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Maximal Operators and Cantor Sets
Kathryn E. Hare

Abstract. We consider maximal operators in the plane, defined by Cantor sets of directions, and show such
operators are not bounded on L2 if the Cantor set has positive Hausdorff dimension.

1 Introduction

An important problem in harmonic analysis is the differentiability of integrals and the Lp

boundedness of the Hardy-Littlewood maximal operator. One formulation of this in R2 is
the following: Consider A a subset of the unit circle in R2, and view A as a set of directions.
Let Ax be the set of all rectangles in R2 containing x and oriented in one of the directions of
A. The associated Hardy-Littlewood maximal operator MA is defined by

MA f (x) = sup
R∈Ax

1

|R|

∫
R
| f |.

When MA maps Lp to Lp boundedly for some 1 < p <∞ then A is called a Max(p) set. If

lim

{
1

|R|

∫
R

f (y) dy : R ∈ Ax, diam R→ 0

}
= f (x) a.e.

for all characteristic functions f , then A is said to differentiate characteristic functions and
is called a density basis.

Not all sets are Max(p) sets or density bases; indeed, any set which is dense in a subset
of the circle of positive measure is neither (see [5, p. 228] or [6]). In the positive direction
Sjogren and Sjolin [9], improving upon earlier work of Nagel, Stein and Wainger [8], Cor-
doba and Fefferman [4] and Stromberg [10], showed that an n-fold sum of lacunary sets of
directions is both a Max(p) set for all p > 1 and a density basis. It was conjectured that the
Cantor middle third set (which can be thought of as an “infinite” fold sum of the lacunary
set {3− j}) was a Max(2) set [11], but very recently this was shown to be false by Katz [7].
Using other methods, Arutyunyants [1] proved that any central Cantor set, with ratios of
dissection tending to 1/2, was neither a density basis nor Max(p) for any finite p.

By generalizing Katz’s ideas we show that central Cantor sets of positive Hausdorff di-
mension, and more generally, subsets of these Cantor sets of positive Cantor measure,
are not Max(2) sets. (Non-central) Cantor sets with ratios of dissection which are both
bounded away from zero “on average” and bounded away from one are also shown to fail
to be Max(2). We conjecture that these Cantor sets are neither a density basis nor Max(p)
for any finite p.
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2 Main Result

2.1 Cantor Set Construction

By a Cantor set we mean a compact, totally disconnected, perfect subset of [0, 1]. Cantor
sets can be constructed in a similar fashion to the classical middle third Cantor set. Be-
ginning with a closed subinterval of [0, 1] we remove from it a non-empty open interval,
leaving two closed intervals of positive length (to avoid isolated points) called the Can-
tor intervals of step one. The relation between the length of these intervals and the initial
subinterval are called the ratios of dissection at step one. A similar operation is performed
on each Cantor interval of step one, producing the (4) closed Cantor intervals (of posi-
tive length) of step two and the ratios of dissection at step two. This construction yields a
decreasing sequence of closed sets whose intersection is a Cantor set.

An interesting special example is when the ratios of dissection at step k are all the same;
we call this a central Cantor set (as the removed intervals are centred) and refer to this
construction as the standard construction. The classical middle third Cantor set is a central
Cantor set because the usual construction has all ratios of dissection equal to 1/3. The
central Cantor set with ratio rk at step k and initial interval [0, 1] can also be described as

{
x ∈ [0, 1] : x =

∞∑
k=1

εkr1 · · · rk−1(1− rk), εk = 0, 1
}

and so can be thought of as the “infinite” sum of the lacunary set

{r1 · · · rk−1(1− rk)}∞k=1.

To simplify the exposition we will assume the Cantor sets have initial interval [0, 1].

Theorem 2.1 Let C be a Cantor set with ratios of dissection bounded away from one. Let pk

be the minimum of the lengths of the Cantor intervals of step k. If δ ≡ inf(pk)1/k > 0 then C
is not a Max(2) set. Indeed, the maximal operator is not even of weak type (2, 2).

The condition that inf(pk)1/k > 0 is what was meant in the introduction by the phrase
‘ratios of dissection . . . bounded away from zero “on average”’. The results mentioned in
the introduction about (subsets of) Cantor sets of positive Hausdorff dimension will be
derived from this theorem (and its proof) in Section 3.

