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Abstract. Let Mg be the moduli space of smooth curves of genus g5 3, and �Mg the Deligne-

Mumford compactification in terms of stable curves. Let �M
½1�

g be an open set of �Mg consisting
of stable curves of genus g with one node at most. In this paper, we determine the necessary

and sufficient condition to guarantee that a Q-divisor D on �Mg is nef over �M
½1�

g , that is,
ðD � CÞ5 0 for all irreducible curves C on �Mg with C \ �M

½1�

g 6¼ ;.
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Introduction

Throughout this paper, we fix an algebraically closed field k, and every algebraic

scheme is defined over k. For simplicity, we assume that the characteristic of k is zero

in this introduction.

Let X be a normal complete variety and P a certain kind of positivity of Q-line

bundles on X (e.g. ampleness, effectivity, bigness, etc). A problem to describe the

cone ConeðX;PÞ consisting of Q-line bundles with the positivity P is usually very

hard and interesting. In this paper, as positivity, we consider numerical effectivity

over a fixed open set. Namely, let U be a Zariski open set of X. We say a Q-line bun-

dle L is nef over U if, for all irreducible curves C with C \U 6¼ ;, ðL � CÞ5 0. We

define the relative nef cone NefðX;UÞ over U to be the cone of Q-line bundles on

X which are nef over U.

Let g and n be nonnegative integers with 2g� 2þ n > 0. Let �Mg;n (resp. Mg;n)

denote the moduli space of n-pointed stable curves (resp. n-pointed smooth curves)

of genus g. For a nonnegative integer t, an irreducible component of the closed sub-

scheme consisting of curves with at least t nodes is called a t-codimensional stratum of
�Mg;n. (For example, a 1-codimensional stratum is a boundary component.) We

denote by Stð �Mg;nÞ the set of all t-codimensional strata of �Mg;n. Let �M
½t�

g;n be the open

set of �Mg;n obtained by subtracting all ðtþ 1Þ-codimensional strata, i.e., �M
½t�

g;n is the

open set consisting of curves with at most t nodes. (Note that �M
½0�

g;n ¼Mg;n.) Here we

consider the following problem:
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PROBLEM A. Describe the tower of relative nef cones

Nefð �Mg;n;Mg;nÞ �Nefð �Mg;n; �M
½1�

g;nÞ � � � � �Nefð �Mg;n; �M
½3g�3þn�1�

g;n Þ ¼Nefð �Mg;nÞ:

We say a Q-divisor on �Mg;n is F-nef if the intersection number with every one-dimen-

sional stratum is nonnegative. Let FNefð �Mg;nÞ denote the cone consisting of F-nefQ-

divisors. Concerning the top Nefð �Mg;nÞ of the tower, it is conjectured in [4, 5, 7] that

FNefð �Mg;nÞ ¼ Nefð �Mg;nÞ. In other words, the Mori cone of �Mg;n is generated by one-

dimensional strata, which gives rise to a concrete description of Nefð �Mg;nÞ (cf. [4, 5,

7]). Moreover, it is closely related to the relative nef cone Nefð �Mg;n;Mg;nÞ. Actually,

it was shown in [5] that if the weaker assertion FNefð �Mg;nÞ � Nefð �Mg;n;Mg;nÞ

holds for all g; n, then FNefð �Mg;nÞ ¼ Nefð �Mg;nÞ. Further, as discussed in [5],
�Mg;n admits no interesting birational morphism to a projective variety. However,

we can expect the rich birational geometry on �Mg;n in terms of rational maps. In this

sense, to understand the tower of relative nef cones as above might be a step toward

this natural problem.

We assume that g5 3 and n ¼ 0. Let l be the Hodge class on �Mg, and

dirr; d1; . . . ; d½g=2� the classes of the irreducible components Dirr;D1; . . . ;D½g=2� of the
boundary �Mg nMg as in [2]. Let m be a divisor on �Mg given by

m ¼ ð8gþ 4Þl� gdirr �
X½g=2�
i¼1

4iðg� iÞdi:

In the paper [11], we proved that Nefð �Mg;MgÞ is the convex hull spanned by

m; dirr; d1; . . . ; d½g=2�, that is,

Nefð �Mg;MgÞ ¼ QþmþQþdirr þ
X½g=2�
i¼1

Qþdi;

where Qþ ¼ fx 2 Qjx5 0g. The cone Nefð �Mg;MgÞ is closely related to the Zariski

closure �Hg of the locus Hg consisting of smooth hyperelliptic curves. Indeed, a Q-

divisor D ¼ amþ birrdirr þ
P½g=2�

i¼1 bidi is nef over Mg if and only if Dj �Hg
is nef over

Hg and a5 0, that is, the dual cone of Nefð �Mg;MgÞ is generated by the classes of

curves in �Hg and the class of a complete irreducible curve in Mg (cf. Remark 6.3).

