FUGLEDE-PUTNAM'S THEOREM FOR p-HYPONORMAL OR log-HYPONORMAL OPERATORS

ATSUSHI UCHIYAMA ${ }^{1}$
Mathematical Institute, Tohoku University, Sendai 980-8578, Japan
email: uchiyama@math.tohoku.ac.jp
and KÔTARÔ TANAHASHI ${ }^{2}$
Department of Mathematics, Tohoku Pharmaceutical University, Sendai 981-8558, Japan email: tanahasi@tohoku-pharm.ac.jp

(Received 11 December, 2000; accepted 8 May 2001)

Abstract

Let T be p-hyponormal or log-hyponormal on a Hilbert space \mathcal{H}. Then we have $X T=T^{*} X$ whenever $X T^{*}=T X$ for some $X \in \mathcal{B}(\mathcal{H})$. This is an extension of Patel's result. Also for p-hyponormal or log-hyponormal T^{*}, dominant S and any $X \in \mathcal{B}(\mathcal{H})$ such that $X T=S X$, we have $X T^{*}=S^{*} T$.

2000 Mathematics Subject Classification. 47A10, 47B20.

1. Introduction. For complex Hilbert spaces \mathcal{H} and $\mathcal{K}, \mathcal{B}(\mathcal{H}), \mathcal{B}(\mathcal{K})$ and $\mathcal{B}(\mathcal{H}, \mathcal{K})$ denote the set of all bounded linear operators on \mathcal{H}, the set of all bounded linear operators on \mathcal{K} and the set of all bounded linear transformation from \mathcal{H} to \mathcal{K} respectively. Throughout this paper, \mathcal{H} and \mathcal{K} are Hilbert spaces, and Hilbert spaces mean complex Hilbert spaces. A bounded linear operator T on a complex Hilbert space \mathcal{H} is called normal if $T^{*} T=T T^{*}$. Also T is called p-hyponormal for $p>0$ if $\left(T^{*} T\right)^{p} \geq\left(T T^{*}\right)^{p}$, log-hyponormal if T is an invertible operator which satisfies $\log \left(T^{*} T\right) \geq \log \left(T T^{*}\right)$. Throughout this paper, we consider the case where $p \in(0,1]$. T is called hyponormal iff it is 1-hyponormal. We say that T is M-hyponormal for $M>0$ if $(T-\lambda)(T-\lambda)^{*} \leq M(T-\lambda)^{*}(T-\lambda)$ for all $\lambda \in \mathbb{C}$, and is dominant if $\operatorname{ran}(T-\lambda) \subset \operatorname{ran}(T-\lambda)^{*}$, for all $\lambda \in \mathbb{C}$. If T satisfies $\left|T^{2}\right| \geq T^{*} T$, then we say that T belongs to the class A (or simply, T is class A). We also say that T is co-hyponormal, co-M-hyponormal, co-dominant, co-p-hyponormal and co-log-hyponormal if T^{*} is hyponormal, M-hyponormal, dominant, p-hyponormal and log-hyponormal respectively. It is well known that M-hyponormal is dominant and also well-known that p-hyponormal and log-hyponormal are class A. By definition, the restriction of an M-hyponormal (resp. dominant) operator to an invariant subspace is always M-hyponormal (resp. dominant). The parallel results for p-hyponormal (resp. class A) have been obtained by the author ([18], [19]), i.e., it is true that the restriction of p-hyponormal (resp. class A) to an invariant subspace is always p-hyponormal (resp. class A).

The following Fuglede-Putnam's theorem is famous.

[^0]Theorem. (Fuglede-Putnam's theorem [4], [12]). Let $A \in \mathcal{B}(\mathcal{H})$ and $B \in \mathcal{B}(\mathcal{K})$ be normal operators on Hilbert spaces \mathcal{H} and \mathcal{K}, respectively. Let $C \in \mathcal{B}(\mathcal{H}, \mathcal{K})$ be an operator which satisfies $C A=B C$. Then $C A^{*}=B^{*} C$.

Many mathematicians have extended this theorem to various classes of operators. The following is one of them.

Theorem. (Duggal [3], Yoshino [21]) Let $A^{*} \in \mathcal{B}(\mathcal{H})$ be M-hyponormal and $B \in \mathcal{B}(\mathcal{K})$ be dominant. Let $C \in \mathcal{B}(\mathcal{H}, \mathcal{K})$ be an operator which satisfies $C A=B C$. Then $C A^{*}=B^{*} C$.

We say that a closed linear subspace \mathcal{M} of \mathcal{H}, invariant under T, is a normal part of T if the restriction $\left.T\right|_{\mathcal{M}}$ of T to \mathcal{M} is normal. It is a famous result of Stampfli [15] that every normal part of a dominant operator B is always a reducing subspace of B.

Recently, Patel [10] has proved the following result.
Theorem. Let T be an injective p-hyponormal operator on \mathcal{H} with the property that every normal part of T reduces T. Let X be a bounded linear operator on \mathcal{H} such that $T X=X T^{*}$. Then $T^{*} X=X T$.

In this paper, we shall show that if T is p-hyponormal or log-hyponormal then every normal part of T is a reducing subspace of T. Consequently the conclusion of the theorem of Patel [10] above remains true without the assumption of injectivity or reduceness of the normal parts. Further, the conclusion of the theorem remains true if the hypothesis of p-hyponormality of the operator is replaced by that of loghyponormality. Finally we shall prove the following partial generalization of the theorem of Duggal [3] and Yoshino [21] stated above.

Theorem. Let $A^{*} \in \mathcal{B}(\mathcal{H})$ be p-hyponormal or log-hyponormal and $B \in \mathcal{B}(\mathcal{K})$ be dominant. If $C \in \mathcal{B}(\mathcal{H}, \mathcal{K})$ and $C A=B C$, then $C A^{*}=B^{*} C$.
2. Preliminaries The following lemmas are well known except Lemma 3. For the sake of convenience, we state them without proof.

Lemma 1. ([13]). If N is a normal operator on \mathcal{H}, then we have

$$
\bigcap_{\lambda \in \mathbb{C}}(N-\lambda) \mathcal{H}=\{0\} .
$$

Lemma 2. ([1], [17]). If T is p-hyponormal for $0<p<1$ (resp. log-hyponormal) and $T=U|T|$ is the polar decomposition of T, then the Aluthge transform $\widetilde{T}=|T|^{\frac{1}{2}} U|T|^{\frac{1}{2}}$ of T is hyponormal if $p \geq \frac{1}{2}$ and $\left(p+\frac{1}{2}\right)$-hyponormal if $0<p \leq \frac{1}{2}$ (resp. $\frac{1}{2}$ hyponormal).

In [11], Patel showed that a p-hyponormal operator is normal whenever its Aluthge transform is normal. The following is an extension of Patel's result.