Before beginning the proof we mention one easy consequence of the theorem.

Corollary 2.2 A Cantor set with ratios of dissection bounded away from 0 is not a Max(2)
set.

Proof There are two step k Cantor intervals contained in each step k − 1 interval, thus if
all ratios of dissection are at least c, then all are at most 1− c, and hence are bounded away
from one. Furthermore, in this case pk ≥ ck, so the second condition is satisfied as well.
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2.2 Proof of the Main Result

We begin by introducing notation which will be used throughout the remainder of the
paper. Let W be the set of binary words of finite length,

W = {w1w2 · · ·wn : wi ∈ {0, 1}, n ∈ N} ∪ {e}

where e is the empty word. If w,w ′ ∈W then, as usual, ww ′ will denote the concatenation
of w and w ′, and the length of the word w will be denoted by |w|. It is convenient to use W
to label the elements of the construction of the Cantor set.

We will set Ie = [0, 1], and let I0 and I1 be the left and right closed intervals remaining
after removing the open interval from [0, 1] in the first step of the construction. I0 and I1

are the Cantor intervals of step one. We set C1 = I0 ∪ I1. In general, for each w ∈ W ,
|w| = k, we denote by Iw0 and Iw1 the left and right Cantor intervals of step k + 1 obtained
after removing the open interval from Iw, a Cantor interval of step k. We set Ck =

⋃
{Iw :

w ∈W, |w| = k}. The Cantor set C is
⋂

Ck.
For w ∈ W let lw = |Iw|, let rw0 =

lw0
lw

and rw1 =
lw1
lw

. The numbers rw for |w| = k are
the ratios of dissection at step k. By passing to a Cantor subset of C , if necessary, we can
assume rw ≤ 1/3 for all w.

The first step in the argument is to inductively define a partitioning of [0, 1) and a func-
tion s : [0, 1) → C which have the property that if x, y belong to the same interval of the
partition at step k, then s(x) and s(y) belong to the same Cantor interval of step k; and the
interval of the partition and the Cantor interval are of comparable size. To do this we begin
by dividing the interval [0, 1/2) into disjoint, subintervals [a, b) of lengths between l0 and
2l0. This can be done since 0 < l0 ≤ 1/3. Similarly, divide [1/2, 1) into subintervals of
lengths between l1 and 2l1. These subintervals will be referred to as the (word) 0, or respec-
tively 1, intervals, or more generally, the step 1 intervals (in the partition). Thus [0, 1) is
the union of the step 1 intervals.

Now assume inductively that [0, 1) is the union of the step n−1 intervals, i.e., w-intervals
for |w| = n − 1, and that these are of lengths between lw and 2lw. Fix one such w-interval
and partition the left half of the interval into disjoint subintervals of lengths between lw0

and 2lw0, and the right half into subintervals of lengths between lw1 and 2lw1. Since lwi/lw,
i = 0, 1 are ratios of dissection, and hence bounded by 1/3, this is possible. Making such
a choice for each w-interval, |w| = n − 1, gives a partition of [0, 1) into a union of step n
intervals, the left half subintervals of a w-interval being called w0-intervals, and the right
half subintervals, w1-intervals. Notice that the construction ensures that if x belongs to a
w-interval for w = αβ, then x belongs to an α-interval as well (from an earlier step). Also,
notice that if x, y belong to the same step n interval, then

|x − y| ≤ 2 max{lw : |w| = n} ≤ 2/3n.

Given x ∈ C we may address x as {w1,w2, . . . } where wi ∈ {0, 1} and if w = w1 · · ·wn

then x ∈ Iw. Define a map s : [0, 1) → C by the rule that if x belongs to one of the
w1 · · ·wn-intervals for each n then s(x) is the element in the Cantor set with address {wi}.
An important property of this map is that if x, y belong to the same w-interval, then s(x)
and s(y) belong to Iw, an interval of comparable length.
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Fix n (large) and let qn = [1/pn]. Notice that there exists an integer N such that the
length of any step Nn + 1 interval is strictly less than pn. (N ≥ | log δ|/ log 3 works.)