The main purpose of this paper is to generalize the above results to the cone

Nefð �Mg; �M
½1�

g Þ. Namely we have the following theorem:

THEOREM B (cf. Theorem 5.1 and Section 6). (1) A Q-divisor amþ birrdirr
þ
P½g=2�

i¼1 bidi on �Mg is nef over �M
½1�

g if and only if the following system of inequalities

hold:

a5 max
bi

4iðg� iÞ

����i ¼ 1; . . . ; ½g=2�

� �
; B0 5B1 5B2 5 � � � 5B½g=2�;

B�½g=2�5 � � � 5B�2 5B�1 5B�0;

where B0, B
�
0, Bi and B�i ði ¼ 1; . . . ; ½g=2�Þ are given by
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B0 ¼ 4birr; B�0 ¼
4birr

gð2g� 1Þ
; Bi ¼

bi
ið2iþ 1Þ

and B�i ¼
bi

ðg� iÞð2ðg� iÞ þ 1Þ
:

ð2Þ We can construct irreducible complete curves

C1; . . . ;C½g=2�;C
�
1; . . . ;C

�
½g=2�;C

y

1; . . . ;C
y

½g=2�

on �Mg with the following properties (for concrete constructions of curves, see Section 6):

ð2:1ÞCi � Di and Ci \ �M
½1�

g 6¼ ; for all 14 i4 ½g=2�.
ð2:2ÞC�1 � Dirr, C

�
i � Di�1 ð24 i4 ½g=2�Þ and C�i \

�M
½1�

g 6¼ ; ð14 i4 ½g=2�Þ.
ð2:3ÞCyi � Di and Cyi \

�M
½1�

g 6¼ ; for all 14 i4 ½g=2�.
ð2:4ÞFor a Q-divisor D ¼ amþ birrdirr þ

P½g=2�
i¼1 bidi on �Mg,

ðD � CiÞ5 0()Bi�1 5Bi

ðD � C�i Þ5 0()B�i�1 4B�i

ðD � Cyi Þ5 0() 4iðg� iÞa5 bi

In particular, the dual cone of Nefð �Mg; �M
½1�

g Þ is generated by the classes of the above

curves.

An interesting point is that (1) of the above theorem shows us that m is not only nef

over Mg but also nef over �M
½1�

g . Moreover, (1) tells us that every nef Q-divisor over
�M
½1�

g can be obtained in the following way. Namely, we first fix a nonnegative

rational number birr, and take b1 with

4ðg� 1Þbirr
g

4 b1 4 12birr:

Further, we choose b2; . . . ; b½g=2� inductively by using

ðg� 1� iÞð2ðg� iÞ � 1Þ

ðg� iÞð2ðg� iÞ þ 1Þ
bi 4 biþ1 4

ðiþ 1Þð2iþ 3Þ

ið2iþ 1Þ
bi:

Finally, we take a with

a5 max
bi

4iðg� iÞ

� ����i ¼ 1; . . . ; ½g=2�

�
:

Then, a Q-divisor given by amþ birrdirr þ
P½g=2�

i¼1 bidi is nef over �M
½1�

g .

Besides the properties (2.1)–(2.4) of curves C1; . . . ;C½g=2�;C
�
1; . . . ;C

�
½g=2�;C

y

1; . . . ;

Cy
½g=2�, surprisingly we can see Ci;C

�
i �

�Hg for all i ¼ 1; . . . ; ½g=2�. Thus, a Q-divisor

D ¼ amþ birrdirr þ
P½g=2�

i¼1 bidi is nef over �M
½1�

g if and only if Dj �Hg
is nef over �Hg \ �M

½1�

g

and 4iðg� iÞa5 bi for all i ¼ 1; . . . ; ½g=2�. Moreover, as pointed out by Prof. Keel,

the inequalities involving Bi and B�i in Theorem B are formally similar to those in

[7, Lemma 4.8], which suggests to us a certain kind of connection between �Mg

and �Hg via �M0;2gþ2=S2gþ2.

Further, as corollaries of the above theorem, we have the following:
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COROLLARY C (cf. Corollary 5.2). For an irreducible component D of the boundary
�Mg nMg, let eD be the normalization of D, and rD: eD! �Mg the induced morphism.

Then, a Q-divisor D on �Mg is nef over �M
½1�

g if and only if the following are satisfied:

(1) D is weakly positive at any points of Mg.

