1^{*2}T_1S \\ S^*T_1^{*}T_1^2 & S^*S + T_2^{*2}T_2^2 \end{pmatrix},$$

and hence $X^2 + YY^* = T_1^{*2}T_1^2 = (T_1^*T_1)^2 = X^2$. This implies that Y = 0. Thus we have

$$|T^{2}| = \begin{pmatrix} T_{1}^{*}T_{1} & 0\\ 0 & Z \end{pmatrix} \ge T^{*}T = \begin{pmatrix} T_{1}^{*}T_{1} & T_{1}^{*}S\\ S^{*}T_{1} & S^{*}S + T_{2}^{*}T_{2} \end{pmatrix}$$

and hence $T_1^*S = 0$. Thus the range of S is included in $\text{Ker}T_1^* = \text{Ker}T_1$. If T is one-to-one, then T_1 is also one-to-one. Hence the second statement of Lemma 11 follows trivially.

LEMMA 12. If T is p-hyponormal or log-hyponormal, then every normal part of T reduces T.

Proof. If *T* is log-hyponormal, then *T* is invertible. Hence the assertion holds for log-hyponormal operators by Lemma 11.

Now, we assume that T is p-hyponormal. Let \mathcal{M} be a normal part of T. By Lemmas 5 and 11, T is of the form $\begin{pmatrix} N & S \\ 0 & T_1 \end{pmatrix}$ on $\mathcal{M} \oplus \mathcal{M}^{\perp}$, where N is normal and ran $S \subset \text{Ker}N$. It is easy to see that

$$T^*T = \begin{pmatrix} |N|^2 & 0\\ 0 & S^*S + T_1^*T_1 \end{pmatrix},$$
$$TT^* = \begin{pmatrix} |N|^2 + SS^* & ST_1^*\\ T_1S^* & T_1T_1^* \end{pmatrix}.$$

Put $(TT^*)^p = \begin{pmatrix} X & Y \\ Y^* & Z \end{pmatrix}$. Then the *p*-hyponormality of *T* implies that $(T^*T)^p = \begin{pmatrix} |N|^{2p} & 0 \\ 0 & (S^*S + T_1^*T_1)^p \end{pmatrix} \ge \begin{pmatrix} X & Y \\ Y^* & Z \end{pmatrix} = (TT^*)^p.$

We have $\operatorname{ran} Y \subset \operatorname{ran} X^{\frac{1}{2}}$ by Lemma 9 and $\operatorname{ran} X^{\frac{1}{2}} \subset \operatorname{ran} |N|^p$ by Lemma 8. Hence we have $\operatorname{ran} X, \cup \operatorname{ran} Y \subset \operatorname{ran} X^{\frac{1}{2}} \subset \operatorname{ran} |N|^p$. Put $(TT^*)^{1-p} = \begin{pmatrix} A & B \\ B^* & C \end{pmatrix}$. Hence

$$TT^* = (TT^*)^p (TT^*)^{1-p} = \begin{pmatrix} X & Y \\ Y^* & Z \end{pmatrix} \begin{pmatrix} A & B \\ B^* & C \end{pmatrix}.$$

This implies that $|N|^2 + SS^* = XA + YB^*$. Therefore,

 $\operatorname{ran}(SS^*) \subset \operatorname{ran}|N|^2 + \operatorname{ran} X + \operatorname{ran} Y \subset \operatorname{ran}|N|^p \subset \overline{\operatorname{ran} N},$

while, $ran(SS^*) \subset ranS \subset KerN$. This shows that $ran(SS^*) = \{0\}$ and therefore S = 0. This completes the proof.

THEOREM 2. Let $T \in \mathcal{B}(\mathcal{H})$ be p-hyponormal or log-hyponormal and $L \in \mathcal{B}(\mathcal{H})$ be a self-adjoint operator which satisfies $TL = LT^*$. Then $T^*L = LT$.