Lemma 3. Let T be a p-hyponormal (respectively log-hyponormal) operator on \mathcal{H} and let $U|T|$ be the polar decomposition of T. Let \mathcal{M} is a closed subspace of \mathcal{H} such

THEOREM FOR p-HYPONORMAL OR log-HYPONORMAL OPERATORS
that the Aluthge transform \widetilde{T} is of the form $\widetilde{T}=N \oplus T^{\prime}$ on $\mathcal{H}=\mathcal{M} \oplus \mathcal{M}^{\perp}$, where N is a normal operator on \mathcal{M}. Then T and U are of the form $T=N \oplus T_{1}$ and $U=U_{11} \oplus U_{22}$, where T_{1} is p-hyponormal (resp. log-hyponormal) and $N=U_{11}|N|$ is the polar decomposition of N.

In particular, if the Aluthge transform \tilde{T} of T is normal, then T is normal.
Proof. For p-hyponormal or log-hyponormal T, it was shown by Aluthge [1] and Tanahashi [17] that

$$
|\widetilde{T}| \geq|T| \geq\left|\widetilde{T}^{*}\right| .
$$

Hence, we have

$$
|N| \oplus\left|T^{\prime}\right| \geq|T| \geq|N| \oplus\left|T^{\prime *}\right|
$$

by assumption. This implies that $|T|$ is of the form $|N| \oplus L$, for some positive operator L. Let $U=\left(\begin{array}{ll}U_{11} & U_{12} \\ U_{21} & U_{22}\end{array}\right)$ be the 2×2 matrix representation of U with respect to the decomposition $\mathcal{H}=M \oplus M^{\perp}$. Then the definition $\widetilde{T}=|T|^{\frac{1}{2}} U|T|^{\frac{1}{2}}$ means that

$$
\left(\begin{array}{cc}
N & 0 \\
0 & T^{\prime}
\end{array}\right)=\left(\begin{array}{cc}
|N|^{\frac{1}{2}} & 0 \\
0 & L^{\frac{1}{2}}
\end{array}\right)\left(\begin{array}{cc}
U_{11} & U_{12} \\
U_{21} & U_{22}
\end{array}\right)\left(\begin{array}{cc}
|N|^{\frac{1}{2}} & 0 \\
0 & L^{\frac{1}{2}}
\end{array}\right) .
$$

Hence, we have

$$
\begin{gather*}
N=|N|^{\frac{1}{2}} U_{11}|N|^{\frac{1}{2}}, \tag{1}\\
|N|^{\frac{1}{2}} U_{12} L^{\frac{1}{2}}=0, \tag{2}\\
L^{\frac{1}{2}} U_{21}|N|^{\frac{1}{2}}=0 . \tag{3}
\end{gather*}
$$

If T is p-hyponormal, then $\operatorname{ran} U=\overline{\operatorname{ran} T} \subset \overline{\operatorname{ran}|T|}$. Since $\operatorname{Ker} U=\operatorname{Ker} T=$ $\operatorname{Ker}|T|$ we also have

$$
\begin{gather*}
\operatorname{Ker} N \subset \operatorname{Ker} U_{11}, \operatorname{Ker} U_{21} \tag{4}\\
\operatorname{ran} U_{11}, \operatorname{ran} U_{12} \subset \overline{\operatorname{ran}}|N|=\overline{\operatorname{ran}} N \tag{5}\\
\operatorname{Ker} L \subset \operatorname{Ker} U_{12}, \operatorname{Ker} U_{22} \tag{6}\\
\operatorname{ran} U_{21}, \operatorname{ran} U_{22} \subset \overline{\operatorname{ran}} L . \tag{7}
\end{gather*}
$$

(1), (4) and (5) imply that $N=U_{11}|N|$.
(2), (5) and (6) imply that $U_{12}=0$.
(3), (4) and (7) imply that $U_{21}=0$.

Hence U is of the form $U=U_{11} \oplus U_{22}$, and so we obtain

$$
T=U|T|=U_{11}|N| \oplus U_{22} L=N \oplus T_{1},
$$

where $T_{1}=U_{22} L$. The p-hyponormality of T_{1} is immediate from that of T. Hence the assertion holds for p-hyponormal operators.

If T is log-hyponormal, then N and L are invertible, since T is invertible. Hence (1) implies $N=U_{11}|N|$ and (2), (3) imply that $U_{12}=0$ and $U_{21}=0$. By the same argument as above, we have the conclusion.

Lemma 4. (Putnam [14]). Let $T \in \mathcal{B}(\mathcal{H}), \quad D \in \mathcal{B}(\mathcal{H})$ with $0 \leq D \leq$ $M(T-\lambda)(T-\lambda)^{*}$ for all λ in \mathbb{C}, where M is a positive real number. Then, for every $x \in D^{\frac{1}{2} \mathcal{H}}$ there exists a bounded function $f: \mathbb{C} \rightarrow \mathcal{H}$ such that $(T-\lambda) f(\lambda) \equiv x$.

Lemma 5. ([5], [6]). Every p-hyponormal and every log-hyponormal operator is class A.

Lemma 6. (Löwner-Heinz's inequality [9], [8]). Let $A \in \mathcal{B}(\mathcal{H}), B \in \mathcal{B}(\mathcal{H})$. If $0 \leq A \leq B$ and $\delta \in(0,1]$, then $0 \leq A^{\delta} \leq B^{\delta}$.

Lemma 7. (Hansen's inequality [7]) If $A, B \in \mathcal{B}(\mathcal{H})$ satisfy $A \geq 0$ and $\|B\| \leq 1$, then $\left(B^{*} A B\right)^{\delta} \geq B^{*} A^{\delta} B$, for all $\delta \in(0,1]$.

Lemma 8. (Douglas's theorem [2]). For $A, B \in \mathcal{B}(\mathcal{H})$, the following are equivalent.
(1) $A A^{*} \leq \lambda B B^{*}$.
(2) $\operatorname{ran} A \subset \operatorname{ran} B$.
(3) $A=B C$ for some $C \in \mathcal{B}(\mathcal{H})$.

The following result is well known but we have been unable to find an explicit reference. A proof is included for completeness.

Lemma 9. Let $\left(\begin{array}{cc}A & B \\ B^{*} & C\end{array}\right) \in \mathcal{B}(\mathcal{H} \oplus \mathcal{K})$ be a positive operator. Then $\operatorname{ran} B \subset r m A^{\frac{1}{2}}$. In fact, $B=A^{\frac{1}{2}} D C^{\frac{1}{2}}$, for some contraction $D \in \mathcal{B}(\mathcal{K}, \mathcal{H})$.

