
Mathematical Structures in Computer Science (2022), 32, pp. 760–776
doi:10.1017/S0960129521000505

PAPER

Implicit computation complexity in higher-order
programming languages
A Survey in Memory of Martin Hofmann

U. Dal Lago

Department of Computer Science and Engineering, University of Bologna, Bologna, Italy
Email: ugo.dallago@unibo.it

(Received 1 November 2020; revised 15 December 2021; accepted 21 December 2021; first published online 15 March 2022)

Abstract
This paper is meant to be a survey about implicit characterizations of complexity classes by fragments of
higher-order programming languages, with a special focus on type systems and subsystems of linear logic.
Particular emphasis will be put onMartin Hofmann’s contributions to the subject, which verymuch helped
in shaping the field.

Keywords: Lambda calculus; linear logic; type systems; computational complexity

1. Introduction
While computability theory studies the boundary between what can and cannot be computed
effectively without putting any specific constraint on the underlying algorithm, complexity theory
refines the analysis by classifying the computable functions based on the amount of resources algo-
rithms computing those functions require when executed by paradigmatic machines like Turing
machines. Resources of interest can be computation time, space, or communication, while bounds
are not expressed as fixed, absolute constants but rather parametrically – and asymptotically – on
the size of the input. This way algorithms are allowed to consume larger and larger amounts of
resources when the size of the input increases, and what matters is not the absolute value, but the
rate of growth.

A complexity class can thus be defined as the collection of all those functions which can be
computed by an algorithm working within resource bounds of a certain kind. As an example,
we can form the class FP of those functions which can be computed in polynomial time, that is,
within an amount of computation time bounded by a polynomial on the size of the input. As
another example, we can form the class FLOGSPACE of those functions which can be computed
in logarithmic space. Complexity theory has developed grandly since its inception (see Cobham
1965; Hartmanis and Stearns 1965), and nowadays, many complexity classes are studied, even if
much remains to be discovered about their being distinct or not. Traditionally, complexity classes
are studied by carefully analyzing the combinatorial behavior of machines rather than looking
at the structural and morphological aspects of the underlying algorithm. (For an introduction to
computational complexity theory, we recommend the textbooks by Goldreich 2008 and Arora and
Barak 2009).

© The Author(s), 2022. Published by Cambridge University Press. This is an Open Access article, distributed under the terms of the
Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and
reproduction, provided the original article is properly cited.

https://doi.org/10.1017/S0960129521000505 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000505
https://orcid.org/0000-0001-9200-070X
mailto:ugo.dallago@unibo.it
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S0960129521000505&domain=pdf
https://doi.org/10.1017/S0960129521000505


Mathematical Structures in Computer Science 761

Starting from the early nineties, researchers in mathematical logic and theoretical computer
science have introduced implicit characterizations of (some of) the various complexity classes. By
implicit, we heremean that classes are not given by explicitly constraining the amount of resources
a machine is allowed to use, but rather by imposing linguistic constraints on the way algorithms
can be formulated, that is, on their structure. This idea has developed into an area called implicit
computational complexity (ICC in the following), which at the time of writing is very active, with
annual thematic workshops specifically devoted to it.

Many areas within logic and computer science have been affected: from recursion theory, within
which the first attempts at characterizing the feasible functions have been given, to the field of type
theory, in which restrictions on algorithms are given as formal systems of types, to proof theory,
in which the structure of proofs and the dynamics of cut-elimination is leveraged when defining
appropriate restrictions.

The purpose of this survey is to give the reader the possibility of understanding what implicit
computational complexity is, the typical flavor of the results obtained in it, and how these results
are proved. We will focus our attention on characterizations of complexity classes in terms of
proof theory and higher-order programming languages, an area of ICC which Martin Hofmann
has contributed to shaping and in which he had a fundamental role since the very beginning.

2. A Bird’s Eye View on Complexity and Higher-Order Programs
Most programming languages are designed to be expressive: not only many alternative constructs
are usually available, but the class of computational tasks programs can solve is kept as large as
possible. In fact, one of the first theorems any programming language designer proves about a
new idiom is its being Turing powerful, namely that any computable function can be encoded
into it. Any such programming language, for obvious reasons, is simply too powerful to guaran-
tee bounds on the amount of resources programs need, that is, to guarantee complexity bounds.
But are all constructs any given programming language offers equally harmful, in this respect? In
other words, could we remove or refine them, this way obtaining a reasonably expressive program-
ming language in which programs consume by construction a bounded amount of computational
resources? This can be seen as the challenge from which one starts when defining ICC systems.

One could for example consider Kleene’s algebra of general recursive functions as a rudimen-
tary programming language in which programs are built from some basic building blocks, the
initial functions, by way of composition, primitive recursion, andminimization. As is well-known,
dropping minimization makes this formalism strictly less expressive: the functions one represents
(the so-called primitive recursive functions) are, at least, all total. Primitive recursive functions
are however well beyond any reasonable complexity class: they are after all the class of functions
which can be computed in time and space bounded by primitive recursive functions, the latter
being strictly larger than Kalmar’s elementary functions. Essentially, this is due to the possibility
of having nested recursive definitions. As an example, one can first define addition from the initial
functions

add(0, x)= x;

add(n+ 1, x)= add(n, x)+ 1;

and then define exponentiation n �→ 2n from addition as follows:

exp(0)= 1;

exp(n+ 1)= add(exp(n), exp(n)).

Composing exp with itself allows us to form towers of exponentials of arbitrary size, thus saturat-
ing the Kalmar elementary functions. A recursion on exp leads us even beyond the aforementioned

https://doi.org/10.1017/S0960129521000505 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000505


762 U. Dal Lago

class, already too broad complexity-wise. Rather than removing primitive recursion from the alge-
bra up-front (which would have too strong an impact on the expressive power of the underlying
function algebra), we could somehow refine the algebra by distinguishing arguments that matter
for complexity from arguments that do not: the arguments of any function f are dubbed either
normal, when their value can have a relatively big impact on f ’s complexity, or safe when their
value can only influence f ’s behavior very mildly, combinatorially speaking. If �x are the normal
parameters and �y are the safe ones, we indicate the value of f on �x and �y as f (�x; �y), where the
semicolon serves to separate the normal from the safe. This way, the usual scheme of primitive
recursion can be restricted as follows:

f (0, �x; �y)= h(�x; �y);
f (n+ 1, �x; �y)= g(n, �x; �y, f (n, �x; �y)).

Please notice that the way we define f from g and h is morphologically identical to what happens
in the usual primitive recursive scheme. That it is a restriction is a consequence of the distinction
between normal and safe arguments: indeed, the recursive call f (n, �x; �y) is required to be forwarded
to one of g’s safe argument, while f ’s first parameter must be normal. This makes exp not express-
ible anymore and gives rise to new function algebra called safe recursion and due to Bellantoni and
Cook (1992) (BC in the following). Is one getting close to any reasonably small complexity class,
this way? Surprisingly, the answer is positive:

Theorem (Bellantoni and Cook 1992). The class BC equals the class FP of polynomial time
computable functions.