(2) For every boundary component D, r�DðDÞ is weakly positive at any points of

r�1D ð
�M
½1�

g Þ

For the definition of weak positivity, see Section 1.1.

COROLLARY D (cf. Corollary 5.3). With notation as above, if r�DðDÞ is nef over

r�1D ð
�M
½1�

g Þ for every boundary component D, then D is nef over �M
½1�

g . In particular, the

Mori cone of �Mg is the convex hull spanned by curves lying on the boundary �Mg nMg,

which gives rise to a special case of [5, Proposition 3.1].

Let us go back to the general situation. Similarly, for D 2 Slð �Mg;nÞ, let eD be the

normalization of D, and rD: eD! �Mg;n the induced morphism. Inspired by the above

corollaries, we have the following questions:

QUESTION E. For a nonnegative integer t, if a Q-divisor D on �Mg;n is nef over
�M
½t�

g;n, then is r�DðDÞ weakly positive at any points of r
�1
D ð

�M
½l�

g;nÞ for all 04 l4 t and all

D 2 Slð �Mg;nÞ? More strongly, if D is nef over �M
½t�

g;n, then is D weakly positive at any

points of �M
½t�

g;n?

QUESTION F. Fix an integer t with 04 t4 3g� 3þ n� 1. If r�DðDÞ is nef over

r�1D ð
�M
½t�

g;nÞ for all D 2 Stð �Mg;nÞ, then is D nef over �M
½t�

g;n?

In the case t ¼ 3g� 3þ n� 1, the above question is nothing more than asking

FNefð �Mg;nÞ ¼ Nefð �Mg;nÞ.

In order to get the above theorem, we need a certain kind of slope inequalities on

the moduli space of n-pointed stable curves. The Q-line bundles l and c1; . . . ;cn on
�Mg;n are defined as follows: Let p : �Mg;nþ1! �Mg;n be the universal curve of �Mg;n,

and s1; . . . ; sn : �Mg;n! �Mg;nþ1 the sections of p arising from the n-points of �Mg;n.

Then, l ¼ detðp�ðo �Mg;nþ1= �Mg;n
ÞÞ and ci ¼ s�i ðo �Mg;nþ1= �Mg;n

Þ for i ¼ 1; . . . ; n. Here we set

½n� ¼ f1; . . . ; ng ðnote that ½0� ¼ ;Þ;

Ug;n ¼ fði; IÞ j i 2 Z; 04 i4 g and I � ½n�g n fð0; ;Þ; ð0; f1gÞ; . . . ; ð0; fngÞg;

Ug;n ¼ ffði; IÞ; ðj; JÞg j ði; IÞ; ðj; JÞ 2 Ug;n; iþ j ¼ g; I \ J ¼ ;; I [ J ¼ ½n�g:

Moreover, for a finite set S, we denote the number of it by jSj. The boundary
�Mg;n nMg;n has the following irreducible decomposition:

�Mg;n nMg;n ¼ Dirr [
[

fði;IÞ;ðj;JÞg2Ug;n

Dfði;IÞ;ðj;JÞg:
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A general point of Dirr represents an n-pointed irreducible stable curve with one

node. A general point of Dfði;IÞ;ðj;JÞg represents an n-pointed stable curve consisting

of an jIj-pointed smooth curve C1 of genus i and a jJj-pointed smooth curve C2

of genus j meeting transversally at one point, where jIj-points on C1 (resp. jJj-points

on C2) arise from fstgt2I (resp. fslgl2J). Let dirr and dfði;IÞ;ðj;JÞg be the classes of Dirr and

Dfði;IÞ;ðj;JÞg in Picð �Mg;nÞ �Q, respectively. For a subset L of ½n�, we define a Q-divisor

yL on �Mg;n to be

yL ¼ 4ðg� 1þ jLjÞðg� 1Þ
X
t2L

ct � 12jLj2lþ jLj2dirr �
X
u2Ug;n

4gLðuÞdu;

where gL: Ug;n ! Z is given by

gL fði; IÞ; ðj; JÞgð Þ ¼ det
i jL \ Ij

j jL \ Jj

� �
þ jL \ Ij

� �
�

� det
i jL \ Ij

j jL \ Jj

� �
� jL \ Jj

� �
:

Then, we have the following, theorem:

THEOREM G (cf. Theorem 4.1). For any subset L of ½n�, the divisor yL is weakly

positive at any points of Mg;n. In particular, it is nef over Mg;n.

We remark that R. Hain has already announced the above inequality in the case

where n ¼ 1. (For details, see [6].) Theorem G is a generalization of his inequality.