Proof. Let $\left(\begin{array}{cc}A & B \\ B^{*} & C\end{array}\right)$ be a positive operator on $\mathcal{H} \oplus \mathcal{K}$. Then for every $\binom{x}{y} \in \mathcal{H} \oplus \mathcal{K}$, we have

$$
0 \leq\left\langle\left(\begin{array}{cc}
A & B \\
B^{*} & C
\end{array}\right)\binom{x}{y},\binom{x}{y}\right\rangle=\left\|A^{\frac{1}{2}} x\right\|^{2}+2 \operatorname{Re}\langle x, B y\rangle+\left\|C^{\frac{1}{2}} y\right\|^{2} .
$$

This implies that

$$
\left\|A^{\frac{1}{2}} x\right\|^{2}-2|\langle x, B y\rangle|+\left\|C^{\frac{1}{2}} y\right\|^{2} \geq 0, \text { for every } x \in \mathcal{H} \text { and } y \in \mathcal{K} .
$$

If we replace y by $t y$ for $t>0$, then we have

$$
t^{2}\left\|C^{\frac{1}{2}} y\right\|^{2}-2 t|\langle x, B y\rangle|+\left\|A^{\frac{1}{2}} x\right\|^{2} \geq 0, \text { for all } t>0
$$

and this is equivalent to

$$
|\langle x, B y\rangle| \leq\left\|A^{\frac{1}{2}} x\right\|\left\|C^{\frac{1}{2}} y\right\| \text {, for all } x \in \mathcal{H} \text { and } y \in \mathcal{K} .
$$

By the inequality above, we see that

$$
\operatorname{ran} A^{\frac{1}{2}} \times \operatorname{ran} C^{\frac{1}{2}} \ni\left(A^{\frac{1}{2}} x, C^{\frac{1}{2}} y\right) \mapsto\langle x, B y\rangle \in \mathbb{C}
$$

is a continuous sesqui-linear form (with its norm less than or equal to 1) and so it can be extended uniquely to a continuous sesqui-linear form on $\overline{\operatorname{ranA}^{\frac{1}{2}}} \times \operatorname{ranC}^{\frac{1}{2}}=$ $\overline{\operatorname{ranA}} \times \overline{\operatorname{ranC}}$. Hence, there exists a contraction $D^{\prime} \in \mathcal{B}(\overline{\operatorname{ranC}}, \overline{\operatorname{ranA}})$ such that

$$
\langle x, B y\rangle=\left\langle A^{\frac{1}{2}} x, D^{\prime} C^{\frac{1}{2}} y\right\rangle \text { for all } x \in \mathcal{H} \text { and } y \in \mathcal{K},
$$

by Riesz's representation theorem. Let $P \in \mathcal{B}(\mathcal{K})$ be the orthagonal projection onto $\overline{\operatorname{ranC}}$ and let $D=D^{\prime} P$. Then $D \in \mathcal{B}(\mathcal{K}, \mathcal{H})$ and

$$
\langle x, B y\rangle=\left\langle A^{\frac{1}{2}} x, D C^{\frac{1}{2}} y\right\rangle \text {, for all } x \in \mathcal{H} \text { and } y \in \mathcal{K} .
$$

Thus we have $B=A^{\frac{1}{2}} D C^{\frac{1}{2}}$. This completes the proof.

It is well known, by [16], that a hyponormal operator which is quasi-similar to a normal operator is always normal. The following is an extension of this result to the case of p-hyponormal or log-hyponormal operators.

Theorem 1. Let T be p-hyponormal or log-hyponormal, N be normal on \mathcal{H} and \mathcal{K} respectively. Let $X \in \mathcal{B}(\mathcal{K}, \mathcal{H})$ be injective with dense range which satisfies $T X=X N$. Then $T^{*} X=X N^{*}$.

Proof. First, we prove the case in which T is p-hyponormal and $p \geq \frac{1}{2}$. The p-hyponormality of T implies that $\operatorname{Ker} T$ reduces T. Also $\operatorname{Ker} N$ reduces N, since N is normal. Using the orthogonal decompositions $\mathcal{H}=[|T| \mathcal{H}] \oplus \operatorname{ker} T$ and $\mathcal{K}=[N \mathcal{K}]$ $\oplus N$, we can represent T and N as follows.

$$
\begin{align*}
T & =\left(\begin{array}{cc}
T_{1} & 0 \\
0 & 0
\end{array}\right) \tag{8}\\
N & =\left(\begin{array}{cc}
N_{1} & 0 \\
0 & 0
\end{array}\right), \tag{9}
\end{align*}
$$

where T_{1} is injective and p-hyponormal on $[|T| \mathcal{H}]$ and N_{1} is injective and normal on $[N \mathcal{H}]$. The assumption $T X=X N$ implies that X maps N to $\operatorname{ran} T \subset[|T| \mathcal{H}]$ and $\operatorname{Ker} N$ to $\operatorname{Ker} T$. Hence X is of the form

$$
X=\left(\begin{array}{cc}
X_{1} & 0 \tag{10}\\
0 & X_{2}
\end{array}\right)
$$

where $X_{1} \in \mathcal{B}([N \mathcal{K}],[|T| \mathcal{H}]), X_{2} \in \mathcal{B}(\operatorname{Ker} N, \operatorname{Ker} T)$. Since $T X=X N$, we have that

$$
\begin{equation*}
T_{1} X_{1}=X_{1} N_{1} \tag{11}
\end{equation*}
$$

Since X is injective with dense range, X_{1} is also injective with dense range. Put $W=X_{1}{ }^{*}\left|T_{1}\right|^{\frac{1}{2}}$. Then $\underset{\widetilde{T}}{W}:[|T| \mathcal{H}] \rightarrow[N \mathcal{K}] \underset{\sim}{\sim}$ is a one-to-one mapping which has dense range and satisfies $W \widetilde{T}_{1}{ }^{*}=N_{1}{ }^{*} W$. Here \widetilde{T}_{1} is the Aluthge transform of T_{1}. Since \widetilde{T}_{1} is hyponormal, for every $x \in\left(\widetilde{T}_{1}{ }^{*} \widetilde{T}_{1}-\widetilde{T}_{1} \widetilde{T}_{1}{ }^{*} \frac{1}{2} \mathcal{H}\right.$, there exists a bounded function $f: \mathbb{C} \rightarrow \mathcal{H}$ such that $\left(\widetilde{T}_{1}{ }^{*}-\lambda\right) f(\lambda) \equiv x$, for all $\lambda \in \mathbb{C}$, by Lemma 4. Hence

$$
\begin{aligned}
W x & =W\left(\widetilde{T}_{1}{ }^{*}-\lambda\right) f(\lambda) \\
& =\left(N_{1}^{*}-\lambda\right) W f(\lambda) \\
& \in \operatorname{ran}\left(N_{1}^{*}-\lambda\right), \text { for all } \lambda \in \mathbb{C} .
\end{aligned}
$$

By Lemma 1_{2} we have $W x=0$, and hence $x=0$ because W is one-to-one. This implies that \widetilde{T}_{1} is normal. By Lemma 3, T_{1} is normal and therefore $T=T_{1} \oplus 0$ is also normal. The assertion is immediate from Fuglede-Putnam's theorem.

Next, we prove the cases in which T is p-hyponormal for $p \leq \frac{1}{2}$ or \log hyponormal. Let T_{1}, N_{1}, X_{1} and W be as above. Then \widetilde{T}_{1} is $\frac{1}{2}$-hyponormal and $W^{*}:[N \mathcal{K}] \rightarrow[|T| \mathcal{H}]$ is a one-to-one mapping with dense range that satisfies

$$
\widetilde{T}_{1} W^{*}=W^{*} N_{1}
$$

By using a previous argument we see that \widetilde{T}_{1} is normal. Hence T_{1} is normal by Lemma 3. This implies that T is normal. The assertion follows by Fuglede-Putnam's theorem.
3. Main theorems In order to obtain our generalization of Patel's result [10] discussed earlier we require some preliminary lemmas.