For j = 0, 1, . . . , qn − 1 set s( j) = s( j pn). We will say integers j, k ∈ step m if j pn and
kpn belong to the same step m interval, but not the same step m + 1 interval. If j = k then
| j − k|pn ≥ pn and it follows from our previous comment that j, k are not in the same
step m interval for any m > Nn.

We work with rectangles defined in a similar way to those used by Katz: For each j =
0, 1, . . . , qn − 1 let Q j be the cube [0, pn]× [ j pn, ( j + 1)pn], and let R j be the rectangle of
dimension 40× pn/4, centred at the centre of Q j and oriented in the direction s( j). Denote
by f the function

f =

qn−1∑
k=0

χRk .

The maximal operator Mn, associated with the set of directions {s( j)}, is given by

Mng(x) = sup
x∈R j

1

|R j |

∫
R j

|g|.

This operator is clearly dominated by the maximal operator of the Cantor set since in the
latter case the supremum is taken over all rectangles containing x, having direction in the
Cantor set.

Motivated by the proof of Theorem 2 in [7] we next prove several preliminary lemmas.
The notation above and the assumptions of our theorem apply in each. The reader should
note that in the calculations which follow the constant B may vary from one occurrence to
another.

Lemma 2.3 There is a constant B > 0 (independent of n) such that
∫

f 2 ≤ Bn.

Proof As in Katz’s proof (which follows from [3]) one easily sees that
∫

f 2 ≤ B log qn. But
the assumption that inf(pk)1/k > 0 ensures that log qn = O(n).

Lemma 2.4 There is a constant B > 0 so that for all 0 ≤ j < qn,

1

|R j |

∫
R j

| f | ≥ Bn.

Proof Fix j. By definition

1

|R j |

∫
R j

| f | = Bqn

∑
k

|R j ∩ Rk|.

Elementary geometry shows that if j = k and

|s( j)− s(k)| ≥
| j − k|pn

6
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then

|R j ∩ Rk| ≥
Bp2

n

|s( j)− s(k)|
.

Suppose j, k ∈ step m, say to a w-interval for a word w of length m. Then s( j) and s(k)
belong to the Cantor interval Iw, so |s( j) − s(k)| ≤ lw, while | j − k|pn ≤ 2lw. Suppose,
however, j pn ∈ w0-interval and kpn ∈ w1-interval, or vice versa. Then s( j) and s(k) do
not belong to the same Cantor interval of step m + 1 and therefore |s( j) − s(k)| is at least
the length of the gap of Iw, hence at least lw/3. Thus for all such k

|s( j)− s(k)| ≥
| j − k|pn

6
,

and there are at least [lwqn/2] integers k with this property. It follows that

Bqn

∑
k

|R j ∩ Rk| ≥ Bqn

n∑
m=0

[lwqn/2]p2
n

lw
≥ Bn.

Lemma 2.5 For λ > 0 let Rλj = {(x, y) ∈ R j : 1/λ ≤ |x| ≤ 2/λ}. There is a constant
B > 0 such that ∑

j �=k

|Rλj ∩ Rλk | ≤
Bn

λ2

(provided λ is sufficiently large).

Proof Again elementary geometry shows that Rλj ∩ Rλk = φ only if

| j − k|pn ≤
C

λ
|s( j)− s(k)|

for an appropriate choice of constant C . Moreover,

|Rλj ∩ Rλk | ≤
Bp2

n

|s( j)− s(k)|
.

Temporarily fix m, and first we will consider the number of pairs j, k ∈ step m, j = k,
(recall that this implies that m ≤ Nn) with Rλj ∩ Rλk = φ. Assume that j pn, kpn belong to a
w-interval, |w| = m. Consequently | j − k|pn ≤ 2lw while |s( j)− s(k)| ≤ lw.

Case 1: s( j)m+1 = s(k)m+1, i.e., j pn ∈ w0-interval and kpn ∈ w1-interval, or vice versa (a
more geometric way to say this is that they belong to opposite halves of the w-interval).