Here we assume that g5 2. First note that

m ¼ ð8gþ 4Þl� gdirr �
X

fði;IÞ;ðj;JÞg2Ug;n

4ijdfði;IÞ;ðj;JÞg

is nef over Mg;n. Thus, as a consequence of Theorem G, we can see that

Qþmþ
X
L�½n�

QþyL þQþdirr þ
X
u2Ug;n

Qþdu � Nefð �Mg;n;Mg;nÞ;

so that we may ask the following question:

QUESTION H. Is Nefð �Mg;n;Mg;nÞ the convex hull spanned by Q-divisors m, yL
ð8L � ½n�Þ, dirr and du ð8u 2 Ug;nÞ.

Corollaries 4.2 and 4.3 are partial answers for the above question. If the above ques-

tion is true, then it gives an affirmative answer of Question E for t ¼ 0.

1. Notations, Conventions, Terminology and Preliminaries

Throughout this paper, we fix an algebraically closed field k, and every algebraic

scheme is defined over k.
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1.1. THE POSITIVITY OF WEIL DIVISORS

Let X be a normal variety. Let denote Z1ðXÞ (resp. DivðXÞ) the group of Weil divisors

(resp. Cartier divisors) on X, and 	 the linear equivalence on Z1ðXÞ. We set

A1ðXÞ ¼ Z1ðXÞ=	 and PicðXÞ ¼ DivðXÞ=	. Note that PicðXÞ is canonically iso-

morphic to the Picard group (the group of isomorphism classes of line bundles).

Moreover, we denote by RefðXÞ the set of isomorphism classes of reflexive sheaves

of rank 1 on X. For a Weil divisor D, the sheaf OXðDÞ is given by

OXðDÞðUÞ ¼ ff 2 RatðXÞ� j ðfÞ þD is effective over Ug [ f0g

for each Zariski open set U of X. Then, we can see OXðDÞ 2 RefðXÞ. Conversely, let L

be a reflexive sheaf of rank 1 onX. For a nonzero rational section sofL, divðsÞ is defined

as follows: Let X0 be the maximal Zariski open set of X over which L is locally free.

Note that codimðX n X0Þ5 2. Then, divðsÞ 2 Z1ðXÞ is defined by the Zariski closure

of divðsjX0
Þ. By our definition, we can see that OXðdivðsÞÞ ’ L. Thus, the correspon-

denceD 7!OXðDÞ gives rise to an isomorphism A1ðXÞ ’ RefðXÞ. Here we remark that

if x 62 SuppðdivðsÞÞ, thenL is free at x becauseOXðdivðsÞÞx ¼ OX;x for x 62 SuppðdivðsÞÞ.

An element of Z1ðXÞ �Q (resp. DivðXÞ �Q) is celled a Q-divisor (resp. Q-Cartier

divisor). ForQ-divisors D1 and D2, we say D1 is Q-linearly equivalent to D2, denoted

by D1 	Q D2, if there is a positive integer n such that nD1; nD2 2 Z1ðXÞ and

nD1 	 nD2, i.e., D1 coincides with D2 in A1ðXÞ �Q.

Fix a subset S of X. For D 2 Z1ðXÞ �Q, we say D is semi-ample over S if, for any

s 2 S, there is an effective Q-divisor E on X with s 62 SuppðEÞ and D 	Q E. More-

over, D is said to be weakly positive over S if there are Q-divisors Z1; . . . ;Zl, a

sequence fDmg
1
m¼1 of Q-divisors, and sequences fa1;mg

1
m¼1; . . . ; fal;mg

1
m¼1 of rational

numbers such that

(1) l does not depend on m,

(2) Dm is semi-ample over S for all m
 0,

(3) D 	Q Dm þ
Pl

i¼1 ai;mZi for all m
 0, and

(4) limm!1 ai;m ¼ 0 for all i ¼ 1; . . . ; l.

In the above definition, if D, Dm and Zi’s are Q-Cartier divisors, then D is said to be

weakly positive over S in terms of Cartier divisors (for short, C-weakly positive over

S). Further, if D is semi-ample over fxg for some x 2 X, then we say D is semi-ample

at x. Similarly, we define the weak positivity of D at x and the C-weak positivity of D

at x. We remark that weak positivity in [11] is nothing more than C-weak positivity.

Moreover, note that if aQ-divisor D is semi-ample at x, then D is aQ-Cartier divisor

around x, i.e., there is a Zariski open set U of X such that x 2 U and DjU is a Q-

Cartier divisor on U.