Lemma 10. (Stampfli-Wadhwa [16]) Let $T \in \mathcal{B}(\mathcal{K})$ be dominant and $S \in \mathcal{B}(\mathcal{K})$ be co-hyponormal. If $W \in \mathcal{B}(\mathcal{H}, \mathcal{K})$ is a one-to-one mapping with dense range and $W S=T W$, then T and S are normal.

Lemma 11. Let $T=\left(\begin{array}{cc}T_{1} & S \\ 0 & T_{2}\end{array}\right)$ be a classA operator on $\mathcal{H}=\mathcal{M} \oplus \mathcal{M}^{\perp}$, where \mathcal{M} is a T-invariant subspace such that the restriction $T_{1}=\left.T\right|_{M}$ is normal. Then the range of S is included in $\operatorname{Ker} T_{1}$. In particular, if T is injective, every normal part of T reduces T.

Proof. Let P be the orthogonal projection onto \mathcal{M}. Then we have

$$
\begin{aligned}
\left(\begin{array}{cc}
T_{1}^{*} T_{1} & 0 \\
0 & 0
\end{array}\right) & =P T^{*} T P \leq P\left|T^{2}\right| P \quad \text { (since } T \text { is class } A \text {) } \\
& \leq\left(\begin{array}{cc}
\left(T_{1}^{* 2} T_{1}^{2}\right)^{\frac{1}{2}} & 0 \\
0 & 0
\end{array}\right) \quad \text { (by Hansen's inequality) } \\
& =\left(\begin{array}{cc}
T_{1}^{*} T_{1} & 0 \\
0 & 0
\end{array}\right) \quad \text { (since } T_{1} \text { is normal). }
\end{aligned}
$$

Let $\left|T^{2}\right|=\left(\begin{array}{cc}X & Y \\ Y^{*} & Z\end{array}\right)$ be the 2×2 matrix representation of $\left|T^{2}\right|$ or $\mathcal{H}=\mathcal{M} \oplus \mathcal{M}^{\perp}$. Then we have $X=T_{1}{ }^{*} T_{1}$ by the inequality above. Since $\left|T^{2}\right|^{2}=T^{* 2} T^{2}$, we have

$$
\left(\begin{array}{cc}
X^{2}+Y Y^{*} & X Y+Y Z \\
Z Y^{*}+Y^{*} X & Y^{*} Y+Z^{2}
\end{array}\right)=\left(\begin{array}{cc}
T_{1}{ }^{* 2} T_{1}{ }^{2} & T_{1}{ }^{* 2} T_{1} S \\
S^{*} T_{1}{ }^{*} T_{1}{ }^{2} & S^{*} S+T_{2}{ }^{* 2} T_{2}{ }^{2}
\end{array}\right),
$$

and hence $X^{2}+Y Y^{*}=T_{1}{ }^{* 2} T_{1}{ }^{2}=\left(T_{1}^{*} T_{1}\right)^{2}=X^{2}$. This implies that $Y=0$. Thus we have

$$
\left|T^{2}\right|=\left(\begin{array}{cc}
T_{1}{ }^{*} T_{1} & 0 \\
0 & Z
\end{array}\right) \geq T^{*} T=\left(\begin{array}{cc}
T_{1}{ }^{*} T_{1} & T_{1}{ }^{*} S \\
S^{*} T_{1} & S^{*} S+T_{2}{ }^{*} T_{2}
\end{array}\right)
$$

and hence $T_{1}{ }^{*} S=0$. Thus the range of S is included in $\operatorname{Ker} T_{1}{ }^{*}=\operatorname{Ker} T_{1}$. If T is one-to-one, then T_{1} is also one-to-one. Hence the second statement of Lemma 11 follows trivially.

Lemma 12. If T is p-hyponormal or log-hyponormal, then every normal part of T reduces T.

Proof. If T is log-hyponormal, then T is invertible. Hence the assertion holds for log-hyponormal operators by Lemma 11.

Now, we assume that T is p-hyponormal. Let \mathcal{M} be a normal part of T. By Lemmas 5 and $11, T$ is of the form $\left(\begin{array}{cc}N & S \\ 0 & T_{1}\end{array}\right)$ on $\mathcal{M} \oplus \mathcal{M}^{\perp}$, where N is normal and
$\operatorname{ran} S \subset \operatorname{Ker} N$. It is easy to see that

$$
\begin{aligned}
T^{*} T & =\left(\begin{array}{cc}
|N|^{2} & 0 \\
0 & S^{*} S+T_{1}^{*} T_{1}
\end{array}\right), \\
T T^{*} & =\left(\begin{array}{cc}
|N|^{2}+S S^{*} & S T_{1}^{*} \\
T_{1} S^{*} & T_{1} T_{1}^{*}
\end{array}\right) .
\end{aligned}
$$

Put $\left(T T^{*}\right)^{p}=\left(\begin{array}{cc}X & Y \\ Y^{*} & Z\end{array}\right)$. Then the p-hyponormality of T implies that

$$
\left(T^{*} T\right)^{p}=\left(\begin{array}{cc}
|N|^{2 p} & 0 \\
0 & \left(S^{*} S+T_{1}^{*} T_{1}\right)^{p}
\end{array}\right) \geq\left(\begin{array}{cc}
X & Y \\
Y^{*} & Z
\end{array}\right)=\left(T T^{*}\right)^{p} .
$$

We have $\operatorname{ran} Y \subset \operatorname{ran} X^{\frac{1}{2}}$ by Lemma 9 and $\operatorname{ran} X^{\frac{1}{2}} \subset \operatorname{ran}|N|^{p}$ by Lemma 8. Hence we have $\operatorname{ran} X, \cup \operatorname{ran} Y \subset \operatorname{ran} X^{\frac{1}{2}} \subset \operatorname{ran}|N|^{p}$. Put $\left(T T^{*}\right)^{1-p}=\left(\begin{array}{cc}A & B \\ B^{*} & C\end{array}\right)$. Hence

$$
T T^{*}=\left(T T^{*}\right)^{p}\left(T T^{*}\right)^{1-p}=\left(\begin{array}{cc}
X & Y \\
Y^{*} & Z
\end{array}\right)\left(\begin{array}{cc}
A & B \\
B^{*} & C
\end{array}\right)
$$

This implies that $|N|^{2}+S S^{*}=X A+Y B^{*}$. Therefore,

$$
\operatorname{ran}\left(S S^{*}\right) \subset \operatorname{ran}|N|^{2}+\operatorname{ran} X+\operatorname{ran} Y \subset \operatorname{ran}|N|^{p} \subset \overline{\operatorname{ran} N}
$$

while, $\operatorname{ran}\left(S S^{*}\right) \subset \operatorname{ran} S \subset \operatorname{Ker} N$. This shows that $\operatorname{ran}\left(S S^{*}\right)=\{0\}$ and therefore $S=0$. This completes the proof.