Since

| j − k|pn ≤
C

λ
|s( j)− s(k)| ≤

C

λ
lw,

we must have j pn and kpn each lying within C
λ

lw of the midpoint of the w-interval, and
hence there are at most (C

λ
lwqn)2 pairs of integers of this type with Rλj ∩ Rλk = φ. Fur-

thermore, in this case s( j) and s(k) belong to different Cantor intervals of step m + 1, thus
|s( j)− s(k)| ≥ lw/3 and therefore |Rλj ∩ Rλk | ≤ Bp2

n/lw.
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Case 2: s( j)m+1 = s(k)m+1. Then either j pn and kpn both belong to w0-subintervals,
or both belong to w1-subintervals. Let’s assume first that both are in w0-intervals (but
necessarily different ones since j, k /∈ step m + 1). In this case |s( j) − s(k)| ≤ lw0, hence in
order for Rλj ∩ Rλk to be non-empty we must have

| j − k|pn ≤
C

λ
lw0.

This means j pn and kpn must each lie within C
λ

lw0 of an endpoint of some w0-interval.
There are at most lw/lw0 such intervals and therefore at most (C

λ
lw0qn)2lw/lw0 pairs of this

type with Rλj ∩ Rλk = φ.
If, in addition, s( j)m+2 = s(k)m+2 (say, without loss of generality, j pn and kpn both

belong to w00-subintervals) then since j pn and kpn belong to different step m + 1 intervals,
and both are in the left half of those step m + 1 intervals, we must have | j − k|pn ≥ lw0/2.
But we also know that the additional assumption means |s( j) − s(k)| ≤ lw00, and if we
assume that λ ≥ C then it is impossible to satisfy

| j − k|pn ≤
C

λ
|s( j)− s(k)|.

Hence Rλj ∩ Rλk = φ.
So it must be the case that s( j)m+2 = s(k)m+2. But then s( j) and s(k) differ by at least the

size of the gap of Iw0, and hence |s( j)− s(k)| ≥ lw0/3.
To summarize, there are at most (C

λ
lw0qn)2lw/lw0 pairs of this type with Rλj ∩ Rλk = φ,

and for these j, k we have the bound

|Rλj ∩ Rλk | ≤
Bp2

n

lw0
.

If, instead, j pn and kpn belong to (different) w1-intervals, then similarly there are at
most (C

λ
lw1qn)2lw/lw1 pairs of integers j, k of this type with Rλj ∩ Rλk = φ, and for these j, k

we have the bound

|Rλj ∩ Rλk | ≤
Bp2

n

lw1
.

Putting these cases together we obtain

∑
j �=k

|Rλj ∩ Rλk | ≤
Nn∑

m=0

∑
j,k∈step m

|Rλj ∩ Rλk |

≤ Bp2
n

Nn∑
m=0

∑
|w|=m

[( (C
λ

lwqn)2

lw

)
+
( (C
λ

lw0qn)2lw/lw0

lw0

)
+
( (C
λ

lw1qn)2lw/lw1

lw1

)]

≤
B

λ2

Nn∑
m=0

∑
|w|=m

lw
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where the notation
∑
|w|=m means to sum over all w-intervals with |w| = m. Since the

union of the w-intervals is [0, 1), and they are disjoint intervals of length at least lw, we
must have

∑
|w|=m lw ≤ 1. Therefore

∑
j �=k

|Rλj ∩ Rλk | ≤
Bn

λ2

as claimed.

We need one other preliminary lemma in order to prove the theorem, however, we will
actually prove a more general result which will be helpful for later.

Lemma 2.6 Suppose σ > 0 and let Xn be any subset of {0, 1, . . . , qn − 1} of cardinality at
least σqn. There is a constant B(σ) > 0 such that

∣∣∣ ⋃
j∈Xn

R j

∣∣∣ ≥ B(σ) log n

n
.

Proof We continue to use the notation introduced in Lemma 5. We let

t j(x) =
χR j (x)∑

k∈Xn
χRk (x)

for x ∈
⋃

k∈Xn

Rk.

Clearly
∑
|Rλj | ≤ B/λ and

∑
j∈Xn

∫
Rλj

t−1
j (x) dx ≤

∑
j,k

|Rλj ∩ Rλk |.

Combined with Lemma 5 this means that if we restrict to λ ≤ n, then

∑
j∈Xn

∫
Rλj

t−1
j (x) dx ≤ B

( 1

λ
+

n

λ2

)
≤

Bn

λ2
.