A normal variety X is said to be Q-factorial if Z1ðXÞ �Q ¼ DivðXÞ �Q, i.e., any

Weil divisors are Q-Cartier divisors. It is well known that if Y! X is a finite

and surjective morphism of normal varieties and Y is Q-factorial, then X is also
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Q-factorial (cf. [8, Lemma 5.16]). Thus the moduli space �Mg;n of n-pointed stable

curves of genus g is Q-factorial because �Mg;n is an orbifold. If X is Q-factorial, then

the weak positivity of D over S coincides with the C-weak positivity of D over S.

We assume that X is complete and D is a Q-Cartier divisor. We say D is nef over S

if ðD � CÞ5 0 for any complete irreducible curves C with S \ C 6¼ ;. Moreover, for a

point x of X, we say D is nef at x if D is nef over fxg. Note that

‘D is semi-ample at x’ ¼) ‘D is C-weakly positive at x’ ¼) ‘D is nef at x’

LEMMA 1.1.1 ðcharðkÞ5 0Þ: Let D be a Q-divisor on X, and x1; . . . ; xn 2 X. If D is

semi-ample at xi for each i, then there is an effective Q-divisor E on X such that

E 	Q D and xi 62 SuppðEÞ for all i.

Proof. By our assumption, there is an effective Q-divisor Ei on X such that

Ei 	Q D and xi 62 SuppðEiÞ. Take a sufficiently large integer m such that mD;

mE1; . . . ; mEn 2 Z1ðXÞ and mD 	 mEi for all i. Thus, there is a section si
of H0ðX;OXðmDÞÞ with divðsiÞ ¼ mEi. Here since xi 62 SuppðmEiÞ and OXðmDÞ ’

OXðmEiÞ, we can see that OXðmDÞ is free at each xi .

For a ¼ ða1; . . . anÞ 2 kn, we set sa ¼ a1s1 þ � � � þ ansn 2 H0ðX;OXðmDÞÞ. Further,

we set Vi ¼ fa 2 kn j saðxiÞ ¼ 0g. Then, dimVi ¼ n� 1 for all i. Thus, since

#ðkÞ ¼ 1, there is a 2 kn with a 62 V1 [ � � � [ Vr, i.e., saðxiÞ 6¼ 0 for all i. Let us

consider a divisor E ¼ divðsaÞ. Then, E 	 mD and xi 62 SuppðEÞ for all i. &

PROPOSITION 1.1.2 ðcharðkÞ5 0Þ. Let p : X! Y be a surjective, proper and gen-

erically finite morphism of normal varieties. Let D be a Q-divisor on X and S a subset

of Y such that p�1ðSÞ is finite. Then, we have the following.

(1) If D is semi-ample over p�1ðSÞ, then p�ðDÞ is semi-ample over S.

(2) If D is weakly positive over p�1ðSÞ, then p�ðDÞ is weakly positive over S.

Proof. (1) By Lemma 1.1.1, there is an effective divisor E on X such that E 	Q D

and s0 62 SuppðEÞ for all s0 2 p�1ðSÞ. Then, p�ðEÞ 	Q p�ðDÞ and s 62 pðSuppðEÞÞ ¼
Suppðp�ðEÞÞ for all s 2 S.

(2) This is a consequence of (1). &

PROPOSITION 1.1.3 ðcharðkÞ5 0Þ. Let p : X! Y be a surjective, proper morphism

of normal varieties. We assume that Y is Q-factorial. Let D be a Q-divisor on Y, and S

a subset of Y. Then, we have the following.

(1) If D is semi-ample over S, then p�ðDÞ is semi-ample over f�1ðSÞ.

(2) If D is weakly positive over S, then p�ðDÞ is C-weakly positive over S.

Proof. (1) Let s0 be a point in p�1ðSÞ. Then, there is an effectiveQ-divisor E on Y

with D 	Q E and pðs0Þ 62 SuppðEÞ. Thus, p�ðDÞ 	Q p�ðEÞ and s0 62 Suppðp�ðEÞÞ.
Therefore, p�ðDÞ is semiample over p�1ðSÞ.

(2) This is a consequence of (1). &
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LEMMA 1.1.4 ðcharðkÞ5 0Þ. Let X and Y be complete varieties, and let D and E be

Q-Cartier divisors on X and Y respectively. Let p: X� Y and q: X� Y! Y

be the projections to the first factor and the second factor, respectively. For

ðx; yÞ 2 X� Y, p�ðDÞ þ q�ðEÞ is nef at ðx; yÞ if and only if D and E are nef at x and y

respectively.

Proof. First we assume that p�ðDÞ þ q�ðEÞ is nef at ðx; yÞ. Let C be a complete

irreducible curve on X with x 2 C. Then, Cy ¼ C� fyg is a complete curve on X� Y

with ðx; yÞ 2 Cy. Moreover, ðp�ðDÞ þ q�ðEÞ � CyÞ ¼ ðD � CÞ. Thus, ðD � CÞ5 0, which

says us that D is nef at x. In the same way, we can see that E is nef at y.