Theorem 2. Let $T \in \mathcal{B}(\mathcal{H})$ be p-hyponormal or log-hyponormal and $L \in \mathcal{B}(\mathcal{H})$ be a self-adjoint operator which satisfies $T L=L T^{*}$. Then $T^{*} L=L T$.

Proof. We first show that if $T L=L T^{*}=0$ then $T^{*} L=L T=0$. Since $\operatorname{Ker} T$ reduces $T, T L=0$ implies that $\operatorname{ran} L \subset \operatorname{Ker} T \subset \operatorname{Ker} T^{*}$ and (by taking orthogonal complements) $\overline{\operatorname{ran} T} \subset \operatorname{Ker} L$. Hence we have $T^{*} L=L T=0$.

Next, we prove the case in which $T L \neq 0$. Assume that T is p-hyponormal. Using the decomposition $\mathcal{H}=\overline{\operatorname{ran} L} \oplus \operatorname{Ker} L$, the operators L and T can be represented as follows:

$$
\begin{align*}
L & =\left(\begin{array}{cc}
L_{1} & 0 \\
0 & 0
\end{array}\right), \tag{12}\\
T & =\left(\begin{array}{cc}
T_{1} & S \\
0 & T_{2}
\end{array}\right) \tag{13}
\end{align*}
$$

where L_{1} is self-adjoint with $\operatorname{Ker} L_{1}=\{0\}$ (hence it has dense range) and T_{1} is also p-hyponormal by [18]. The assumption $T L=L T^{*}$ implies that $T_{1} L_{1}=L_{1} T_{1}{ }^{*}$. Since $\operatorname{Ker} T_{1}$ reduces T_{1} and L_{1}, they are of the form $T_{1}=T_{11} \oplus 0$ and $L_{1}=L_{11} \oplus L_{22}$ on $\overline{\operatorname{ran} L}=\overline{\operatorname{ran}\left|T_{1}\right|} \oplus \operatorname{Ker} T_{1}$. It is easy to see that T_{11} is an injective p-hyponormal operator and L_{11} is an injective self-adjoint operator which satisfies $T_{11} L_{11}=$ $L_{11} T_{11}{ }^{*}$. If $p \geq \frac{1}{2}$, then $\widetilde{T_{11}} W=W{\widetilde{T_{11}}}^{*}$, where $W=\left|T_{11}\right|^{\frac{1}{2}} L_{11}\left|T_{11}\right|^{\frac{1}{2}}$ is injective selfadjoint and $\widetilde{T_{11}}$ is hyponormal. We have $\widetilde{T_{11}}$ is normal by Lemma 10 and T_{11} is also normal by Lemma 3. Hence $T_{1}=T_{11} \oplus 0$ is also normal. By Fuglede-Putnam's theorem we see that $T_{1}{ }^{*} L_{1}=L_{1} T_{1}$. Since T_{1} is normal $S=0$ by Lemma 12, so we have $T^{*} L=L T$. Hence the assertion holds for p-hyponormal operators for $p \geq \frac{1}{2}$. If $0<p<\frac{1}{2}, \widetilde{T_{11}}$ is an injective $\left(p+\frac{1}{2}\right)$-hyponormal. Using the previous argument, we have that T_{11} is normal and hence T_{1} is normal. By the same reasoning as above, the assertion holds for p-hyponormal operators for $0<p<\frac{1}{2}$.

If T is log-hyponormal, then the Aluthge transform \tilde{T} of T is $\frac{1}{2}$-hyponormal. Moreover it satisfies

$$
\begin{equation*}
|\tilde{T}| \geq|T| \geq\left|\tilde{T}^{*}\right| \tag{14}
\end{equation*}
$$

See [17]. Put $W=|T|^{\frac{1}{2}} L|T|^{\frac{1}{2}}$. Then W is self-adjoint and satisfies

$$
\begin{equation*}
\tilde{T} W=W \tilde{T}^{*} \tag{15}
\end{equation*}
$$

By the previous argument, we have that the restriction $\left.\tilde{T}\right|_{\overline{\mathrm{ran} W}}$ of \tilde{T} to its invariant subspace $\overline{\operatorname{ran} W}$ is normal and

$$
\begin{equation*}
\tilde{T}^{*} W=W \tilde{T} \tag{16}
\end{equation*}
$$

Hence $\overline{\operatorname{ran} W}$ reduces \tilde{T}, by Lemma 12 , and so \tilde{T} is of the form $\tilde{T}=N \oplus S$ on $\overline{\operatorname{ran}} W \oplus \operatorname{Ker} W$, where N is normal. By Lemma 3, $T=N \oplus B$, for some log-hyponormal operator B. Let $W=W_{1} \oplus 0$ and

$$
L=\left(\begin{array}{ll}
L_{11} & L_{12} \\
L_{21} & L_{22}
\end{array}\right)
$$

on $\overline{\operatorname{ran} W} \oplus \operatorname{Ker} W$. Then $L_{12}=0, L_{21}=0$ and $L_{22}=0$ follows from the equality $W=|T|^{\frac{1}{2}} L|T|^{\frac{1}{2}}$. By assumption, $N L_{11}=L_{11} N^{*}$, we have $N^{*} L_{11}=L_{11} N$ by FugledePutnam's theorem and therefore $T^{*} L=L T$.

Corollary 1. Let $T \in \mathcal{B}(\mathcal{H})$ be p-hyponormal or log-hyponormal. If $X \in \mathcal{B}(\mathcal{H})$ and $T X=X T^{*}$, then $T^{*} X=X T$.

Proof. Let $X=L+i K$ be the Cartesian decomposition of X. Then we have $T L=L T^{*}$ and $T J=J T^{*}$, by the assumption. By Theorem 2, we have $T^{*} L=L T$ and $T^{*} J=J T$. This implies that $T^{*} X=X T$.

Remark 1. If we use Patel's result and Lemma 12, the assertion of Theorem 2 for p-hyponormal is immediate, since T and L are of the form $T=T_{1} \oplus 0$ and $L=L_{1} \oplus L_{2}$ on $\overline{\operatorname{ran}|T|} \oplus \operatorname{Ker} T$, where T_{1} is an injective p-hyponormal operator.

If we use the 2×2 matrix trick, we easily deduce the following result.
Corollary 2. Let $T^{*} \in \mathcal{B}(\mathcal{H})$ and $S \in \mathcal{B}(\mathcal{K})$ be p-hyponormal (resp. log-hyponormal). If $X \in \mathcal{B}(\mathcal{H}, \mathcal{K})$ and $X T=S X$, then $X T^{*}=S^{*} X$.

Proof. Put $A=\left(\begin{array}{cc}T^{*} & 0 \\ 0 & S\end{array}\right)$ and $B=\left(\begin{array}{cc}0 & 0 \\ X & 0\end{array}\right)$ on $\mathcal{H} \oplus \mathcal{K}$. Then A is a p-hyponormal (resp. log-hyponormal) operator on $\mathcal{H} \oplus \mathcal{K}$ that satisfies $B A^{*}=A B$. Hence we have $B A=A^{*} B$, by Corollary 1, and therefore $X T^{*}=S^{*} X$.

