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On a Class of Continued Fractions.

By Dr LESTER R. FOBD.

(Bead 8th December 1916. Received 20th February 1917.)

1. The continued fractions treated in this paper are of the
general form

1
- - ,

where «„, slt s2, ... are real integers (positive, negative, or zero).
An arbitrary real number can, of course, be developed in such a
fraction in an infinite variety of ways. The continued fractions
discussed here have a number of striking properties and present
numerous contrasts with the ordinary continued fraction usually
employed.

We shall represent the convergents of the above fraction by

P» Pi Pz / < n

Here po—l, q,, = 0, />i=»o> <?i = 1> an<^ the numerators and
denominators of the following convergents are calculated by
means of the recurrence formulae

P«+l=P.8n-pn-l, ?„+!=?„ *„-?„_! (3)

We have always
Pn+iq*-Pnqn+l= ~1 (4)

2. Definition oj the Continued Fractions.

The continued fractions of this paper are constructed as
follows : Let r and h be any two real positive numbers satisfying
the inequalities

/ (5)
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Let (o be the real number to be developed in a continued fraction,
(a) Take for 8, the nearest integer to the quantity

««+ J A(2r - A) (6)

(6) Knowing the successive convergents pn_1/g
f
n_i and pn/qn,

wherepnqn_1 -pn_!qn= - 1, to find «„ and hence pn+1/q,,+i•
Put

«» = Pn-W9')l (7)

Let «, be the nearest integer to the quantity

where the sign of the radical is the same as the sign, of un. The
following convergent can then be found from the formulae (3).

By means of (a) we are provided with the first two convergents,
1/0 and so/l, and from these we proceed step by step to construct
the continued fraction. I t remains to show that the quantities
from which «0, s,, ... are determined are always real, and secondly
that the continued fraction converges to the value o>. These will
be established in the following section.

3. Geometrical Interpretation.

In the complex z-plane (z = x + iy) let a circle C, of radius r,
tangent to the real axis at the point x = a>, and lying in the upper
half-plane, be constructed. Construct also the line y = h. Since
r » JA, this line intersects C. The right-hand intersection has
the 05-coordinate <o + J h (2r — A), from which «0 is determined.

Now consider the transform of the line y = hhy the application
of a transformation of the well-known Modular Group

where a, b, e, d are integers. If we represent by z, the conjugate
of z, i.e. ~z = x - iy, we can write the line y = A in the form

z - z = 2ih (10)
Putting for z its value from (9), z = (- dz +b)/ (cz - a), and

reducing, we get as the transform of (10) the following:—

https://doi.org/10.1017/S0013091500029679 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500029679


40

This is a circle with centre h
c

and of radius
1

It

is then tangent to the real axis at the point x = a/c, the transform
of the point z = oo .

c

u>

The circle S(p/q).—At each rational point x = pjq of the real
axis let us construct a circle tangent to the real axis there, lying
in the upper half plane, and having the radius \/2kq2 (the fraction
p/q being in its lowest terms). We shall call this circle *S' (p/q).
There is a transformation of the type (9) carrying z = oo to any
rational point of the real axis (such that a/c = p/q); hence we see
from (11) that S(p/q) is the transform of y = h by this transforma-
tion. We conclude also that a transformation (9) carrying p/q
to p'/q transforms S(p/q) into S(p'/q') ; for we could break the
transformation into two—one carrying p/q to oo , and S (p/q) into
y = h, and a second carrying oo to p'/q and y — h into S(p'/q'),
The line y — h is the ^-circle of z = oo , which we shall represent
by 1/0 ; and we shall write y = h as S (1/0). The part of the plane
above the line £(1/0) corresponds to the interiors of the other
^-circles.
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The £-circles of the integral points s/i are of radius 1/2A. We
find easily that S(s/\) cuts from the line y = h a segment of length
2 s/1 - A2. Since h < £ \/~3, this length js 1. As the points s/1
are a unit distance apart, it follows that every point of the line
£(1/0) (oo excepted) is interior to one at least of the circles
£(«/l). Transforming £(1/0) to £(p/g), we conclude that every
point of the circumference S(p/q) (p/q excepted) is interior to at
least one other S-circle.

We shall now show that the convergents of our continued
fraction have the following property : The circle S (pjqn) intersects
the circle C; and as we pass around C in a clockwise direction,
the last intersection with £ (pjq») is a point lying within

The highest point of C lies within £(1/0). The sc-coordinate of
the last interection of C with £(1/0), viz. io+ J h (2r - h), lies by the
definition of s0 between s0 - 1 and s0 + \. This point of inter-
section then lies within the segment of length > 1 , which £(so/l)
cuts from £(1/0).

Now let us show that in general the last intersection of C with
S(pjqa), as we pass round G in a clockwise direction, lies
within £ (p,,+\/<}n+i)- Let pn-\lqn-\ b e the convergent preceding
pJ<ln> a n d Pn?n-i ~ Pn-i ?n = - 1- Making the transformation

7

which is of the Modular Group, z = pjqn goes to 2 = 00 , and hence
S(pn/qn) becomes £(1/0). The circle C becomes a circle C"
tangent to the real axis at the point v> where

(13)

The radius of C" is most easily established as follows. If a
circle K be drawn tangent to the a;-axis at x—pjqn and tangent
to C, we find by'elementary geometry that its radius is u^jirq^.
A reference to (10) and (11) shows that when pjqn is transformed
to 00, A' becomes the line y = 2r/«n

2. Since C" is tangent to this
line, its radius is r/u^.

The last intersection of C with S(pn/qn) becomes the last
intersection of C with y = h as we pass found C" in a clockwise
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direction ; that is, the right hand intersection. This is easily
found to be

a)' + <J 2Ar/wM
2 - h2, (14)

which reduces at once to (8). This point lies within S(sjl)
where sn is defined from (8). Now carrying everything back by
the inverse of (12), viz. z = (pnz' -pn_1)/(qHz' -qn_1), sn becomes
(p*sn-P»-i)/(<lns* -?n-i) o r Pn+i/̂ n+i.• Hence S (sjl) becomes
S(P*+i/Qn+i)i which contains the last point of intersection of C
with S(pJqK) whieh was to be established.

