INTEGRATION OF THE NORMAL POWER APPROXIMATION

Gottrried Berger

Stamford, U.S.A.
I. Consider the set of functions

$$
\begin{equation*}
\pi_{j}(x)=\int_{x}^{\infty}(t-x)^{j} d F(t), j=0, \mathrm{I}, \ldots \tag{I}
\end{equation*}
$$

Obviously, $\pi_{1}(x)$ represents the net premium of the excess cover over the priority x, and $\sigma^{2}(x)=\pi_{2}(x)-\pi_{1}^{2}(x)$ the variance thereof.

If a distribution function $F(x)=\mathbf{I}-\pi_{0}(x)$ is given, the set (I) can be generated by means of the recursion formulae

$$
\begin{equation*}
\pi_{j}^{\prime}(x)=-j \pi_{j-1}(x), j=1,2, \ldots \tag{2}
\end{equation*}
$$

2. Let us study the special class of d.fs. $F(x)$ which satisfy

$$
\begin{equation*}
F(x)=\Phi(y) \equiv \frac{\mathrm{I}}{\sqrt{2 \pi}} \int_{-\infty}^{y} e^{-1 / 2 t^{2}} d t \tag{3a}
\end{equation*}
$$

where

$$
\begin{equation*}
x=\Delta(y) \equiv \beta_{0}+\beta_{1} y+\ldots+\beta_{k} y^{k} \tag{3b}
\end{equation*}
$$

If these conditions are met, the integrals (I) have the solution:

$$
\begin{equation*}
\pi_{j}(x)=A_{j}(y) \cdot(\mathrm{I}-\Phi(y))+B_{j}(y) \cdot \Phi^{\prime}(y) \tag{4}
\end{equation*}
$$

$A_{j}(y)$ and $B_{j}(y)$, respectively, are polynomials of rank $j k$ and $j k-I$. Their coefficients are determined by the equations:

$$
\begin{align*}
& A_{j}^{\prime}(y)=-j \Delta^{\prime}(y) \cdot A_{j-1}(y), \\
& B_{j}^{\prime}(y)=-j \Delta^{\prime}(y) \cdot B_{j-1}(y)+A_{j}(y)+y B_{j}(y), \\
& A_{0}(y)=\mathrm{I}, \tag{5}\\
& B_{0}(y)=0 .
\end{align*}
$$

The system (5) is obtained by differentiation of (4) with respect to y, and observing (2).
3. The idea behind the normal power expansion is to apply (3a) as approximation, subject to a transformation $x=\Delta(y)$. Preferably the parameters of $\Delta(y)$ should not depend on the particular choice of y or x, but only on general characteristics of the d.f. $F(x)$, such as $E=\pi_{1}(0), \sigma=\sigma(0), \gamma_{1}=$ skewness and $\gamma_{2}=$ excess.

Kauppi and Ojantakanen [r] have tackled the problem to define functions $x=\Delta(y)$, which make (3a) a reasonable approximation. They found three suitable expressions $\Delta(y)$, one of them-credited to Loimaranta - has the form (3b) and this one became known as the normal power expansion. Under this method (see Beard-Pentikaeinen-Pesonen [2]) the coefficients β_{i} of (3 b) are determined by reversion of the Edgeworth expansion as follows:

$$
\begin{align*}
\frac{x-E}{\sigma}=y & +\frac{\gamma_{1}}{6}\left(y^{2}-\mathrm{I}\right) \\
& +\frac{\gamma_{2}}{24}\left(y^{3}-3 y\right)-\left(\frac{\gamma_{1}}{6}\right)^{2}\left(2 y^{3}-5 y\right) \\
& +\ldots \tag{6}
\end{align*}
$$

We may denote by NPk the normal power approximation, which uses the first k terms of (6). Then, NPi corresponds to the well known normal approximation.
NP_{2} uses the first line of (6) only, and NP_{3} everything which is written out. Thus, NP_{3} requires the solution of a cubic equation.
4. The methods NP_{2} and NP_{3} were programmed in APL. This required about 20 lines, including the subprograms to solve (5), the quadratic or cubic equation (6), and to determine $\Phi(y)$ and $\Phi^{\prime}(y)$.

The cubic equation for NP_{3} has in some relevant cases 3 real roots. It is necessary therefore to program rules to select the meaningful of several real roots y.

On an IBM 370, the CPU time needed to calculate $\pi_{0}(x), \pi_{1}(x)$ and $\sigma(x)$ for a set of 6 values x was 1 second for NP2, and 2.4 seconds for NP_{3}.
5. The NP approximations were applied first to a life insurance distribution similar to the one used by Ammeter [3]. The result is
shown in Table I. The exact values were obtained by another APL program, the CPU time needed was:

$$
\begin{aligned}
28 \quad \text { seconds for } t & =\mathrm{IOO} \\
3.2 \text { seconds for } t & =\mathrm{IO} \\
\mathrm{I} \quad \text { seconds for } t & =\mathrm{I}
\end{aligned}
$$

Thus, the approximation technique makes economical sense only, if the number t of expected claims is at least to or more.