Lemma 13. Let $T^{*} \in \mathcal{B}(\mathcal{H})$ be p-hyponormal(resp. log-hyponormal) and $U|T|$ be the polar decomposition of T. Let \mathcal{M} be a closed subspace of \mathcal{H} such that the Aluthge transform \tilde{T} is of the form $\tilde{T}=N \oplus T^{\prime}$ on $\mathcal{H}=\mathcal{M} \oplus \mathcal{M}^{\perp}$, where N is a normal operator on \mathcal{M}. Then T and U are of the form $T=\left(\begin{array}{cc}N & A \\ 0 & T_{1}\end{array}\right)$ and $U=\left(\begin{array}{cc}U_{11} & U_{12} \\ 0 & U_{22}\end{array}\right)\left(\right.$ resp $\quad N \oplus T_{1} \quad$ and $\left.\quad U=U_{11} \oplus U_{22}\right) \quad$ on $\mathcal{H}=\mathcal{M} \oplus \mathcal{M}^{\perp}$, where $N=U_{11}|N|$ is the polar decomposition of N and $\operatorname{ran} U_{12} \subset \operatorname{Ker} N$.

In particular, if N is one-to-one, then $T=N \oplus T_{1}$ and $U=U_{11} \oplus U_{22}$ on $=M \oplus M^{\perp}$.

Proof. Since T^{*} is p-hyponormal or log-hyponormal,

$$
|\tilde{T}| \leq|T| \leq\left|\tilde{T}^{*}\right|,
$$

by Aluthge [1] and Tanahashi [17]. Hence, we have

$$
|N| \oplus\left|T^{\prime}\right| \leq|T| \leq|N| \oplus\left|T^{\prime *}\right|,
$$

by assumption. This implies that $|T|$ is of the form $|N| \oplus L$, for some positive operator L. Let $U=\left(\begin{array}{ll}U_{11} & U_{12} \\ U_{21} & U_{22}\end{array}\right)$ be the 2×2 matrix representation of U with respect to the decomposition $\mathcal{H}=\mathcal{M} \oplus \mathcal{M}^{\perp}$. Then the definition $\tilde{T}=|T|^{\frac{1}{2}} U|T|^{\frac{1}{2}}$ means that

$$
\left(\begin{array}{cc}
N & 0 \\
0 & T^{\prime}
\end{array}\right)=\left(\begin{array}{cc}
|N|^{\frac{1}{2}} & 0 \\
0 & L^{\frac{1}{2}}
\end{array}\right)\left(\begin{array}{cc}
U_{11} & U_{12} \\
U_{21} & U_{22}
\end{array}\right)\left(\begin{array}{cc}
|N|^{\frac{1}{2}} & 0 \\
0 & L^{\frac{1}{2}}
\end{array}\right)
$$

Hence, we have

$$
\begin{gather*}
N=|N|^{\frac{1}{2}} U_{11}|N|^{\frac{1}{2}}, \tag{17}\\
|N|^{\frac{1}{2}} U_{12} L^{\frac{1}{2}}=0, \tag{18}\\
L^{\frac{1}{2}} U_{21}|N|^{\frac{1}{2}}=0 . \tag{19}
\end{gather*}
$$

Since $\operatorname{Ker} U=\operatorname{Ker} T=\operatorname{Ker}|T|$, we have

$$
\begin{align*}
& \operatorname{Ker} N \subset \operatorname{Ker} U_{11}, \operatorname{Ker} U_{21}, \tag{20}\\
& \operatorname{Ker} L \subset \operatorname{Ker} U_{12}, \operatorname{Ker} U_{22} \tag{21}
\end{align*}
$$

Let $N=V|N|$ be the polar decomposition of N. Then $\operatorname{ran}\left(U_{11}-V\right) \subset \operatorname{Ker} N$ by (17) and (20). Hence, for arbitrary $x \in \operatorname{ran} N$, we have

$$
\begin{aligned}
\|x\|^{2} \geq\left\|U_{11} x\right\|^{2} & =\|V x\|^{2}+\left\|\left(U_{11}-V\right) x\right\|^{2}, \text { by Pythagoras' theorem }, \\
& =\|x\|^{2}+\left\|\left(U_{11}-V\right) x\right\|^{2}, \text { since } V \text { is unitary on } \overline{\operatorname{ran}} N, \\
& \geq\|x\|^{2} .
\end{aligned}
$$

Therefore, we obtain $U_{11}=V$. Since

$$
\|x\|^{2}=\|U x\|^{2}=\left\|U_{11} x\right\|^{2}+\left\|U_{21} x\right\|^{2}=\|x\|^{2}+\left\|U_{21} x\right\|^{2} \text { for } x \in \operatorname{ran} N
$$

we have $U_{21}=0$ by (20). Also, we see that $\operatorname{ran} U_{12} \subset \operatorname{Ker} N$ by (18) and (21). Hence,

$$
T=U|T|=\left(\begin{array}{cc}
U_{11} & U_{12} \\
0 & U_{22}
\end{array}\right)\left(\begin{array}{cc}
|N| & 0 \\
0 & L
\end{array}\right)=\left(\begin{array}{cc}
N & U_{12} L \\
0 & U_{22} L
\end{array}\right)
$$

In particular, if T^{*} is log-hyponormal, then N and L are invertible. Hence $U_{12}=0$ and $U_{21}=0$ immediately from (18) and (19). This completes the proof of the first statement.

The second statement is trivial, since $U_{12}=0$ is immediate from $\operatorname{ran} U_{12} \subset \operatorname{Ker} N=\{0\}$.

Theorem 3. Let $A \in \mathcal{B}(\mathcal{H})$ be such that A^{*} is p-hyponormal or log-hyponormal. Let $B \in \mathcal{B}(\mathcal{K})$ be dominant. Then $C A^{*}=B^{*} C$ whenever $C A=B C$, for some $C \in \mathcal{B}(\mathcal{H}, \mathcal{K})$.