By Tchebycheff ’s inequality, for at least [|Xn|/2] choices of j ∈ Xn (and a new constant B
as usual) we must have ∫

Rλj

t−1
j (x) dx ≤

Bn

λ2|Xn|
.

Since |Xn| ≥ σqn and |Rλj | ≥ pn/4λ, applying Holder’s inequality gives the lower bound

1

|Rλj |

∫
Rλj

t j(x) dx ≥
B(σ)λ

n

for these j’s. Summing over all j ∈ Xn we obtain

∑
j∈Xn

∫
Rλj

t j(x) dx ≥
B(σ)

n
.
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Recall that Lemma 5 is only valid if λ is sufficiently large, say λ ≥ C . We further restrict
our attention to

λ ∈ Λ ≡
{

2kC : k = 0, 1, . . . ,
[ log n/C

log 2

]}
.

For any fixed j and λ1, λ2 ∈ Λ, λ1 = λ2, the sets Rλ1
j and Rλ2

j are disjoint, thus

∣∣∣ ⋃
j∈Xn

R j

∣∣∣ =∑
j∈Xn

∫
R j

t j(x) dx ≥
∑
j∈Xn

∑
λ∈Λ

∫
Rλj

t j(x) dx

≥
B(σ) log n

n
.

Completion of the Proof of the Theorem From Lemma 4, Mn f (x) ≥ Bn for all x ∈
⋃

R j ,
and hence by Lemma 6 (applied with Xn = {0, 1, . . . , qn − 1}, σ = 1) Mn f (x) ≥ Bn on a
set of measure at least B log n/n. Thus∫

(Mn f )2 ≥ Bn log n

and since ‖ f ‖2 ≤ O(
√

n) (Lemma 3)

‖Mn( f )‖2

‖ f ‖2
≥ B
√

log n.

It follows immediately from this that the maximal operator is not of strong type (2, 2),
i.e., the Cantor set is not a Max(2) set. Moreover, since

n2m{x : MC f (x) ≥ Bn} ≥ O(n log n)

and ‖ f ‖2
2 = O(n) the maximal operator is not even of weak type (2, 2).

Remark 2.1 Since MC f ≥ supn Mn f it suffices to have the operator norm of Mn at least
B log n for infinitely many n, and this will be true if we only assume the weaker condition
that pn ≥ δn infinitely often.

3 Applications

This result has a number of other corollaries. One obvious one is:

Corollary 3.1 If C is a Cantor set as in the theorem, then C is not a Max(p) set for any
p < 2.

Proof If the maximal operator MC was of strong type (p, p) for some p < 2 (i.e., C was
a Max(p) set) or even of weak type (p, p), then since MC is always a bounded operator on
L∞, by interpolation theory it would be of strong type (2, 2) which we have shown it is not.

An important corollary is the result highlighted in the introduction.
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Corollary 3.2 If C is a central Cantor set of positive Hausdorff dimension, then C is not a
Max(p) set for any p ≤ 2.

Proof Assume C is the central Cantor set with ratios of dissection, in the standard con-
struction, equal to rk (< 1/2) at step k. Then all Cantor intervals at step k are of length
r1 · · · rk. It is known [2] that the Hausdorff dimension of this Cantor set is positive if and
only if

inf
( k∏

j=1

r j

)1/k
> 0,

hence both hypotheses of the theorem are clearly met.

In fact, the assumption of positive Hausdorff dimension is more than what is necessary.

Corollary 3.3 Suppose C is a central Cantor set with ratios of dissection rk satisfying∏n
k=1 rk ≥ n−ng(n) for some function g(n) tending to zero. Then C is not a Max(2) set.

Proof To prove this we need to look at the proof of the theorem. We work with the standard
construction and assume (as before) that the ratios of dissection are at most 1/3. Thus
pn =

∏n
k=1 rk and from Lemma 3 we obtain

‖ f ‖2 ≤ B
√

log qn ≤ B
√

ng(n) log n.

Any step n + 1 interval in the partition has length less than pn, so if j, k ∈ step m, j = k,
then m ≤ n. Thus Lemmas 4–6 can be proved as before. Using the new bound for the
2-norm of f in the final calculation of the (2, 2) operator norm of Mn we again are able to
conclude that maximal operator is not bounded on L2.