Proof. We first show that if $TL = LT^* = 0$ then $T^*L = LT = 0$. Since KerT reduces T, TL = 0 implies that ran $L \subset \text{Ker}T \subset \text{Ker}T^*$ and (by taking orthogonal complements) ran $T \subset \text{Ker}L$. Hence we have $T^*L = LT = 0$.

Next, we prove the case in which $TL \neq 0$. Assume that T is p-hyponormal. Using the decomposition $\mathcal{H} = \overline{\operatorname{ran} L} \oplus \operatorname{Ker} L$, the operators L and T can be represented as follows:

$$L = \begin{pmatrix} L_1 & 0\\ 0 & 0 \end{pmatrix},\tag{12}$$

$$T = \begin{pmatrix} T_1 & S \\ 0 & T_2 \end{pmatrix},\tag{13}$$

where L_1 is self-adjoint with Ker $L_1 = \{0\}$ (hence it has dense range) and T_1 is also *p*-hyponormal by [18]. The assumption $TL = LT^*$ implies that $T_1L_1 = L_1T_1^*$. Since Ker T_1 reduces T_1 and L_1 , they are of the form $T_1 = T_{11} \oplus 0$ and $L_1 = L_{11} \oplus L_{22}$ on ran $L = ran|T_1| \oplus \text{Ker}T_1$. It is easy to see that T_{11} is an injective *p*-hyponormal operator and L_{11} is an injective self-adjoint operator which satisfies $T_{11}L_{11} =$ $L_{11}T_{11}^*$. If $p \ge \frac{1}{2}$, then $\widetilde{T_{11}}W = W\widetilde{T_{11}}^*$, where $W = |T_{11}|^{\frac{1}{2}}L_{11}|T_{11}|^{\frac{1}{2}}$ is injective selfadjoint and $\widetilde{T_{11}}$ is hyponormal. We have $\widetilde{T_{11}}$ is normal by Lemma 10 and T_{11} is also normal by Lemma 3. Hence $T_1 = T_{11} \oplus 0$ is also normal. By Fuglede-Putnam's theorem we see that $T_1^*L_1 = L_1T_1$. Since T_1 is normal S = 0 by Lemma 12, so we have $T^*L = LT$. Hence the assertion holds for *p*-hyponormal operators for $p \ge \frac{1}{2}$. If $0 , <math>\widetilde{T_{11}}$ is an injective $(p + \frac{1}{2})$ -hyponormal. Using the previous argument, we have that $\widetilde{T_{11}}$ is normal and hence T_1 is normal. By the same reasoning as above, the assertion holds for *p*-hyponormal operators for 0 .

If T is log-hyponormal, then the Aluthge transform \tilde{T} of T is $\frac{1}{2}$ -hyponormal. Moreover it satisfies

$$|\tilde{T}| \ge |T| \ge |\tilde{T}^*|. \tag{14}$$

See [17]. Put $W = |T|^{\frac{1}{2}}L|T|^{\frac{1}{2}}$. Then W is self-adjoint and satisfies

$$\tilde{T}W = W\tilde{T}^*.$$
(15)

By the previous argument, we have that the restriction $\tilde{T}|_{\overline{\operatorname{ran}W}}$ of \tilde{T} to its invariant subspace $\overline{\operatorname{ran}W}$ is normal and

$$\tilde{T}^* W = W \tilde{T}.$$
(16)

Hence $\overline{\operatorname{ran} W}$ reduces \tilde{T} , by Lemma 12, and so \tilde{T} is of the form $\tilde{T} = N \oplus S$ on $\overline{\operatorname{ran} W} \oplus \operatorname{Ker} W$, where N is normal. By Lemma 3, $T = N \oplus B$, for some log-hyponormal operator B. Let $W = W_1 \oplus 0$ and

$$L = \begin{pmatrix} L_{11} & L_{12} \\ L_{21} & L_{22} \end{pmatrix}$$

on $\overline{\operatorname{ran} W} \oplus \operatorname{Ker} W$. Then $L_{12} = 0$, $L_{21} = 0$ and $L_{22} = 0$ follows from the equality $W = |T|^{\frac{1}{2}}L|T|^{\frac{1}{2}}$. By assumption, $NL_{11} = L_{11}N^*$, we have $N^*L_{11} = L_{11}N$ by Fuglede-Putnam's theorem and therefore $T^*L = LT$.