Proof. Let A^{*} be a p-hyponormal operator for $p \geq \frac{1}{2}$ and $U|A|$ be the polar decomposition of A. Then the Aluthge transform \tilde{A} of A is co-hyponormal and satisfies

$$
\begin{gather*}
|\tilde{A}|^{2} \leq|A|^{2} \leq\left|\tilde{A}^{*}\right|^{2}, \tag{22}\\
C^{\prime} \tilde{A}=B C^{\prime} \tag{23}
\end{gather*}
$$

where $C^{\prime}=C U|A|^{\frac{1}{2}}$. Using the decompositions $\mathcal{H}=\operatorname{Ker} C^{\prime \perp} \oplus \operatorname{Ker} C^{\prime}$ and $\mathcal{K}=$ $\overline{\operatorname{ranC}}{ }^{\prime} \oplus \operatorname{ranC}^{\prime}$, we see that \tilde{A}, B and C^{\prime} are of the form

$$
\tilde{A}=\left(\begin{array}{cc}
A_{1} & 0 \\
S & A_{2}
\end{array}\right), \quad B=\left(\begin{array}{cc}
B_{1} & T \\
0 & B_{2}
\end{array}\right), C^{\prime}=\left(\begin{array}{cc}
C_{1} & 0 \\
0 & 0
\end{array}\right)
$$

where, A_{1} is co-hyponormal, B_{1} is dominant and C_{1} is a one-to-one mapping with dense range. Since $C^{\prime} \widetilde{A}=B C^{\prime}$, we have

$$
\begin{equation*}
C_{1} A_{1}=B_{1} C_{1} \tag{24}
\end{equation*}
$$

Hence A_{1} and B_{1} are normal by Lemma 10 , so that $S=0$, by Lemma 12 and $T=0$ by [15]. Thus $|A|=\left|A_{1}\right| \oplus L$, for some positive L, by (22) and $U=\left(\begin{array}{cc}U_{11} & U_{12} \\ 0 & U_{22}\end{array}\right)$ by Lemma 13. Let $C=\left(\begin{array}{ll}C_{11} & C_{12} \\ C_{21} & C_{22}\end{array}\right)$ be a 2×2 matrix representation of C with respect to the decompositions $\mathcal{H}=\operatorname{Ker} C^{\prime \perp} \oplus \operatorname{Ker} C^{\prime}$ and $\mathcal{K}=\overline{\operatorname{ran} C^{\prime}} \oplus \operatorname{ran} C^{\perp}$. Then, $C^{\prime}=C U|A|^{\frac{1}{2}}$ implies that $C_{1}=C_{11} U_{11}\left|A_{1}\right|^{\frac{1}{2}}$ and hence $\operatorname{Ker} A_{1} \subset \operatorname{Ker} C_{1}=\{0\}$. This shows that A_{1} is one-to-one (hence, it has dense range), so that $U_{12}=0$ and $A=A_{1} \oplus A_{3}$, for some co- p-hyponormal operator A_{3} by Lemma 13. Since,

$$
\left(\begin{array}{cc}
C_{1} & 0 \\
0 & 0
\end{array}\right)=C^{\prime}=C U|A|^{\frac{1}{2}}=\left(\begin{array}{cc}
C_{11} & C_{12} \\
C_{21} & C_{22}
\end{array}\right)\left(\begin{array}{cc}
U_{11}\left|A_{1}\right|^{\frac{1}{2}} & 0 \\
0 & U_{22}\left|A_{3}\right|^{\frac{1}{2}}
\end{array}\right),
$$

we deduce the following statements.

$$
\begin{equation*}
C_{12} U_{22}\left|A_{3}\right|^{\frac{1}{2}}=0 ; \text { hence } C_{12} A_{3}=0 \text { because } A_{3}=U_{22}\left|A_{3}\right| . \tag{25}
\end{equation*}
$$

$C_{21} U_{11}\left|A_{1}\right|^{\frac{1}{2}}=0 ;$ hence $C_{21}=0$ because $U_{11}\left|A_{1}\right|^{\frac{1}{2}}$ has dense range.

$$
C_{22} U_{22}\left|A_{3}\right|^{\frac{1}{2}}=0 ; \text { hence } C_{22} A_{3}=0
$$

The assumption $C A=B C$ tells us that,

$$
\begin{gather*}
C_{11} A_{1}=B_{1} C_{11}, \tag{28}\\
C_{12} A_{3}=B_{1} C_{12}=0, \quad \text { by }(25), \tag{29}\\
C_{22} A_{3}=B_{2} C_{22}=0, \quad \text { by }(27) . \tag{30}
\end{gather*}
$$

Since A_{1} and B_{1} are normal we have $C_{11} A_{1}{ }^{*}=B_{1}{ }^{*} C_{11}$, by Fuglede-Putnam's theorem. The p-hyponormality of $A_{3}{ }^{*}$ shows that $\operatorname{ran} A_{3}{ }^{*} \subset \overline{\operatorname{ran} A_{3}}$. Also we have $\operatorname{Ker} B_{2} \subset \operatorname{Ker} B_{2}{ }^{*}$ from the fact that B_{2} is dominant. Hence, we also have $C_{12} A_{3}{ }^{*}=B_{1}{ }^{*} C_{12}=0$ and $C_{22} A_{3}{ }^{*}=B_{2}{ }^{*} C_{22}=0$. This implies that $C A^{*}=$ $C_{11} A_{1}{ }^{*} \oplus 0=B_{1}{ }^{*} C_{11} \oplus 0=B^{*} C$.

Next, we prove the case where A^{*} is p-hyponormal for $0<p \leq \frac{1}{2}$. Let C^{\prime} be as above. Then \tilde{A} is co- $\left(p+\frac{1}{2}\right)$-hyponormal and satisfies $C^{\prime} \tilde{A}=B C^{\prime}$. Use the same argument as above. We obtain $\tilde{A}=A_{1} \oplus A_{2}$ on $\mathcal{H}=\operatorname{Ker} C^{\perp} \oplus \operatorname{Ker} C^{\prime}$ and $B=B_{1} \oplus B_{2}$, where A_{1} is an injective normal operator and B_{1} is also normal. Hence, we have $A=A_{1} \oplus A_{3}$ for some co-p-hyponormal A_{3}, by Lemma 13. Again using the same argument as above, we obtain $C_{21}=0, C_{11} A_{1}{ }^{*}=B_{1}{ }^{*} C_{11}, C_{12} A_{3}{ }^{*}=$ $B_{1}{ }^{*} C_{12}=0$ and $C_{22} A_{3}{ }^{*}=B_{2}{ }^{*} C_{22}=0$, where $C=\left(\begin{array}{ll}C_{11} & C_{12} \\ C_{21} & C_{22}\end{array}\right)$ is the 2×2 matrix representation of C with respect to the decompositions $\mathcal{H}=\operatorname{Ker} C^{\perp} \oplus \operatorname{Ker} C^{\prime}$ and $\mathcal{K}=\overline{\operatorname{ran} C^{\prime}} \oplus \operatorname{ran} C^{\prime \perp}$. Hence we have $C A^{*}=B^{*} C$.