This breakthrough result, discovered independently by Leivant (1993) in a slightly different
setting, can be seen as the starting point of ICC and has given rise to a variety of characterizations
of different complexity classes along the same lines, from polynomial space (Leivant and Marion
1994; Oitavem 2008) to nondeterministic polynomial time (Oitavem 2011), from circuit classes
(Leivant 1998) to logarithmic space (Neergaard 2004).

The lesson by Bellantoni and Cook is that refining a closure operator rather than removing it
up-front can be a very effective strategy to tune the expressive power of the underlying algebra
and turn it into a characterization of a complexity class. This can also form the basis for the defi-
nition of type systems so as to go towards programming languages and calculi capable of handling
higher-order functions, and we will give an overview of the results one can obtain this way in
Section 3 below. Are function algebras the only kind of computational model amenable to such a
refinement? Is it possible that other programming languages and logical formalisms can be treated
similarly? We will give an answer to this question in the rest of this section.

Suppose, for example, that one wants to follow the same kind of path Bellantoni and Cook
followed, but from a very different starting point, namely looking at the λ-calculus rather than
at recursive functions. The pure, untyped λ-calculus is a minimal programming language whose
terms are those generated by the following grammar:

M ::= x | λx.M | MM
and whose dynamics is captured by rewriting, and in particular by so-called β-reduction:

(λx.M)N→β M{x/N}
The obtained language is well-known to be Turing-powerful: there are various ways of repre-
senting the natural numbers and functions between them which make this very simple formal
system capable of capturing all computable functions. In doing so, the λ-calculus shows its capa-
bility of simulating many different operators (e.g., conditionals, recursion, and iteration) within
a very simple framework in which the basic computation step, namely β , is so simple and appar-
ently innocuous. What is it that makes β so powerful, computationally speaking? The answer

https://doi.org/10.1017/S0960129521000505 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000505


Mathematical Structures in Computer Science 763

lies in the possibility for a λ-abstraction λx.M to not only forward the argument N to M when
applied to the former, but also to duplicate it. Take, for example, the paradigmatic divergent term
�=��, where �= λx.xx. The fact that � rewrites to itself (thus giving rise to divergence, and
ultimately rendering the pure λ-calculus inadequate for ICC) fundamentally relies on the fact that
two occurrences of the abstracted variable occur in the body of �. Similarly, Turing’s fixed-point
combinator

�= (λx.λy.y(xxy))((λx.λy.y(xxy))

can be used to simulate recursion, since for every M it holds that �M rewrites in two β-steps
to M(�M). And, again, all this crucially relies on the possibility of duplicating, since both the
argument and part of the combinator itself are duplicated along the reduction process.

When looking for a subrecursive variation on the pure λ-calculus, many roads have been fol-
lowed, themost explored one being the use of type systems, namely of formal systems which single
out certain λ-terms as typable, guaranteeing at the same time that all typable programs satisfy cer-
tain properties, typical examples being safety and reachability properties. In particular, many of
the introduced type systems guarantee that β-reduction is strongly normalizing on all typable
λ-terms, namely that divergence is simply impossible. Sometimes, one can also go beyond that
and introduce systems of types which guarantee various forms of bounded termination. We will
give a survey on all this in Section 3 below.

But there is another, more fundamental, way of keeping the complexity of β-reduction under
control, namely acting directly on duplication, as suggested by Girard (1987) in his work on
linear logic. There, the main intuition is precisely the one of decomposing intuitionistic impli-
cation (thus β-reduction) into a linear implication and an exponential modality. Without delving
into the proof-theoretical details of all this, we can already grasp the essence by considering a
refinement �! of the pure λ-calculus:

M ::= x | λ�x.M | λ!x.M | MM | !M
Besides the usual operators, we find new ones, namely the so-called boxes, that is, terms of the
form !M, and two kinds of abstractions, namely nonlinear ones, of the form λ!x.M, and linear
ones, of the form λ�x.M. The latter is dubbed well-formed only if x occurs free inM at most once
and outside the scope of any box. The β-reduction rule has to be refined itself into a linear rule
and a nonlinear rule:

(λ�x.M)N→�β M{x/N} (λ!x.M)!N→!β M{x/N}
This refinement by itself does not allow us to tame the expressive power of the underlying com-
putational model: the pure λ-calculus can be retrieved in all its strength and wildness thanks to
nonlinear abstractions, that is, the following embedding allows to simulate→β by way of→!β :

(x)! = x (λx.M)! = λ!x.(M)! (MN)! = (M)!!(N)!
Indeed:

((λx.M)N)! = (λ!x.(M)!)!(N)! →!β (M)!{x/(N)!} = (M{x/N})!
(where the last step is nothing more than a straightforward substitution lemma).

How should one proceed, then? A simple idea consists in dropping nonlinearity altogether,
thus getting rid of boxes and nonlinear abstractions in the underlying calculus:

M ::= x | λ�x.M | MM

This way, one obtains a calculus, called the affine λ-calculus and indicated as ��, in which diver-
gence is simply absent, for very good reasons: along any→�β step, the size (i.e., the total number
of symbols) in the underlying term strictly decreases. How about the expressive power of the
obtained calculus? Apparently, this is quite limited: even though some of the number schemes in

https://doi.org/10.1017/S0960129521000505 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000505


764 U. Dal Lago

the literature (e.g., so-called Scott numerals) can indeed be seen as terms in ��, the class of func-
tions which are representable in the calculus is very small, well below any complexity class. Things
change, however, if one consider �� as a computational model for boolean functions. If this is
the case, a nice, and tight correspondence between terms and boolean circuits starts to show up,
leading to the following result:

Theorem (Mairson and Terui 2003). Given a term M in ��, testing whether it reduces via→�β to
a specific normal form is a P-complete problem.

This does not mean, however, that every polynomial time problem can somehow be repre-
sented as a term in ��. Instead, instances of any problem in P can very cheaply be turned into
terms in such a way that solving the problem boils down to reducing the term. More results along
these lines will be discussed in Section 4.

If one is rather interested in uniform encodings, that is, in encodings of problems (and not prob-
lem instances) into terms, the natural way to proceed consists in allowing nonlinear abstractions
to occur in the calculus, at the same time constraining, in various ways, the way x can occur in
M whenever forming the term λ!x.M. Indeed, some such constraints have been analyzed in the
literature, giving rise to characterizations of different complexity classes. We will review some of
them in Section 4, but it is instructive to see how this turns out to be possible by way of a simple
example, namely the so-called soft λ-calculus �S�, due to Baillot and Mogbil (2004), and inspired
by soft linear logic (Lafont 2004).

Suppose, as an example, that whenever one forms λ!x.M, the variable x is allowed to occur free
inM:

(1) either at most once and in the scope of a single occurrence of the ! operator;
(2) or possibly more than once, but outside the scope of any ! operator.

In other words, terms like λ!x.yxx or λ!x.y!x would be considered legal, while λ!x.x!x would not be.
To realize why this is a sensible restriction, observe how, whenever firing a nonlinear β-step, a
term in the form (λ!x.M)!N becomesM{x/N}, and either multiple copies ofN are produced along
the substitution process, all of them lying outside of any ! operator, orN is not copied at all, staying
at the same nesting depth it was before the rewriting step. Summing up, while reducing any term
of �S�, the actual size of the term can definitely increase, but it does so in a very controlled and
predictable way. Observe how allowingmultiple occurrences of x at different depthswhen forming
nonlinear abstractions would allow to type divergent terms, like

(�)! = (λ!x.x!x)!(λ!x.x!x).
As one can easily check, � is not a term of �S�.