COROLLARY 1. Let $T \in \mathcal{B}(\mathcal{H})$ be p-hyponormal or log-hyponormal. If $X \in \mathcal{B}(\mathcal{H})$ and $TX = XT^*$, then $T^*X = XT$.

Proof. Let X = L + iK be the Cartesian decomposition of X. Then we have $TL = LT^*$ and $TJ = JT^*$, by the assumption. By Theorem 2, we have $T^*L = LT$ and $T^*J = JT$. This implies that $T^*X = XT$.

REMARK 1. If we use Patel's result and Lemma 12, the assertion of Theorem 2 for *p*-hyponormal is immediate, since *T* and *L* are of the form $T = T_1 \oplus 0$ and $L = L_1 \oplus L_2$ on $\overline{\operatorname{ran}|T|} \oplus \operatorname{Ker} T$, where T_1 is an injective *p*-hyponormal operator.

If we use the 2×2 matrix trick, we easily deduce the following result.

COROLLARY 2. Let $T^* \in \mathcal{B}(\mathcal{H})$ and $S \in \mathcal{B}(\mathcal{K})$ be p-hyponormal (resp. log-hyponormal). If $X \in \mathcal{B}(\mathcal{H}, \mathcal{K})$ and XT = SX, then $XT^* = S^*X$.

Proof. Put $A = \begin{pmatrix} T^* & 0 \\ 0 & S \end{pmatrix}$ and $B = \begin{pmatrix} 0 & 0 \\ X & 0 \end{pmatrix}$ on $\mathcal{H} \oplus \mathcal{K}$. Then A is a p-hyponormal (resp. log-hyponormal) operator on $\mathcal{H} \oplus \mathcal{K}$ that satisfies $BA^* = AB$. Hence we have $BA = A^*B$, by Corollary 1, and therefore $XT^* = S^*X$.

LEMMA 13. Let $T^* \in \mathcal{B}(\mathcal{H})$ be p-hyponormal(resp. log-hyponormal) and U|T| be the polar decomposition of T. Let \mathcal{M} be a closed subspace of \mathcal{H} such that the Aluthge transform \tilde{T} is of the form $\tilde{T} = N \oplus T'$ on $\mathcal{H} = \mathcal{M} \oplus \mathcal{M}^{\perp}$, where N is a normal operator on \mathcal{M} . Then T and U are of the form $T = \begin{pmatrix} N & A \\ 0 & T_1 \end{pmatrix}$ and $U = \begin{pmatrix} U_{11} & U_{12} \\ 0 & U_{22} \end{pmatrix}$ (resp $N \oplus T_1$ and $U = U_{11} \oplus U_{22}$) on $\mathcal{H} = \mathcal{M} \oplus \mathcal{M}^{\perp}$, where $N = U_{11}|N|$ is the polar decomposition of N and $\operatorname{ran} U_{12} \subset \operatorname{Ker} N$.

In particular, if N is one-to-one, then $T = N \oplus T_1$ and $U = U_{11} \oplus U_{22}$ on $= M \oplus M^{\perp}$.

Proof. Since T^* is *p*-hyponormal or log-hyponormal,

$$|\tilde{T}| \le |T| \le |\tilde{T}^*|,$$

by Aluthge [1] and Tanahashi [17]. Hence, we have

$$|N| \oplus |T'| \le |T| \le |N| \oplus |T'^*|,$$

by assumption. This implies that |T| is of the form $|N| \oplus L$, for some positive operator L. Let $U = \begin{pmatrix} U_{11} & U_{12} \\ U_{21} & U_{22} \end{pmatrix}$ be the 2 × 2 matrix representation of U with respect to the decomposition $\mathcal{H} = \mathcal{M} \oplus \mathcal{M}^{\perp}$. Then the definition $\tilde{T} = |T|^{\frac{1}{2}} U|T|^{\frac{1}{2}}$ means that

$$\begin{pmatrix} N & 0 \\ 0 & T' \end{pmatrix} = \begin{pmatrix} |N|^{\frac{1}{2}} & 0 \\ 0 & L^{\frac{1}{2}} \end{pmatrix} \begin{pmatrix} U_{11} & U_{12} \\ U_{21} & U_{22} \end{pmatrix} \begin{pmatrix} |N|^{\frac{1}{2}} & 0 \\ 0 & L^{\frac{1}{2}} \end{pmatrix},$$