Finally, we assume that A^{*} is log-hyponormal. Let \tilde{A} and C^{\prime} be as above. Then $C^{\prime} \tilde{A}=B C^{\prime}$ and \tilde{A}^{*} is $\frac{1}{2}$-hyponormal and satisfies

$$
\begin{equation*}
|\tilde{A}| \leq|A| \leq\left|\tilde{A}^{*}\right| . \tag{31}
\end{equation*}
$$

By the same argument as above, we have $\tilde{A}=A_{1} \oplus A_{2}$ on $\mathcal{H}=\operatorname{Ker} C^{\perp} \oplus \operatorname{ker} C^{\prime}$ and $B=B_{1} \oplus B_{2}$ on $\mathcal{K}=\overline{\operatorname{ran} C^{\prime}} \oplus \operatorname{ran} C^{\prime}$, where A_{1} is an invertible normal operator, B_{1} is normal, A_{2} is invertible, co- $\frac{1}{2}$-hyponormal and B_{2} is dominant. By Lemma 13, we have that A is of the form $A=A_{1} \oplus A_{3}$, for some \log-hyponormal $A_{3}{ }^{*}$. Let $C=\left(\begin{array}{ll}C_{11} & C_{12} \\ C_{21} & C_{22}\end{array}\right)$. Then $C^{\prime}=C U|A|^{\frac{1}{2}}$ implies that $C_{12}=0, C_{21}=0$ and $C_{22}=0$. The assumption $C A=B C$ implies that $C_{11} A_{1}=B_{1} C_{11}$; hence $C_{11} A_{1}{ }^{*}=B_{1}{ }^{*} C_{11}$ by Fuglede-Putnam's theorem. Thus we have $C A^{*}=C_{11} A_{1}{ }^{*} \oplus 0=B_{1}{ }^{*} C_{11} \oplus 0=B^{*} C$. This completes the proof.

Remark 2. Let T be an operator such that $\operatorname{Ker} T$ does not reduce T and let P be the orthogonal projection onto $\operatorname{Ker} T$. Then P does not commute with T; otherwise $\operatorname{ran} P=\operatorname{Ker} T$ reduces T. Hence $P T \neq 0=T P$. It is easy to see that $T P=P T^{*}=0$ but $T^{*} P \neq P T(\neq 0)$ because $\operatorname{ran} T^{*} P \subset \operatorname{ran} T^{*} \subset \operatorname{Ker} T^{\perp}=(1-P)$. Hence the assertion of Theorem 2 does not hold for such T. Also, if we put $A=T^{*}, B=1-P$ and $C=P$, then

$$
C A=P T^{*}=0=(1-P) P=B C .
$$

However

$$
C A^{*}=P T \neq 0=(1-P) P=B^{*} C .
$$

Hence the assertion of Theorem 3 does not hold for such T.
This is an example of a class A operator T such that T does not reduce T.
Example 1. Let $\left\{e_{n}\right\}_{n=-\infty}^{\infty}$ be a complete orthonormal system for \mathcal{H}. We denote the orthogonal projection onto $\mathbb{C} e_{n}$ by P_{n}. Let W be a weighted shift on \mathcal{H} defined by

$$
W e_{n}=\left\{\begin{array}{cc}
\sqrt{2} e_{n+1} & (n \geq 0) \\
e_{n+1} & (n<0)
\end{array}\right.
$$

Then $W^{*} W-W W^{*}=P_{0}$. Define an operator T on a Hilbert space $\mathcal{K}=\mathcal{H} \oplus \mathbb{C} e_{0}$ by

$$
T=\left(\begin{array}{cc}
W & P_{0} \\
0 & 0
\end{array}\right) .
$$

Then

$$
\begin{aligned}
T^{* 2} T^{2}-\left(T^{*} T\right)^{2} & =T^{*}\left\{T^{*} T-T T^{*}\right\} T \\
& =\left(\begin{array}{cc}
W^{*} & 0 \\
P_{0} & 0
\end{array}\right)\left(\begin{array}{cc}
0 & W^{*} P_{0} \\
P_{0} W & P_{0}
\end{array}\right)\left(\begin{array}{cc}
W & P_{0} \\
0 & 0
\end{array}\right) \\
& =\left(\begin{array}{cc}
W^{*} & 0 \\
P_{0} & 0
\end{array}\right)\left(\begin{array}{cc}
0 & 0 \\
P_{0} W^{2} & P_{0} W P_{0}
\end{array}\right)=0 .
\end{aligned}
$$

Hence $T^{* 2} T^{2}=\left(T^{*} T\right)^{2}$ and therefore $\left|T^{2}\right|=T^{*} T$. This shows that T is class A. It is easy to see that

$$
\operatorname{Ker} T=\mathbb{C}\left(-e_{-1} \oplus e_{0}\right) \text { and } \operatorname{Ker} T^{*}=\{0\} \oplus \mathbb{C} e_{0} .
$$

Hence T does not reduce T and therefore the assertions of Theorems 2 and 3 are not necessarily true for class A operators.

REFERENCES

1. A. Aluthge, On p-hyponormal operators for $0<p<1$, Integral Equations Operator Theory. 13 (1990), 307-315.
2. R. G. Douglas, On majorization, factorization, and range inclusion of operators on Hilbert space, Proc. Amer. Math. Soc. 17 (1966), 413-415.
3. B. P. Duggal, On dominant operators, Arch. Math. (Basel) 46 (1986), 353-359.
4. B. Fuglede, A commutativity theorem for normal operators, Proc. Nat. Acad. Sci. U.S.A. 36 (1950), 35-40.
5. T. Furuta, M. Ito and T. Yamazaki, A subclass of paranormal operators including class of log-hyponormal and several related classes, Sci. Math. 1 (1998), 389-403.
6. T. Furuta and M. Yanagida, On powers of p-hyponormal and log-hyponormal operators, Sci. Math. 2 (1999), 279-284.
7. F. Hansen, An inequality, Math. Ann. 246 (1980), 249-250.
8. E. Heinz, Beiträge zur Störungstheorie der Spektralzerlegung, Math. Ann. 123 (1951), 415-438.
9. K. Löwner, Über monotone Matrixfunktionen, Math. Z. 38 (1934), 177-216.
10. S. M. Patel, On intertwining p-hyponormal operators, Indian J. Math. 38 (1996), 287-290.
11. S. M. Patel, A note on p-hyponormal operators for $0<p<1$, Integral Equations Operator Theory 21 (1995), 498-503.
12. C. R. Putnam, On normal operators in Hilbert space, Amer. J. Math. 73 (1951), 357362.
13. C. R. Putnam, Ranges of normal and subnormal operators, Michigan Math. J. 18 (1971), 33-36.
14. C. R. Putnam, Hyponormal contractions and strong power convergence, Pacific J. Math. 57 (1975), 531-538.
15. J. G. Stampfli, Hyponormal operators, Pacific J. Math. 12 (1962), 1453-1458.
16. J. G. Stampfli and B. L. Wadhwa, On dominant operators, Monatsh Math., 84 (1977), 143-153.
17. K. Tanahashi, On log-hyponormal operators, Integral Equations and Operator Theory, 34 (1999), 364-372.
18. A. Uchiyama, Berger-Shaw's theorem for p-hyponormal operators, Integral Equations Operator Theory, 33 (1999), 221-230.
19. A. Uchiyama, Weyl's theorem for class A operators, Mathematical Inequalities \& Applications, (to appear).
20. D. Xia, On the non-normal operators-semihyponormal operators, Sci. Sinica. 23 (1980), 700-713.
21. T. Yoshino, Remark on the generalized Putnam-Fuglede theorem, Proc. Amer. Math. Soc. 95 (1985), 571-572.

[^0]: ${ }^{1}$ Research Fellow of the Japan Society for Promotion of Science.
 ${ }^{2}$ This research was supported by Grant-in-Aid Research 1 No. 12640187.