Summing up, we described two ways of refining and restricting universal computational mod-
els so as to make them capable of capturing relatively small complexity classes. Both of them
rely on finding the right parameters to act on, namely recursion depth (in recursion theory), and
duplication (in the λ-calculus). Are there other ways of achieving the same goal? The answer
is affirmative, and we will say a few words about that in Section 5 below. The next two sec-
tions, however, are meant to be surveys on works about type systems and linear logic fragments,
respectively.

3. Type Systems
Type systems are among the most successful lightweight formal methods and are particularly fit
for languages with higher-order functions, namely the ones we are interested in here. Most type
systems automatically ensure safety properties: well-typed programs cannot go wrong, even if the

https://doi.org/10.1017/S0960129521000505 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000505


Mathematical Structures in Computer Science 765

converse does not hold. Besides safety, some type systems also guarantee reachability: well-typed
programs cannot diverge, that is, they are guaranteed to reach a final state or normal form. Again,
the converse is not guaranteed to hold, except for peculiar forms of type systems (e.g., intersection
types, by Coppo and Dezani-Ciancaglini 1980). A refinement of reachability, namely termination
in a bounded number of steps, could give further guarantees as for the feasibility of the underlying
algorithm, rather than mere totality.

Traditionally, one very natural way of defining type systems guaranteeing termination prop-
erties consists in deriving them from proof systems through the so-called Curry-Howard cor-
respondence (see the textbooks by Girard et al. 1989 and Sørensen and Urzyczyn 2006 for an
introduction). This way, termination is a byproduct of the cut-elimination or normalization prop-
erties for the underlying logical system, precisely because β-reduction mimics them. This is the
case in the so-called simply-typed λ-calculus, which corresponds to intuitionistic propositional
logic, or in the polymorphic λ-calculus, itself a sibling of second-order intuitionistic logic. In the
aforementioned systems, however, the obtained class of terms is not fit for a characterization of
complexity classes in the spirit of ICC. For example, the class of polymorphically typable λ-terms is
so huge that it represents all functions on the natural numbers which are provably total in second-
order arithmetic. As another example, simply-typed λ-terms require hyper-exponential time to be
reduced to their normal forms (see Fortune et al. 1983), but the functions which can be encoded
as simply-typed terms do not include some, like the identity, which are part of all reasonable
complexity classes, see the work by Zaionc (1990, 1991).

If one is really interested in giving implicit characterizations of complexity classes by way of
type systems, one is thus forced to follow different routes, some of which we will describe in the
rest of this section.

3.1 Higher-order primitive recursion
One way to enrich the simply-typed λ-calculus so as to turn it into a language with a very high
expressive power is to endow it with constants for the natural numbers, and operators for prim-
itive recursion at all finite types. As is well-known, the obtained system, the so-called Gödel’s
System T, is capable of representing all functions on the natural numbers which are provably total
in first-order Peano’s Arithmetic. As such, then, T cannot be close to the characterization of any
complexity classes.

System T, however, can be seen as nothing more than a generalization of Kleene’s primitive
recursion to higher-order types. It is thus very natural to wonder whether one could turn safe
recursion into a sub-recursive type system guaranteeing polynomial time computability. A naive
idea is that the underlying function space can be refined into two:

• The space �A→ B of functions depending on a safe argument of type A and returning an
element of type B.

• The space�A→ B of functions depending on a normal argument of type A and returning an
element of a type B.

This allows us to define a type system very much in the style of safe recursion. This, however, does
not lead us to a characterization of the polynomial computable functions. Consider the following
higher-order function HOexp, whose type is�NAT→�NAT→NAT

HOexp(0)= λx.succ(x);

HOexp(n+ 1)= λx.HOexp(n)(HOexp(n)(x)).
The behavior of this function is intrinsically exponential, HOexp(n,m)=m+ 2n. Actually, the
obtained system, call itHOSR, can be proved to precisely characterize Kalmar’s elementary time:

Theorem (Leivant 1999b). HOSR precisely captures the class E of Kalmar’s elementary functions.

https://doi.org/10.1017/S0960129521000505 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000505


766 U. Dal Lago

If one wants to trim the complexity of the calculus down to complexity classes capturing
notions of feasibility, the key idea consists in imposing linearity restrictions. The exponential
behavior HOexp exhibits is essentially due to the fact that two recursive calls take place in the
inductive case. If one imposes linearity constraints on higher-order variables, one indeed obtains
a calculus, calledHOSLR which has the desired property:

Theorem (Hofmann 1997b). HOSLR precisely captures FP.

Hofmann’s result has been proved by way of a realizability interpretation, which has been later
turned into a more general and flexible tool by Dal Lago and Hofmann (2011). An earlier and
very influential work by Hofmann (2000b) proved – by way of linear combinatory algebras – that
an extension of HOSLR to a larger class of datatypes remain sound. A system essentially equiva-
lent toHOSLR has been analyzed from a more syntactical viewpoint, obtaining results analogous
to Theorem 3.1 but having a more operational flavor, by Bellantoni et al. (2000). Probabilistic
variations on HOSLR have been considered and proved to be useful tools in the study of crypto-
graphic constructions, by Mitchell et al. (1998), Zhang (2009), and Cappai and Dal Lago (2015).
Contrary to what happens in the realm of first-order function algebras (see, e.g., the work by
Avanzini and Dal Lago 2018), higher-order safe recursion is very fragile as a characterization of
the polytime computable functions: switching from word algebras to tree algebras makes the class
of representable functions go up to E, as proved by Dal Lago (2009b).

3.2 Non-size increasing computation
Systems likeHOSLR are implicit, thus providing simple characterizations of the complexity class
FP. As such, they can be seen as compositional verificationmethodologies for the complexity anal-
ysis of programs. This is true, of course, if the fact that all typable programs represent polynomial
time functions is proved operationally, that is, by showing that those programs can be reduced
themselves within some polynomial time bounds. This observation has led many researchers to
work on the use of systems based on predicative recursion, and ICC in general, as static analysis
techniques.

Quite soon, however, strong limitations to these ideas emerged, as observed by Hofmann
(1999):

Although these systems allow one to express all polynomial time functions, they reject many
natural formulations of obviously polynomial time algorithms. The reason is that under
the predicativity regime, a recursively defined function is not allowed to serve as step func-
tion of a subsequent recursive definition. However, in most functional programs involving
inductive data structures such iterated recursion does occur.

In other words, even if extensionally complete, these systems tend to be intentionally very
weak, ruling out many useful and popular algorithmic schemes which, although giving rise to
polynomial time functions, requires forms of nested recursion. Examples include the so-called
InsertionSort algorithm, which was observed not to be expressible in, say, HOSLR (see
again Hofmann 1999).

A way out consists in taking another property of programs as the one on which potentially
problematic programs (i.e., programs with too high a complexity) are ruled out. Rather than say-
ing that nested recursions are simply not allowed, it is possible to define a type system in such a
way that all typable programs are by construction non-size-increasing. This way, since recurring or
iterating over a non-size-increasing (polytime) function is always safe, iteration and recursion can

https://doi.org/10.1017/S0960129521000505 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000505


Mathematical Structures in Computer Science 767

be made more liberal, and nesting is indeed allowed. This idea, introduced by Hofmann (1999),
has been explored in various directions by Hofmann (2000c, 2002, 2003) and ultimately gave rise
to the fruitful line of work on amortized resource analysis (see, as an example, the work by Jost
et al. 2010 or the many recent contributions on the subject).