By making an appropriate choice for the partition we can strengthen the theorem in
another way.

Proposition 3.4 Let C be a central Cantor set of positive Hausdorff dimension, and denote
by En the set of left hand endpoints in the n ′-th step of the standard construction. Then the set
of left endpoints,

⋃
En, is not a Max(2) set.

Proof An important observation to make here is that the function s, as defined in the the-
orem, maps left endpoints of the intervals in step n of the given partition, to left endpoints
of Cantor intervals in step n in the Cantor set construction. Our strategy will be to show
that we can define a partition in such a way that j pn is an endpoint of step n in the partition
for “enough” integers j so that one may conclude that the operator norm of the maximal
function associated with En is at least O(log n).

We work with the standard construction so pn is the length of each Cantor interval of
step n. By passing to a Cantor subset, if necessary, we may assume all ratios of dissection
are at most 1/6.

The partition of [0, 1] will be defined inductively as follows, with step 0 being the inter-
val [0, 1]. At step k the intervals in the partition will have lengths at least pk and have as
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endpoints: the endpoints of the intervals of step k− 1; the midpoints of the intervals from
step k− 1; and as many integer multiples of pk as possible.

Since the ratios of dissection are at most 1/6 and the intervals from step k − 1 have
lengths at least pk−1, there are at least 3 multiples of pk in each “half” interval from step
k− 1. It follows that the partition we have defined will have the property that the length of
each interval at step k is less than 2pk. As we observed in a previous corollary, the positive
Hausdorff dimension condition ensures that inf(pk)1/k > 0. Thus we have an appropriate
partition to use our previous work, and so if we fix n, and define rectangles R j for j =

0, 1, . . . , qn − 1 and the function f =
∑qn−1

k=0 χRk as before, Lemmas 3–5 hold.
Let Xn be the set of integers 0 ≤ j < qn − 1 such that j pn is an endpoint of an interval

at step n in the partition. (Thus if j ∈ Xn then rectangle R j has direction s( j pn) ∈ En.) All
the multiples of pn in each “half” interval from step n− 1, except perhaps the smallest and
largest, must be endpoints of the partition at step n by construction, and since there are at
most 2/pn−1 half intervals at step n− 1 it follows that

|Xn| ≥ qn −
4

pn−1
≥

qn

4

(for sufficiently large n). Thus Lemma 6 applies, with σ = 1/4, to show that for all n

∣∣∣ ⋃
j∈Xn

R j

∣∣∣ ≥ B log n

n
.

The maximal operator associated with En obviously dominates the operator M ′
n defined

by

M ′
ng(x) ≡ sup

x∈R j , j∈Xn

1

|R j |

∫
R j

|g|.

For the function f defined above we clearly have M ′
n f ≥ Bn on

⋃
j∈Xn

R j , and the proof
can be completed essentially as before.

We commented earlier that a central Cantor set can be interpreted as a lacunary set
added to itself “infinitely often”. There is a converse to this as well, for suppose F = {n j}
is a lacunary set in [0, 1] with inf n j

n j+1
> 2. Construct a central Cantor set C in the interval

[0,
∑∞

j=1 n j], in the usual way, with the intervals at step k having length
∑∞

j=k+1 n j . (The

condition that inf n j

n j+1
> 2 ensures that the ratios in the Cantor set construction are strictly

less than 1/2, so this is a Cantor set of measure zero.) It is a routine exercise to verify that

C =
{ ∞∑

j=1

ε jn j : ε j = 0, 1
}

and that the left endpoints of the intervals at step k in the construction are the 2k points

{
∑k

j=1 ε jn j : ε j = 0, 1}. The set of left endpoints can also be described as
⋃

N F(N) where

F(N) =
{ ∞∑

j=1

ε jn j : ε j = 0, 1,
∑
ε j = N

}
.
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Each set F(N) has been shown to be Max(p) for all p > 1 in [9]. In contrast the next
corollary shows that this fact is not in general true for the union.

Corollary 3.5 Let F = {n j} be a lacunary set in [0, 1] with inf(
∑∞

j=k+1 n j)1/k > 0. Then

E ≡
{ ∞∑

j=1

ε jn j : ε j = 0, 1,
∑
ε j <∞

}

is not a Max(2) set.