Hence, we have

$$N = |N|^{\frac{1}{2}} U_{11} |N|^{\frac{1}{2}},\tag{17}$$

$$|N|^{\frac{1}{2}}U_{12}L^{\frac{1}{2}} = 0, (18)$$

$$L^{\frac{1}{2}}U_{21}|N|^{\frac{1}{2}} = 0. (19)$$

Since $\operatorname{Ker} U = \operatorname{Ker} T = \operatorname{Ker} |T|$, we have

$$\operatorname{Ker} N \subset \operatorname{Ker} U_{11}, \operatorname{Ker} U_{21}, \tag{20}$$

$$\operatorname{Ker} L \subset \operatorname{Ker} U_{12}, \operatorname{Ker} U_{22}. \tag{21}$$

Let N = V|N| be the polar decomposition of N. Then $ran(U_{11} - V) \subset KerN$ by (17) and (20). Hence, for arbitrary $x \in ranN$, we have

$$||x||^{2} \ge ||U_{11}x||^{2} = ||Vx||^{2} + ||(U_{11} - V)x||^{2}, \text{ by Pythagoras' theorem,}$$
$$= ||x||^{2} + ||(U_{11} - V)x||^{2}, \text{ since } V \text{ is unitary on } \overline{\operatorname{ran}}N,$$
$$\ge ||x||^{2}.$$

Therefore, we obtain $U_{11} = V$. Since

$$||x||^{2} = ||Ux||^{2} = ||U_{11}x||^{2} + ||U_{21}x||^{2} = ||x||^{2} + ||U_{21}x||^{2}$$
 for $x \in \operatorname{ran} N$,

we have $U_{21} = 0$ by (20). Also, we see that ran $U_{12} \subset \text{Ker}N$ by (18) and (21). Hence,

$$T = U|T| = \begin{pmatrix} U_{11} & U_{12} \\ 0 & U_{22} \end{pmatrix} \begin{pmatrix} |N| & 0 \\ 0 & L \end{pmatrix} = \begin{pmatrix} N & U_{12}L \\ 0 & U_{22}L \end{pmatrix}.$$

In particular, if T^* is log-hyponormal, then N and L are invertible. Hence $U_{12} = 0$ and $U_{21} = 0$ immediately from (18) and (19). This completes the proof of the first statement.

The second statement is trivial, since $U_{12} = 0$ is immediate from $\operatorname{ran} U_{12} \subset \operatorname{Ker} N = \{0\}$.

THEOREM 3. Let $A \in \mathcal{B}(\mathcal{H})$ be such that A^* is p-hyponormal or log-hyponormal. Let $B \in \mathcal{B}(\mathcal{K})$ be dominant. Then $CA^* = B^*C$ whenever CA = BC, for some $C \in \mathcal{B}(\mathcal{H}, \mathcal{K})$.

THEOREM FOR p-HYPONORMAL OR log-HYPONORMAL OPERATORS 407

Proof. Let A^* be a *p*-hyponormal operator for $p \ge \frac{1}{2}$ and U|A| be the polar decomposition of A. Then the Aluthge transform \widetilde{A} of A is co-hyponormal and satisfies

$$|\tilde{A}|^2 \le |A|^2 \le |\tilde{A}^*|^2, \tag{22}$$

$$C'\tilde{A} = BC',\tag{23}$$

where $C' = CU|A|^{\frac{1}{2}}$. Using the decompositions $\mathcal{H} = \operatorname{Ker} C'^{\perp} \oplus \operatorname{Ker} C'$ and $\mathcal{K} = \operatorname{ran} C' \oplus \operatorname{ran} C'^{\perp}$, we see that \widetilde{A} , B and C' are of the form