But how can all this be made concrete? Actually, the ingredients are relatively simple:
• On the one hand, the underlying system of types must enforce an affine regime where every
free variable occurs at most once, even when it is of ground type. In other words, there is just
one way of typing functions, namely by linear types in the form A� B.

• On the other hand, every function inducing a strict increase on the input length must “pay the
price” by taking an additional input of type �, itself providing the “missing size.” As an exam-
ple, the successor function has type ��NAT�NAT. It is of course important to guarantee
that no closed term of type � can be built.

This way, a type system called NSI is defined and proved to characterize the polynomial time
computable problems:

Theorem (Hofmann 1999). The type system NSI characterizes the class P.

Variations of NSI in which the language of terms is made to vary lead to characterizations of
larger complexity classes, like PSPACE and EXP, as shown in the work by Hofmann (2002, 2003),
witnessing the flexibility and interest of the approach.

4. Linear Logic
As explained in Section 2, one natural way of taming the expressive power of systems like the λ-
calculus is to control copying by decomposing functions in the sense of functional programming
into copiers and forwarders, similarly to what we did by going from � to �!. This enables the
definition of restrictions to �! obtained by tuning the way nonlinear abstractions can manipulate
duplicable terms, that is, to which extent boxes can be copied, opened, and thrown inside other
boxes.

There is a natural way of interpreting all this in terms of logic and types, which is precisely
how this line of research comes into being. We are referring here to Linear Logic as introduced
byGirard (1987). Amongmany other things, Linear Logic can be seen as a way of decomposing the
type of functions A→ B as traditionally found in type systems into !A� B where the ! operator,
called the bang, is the type of duplicable versions of objects of type A, while � is a binary type
constructor allowing to build spaces of linear functions, which in this context can be taken as
functions using their argument at most once. This way, restricting the copying process can be
done by acting on the axioms the bang operator is required to satisfy, which in full linear logic are
the following ones:

!A�!A⊗!A
!A� 1
!A�A
!A�!!A

The first two axioms (contraction and weakening, respectively) state that an object of type !A
can be duplicated and discarded, while the following two (dereliction and digging, respectively)
allow for such a duplicable object to be turned into one of type A or !!A (respectively) by either
forgetting its nature as a duplicable object or by turning it into a duplicable duplicable object.
These axioms can be seen as saying that ! is categorically a comonad, but can also be seen as the

https://doi.org/10.1017/S0960129521000505 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000505


768 U. Dal Lago

types of appropriate combinators written in �!:

CONTRACTION � λ!x.〈x, x〉 :!A�!A⊗!A
WEAKENING� λ!x.∗ :A� 1

DERELICTION � λ!x.x :!A�A

DIGGING� λ!x.!!x :!A�!!A
By dropping some of the above principles, one could get meaningful fragments of linear logic, with
the hope of capturing complexity classes this way. This has materialized in many different forms,
which we are going to examine in the rest of this section, somehow by reverse chronological order
(this way facilitating the nonexpert reader).

4.1 Soft linear logic
One drastic way of taming the expressive power of linear logic is the one we have already consid-
ered in Section 2, namely going to systems like �S� in which boxes are opened whenever copied.
This, correspond to collapsing the four comonadic axioms into just one:

MULTIPLEXORn � λ!x.〈x, . . . , x
︸ ︷︷ ︸

n times
〉 :!A�A⊗ · · · ⊗A

︸ ︷︷ ︸

n times

Logically speaking, this amounts to switching to soft linear logic (SLL, introduced by Lafont 2004),
which can indeed be proved to be a characterization of the polynomial time computable problems:

Theorem (Lafont 2004). The logic SLL characterizes the class P of polynomial time computable
problems.

Soft linear logic has proved to be amenable to many adaptations and variations. First of all,
changing the way strings are represented leads to a characterization of polytime computable func-
tions, as proved by Gaboardi and Ronchi Della Rocca (2007). Then, other complexity classes can
be proved to be captured, of course by a careful variation of the underlying language of terms, an
example being PSPACE (see Gaboardi et al. 2012). The work by Redmond (2007, 2015, 2016) is
remarkable in its way of exploring the possible ramifications of the ideas behind soft linear logic
from a categorical and rewriting perspective. The calculus�S� has been introduced and studied by
Baillot andMogbil (2004). The robustness of the paradigm is witnessed by works generalizing it to
higher-order processes (by Dal Lago et al. 2016), session types (by Dal Lago andDi Giamberardino
2016), and quantum computation (by Dal Lago et al. 2010).

4.2 Elementary linear logic
Rather than forcing boxes to be opened whenever copied, one could simply rule out dereliction
and digging, this way enabling a form of stratification, obtaining a system in which contraction
and weakening are the only two valid axioms. The obtained system, called elementary linear logic
(ELL in the following), is due to Girard (1998), but has been studied in a slightly different form
by Danos and Joinet (2003). It characterizes the Kalmar elementary functions, hence the name:

Theorem (Danos and Joinet 2003; Girard 1998). The logic ELL characterizes the Kalmar elemen-
tary functions.

https://doi.org/10.1017/S0960129521000505 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000505


Mathematical Structures in Computer Science 769

Elementary linear logic has also been studied from other viewpoints, namely as a type system
for the pure λ-calculus enabling efficient optimal reduction algorithms, by Asperti et al. (2004),
Coppola and Martini (2006) and later by Baillot et al. (2011). Even if the expressive power of the
system can be seen as admittedly too large, Baillot (2015) showed how it can be tamed by consid-
ering programs having specific types, this way obtaining characterizations of P and kEXPTIME (for
every k ∈N).

4.3 Light linear logic
The idea of seeing boxes as rigid entities as embodied by ELL can also be turned into a system
characterizing the polynomial time computable functions, thus trimming the expressive power of
the underlying logic down to the realm of feasibility. This, however, requires a significant change
in the structure of formulas and rules. More specifically, not one but two kinds of boxes are nec-
essary, namely the usual one, supporting weakening and contraction, and a new one, indicated
as §. The syntax of λ-terms has to be appropriately tailored:

M ::= x | λ�x.M | λ!x.M | λ§x.M | MM | !M | §M.

Besides the two β-rules we already know, there is a third one, namely the following:

(λ§x.M)§N→β M{x/N}.
Whenever forming a nonlinear abstraction λ!x.M, the variable x can appear more than once inM,
and this occurrence needs to be in the scope of exactly one ! or § operator. On the other hand,
for λ§x.M to be well-formed it must be that x occurs at most once in M and in the scope of
exactly one § operator. Finally, an additional constraint has to be enforced, namely that whenever
forming !M, the subterm M has to have at most one free variable. From an axiomatic viewpoint,
this corresponds to switching to the following schemes

!A�!A⊗!A;
!A� 1;
!A� §A.