Next we assume that D and E are nef at x and y, respectively. In order to see

that p�ðDÞ þ q�ðEÞ is nef at ðx; yÞ, it is sufficient to check that ðp�ðDÞ � CÞ5 0

and ðq�ðEÞ � CÞ5 0 for any complete irreducible curves C on X� Y with

ðx; yÞ 2 C. Here, pðCÞ is either fxg, or a complete irreducible curve passing through

x. Thus, by virtue of the projection formula, ðp�ðDÞ � CÞ5 0. In the same way,

ðq�ðEÞ � CÞ5 0. &

1.2. THE FIRST CHERN CLASS OF COHERENT SHEAVES

Let X be a normal variety, and F a coherent OX-module on X. Here we define

c1ðFÞ 2 A1ðXÞ in the following way.

Case 1. F is a torsion sheaf. In this case, we set

D ¼
X
P2X;

depthðPÞ¼1

lengthðFPÞfPg;

where fPg is the Zariski closure of fPg in X. Then, c1ðFÞ is defined by the class of D.

Case 2. F is a torsion free sheaf. Let r be the rank of F. Then, ð
Vr FÞ__ is a reflexive

sheaf of rank 1, where __ means the double dual of sheaves. Thus, we define c1ðFÞ to

be the class of ð
Vr FÞ__.

Case 3. F is general. Let T be the torsion part of F. Then, c1ðFÞ ¼ c1ðTÞ þ c1ðF=TÞ.

Note that if 0! F1 ! F2! F3 ! 0 is an exact sequence of coherent OX-mod-

ules, then c1ðF2Þ ¼ c1ðF1Þ þ c1ðF3Þ. Moreover, let L be a reflexive sheaf of rank 1

on X, and s a nonzero section of L. Then

c1ðLÞ ¼ c1ðCokerðOX �!
�s

LÞÞ ¼ the class of divðsÞ:

PROPOSITION 1.2.1 ðcharðkÞ5 0Þ. Let X be a normal algebraic variety, F a

coherent OX-module, and x a point of X. If F is generated by global sections at x and F

is free at x, then c1ðFÞ is semi-ample at x.

Proof. Let T be the torsion part of F. Then, c1ðFÞ ¼ c1ðF=TÞ þ c1ðTÞ. Here since F

is free at x, c1ðTÞ is semi-ample at x. Moreover, it is easy to see that F=T is generated

by global sections at x. Therefore, to prove our proposition, we may assume that F is

a torsion free sheaf.
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Let r be the rank of F and kðxÞ the residue field of x. Then, by our assumption,

there are sections s1; . . . ; sr of F such that fsiðxÞg forms a basis of F� kðxÞ. Since
we can view si as an injection si : OX ! F, s ¼ s1 ^ � � � ^ sr gives rise to an injection

s : OX !
Vr F
� �__

, which is bijective at x. Thus, x 62 divðsÞ. &

1.3. THE DISCRIMINANT DIVISOR OF VECTOR BUNDLES

Let f : X! Y be a proper surjective morphism of algebraic varieties of the relative

dimension one, and let E be a locally free sheaf on X. We define the discriminant divi-

sor of E with respect to f to be

disX=YðEÞ ¼ f�ð2rkðEÞc2ðEÞ � ðrkðEÞ � 1Þc1ðEÞ
2
Þ:

LEMMA 1.3.1 ðcharðkÞ5 0Þ. Let f : X! Y be a flat, surjective and projective

morphism of varieties with dim f ¼ 1. Let E be a vector bundle of rank r on X. Then, we

have the following.

ð1Þ disX=YðEÞ is a Cartier divisor.

ð2Þ Let u : Y0 ! Y be a morphism of varieties, and let

X  �
u0

X�Y Y0

f

??y ??yf 0
Y  �

u
Y0

be the induced diagram of the fiber product. If X�Y Y0 is integral, then

disX�YY0=Y0 ðu
0�ðEÞÞ ¼ u�ðdisX=YðEÞÞ.

Proof. (1) We set F ¼ EndðEÞ. Let p: P ¼ PðF Þ ! X be the projective bundle of F,

and OPð1Þ the tautological line bundle on P. Let g: P! Y be the composition of

P �!
p

X �!
f

Y. Then, since

p�ðc1ðOPð1ÞÞ
r2þ1
Þ ¼ �c2ðFÞ ¼ �ð2rc2ðEÞ � ðr� 1Þc1ðEÞ

2
Þ;

we have g�ðc1ðOPð1ÞÞ
r2þ1
Þ ¼ �disX=YðEÞ. Thus,

disX=YðEÞ ¼ �c1ðhOPð1Þ
�r2þ1
iðP=YÞÞ;

where

h ; . . . ; iðP=YÞ : PicðPÞ � � � � � PicðPÞ
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{dim gþ1

! PicðYÞ

is Deligne’s pairing for the flat morphism g: P! Y. Therefore, disX=YðEÞ is a Cartier

divisor.