As another example, the non-industrial fire distribution from the work of Bohman-Escher [4] was chosen. Table 2 shows a comparison with correct values from [4], Table 3 some additional comparisons with numerical results from Seal [5].
6. The comparisons contained in the Tables I to 3 point out the following suggestions:
a) The integration does not seem to enlarge the error margin. Thus, the NP technique can be applied to estimate stop loss gross premiums.
b) NP_{2} yields quite reasonable results, if $\gamma_{1} \leq 2$. This corresponds with previous experience.
c) NP_{3} does not generally produce better results than NP_{2}. It appears that NP_{3} is preferable only for lower values of x (say $x \leq E+2 \sigma)$.
d) NP_{3} yields reasonable results even in the Life case with $\gamma_{1}=4.3$, but not in the Fire cases with $\gamma_{1}=3.5$ and 3.8 (not even in the vicinity of $x=E$). It may be that not only γ_{1}, but also the relation $E \gamma_{1} / \sigma$ is a criterion of goodness of fit.

References

[I] Kauppi, Ojantakanen (1969): "Approximations of the generalized Poisson function"; Astin Bulletin.
[2] Beard. Pentikaeinen, Pesonen (1969): "Risk Theory"; Methuen, London.
[3] Ammeter (1955). 'The calculation of premium rates for excess of loss and stop loss reassurance treaties"; Arithbel, Brussels.
[4] Bohman, Escher (1964): "Studies in Risk Theory..."; Skand. Aktu. Tidskr.
[5] Seal (1971): "Numerical calculation of the Bohman-Escher family con-volution-mixed negative binomial distribution functions'; MVSM.
Table I
Life insurance distribution

Non-industrial fire distribution

$x=E+\xi \cdot \sigma$			$\pi_{0}(x)=\mathrm{I}-F(x)$					$\pi=\pi_{1}(x) / E$				
t	h_{0}	ξ	Exact (BohmanEscher)	$\mathrm{NP2}$	NP_{2}	$\begin{gathered} \mathrm{NP}_{3} \\ \% \end{gathered}$	$\begin{gathered} \mathrm{NP}_{3} \\ \% \end{gathered}$	Exact (BohmanEscher)	NP2	NP_{3}	$\begin{gathered} \mathrm{NP}_{2} \\ \% \end{gathered}$	$\begin{gathered} \mathrm{NP}_{3} \\ \% \end{gathered}$
1000	∞	o	0.4265	0.4228	0.413^{1}	99	97	0.0823	0.0888	0.0830	108	IOI
		1	1364	1587	1425	116	104	260	289	269	111	103
		2	${ }^{0} 4523$	04938	4497	109	99	815	817	835	100	102
		3	OI4 401	-1348	1387	96	99	222	209	258	94	II6
		4	${ }^{0} 0352$	${ }^{0} 0333$	428	95	121	55	49	81	89	147
		6	000219	00164	422	75	193	3 I	22	8 r	$7{ }^{1}$	37°
	20	\bigcirc	0.4476	0.447^{2}	0.4444	100	99	0.1220	0.1257	0.1221	103	Ioo
		I	1502	1587	1509	106	100	345	362	345	105	100
		2	03968	04179	400	105	100	823	83 r	${ }^{345}$	101	102
		3	00892	00881	920	99	103	171	159	185	93	108
		4	${ }^{0} 177$	${ }^{0} 151$	195	89	110	32	26	38	8 I	119
		6	000053	000034	78	64	147	9	000005	15	60	167
100	∞	o	0.3743	0.3129				0.2191	0.3206	0.2054	146	94
		1	947	1587	827	168	87	800	1643	1251	205	94 156
		2	3450	8152	4827	236	$14{ }^{\circ}$	$4{ }^{024}$	8438	8129	210	202
		3	1709	4195	3016	245	176	2358	4329	5484	184	233
		4	893	2156	1967	24 I	220	${ }^{1} 483$	2216	3796	149	256
		6	3780	565	908	149	240	6826	576	1920	84	281
	20	o	0.3801			85	47	0.2364	0.3302	0.2191	140	93
		1	1006	1587	0827	158	82	845	1629	1289	193	$\begin{array}{r}153 \\ \hline\end{array}$
		2	3521	7856	488	223	139	4070	8027	816	197	200
		3	1680	3880	298	231	177	2311	3939	538	170	233
		4 6	855	1907	1897	223	222		1924	364	134	254
		6	3649	454	843	124	231	6296	4529	${ }^{1} 78$	72	283

Table 3
Non-industrial five distribution

$x=E+\xi \cdot \sigma$				$\pi_{0}(x)=\mathrm{I}-F(x)$				
t	h_{0}	x / E	ξ	Exact (Seal)	NP_{2}	NP_{3}	$\begin{gathered} \mathrm{NP}_{2} \\ \% \end{gathered}$	$\begin{gathered} \mathrm{NP}_{3} \\ \% \end{gathered}$
1000	I	.5		0.59778	0.5645	0.5825	94	97
		1.0	0	36710	3805	3593	104	98
			1	13531	1587	1347	117	100
			3	1839	229	194	124	106
			5	250	28	29	113	II7
100	I	. 5		0. 5470	0.4905	0.4846	90	89
		I. 0	0	3448	3540	3040	IO3	88
			I	1226	${ }^{1} 587$	II89	129	97
			3	198	297	238	150	I20
			5	46	5 I	56	III	122

The total claim distributions being tested have these statistical measures:

t	h_{0}	σ / E	γ_{1}	$\gamma 2$
Life:				
100	∞	. 175	. 427	. 246
10	∞	. 554	1.351	2.459
1	∞	1.75I	4.271	24.590

Non-industrial Fire:

Iooo	∞	.218	1.214	2.624
	20	.312	.8 II	1.153
	I	1.024	2.010	6.045
100	∞	.690	3.839	26.234
	20	.725	3.505	22.577
	I	1.215	2.6 I 4	10.729