The constraint about boxes having at most one free variable corresponds to the failure of the
following axiom

!A�!B�!(A⊗ B)

which instead holds in SLL and ELL. The obtained logical system characterizes the polynomial
time computable functions:

Theorem (Asperti and Roversi 2002; Girard 1998). The logic LLL characterizes the class FP.

Light linear logic has been the first truly implicit characterization of the polytime computable
functions as a fragment of linear logic, and as such a breakthrough contribution to the field. The
original formulation by Girard (1998) was actually different and more complex than the one we
have sketched, essentially due to the presence of so-called additive connectives, which were ini-
tially thought to be necessary to encode polytime machines. A much simpler system, called light
affine logic (LAL in the following, and due to Asperti 1998; Asperti and Roversi 2002), has been
proved complete for polytime functions by Roversi (1999) relying on the presence of free weaken-
ing, namely the axiom A� 1. In other words, any object can be discarded, even if not lying inside
a box.

Light linear logic and light affine logic have been analyzed from many different perspectives.
Stemming from the already mentioned work on type systems for ELL, various type systems have

https://doi.org/10.1017/S0960129521000505 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000505


770 U. Dal Lago

been introduced being inspired by LAL but whose underlying language is the pure untyped
λ-calculus. This includes works by Baillot (2002), Atassi et al. (2007), Coppola et al. (2008), and
Baillot and Terui (2009). The difficulties here come from the fact that the information about dupli-
cability of subterms is lost if considering the ordinary λ-calculus as the underlying language of
programs. This renders type inference, but even subject reduction, problematic. The ways out vary
from switching to a dual version of the underlying logic to considering call-by-value rather than
call-by-name reduction. Interestingly, Murawski and Ong (2004) proved that light affine logic and
safe recursion are, although equivalent from an extensional perspective, incomparable as for their
intensional expressive power.

4.4 Bounded linear logic
Light linear logic and soft linear logic are both extensionally complete for the polynomial time
computable functions, but are very poor as for the class of algorithms they can capture. Their type
languages, indeed, are very simple and only reflect some qualitative information about the iter-
ative structure of the underlying term. As a consequence, many algorithmic patterns (including,
again, certain forms of nested recursion) are simply ruled out. In other words, the situation is
quite similar to the one we described in Section 3.2, when talking about HOSLR. How could one
catch more algorithms staying within the realm of linear logic? How could one get the kind of
quantitative refinement needed for a more powerful methodology?

An earlier system, introduced by Girard et al. (1992), is Bounded Linear Logic, BLL. As we will
see soon, BLL formulas contain some genuinely quantitative information about the input-output
behavior of programs and as such can be seen as being fundamentally different from light or soft
linear logic. After its inception, however, BLL has remained in oblivion for at least ten years, as
observed by Hofmann (2000a):

[Bounded Linear Logic] allows for the definition of all polynomial time computable func-
tions [. . . ], where enforcement of these bounds is intrinsically guaranteed by the type system
and does neither rely on external reasoning nor an ad hoc solution [. . . ]. Unfortunately,
BLL has received very little attention since its publication; a further elaboration might prove
worthwhile

Indeed, when seen as a type system for the λ-calculus, BLL guarantees that typable terms both
satisfy some quantitative constraints about the relation between the input and output size and can
be computed in a polynomial amount of time. The former is explicit in formulas, while the latter is
somehow hidden, but emerges in a natural way. Indeed, the two play well together when proving
that polynomial time computability is compositional.

But how is BLL actually defined? Rather than relying on the comonad !, it is based on a graded
version of it parameterized on the natural numbers, for which the four familiar axioms from linear
logic become the following ones:

!n+mA�!nA⊗!mA;
!nA� 1;

!1+nA�A;

!nmA�!n!mA;
where n andm are natural numbers. In other words, duplicable objects are handled without drop-
ping any of the four axioms, but taking them in quantitative form. To reach completeness, a
slightly more general formulation needs to be considered, namely one in which n andm are mul-
tivariate polynomials (i.e., the so-called resource polynomials, inspired by Girard’s earlier work on

https://doi.org/10.1017/S0960129521000505 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000505


Mathematical Structures in Computer Science 771

finite dilators) rather than plain natural numbers. This way, for example, contraction turns out to
have the following form:

!x<p+qA�!x<pA⊗!y<qA[x← y+ q].

Intuitively, the formula !x<pA can thus be read as follows:

A[x← 0]⊗A[x← 1]⊗ . . .⊗A[x← p− 1].

This allows for an alternative and somehow richer representation of data. As an example, the usual
second-order impredicative encoding of natural number

NAT � ∀α.(α→ α)→ α→ α,

becomes the following one

NATp � ∀α.!x<p(α(x)� α(x+ 1))� α(0)� α(p),

which is parameterized by a polynomial p and as such can be assigned only to (Church represen-
tation) of natural numbers of bounded value. This, by the way, allows for a very liberal form of
fold combinator. This is indeed one of the main ingredients towards the following:

Theorem (Girard et al. 1992). The logic BLL characterizes FP.

Subsequently to the inception of BLL, Pitt (1994) introduced a term calculus in which the
computational and programming aspects of it were very thoroughly analyzed. But after that, not
so much happened for some years, except for the alternative, realizability-based proof of poly-
time soundness, due to Hofmann and Scott (2004). After a ten year hiatus in which research was
rather directed towards simpler characterizations of complexity classes like light or soft linear
logic, the interest around BLL has been rising again for ten years now, due to the higher inten-
sional expressive power this system offers. In particular, BLL has been shown by Dal Lago and
Hofmann (2010a) to subsume many heterogeneous ICC systems, while a system of linear depen-
dent types derived from BLL has been proved by Dal Lago and Gaboardi (2011) and Dal Lago
and Petit (2013, 2014) to be relatively complete as a way to analyze the complexity of evaluation
of programs.

4.5 Some further lines of work
Apart from the subsystems of linear logic we have mentioned so far, others have been the subject
of some investigation by the ICC community.

What happens, as an example, if duplication and erasure are simply forbidden? As alreadymen-
tioned in Section 2, one ends up in a purely affine λ-calculus in which only the linear abstraction
is available:

M ::= x | λ�x.M | MM

From a purely proof-theoretical perspective, this system is known as Multiplicative Linear Logic,
MLL. As we mentioned above, the size of the underlying term (or proof) strictly decreases along
any (linear) β-reduction sequence, and thus, reduction cannot take time significantly higher than
the size of the starting term, thus of the input. This of course prevents complexity classes like FP
to be captured by the logic the usual way, that is, by stipulating that any function f ∈ FP has to
be represented uniformly as a single term Mf . On the other hand, a deep connection between
MLL proofs and boolean circuits have been discovered by Mairson (2004), and Mairson and
Terui (2003), and later strengthened by Terui (2004b), whose work highlights a deep connection
between the depth in boolean circuits and the logical depth of cut-formulas in proofs.

https://doi.org/10.1017/S0960129521000505 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000505


772 U. Dal Lago

A related line of work is about linear approximations and parsimony, and is due to Mazza
and co-authors. The original idea by Mazza (2014) stems from the so-called Approximation
Theorem (well-known since the original work by Girard 1987) and sees arbitrary computations
being approximated by affine ones, namely by (families of) terms in the linear λ-calculus. This
allows to capture non-uniform complexity classes like P/poly and L/poly, as proved by Mazza
and Terui (2015), but also of uniform classes like LOGSPACE, (see Mazza 2015).