$$ilde{A} = egin{pmatrix} A_1 & 0 \ S & A_2 \end{pmatrix}, \ B = egin{pmatrix} B_1 & T \ 0 & B_2 \end{pmatrix}, \ C' = egin{pmatrix} C_1 & 0 \ 0 & 0 \end{pmatrix},$$

where, A_1 is co-hyponormal, B_1 is dominant and C_1 is a one-to-one mapping with dense range. Since $C'\widetilde{A} = BC'$, we have

$$C_1 A_1 = B_1 C_1. (24)$$

Hence A_1 and B_1 are normal by Lemma 10, so that S = 0, by Lemma 12 and T = 0 by [15]. Thus $|A| = |A_1| \oplus L$, for some positive L, by (22) and $U = \begin{pmatrix} U_{11} & U_{12} \\ 0 & U_{22} \end{pmatrix}$ by Lemma 13. Let $C = \begin{pmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{pmatrix}$ be a 2 × 2 matrix representation of C with respect to the decompositions $\mathcal{H} = \text{Ker}C'^{\perp} \oplus \text{Ker}C'$ and $\mathcal{K} = \overline{\text{ran}C'} \oplus \text{ran}C'^{\perp}$. Then, $C' = CU|A|^{\frac{1}{2}}$ implies that $C_1 = C_{11}U_{11}|A_1|^{\frac{1}{2}}$ and hence $\text{Ker}A_1 \subset \text{Ker}C_1 = \{0\}$. This shows that A_1 is one-to-one (hence, it has dense range), so that $U_{12} = 0$ and $A = A_1 \oplus A_3$, for some co-*p*-hyponormal operator A_3 by Lemma 13. Since,

$$\begin{pmatrix} C_1 & 0\\ 0 & 0 \end{pmatrix} = C' = CU|A|^{\frac{1}{2}} = \begin{pmatrix} C_{11} & C_{12}\\ C_{21} & C_{22} \end{pmatrix} \begin{pmatrix} U_{11}|A_1|^{\frac{1}{2}} & 0\\ 0 & U_{22}|A_3|^{\frac{1}{2}} \end{pmatrix},$$

we deduce the following statements.

$$C_{12}U_{22}|A_3|^{\frac{1}{2}} = 0$$
; hence $C_{12}A_3 = 0$ because $A_3 = U_{22}|A_3|$. (25)

$$C_{21}U_{11}|A_1|^{\frac{1}{2}} = 0$$
; hence $C_{21} = 0$ because $U_{11}|A_1|^{\frac{1}{2}}$ has dense range. (26)

$$C_{22}U_{22}|A_3|^{\frac{1}{2}} = 0;$$
 hence $C_{22}A_3 = 0.$ (27)

The assumption CA = BC tells us that,

$$C_{11}A_1 = B_1 C_{11}, (28)$$

$$C_{12}A_3 = B_1C_{12} = 0$$
, by (25), (29)

$$C_{22}A_3 = B_2C_{22} = 0$$
, by (27). (30)

Since A_1 and B_1 are normal we have $C_{11}A_1^* = B_1^*C_{11}$, by Fuglede-Putnam's theorem. The *p*-hyponormality of A_3^* shows that $\operatorname{ran} A_3^* \subset \overline{\operatorname{ran}} A_3$. Also we have $\operatorname{Ker} B_2 \subset \operatorname{Ker} B_2^*$ from the fact that B_2 is dominant. Hence, we also have $C_{12}A_3^* = B_1^*C_{12} = 0$ and $C_{22}A_3^* = B_2^*C_{22} = 0$. This implies that $CA^* = C_{11}A_1^* \oplus 0 = B_1^*C_{11} \oplus 0 = B^*C$.