The expression (14), or (8), being the ^-coordinate of a real
intersection of two circles, is always real.

The convergence of the fraction is easily proved. There is
only a finite number of rational numbers p/q in any finite interval
of the x-axis, whose denominators are less in absolute value than
any constant, however large. Since the radius of S (p/q) is
inversely proportional to q2, there is only a finite number of
^-circles intersecting C and of radius greater than any positive
constant, however small. Hence, as n increases, the radius of
S(pJqH) approaches 0, and since S(pn/qn) intersects C, its point of
tangency approaches u>. That is,

ZZfr- (15)

i. Properties of this class of Continued Fractions.

In the following sketch of the properties of the fraction and of
its convergents we point out in particular its contrasts with the
ordinary continued fraction.

(a) The convergents of the ordinary continued fraction are
alternately less and greater than the sum u>. The convergents
of a continued fraction of this class are greater than a>, with the
possible exception of a finite number at the beginning of the
suite. For if pjqn < u>, S (pjq»), which is tangent to the x-axis
at a point to the left of u> and contains in its interior a point of
the right half of C, must have a radius greater than that of C.
There are clearly only a finite number of such circles possible.

(b) In the ordinary continued fraction qn+\>qn (**>!)• 1°
this continued fraction we can have qn+1 < qn. This fact is illus-
trated in the second of the examples below.
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(c) The convergents of the ordinary continued fraction satisfy
an inequality of the form

P*
- (O

From the fact that the expression 1r - huj of (8) is positive, we
have

The inequality thus involves only the first power of qn in the
denominator, and it can easily be shown that no inequality of the
type (16) can be satisfied by all the convergents, however large k
may be. (See the first example below, where pjqn - *> = 1 /Sqn). I t
is possible to prove that in (17) k can be given the smaller value

(d) If <o=p/q, a rational, the ordinary continued fraction for <o
terminates. For this class, however, the continued fraction is
non-terminating in general. For if it terminate, the last conver-
gent must be p/q, and S (p/q) must contain a point of C—and all
of C, since the two circles are tangent—on its interior. Then the
radius, l/2hq2, of S{pjq) must be greater than r. This is true for
only a finite number of values of q, if at all. Since | q \ ̂  1, there
are no terminating fractions if r > 1/2A.

(e) Probably the most striking contrast between the two kinds
of continued fractions which we are comparing is found in their
periodicity. The ordinary continued fraction is periodic (i.e.
8n+t = 8n, n > m) if <o is an irrational root of an equation of the
form

Ax* + JBx + C = O (18)

where A, B, G are integers. The continued fractions of this paper
are not periodic if <o is a quadratic irrational, but they are
periodic (excepting the cases in which they terminate) if <u is
rational.

This comes about as follows. The necessary and sufficient
condition that a continued fraction of the form (1) be periodic
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is that after a certain point in the suite of convergents (n> TO)
a relation of the following form should always hold:—

where z' = (az + b)/(ez + d) is a transformation of the Modular
Group, and A is a fixed positive integer. If the fraction converges,
its sum (u is a fixed point of the Modular transformation.

It is well known that if <u is rational, there are Modular trans-
formations (parabolic in type) with o> as fixed point, and that for
these transformations every circle tangent to the aj-axis at x = m is
transformed into itself. The circle C is one of these invariant
circles. Now an arc A on C can be chosen such that its trans-
forms by these parabolic transformations cover the whole circum-
ference. Then the finite number of <S-circles intersecting A is
carried by the transformations into all the ^-circles intersecting C.
In forming the convergents, which we found to be the coordinates
of the points of contact of these iS-circles with the x-axis, we must
after a finite number of steps arrive at a convergent derivable from
a preceding convergent by one of these parabolic transformations.
We can then show without difficulty that the same transformation
carries the convergent immediately following the earlier convergent
into that immediately following the later one. From this point on
a relation of the form (19) is satisfied, and the continued fraction
is thus periodic.

We shall not prove that the continued fraction is not periodic
if (a is a quadratic irrational, although it could be done in several
ways. We could prove, for example, that a periodic continued
fraction of the form (1) has an irrational sum if, and only if, its
convergents satisfy an inequality of the type (16) for some value
oik.

5. Examples,

(a) r = A = | , o> = |

*
Convergents: £, \ , ^ , f, | , ^ , T

B
T, rr
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(b) If h remain unchanged while r is greatly increased, the
continued fraction converges much more slowly. This is obvious
geometrically since C then intersects many 5-circles previously not
intersected. For the same reason the period of a periodic
fraction is lengthened. Both the long period and the slow con-
vergence appear in the following :—

*-*-*_*-*-*-*-*-*-*-*-*-A-*-i-i-
1 1 1 1 1
T-T-TJ-T-T'

1 4 8 S 2 5 3 4 K 6 7 1 7 6 6

9 4 7 1 0 3 1 1 8 I S 5 1 2 7
TT> ~S> T> T^> T> TT> TT> T ¥ ' T> TT» T f f > " % *
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