A somewhat different line of work which is certainly worth being mentioned is the one by
Baillot andMazza (2010) on linear logic by levels, in which the stratification constraint intrinsic to
LLL and ELL is replaced by a more flexible mechanism which allows to capture more algorithmic
schemes, while still allowing for complexity bounds. Remarkably, linear logic by level is permissive
enough to capture all (propositional, multiplicative, and exponential) linear logic proofs, as shown
by Gaboardi et al. (2009), thus going beyond systems like ELL.

One last series of results which is worth being mentioned is concerned with linear logic and
infinitary and coinductive data. The paper by Gaboardi and Péchoux (2015) on algebras and
coalgebras in the light affine λ-calculus shows that the kind of distributive laws which are nec-
essary to model coalgebras are compatible with the polytime bounds which are the essence of
LAL. Infinitary data structures can however be captured differently, namely by going towards
something similar to the so-called infinitary λ-calculus, see Dal Lago (2016). Interestingly, the
decomposition linear logic provides offers precisely the kind of tools one needs to guarantee
properties like confluence and productivity. Remarkably, all this amounts to defining yet another
fragment of linear logic, namely the one, called 4LL in which only dereliction is forbidden.

5. Other Approaches and Results
Up to now, we have focused our attention on characterizations of complexity classes by way of
type systems and fragments of linear logic. This, however, does not mean that no other approaches
exist, even within the realm of higher-order programming languages or proof theory. This section
is meant to somehow complete the picture by giving pointers to alternative approaches, all within
logic and programming language theory.

First of all, one has certainly to mention arithmetic, which can of indeed be seen as a way to
represent (recursive) functions, but also to prove them total. The provably total functions of Peano
Arithmetic form a huge class (mutatis mutandis, the same captured by Gödel’s T), but refinements
of them capturing complexity classes, also known as systems of bounded arithmetic, have been
known since the pioneering work by Parikh (1971) and have later been studied in depth especially
by Buss (1986). Despite their being able to capture the various levels of the polynomial hierarchy,
systems of bounded arithmetic cannot be said to be truly implicit, given that explicit polynomial
bounds are present in their syntax, in particular at the level of quantifiers. This is also apparent in
PVω, a typed λ-calculus whose terms are meant to be realizers of bounded arithmetic formulas,
and which has been used by Cook and Urquhart (1993) to prove bounded arithmetic systems
to be sound characterizations of complexity classes. Along the same lines, but somehow reverse-
engineering some of the type systems for higher-order recursion we described in Section 3, one
can define systems of feasible arithmetic, as shown by Bellantoni and Hofmann (2002), and Aehlig
et al. (2004). Similarly, light affine logic has been the starting point for defining a system of feasible
set theory by Terui (2004a), later adapted to soft linear logic by McKinley (2008).

Providing higher-order programming languages with satisfactory forms of denotational
semantics has been an active research topic for many decades, starting from the late sixties (see
the textbook by Amadio and Curien (1998) for a modern introduction to the subject). Given the
elusive nature of complexity classes, about which very few separation results are currently known,
it is natural to look for an appropriate mathematical framework in which languages character-
izing mainstream classes can be interpreted. This observation has triggered many investigations
about the denotational semantics of ICC systems, and in particular of those we have introduced

https://doi.org/10.1017/S0960129521000505 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000505


Mathematical Structures in Computer Science 773

in this paper. Coherent and relational semantics, the preferred ways of giving meaning to linear
logic proofs, have been adapted to logical systems such as LLL by Baillot (2004), and SLL and ELL
by Laurent and Tortora de Falco (2006). An abstract approach to stratification has been proposed
by Boudes et al. (2015). Another semantic framework which provides useful insights on the inter-
play of duplication and complexity is certainly the Geometry of Interaction, due to Girard (1988),
which can be seen both as a denotational semantics and as an implementation mechanism. In the
former sense, it provides a fine-grain tool for the analysis of the complexity of reduction, this way
allowing for alternative, more compact proofs of soundness, as shown by Dal Lago (2009a). In the
latter sense, it has been proved to induce space-efficient implementations, thus enabling the char-
acterization of sub-linear complexity classes, as shown by Schöpp (2007), Dal Lago and Schöpp
(2010, 2016).

6. Conclusion
This paper is meant to be an introduction to implicit computational complexity and, in particu-
lar, to how complexity can be tamed in higher-order programs. Even if the scope of the survey is
relatively restricted, there are certain areas which we have deliberately left out, the most promi-
nent example being the one on characterizations of higher-type complexity classes: there seem to
be intriguing relations between some of the characterizations we presented here and higher-type
complexity classes, which are however not completely understood yet.

The present survey is by nomeans meant to be comprehensive, and it was written to be a mem-
ory of Martin Hofmann’s contributions to ICC, and an ideal follow-up to his survey (Hofmann
2000a), twenty years after its appearance.

References
Aehlig, K., Berger, U., Hofmann, M. and Schwichtenberg, H. (2004). An arithmetic for non-size-increasing polynomial-time

computation. Theoretical Computer Science 318 (1–2) 3–27.
Amadio, R. M. and Curien, P. (1998). Domains and Lambda-Calculi, Cambridge, Cambridge University Press.
Arora, S. and Barak, B. (2009). Computational Complexity - A Modern Approach, Cambridge, Cambridge University Press.
Asperti, A. (1998). Light affine logic. In: Proceedings of LICS 1998, IEEE Computer Society, 300–308.
Asperti, A., Coppola, P. and Martini, S. (2004). (optimal) duplication is not elementary recursive. Information and

Computation 193 (1) 21–56.
Asperti, A. and Roversi, L. (2002). Intuitionistic light affine logic. ACM Transactions on Computational Logic 3 (1) 137–175.
Atassi, V., Baillot, P. and Terui, K. (2007). Verification of ptime reducibility for system F terms: Type inference in dual light

affine logic. Logical Methods in Computer Science 3(4) 1–32.
Avanzini, M. and Dal Lago, U. (2018). On sharing, memoization, and polynomial time. Information and Computation 261

(Part) 3–22.
Baillot, P. (2002). Checking polynomial time complexity with types. In: Proceedings of IFIP TCS 2002, vol. 223, Kluwer,

370–382.
Baillot, P. (2004). Stratified coherence spaces: A denotational semantics for light linear logic. Theoretical Computer Science

318 (1–2) 29–55.
Baillot, P. (2015). On the expressivity of elementary linear logic: Characterizing ptime and an exponential time hierarchy.

Information and Computation 241 3–31.
Baillot, P., Coppola, P. and Dal Lago, U. (2011). Light logics and optimal reduction: Completeness and complexity.

Information and Computation 209 (2) 118–142.
Baillot, P. and Mazza, D. (2010). Linear logic by levels and bounded time complexity. Theoretical Computer Science 411 (2)

470–503.
Baillot, P. and Mogbil, V. (2004). Soft lambda-calculus: A language for polynomial time computation. In: Proceedings of

FOSSACS 2004, LNCS, vol. 2987, Springer, 27–41.
Baillot, P. and Pedicini, M. (2001). Elementary complexity and geometry of interaction. Fundamenta Informaticae 45 (1–2)

1–31.
Baillot, P. and Terui, K. (2009). Light types for polynomial time computation in lambda calculus. Information and

Computation 207 (1) 41–62.

https://doi.org/10.1017/S0960129521000505 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000505


774 U. Dal Lago

Bellantoni, S. and Cook, S. A. (1992). A new recursion-theoretic characterization of the polytime functions. Computational
Complexity 2 97–110.