Next, we prove the case where A^* is *p*-hyponormal for 0 . Let <math>C' be as above. Then \tilde{A} is co- $(p + \frac{1}{2})$ -hyponormal and satisfies $C'\tilde{A} = BC'$. Use the same argument as above. We obtain $\tilde{A} = A_1 \oplus A_2$ on $\mathcal{H} = \text{Ker}C'^{\perp} \oplus \text{Ker}C'$ and $B = B_1 \oplus B_2$, where A_1 is an injective normal operator and B_1 is also normal. Hence, we have $A = A_1 \oplus A_3$ for some co-*p*-hyponormal A_3 , by Lemma 13. Again using the same argument as above, we obtain $C_{21} = 0$, $C_{11}A_1^* = B_1^*C_{11}$, $C_{12}A_3^* =$ $B_1^*C_{12} = 0$ and $C_{22}A_3^* = B_2^*C_{22} = 0$, where $C = \begin{pmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{pmatrix}$ is the 2 × 2 matrix representation of C with respect to the decompositions $\mathcal{H} = \text{Ker}C'^{\perp} \oplus \text{Ker}C'$ and $\mathcal{K} = \overline{\text{ran}C'} \oplus \text{ran}C'^{\perp}$. Hence we have $CA^* = B^*C$.

Finally, we assume that A^* is log-hyponormal. Let \tilde{A} and C' be as above. Then $C'\tilde{A} = BC'$ and \tilde{A}^* is $\frac{1}{2}$ -hyponormal and satisfies

$$|\tilde{A}| \le |A| \le |\tilde{A}^*|. \tag{31}$$

By the same argument as above, we have $\tilde{A} = A_1 \oplus A_2$ on $\mathcal{H} = \text{Ker}C'^{\perp} \oplus \text{ker}C'$ and $B = B_1 \oplus B_2$ on $\mathcal{K} = \overline{\text{ran}C'} \oplus \text{ran}C'^{\perp}$, where A_1 is an invertible normal operator, B_1 is normal, A_2 is invertible, $\operatorname{co} -\frac{1}{2}$ -hyponormal and B_2 is dominant. By Lemma 13, we have that A is of the form $A = A_1 \oplus A_3$, for some log-hyponormal A_3^* . Let $C = \begin{pmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{pmatrix}$. Then $C' = CU|A|^{\frac{1}{2}}$ implies that $C_{12} = 0$, $C_{21} = 0$ and $C_{22} = 0$. The assumption CA = BC implies that $C_{11}A_1 = B_1C_{11}$; hence $C_{11}A_1^* = B_1^*C_{11}$ by Fuglede-Putnam's theorem. Thus we have $CA^* = C_{11}A_1^* \oplus 0 = B_1^*C_{11} \oplus 0 = B^*C$. This completes the proof.

REMARK 2. Let T be an operator such that KerT does not reduce T and let P be the orthogonal projection onto KerT. Then P does not commute with T; otherwise ranP = KerT reduces T. Hence $PT \neq 0 = TP$. It is easy to see that $TP = PT^* = 0$ but $T^*P \neq PT(\neq 0)$ because ran $T^*P \subset \operatorname{ran} T^* \subset \operatorname{Ker} T^{\perp} = (1 - P)$. Hence the assertion of Theorem 2 does not hold for such T. Also, if we put $A = T^*$, B = 1 - Pand C = P, then

$$CA = PT^* = 0 = (1 - P)P = BC.$$

However

$$CA^* = PT \neq 0 = (1 - P)P = B^*C.$$

Hence the assertion of Theorem 3 does not hold for such *T*.

This is an example of a class A operator T such that T does not reduce T.