Proof Consider a subsequence {n jl} for appropriate l so that inf
n jl

n( j+1)l
> 2. The Cantor set

constructed from {n jl}, as outlined above, has intervals at step k of length

∞∑
j=k+1

n jl ≥
1

l

∞∑
j=(k+1)l

n j ,

hence this Cantor set has positive Hausdorff dimension. By Proposition 10 even the set
of left endpoints of the Cantor set constructed from {n jl}, which is a subset of E, is not a
Max(2) set.

Remark 3.1 The condition that inf(
∑∞

j=k+1 n j)1/k > 0 is satisfied if sup
n j

n j+1
<∞.

As a final application we will extend the theorem to subsets of Cantor sets.

Proposition 3.6 Suppose C is a central Cantor set with positive Hausdorff dimension and
ratios of dissection rk ≤ 1/3. If A is a subset of C with positive Cantor measure then A is not a
Max(2) set.

Proof To prove this we need to take advantage of the symmetry in the standard construc-
tion of a central Cantor set.

We construct our partition of [0, 1) in a similar fashion to before, but require, in
addition, that the intervals in step k be equal in length, say of length Lk, where Lk ∈
[r1 · · · rk, 2r1 · · · rk). (Recall that r1 · · · rk is the length of any Cantor interval at step k in
the standard construction.) Fix n and let qn be the integer 1/Ln. We define s : [0, 1)→ C in
the same manner as previously.

The symmetry of both the partition and the central Cantor set ensures that each interval
in Cn (where C =

⋂
Cn is the standard construction) is the image under s of precisely qn/2n

intervals of the form
[

jLn, ( j + 1)Ln

)
for j = 0, 1, . . . , qn − 1. If we assume the Cantor

measure of A is at least ε > 0, then the number of intervals from Cn which intersect A is at
least ε2n. Thus, for at least εqn choices of j,

s
[

jLn, ( j + 1)Ln

)
∩ A = φ.

Without loss of generality we may assume that for at least εqn/2 choices of j ∈
{0, 1, . . . , qn/2− 1},

s
[
2 jLn, (2 j + 1)Ln

)
∩ A = φ.
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For each such j choose
x j ∈

[
2 jLn, (2 j + 1)Ln

)
such that s(x j) ∈ A. For other j ∈ {0, 1, . . . , qn/2 − 1} set x j = 2 jLn. An important fact
here is that Ln < x j+1 − x j < 3Ln. We work with rectangles R j , j = 0, 1, . . . , qn/2 − 1,
with dimension 40 × Ln/4, direction s(x j) and centred at (0, x j). The purpose of this
modification is to ensure that at least εqn/2 of the rectangles have direction in A.

Let f =
∑qn/2−1

j=0 χR j . The fact that Ln < x j+1 − x j < 3Ln allows one to bound, from
both above and below, the number of integers k such that xk belongs to a given subinterval
of [0, 1), it implies that if x j , xk belong to step m then m ≤ n, and it ensures that the
same elementary geometry arguments apply. Thus Lemmas 3–5 can be proved essentially
as before. If Xn = { j : s(x j) ∈ A} then |Xn| ≥ εqn/2, so by Lemma 6 we derive that

∣∣∣ ⋃
j∈Xn

R j

∣∣∣ ≥ B log n

n

for some constant B depending only on the Cantor measure of A.
To finish the proof of the proposition just note that the maximal operator associated

with A dominates the operators MA
n given by

MA
n g(x) = sup

x∈R j, j∈Xn

1

|R j |

∫
R j

|g|,

and the usual arguments prove that the (2, 2) operator norm of MA
n is at least O(log n).

Remark 3.2 The same result could be obtained for central Cantor sets having ratio of
dissection bounded away from 1/2. Just define the rectangles R j to have dimension B×Ln/4
where B is a suitably large constant.

Our result could also be further weakened to apply to even “smaller” subsets A of the
types of Cantor sets described in the theorem: It suffices to have the number of intervals
of Cn intersecting A at least g(n)2n for some function g satisfying g(n)2 log n → ∞. This
involves a straightforward modification of the proof.
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