Bellantoni, S. and Hofmann, M. (2002). A new “feasible" arithmetic. Journal of Symbolic Logic 67 (1) 104–116.
Bellantoni, S. J., Niggl, K. and Schwichtenberg, H. (2000). Higher type recursion, ramification and polynomial time. Annals

of Pure and Applied Logic 104 (1–3) 17–30.
Boudes, P., Mazza, D. and Tortora de Falco, L. (2015). An abstract approach to stratification in linear logic. Information and

Computation 241 32–61.
Buss, S. (1986). Bounded Arithmetic, Naples, Bibliopolis.
Cappai, A. and Dal Lago, U. (2015). On equivalences, metrics, and polynomial time. In: Proceedings of FCT 2015, LNCS, vol.

9210, Springer, 311–323.
Cobham, A. (1965). The intrinsic computational difficulty of functions. In: Bar-Hillel, Y. (ed.) Logic, Methodology and

Philosophy of Science, Proceedings of the 1964 International Congress, North-Holland, 24–30.
Cook, S. A. and Urquhart, A. (1993). Functional interpretations of feasibly constructive arithmetic. Annals of Pure and

Applied Logic 63 (2) 103–200.
Coppo, M. and Dezani-Ciancaglini, M. (1980). An extension of the basic functionality theory for the lambda-calculus. Notre

Dame Journal of Formal Logic 21 (4) 685–693.
Coppola, P., Dal Lago, U. and Rocca, S. R. D. (2008). Light logics and the call-by-value lambda calculus. Logical Methods in

Computer Science 4 (4) 1–28.
Coppola, P. and Martini, S. (2006). Optimizing optimal reduction: A type inference algorithm for elementary affine logic.

ACM Transactions on Computational Logic 7 (2) 219–260.
Dal Lago, U. (2009a). Context semantics, linear logic, and computational complexity. ACM Transactions on Computational

Logic 10 (4) 25:1–25:32.
Dal Lago, U. (2009b). The geometry of linear higher-order recursion. ACM Transactions on Computational Logic 10 (2)

8:1–8:38.
Dal Lago, U. (2016). Infinitary lambda calculi from a linear perspective. In: Proceedings of LICS 2016, ACM, 447–456.
Dal Lago, U. and Baillot, P. (2006). On light logics, uniform encodings and polynomial time. Mathematical Structures in

Computer Science 16 (4) 713–733.
Dal Lago, U. and Di Giamberardino, P. (2016). On session types and polynomial time. Mathematical Structures in Computer

Science 26 (8) 1433–1458.
Dal Lago, U. and Gaboardi, M. (2011). Linear dependent types and relative completeness. Logical Methods in Computer

Science 8 (4) 1–44.
Dal Lago, U. and Hofmann, M. (2010a). Bounded linear logic, revisited. Logical Methods in Computer Science 6 (4) 1–31.
Dal Lago, U. and Hofmann, M. (2010b). A semantic proof of polytime soundness of light affine logic. Theory of Computing

Systems 46 (4) 673–689.
Dal Lago, U. and Hofmann, M. (2011). Realizability models and implicit complexity. Theoretical Computer Science 412 (20)

2029–2047.
Dal Lago, U., Martini, S. and Sangiorgi, D. (2016). Light logics and higher-order processes. Mathematical Structures in

Computer Science 26 (6) 969–992.
Dal Lago, U., Masini, A. and Zorzi, M. (2010). Quantum implicit computational complexity. Theoretical Computer Science

411 (2) 377–409.
Dal Lago, U. and Petit, B. (2013). The geometry of types. In: Proceedings of POPL 2013, ACM, 167–178.
Dal Lago, U. and Petit, B. (2014). Linear dependent types in a call-by-value scenario. Science of Computer Programming 84

77–100.
Dal Lago, U. and Schöpp, U. (2010). Functional programming in sublinear space. In: Proceedings of ESOP 2010, LNCS, vol.

6012, Springer, 205–225.
Dal Lago, U. and Schöpp, U. (2016). Computation by interaction for space-bounded functional programming. Information

and Computation 248 150–194.
Danos, V. and Joinet, J. (2003). Linear logic and elementary time. Information and Computation 183 (1) 123–137.
Fortune, S., Leivant, D. and O’Donnell, M. (1983). The expressiveness of simple and second-order type structures. Journal of

the ACM 30 (1) 151–185.
Gaboardi, M., Marion, J. and Ronchi Della Rocca, S. (2012). An implicit characterization of PSPACE. ACM Transactions on

Computational Logic 13 (2) 18:1–18:36.
Gaboardi, M. and Péchoux, R. (2015). Algebras and coalgebras in the light affine lambda calculus. In: Proceedings of ICFP

2015, ACM, 114–126.
Gaboardi, M. and Ronchi Della Rocca, S. (2007). A soft type assignment system for lambda -calculus. In: Proceedings of CSL

2007, LNCS, vol. 4646, Springer, 253–267.
Gaboardi, M., Roversi, L. and Vercelli, L. (2009). A by-level analysis of multiplicative exponential linear logic. In: Proceedings

of MFCS 2009, LNCS, vol. 5734, Springer, 344–355.
Girard, J. (1987). Linear logic. Theoretical Computer Science 50 1–102.

https://doi.org/10.1017/S0960129521000505 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000505


Mathematical Structures in Computer Science 775

Girard, J. (1998). Light linear logic. Information and Computation 143 (2) 175–204.
Girard, J., Scedrov, A. and Scott, P. J. (1992). Bounded linear logic: A modular approach to polynomial-time computability.

Theoretical Computer Science 97 (1) 1–66.
Girard, J.-Y. (1988). Geometry of interaction I: An interpretation of system F. Logic Colloquium 127 221–260.
Girard, J.-Y., Taylor, P. and Lafont, Y. (1989). Proofs and Types, New York, NY, USA, Cambridge University Press.
Goerdt, A. (1992a). Characterizing complexity classes by general recursive definitions in higher types. Information and

Computation 101 (2) 202–218.
Goerdt, A. (1992b). Characterizing complexity classes by higher type primitive recursive definitions. Theoretical Computer

Science 100 (1) 45–66.
Goldreich, O. (2008). Computational Complexity - A Conceptual Perspective, Cambridge, Cambridge University Press.
Hartmanis, J. and Stearns, R. (1965). On the computational complexity of algorithms. Transactions of the American

Mathematical Society 117 285–306.
Hofmann, M. (1997a). An application of category-theoretic semantics to the characterisation of complexity classes using

higher-order function algebras. Bulletin of Symbolic Logic 3 (4) 469–486.
Hofmann, M. (1997b). A mixed modal/linear lambda calculus with applications to bellantoni-cook safe recursion. In:

Proceedings of CSL 1997, LNCS, vol. 1414, Springer, 275–294.
Hofmann, M. (1999). Linear types and non-size-increasing polynomial time computation. In: Proceedings of LICS 1999, IEEE