EXAMPLE 1. Let $\{e_n\}_{n=-\infty}^{\infty}$ be a complete orthonormal system for \mathcal{H} . We denote the orthogonal projection onto $\mathbb{C}e_n$ by P_n . Let W be a weighted shift on \mathcal{H} defined by

$$We_n = \begin{cases} \sqrt{2}e_{n+1} & (n \ge 0), \\ e_{n+1} & (n < 0). \end{cases}$$

Then $W^*W - WW^* = P_0$. Define an operator T on a Hilbert space $\mathcal{K} = \mathcal{H} \oplus \mathbb{C}e_0$ by

$$T = \left(\begin{array}{cc} W & P_0 \\ 0 & 0 \end{array}\right)$$

Then

$$T^{*2}T^{2} - (T^{*}T)^{2} = T^{*}\{T^{*}T - TT^{*}\}T$$

= $\binom{W^{*}}{P_{0}} \binom{0}{P_{0}W} \binom{W^{*}P_{0}}{P_{0}W} \binom{W^{*}P_{0}}{0} \binom{W^{*}P_{0}}{0}$
= $\binom{W^{*}}{P_{0}} \binom{0}{P_{0}W^{2}} \binom{0}{P_{0}WP_{0}} = 0.$

Hence $T^{*2}T^2 = (T^*T)^2$ and therefore $|T^2| = T^*T$. This shows that T is class A. It is easy to see that

$$\operatorname{Ker} T = \mathbb{C}(-e_{-1} \oplus e_0)$$
 and $\operatorname{Ker} T^* = \{0\} \oplus \mathbb{C} e_0$.

Hence T does not reduce T and therefore the assertions of Theorems 2 and 3 are not necessarily true for class A operators.

REFERENCES

1. A. Aluthge, On *p*-hyponormal operators for 0 , Integral Equations Operator Theory.**13**(1990), 307–315.

2. R. G. Douglas, On majorization, factorization, and range inclusion of operators on Hilbert space, *Proc. Amer. Math. Soc.* **17** (1966), 413–415.

3. B. P. Duggal, On dominant operators, Arch. Math. (Basel) 46 (1986), 353-359.

4. B. Fuglede, A commutativity theorem for normal operators, *Proc. Nat. Acad. Sci. U.S.A.* **36** (1950), 35–40.

5. T. Furuta, M. Ito and T. Yamazaki, A subclass of paranormal operators including class of log-hyponormal and several related classes, *Sci. Math.* **1** (1998), 389–403.

6. T. Furuta and M. Yanagida, On powers of *p*-hyponormal and log-hyponormal operators, *Sci. Math.* 2 (1999), 279–284.

7. F. Hansen, An inequality, Math. Ann. 246 (1980), 249-250.

8. E. Heinz, Beiträge zur Störungstheorie der Spektralzerlegung, Math. Ann. 123 (1951), 415–438.

9. K. Löwner, Über monotone Matrixfunktionen, Math. Z. 38 (1934), 177–216.

10. S. M. Patel, On intertwining *p*-hyponormal operators, *Indian J. Math.* 38 (1996), 287–290.

11. S. M. Patel, A note on *p*-hyponormal operators for 0 ,*Integral Equations Operator Theory***21**(1995), 498–503.

12. C. R. Putnam, On normal operators in Hilbert space, Amer. J. Math. 73 (1951), 357–362.

13. C. R. Putnam, Ranges of normal and subnormal operators, *Michigan Math. J.* 18 (1971), 33–36.

14. C. R. Putnam, Hyponormal contractions and strong power convergence, *Pacific J. Math.* 57 (1975), 531–538.

15. J. G. Stampfli, Hyponormal operators, Pacific J. Math. 12 (1962), 1453-1458.

16. J. G. Stampfli and B. L. Wadhwa, On dominant operators, *Monatsh Math.*, 84 (1977), 143–153.

17. K. Tanahashi, On log-hyponormal operators, Integral Equations and Operator Theory, 34 (1999), 364–372.

18. A. Uchiyama, Berger-Shaw's theorem for *p*-hyponormal operators, *Integral Equations Operator Theory*, 33 (1999), 221–230.

19. A. Uchiyama, Weyl's theorem for class *A* operators, *Mathematical Inequalities & Applications*, (to appear).

20. D. Xia, On the non-normal operators-semihyponormal operators, *Sci. Sinica.* **23** (1980), 700–713.

21. T. Yoshino, Remark on the generalized Putnam-Fuglede theorem, *Proc. Amer. Math. Soc.* **95** (1985), 571–572.