(2) This follows from the compatibility of Deligne’s pairing by base changes. &
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Remark 1.3.2. In (2) of Lemma 1.3.1, X�Y Y0 is integral if the generic fiber of

X�Y Y0 ! Y0 is integral by virtue of [12, Lemma 4.2].

1.4. THE MODULI SPACE OF T-POINTED STABLE CURVES OF GENUS g

Let g be a non-negative integer and T a finite set with 2g� 2þ jTj > 0, where jTj is

the number of T. Recall that ½n� ¼ f1; . . . ; ng and ½0� ¼ ;. Usually, we use ½n� as T.

Let �Mg;T (resp. Mg;T) denote the moduli space of T-pointed stable curves (resp. T-

pointed smooth curves) of genus g, namely, �Mg;T (resp. Mg;T) is the moduli space

of jTj-pointed stable curves (resp. jTj-pointed smooth curves) of genus g, whose

marked points are labeled by the index set T.

Roughly speaking, theQ-line bundles l and fctgt2T on �Mg;T are defined as follows:

Let p : C! �Mg;T be the universal curve of �Mg;T, and st : �Mg;T! C (t 2 T) the sec-

tions of p arising from the T-points of �Mg;T. Then, l ¼ detðp�ðoC= �Mg;T
ÞÞ and

ct ¼ s�t ðoC= �Mg;T
Þ for t 2 T.

For x 2 �Mg;T, let denote Cx the nodal curve corresponding to x (here we forget the

T-points). Let Slð �Mg;TÞ be the set of all irreducible components of the closed set

fx 2 �Mg;T j #ðSingðCxÞÞ5 lg:

Then, every element of Slð �Mg;TÞ is of codimension l, so that it is called an l-codimen-

sional stratum of �Mg;T. Note that �Mg;T nMg;T is a normal crossing divisor in the

sense of orbifolds. Thus the normalization of an element of Slð �Mg;TÞ is Q-factorial.

Moreover, we set

�M
½l�

g;T ¼
�Mg;T n

[
D2Slþ1ð �Mg;TÞ

D;

i.e.,

�M
½l�

g;T ¼ fx 2
�Mg;T j #ðSingðCxÞÞ4 lg:

Note that �M
½0�

g;T ¼Mg;T.

To describe the boundary of �Mg;T, we set

Ug;T ¼ fði; IÞ j i 2 Z; 04 i4 g and I � Tg n ðfð0; ;Þg [ fð0; ftgÞgt2TÞ;

Ug;T ¼ ffði; IÞ; ðj; JÞg j ði; IÞ; ðj; JÞ 2 Ug;T; iþ j ¼ g; I \ J ¼ ;; I [ J ¼ Tg:

Then, the boundary D ¼ �Mg;T nMg;T has the following irreducible decomposition:

D ¼ Dirr [
[

fði;IÞ;ðj;JÞg2Ug;T

Dfði;IÞ;ðj;JÞg:

A general point of Dirr represents a T-pointed irreducible stable curve with one node.

A general point of Dfði;IÞ;ðj;JÞg represents a T-pointed stable curve consisting of an I-

pointed smooth curve of genus i and a J-pointed smooth curve of genus j meeting

transversally at one point.
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Let dirr and dfði;IÞ;ðj;JÞg be the classes of Dirr and Dfði;IÞ;ðj;JÞg in Picð �Mg;TÞ �Q respec-

tively. Strictly speaking, dirr ¼ c1ðO �Mg;T
ðDirrÞÞ and

du ¼
1
2 c1ðO �Mg;T

ðDuÞÞ; if u= f (1,;), (g�1, T) g,

c1ðO �Mg;T
ðDuÞÞ; otherwise.

(

In the case where T ¼ ;, we denote dfði;;Þ;ðj;;Þg by dfi;jg or dminfi;jg, i.e.,

di ¼ dfi;g�ig ¼ dfði;;Þ;ðg�i;;Þg ði ¼ 1; . . . ; ½g=2�Þ

on �Mg .

Let Z; fPtgt2Tð Þ be a T-pointed stable curve of genus g over k. Let Q be a node

of Z, and ZQ the partial normalization of Z at Q. Then, the type of Q is defined

as follows:

. The case where ZQ is connected. Then, Q is of type 0.