Computer Society, 464–473.
Hofmann, M. (2000a). Programming languages capturing complexity classes. SIGACT News 31 (1) 31–42.
Hofmann, M. (2000b). Safe recursion with higher types and bck-algebra. Annals of Pure and Applied Logic 104 (1) 113–166.
Hofmann, M. (2000c). A type system for bounded space and functional in-place update. Nordic Journal of Computing 7 (4)

258–289.
Hofmann, M. (2002). The strength of non-size increasing computation. In: Proceedings of POPL 2002, ACM, 260–269.
Hofmann, M. (2003). Linear types and non-size-increasing polynomial time computation. Information and Computation

183 (1) 57–85.
Hofmann, M. and Scott, P. J. (2004). Realizability models for BLL-like languages. Theoretical Computer Science 318 (1–2)

121–137.
Jost, S., Hammond, K., Loidl, H. and Hofmann, M. (2010). Static determination of quantitative resource usage for higher-

order programs. In: Proceedings of POPL 2010, ACM, 223–236.
Lafont, Y. (2004). Soft linear logic and polynomial time. Theoretical Computer Science 318 (1–2) 163–180.
Laurent, O. and Tortora de Falco, L. (2006). Obsessional cliques: A semantic characterization of bounded time complexity.

In: Proceedings of LICS 2006, IEEE Computer Society, 179–188.
Leivant, D. (1993). Stratified functional programs and computational complexity. In: Proceedings of POPL 1993, ACM Press,

325–333.
Leivant, D. (1998). A characterization of NC by tree recurrence. In: Proceedings of FOCS 1998, IEEE Computer Society,

716–724.
Leivant, D. (1999a). Applicative control and computational complexity. In: Proceedings of CSL 1999, LNCS, vol. 1683, 82–95,

Springer.
Leivant, D. (1999b). Ramified recurrence and computational complexity III: Higher type recurrence and elementary

complexity. Annals of Pure and Applied Logic 96 (1–3) 209–229.
Leivant, D. (2002). Calibrating computational feasibility by abstraction rank. In: Proceedings of LICS 2002, IEEE Computer

Society, 345.
Leivant, D. and Marion, J. (1994). Ramified recurrence and computational complexity II: Substitution and poly-space. In:

Proceedings of CSL 1994, LNCS, vol. 933, Springer, 486–500.
Mairson, H. G. (2004). Linear lambda calculus and ptime-completeness. Journal of Functional Programming 14 (6)

623–633.
Mairson, H. G. and Terui, K. (2003). On the computational complexity of cut-elimination in linear logic. In: Proceedings of

ICTCS 2003, LNCS, vol. 2841, Springer, 23–36.
Mazza, D. (2006). Linear logic and polynomial time. Mathematical Structures in Computer Science 16 (6) 947–988.
Mazza, D. (2014). Non-uniform polytime computation in the infinitary affine lambda-calculus. In: Proceedings of ICALP

2014, LNCS, vol. 8573, Springer, 305–317.
Mazza, D. (2015). Simple parsimonious types and logarithmic space. In: Proceedings of CSL 2015, LIPIcs, 24–40.
Mazza, D. and Terui, K. (2015). Parsimonious types and non-uniform computation. In: Proceedings of ICALP 2015, LNCS,

vol. 9135, Springer, 350–361.
McKinley, R. (2008). Soft linear set theory. Journal of Logical and Algebraic Methods in Programming 76 (2) 226–245.
Mitchell, J. C., Mitchell, M. and Scedrov, A. (1998). A linguistic characterization of bounded oracle computation and

probabilistic polynomial time. In: Proceedings of FOCS 1998, IEEE Computer Society, 725–733.
Murawski, A. S. and Ong, C. L. (2004). On an interpretation of safe recursion in light affine logic. Theoretical Computer

Science 318 (1–2) 197–223.

https://doi.org/10.1017/S0960129521000505 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000505


776 U. Dal Lago

Neergaard, P. M. (2004). A functional language for logarithmic space. In: Proceedings of APLAS 2004, LNCS, vol. 3302,
Springer, 311–326.

Oitavem, I. (2008). Characterizing PSPACE with pointers. Mathematical Logic Quarterly 54 (3) 323–329.
Oitavem, I. (2011). A recursion-theoretic approach to NP. Annals of Pure and Applied Logic 162 (8) 661–666.
Parikh, R. J. (1971). Existence and feasibility in arithmetic. Journal of Symbolic Logic 36 494–508.
Pitt, F. (1994). The Bounded Linear Calculus: A Characterization of the Class of Polynomial-Time Computable Functions Based

on Bounded Linear Logic. Master’s thesis, University of Toronto, Department of Computer Science.
Redmond, B. F. (2007). Multiplexor categories and models of soft linear logic. In: Proceedings of LFCS 2007, vol. 4514, LNCS,

Springer, 472–485.
Redmond, B. F. (2015). Polynomial time in the parametric lambda calculus. In: Proceedings of TLCA 2015, LIPIcs, vol. 38,

288–301.
Redmond, B. F. (2016). Bounded combinatory logic and lower complexity. Information and Computation 248 215–226.
Roversi, L. (1999). A PTIME completeness proof for light logics. In: Proceedings of CSL 1999, LNCS, vol. 1683, Springer,

469–483.
Schöpp, U. (2007). Stratified bounded affine logic for logarithmic space. In: Proceedings of LICS 2007, Proceedings, 411–420.
Sørensen, M. H. and Urzyczyn, P. (2006). Lectures on the Curry-Howard Isomorphism, New York, NY, USA, Elsevier Science

Inc.
Terui, K. (2004a). Light affine set theory: A naive set theory of polynomial time. Studia Logica 77 (1) 9–40.
Terui, K. (2004b). Proof nets and boolean circuits. In: Proceedings of LICS 2004, 182–191.
Terui, K. (2007). Light affine lambda calculus and polynomial time strong normalization. Archive for Mathematical Logic 46

(3–4) 253–280.
Terui, K. (2012). Semantic evaluation, intersection types and complexity of simply typed lambda calculus. In: Proceedings of

RTA 2012, LIPIcs, 323–338.
Zaionc, M. (1990). A characterisation of lambda definable tree operations. Information and Computation 89 (1) 35–46.
Zaionc, M. (1991). lambda-definability on free algebras. Annals of Pure and Applied Logic 51 (3) 279–300.
Zhang, Y. (2009). The computational SLR: A logic for reasoning about computational indistinguishability. In: Proceedings of

TLCA 2009, 401–415.

Cite this article:Dal Lago U (2022). Implicit computation complexity in higher-order programming languages.Mathematical
Structures in Computer Science 32, 760–776. https://doi.org/10.1017/S0960129521000505

https://doi.org/10.1017/S0960129521000505 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000505
https://doi.org/10.1017/S0960129521000505

	Implicit computation complexity in higher-order programming languages
	Introduction
	A Bird's Eye View on Complexity and Higher-Order Programs
	Type Systems
	Higher-order primitive recursion
	Non-size increasing computation

	Linear Logic
	Soft linear logic
	Elementary linear logic
	Light linear logic
	Bounded linear logic
	Some further lines of work

	Other Approaches and Results
	Conclusion