. The case where ZQ is not connected. Let Z1 and Z2 be two connected compo-

nents of ZQ. Let i (resp. j) be the arithmetic genus of Z1 (resp. Z2). Let

I ¼ ft 2 T j Pt 2 Z1g and J ¼ ft 2 T j Pt 2 Z2g. Then, we say Q is of type

fði; IÞ; ðj; JÞg.

In the case where T ¼ ;, for simplicity, a node of type fði; ;Þ; ðj; ;Þg is said to be of

type i, where i4 j.

Let Y be a normal variety, and let f : X! Y be a T-pointed stable curve of genus g

over Y. Let Y0 be the maximal open set over which f is smooth. Assume that Y0 6¼ ;.

For x 2 X, we define multxðXÞ to be lengthOX;x
ðoX=Y=OX=YÞ. If x is the generic point

of a subvariety T, then we denote multxðXÞ by multTðXÞ. If x is closed, Y is smooth at

fðxÞ and Y n Y0 is smooth at fðxÞ, then X is locally given by fxy ¼ tmultxðXÞg around x,

where t is a defining equation of Y n Y0 around fðxÞ. Thus, if Y is a curve, then the

type of singularity at x is AmultxðXÞ�1.

Here, for u 2 Ug;T, let SðX=YÞu (resp. SðX=YÞirr) be the set of irreducible compo-

nents of Singð f Þ such that the type of s in f�1ð fðsÞÞ for a general s 2 SðX=YÞu (resp.

SðX=YÞirr) is u (resp. 0). We set

duðX=YÞ ¼
X

S2SðX=YÞu

multSðXÞf�ðSÞ
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and

dirrðX=YÞ ¼
X

S2SðX=YÞirr

multSðXÞf�ðSÞ:

Then, dirr and du are normalized to guarantee the following formula:

dirrðX=YÞ ¼ j�ðdirrÞ and duðX=YÞ ¼ j�ðduÞ

in A1ðYÞ �Q, where j : Y! �Mg;T is the induced morphism by X! Y.

1.5. THE CLUTCHING MAPS

Here let us consider the clutching maps and their properties.

Let p : X! Y be a prestable curve, i.e., p : X! Y is a flat and proper morphism

such that the geometric fibers of p are reduced curves with at most ordinary double

points. We don’t assume the connectedness of fibers. Let s1; s2 : Y! X be two non-

crossing sections such that p is smooth at points s1ðyÞ and s2ðyÞ (8y 2 Y). Then, by

virtue of [9, Theorem 3.4], we have the clutching diagram:

Roughly speaking, X0 is a prestable curve over Y obtained by identifying s1ðYÞ with

s2ðYÞ, and s is a section of X0 ! Y with p � s1 ¼ p � s2 ¼ s. For details, see [9,

Theorem 3.4].

We assume that p0: X0 ! Y is a T-pointed stable curve of genus g, and s is one of

sections of p0: X0 ! Y arising from T-points of p0 : X0 ! Y. Let j : Y! �Mg;T be the

induced morphism. Here we set L ¼ detðRp�ðoX=YÞÞ, D ¼ detðRp�ðoX=Y=OX=YÞÞ and

C ¼ s�1ðoX=YÞ � s�2ðoX=YÞ. Then, we have the following.

PROPOSITION 1.5.1. For simplicity, the divisor dirr on �Mg;T is denoted by d0.

(1) j�ðlÞ ¼ L and j�ðdÞ ¼ �Cþ D, where d ¼ d0 þ
P

u2Ug;T
du.

(2) We assume that pðSingðpÞÞ 6¼ Y and every geometric fiber of p has one node at

most. Let

D ¼ D0 þ
X
u2Ug;T

Du

be the decomposition such that the node of p�1ðxÞ ðx 2 ðDtÞredÞ gives rise to a node

of type t in p0�1ðxÞ. Moreover, let a be the type of sðyÞ in p0�1ðyÞ ðy 2 YÞ. Then,
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j�ðdtÞ ¼
�Cþ Da if t=a,
Dt if t 6=a.

�

Proof. (1) Since detðRp0�ðoX0=YÞÞ ¼ detðRp�ðoX=YÞÞ, the first statement is obvious.

Thus, we can see that

j�ðdÞ ¼ detðRp0�ðoX0=Y=OX0=YÞÞ

¼ detðRp0�ðoX0=YÞÞ � detðRp0�ðOX0=YÞÞ

¼ L� detðRp0�ðOX0=YÞÞ:

On the other hand, by [9, Theorem 3.5], there is an exact sequence

0! s�ðCÞ ! OX0=Y ! p�ðOX=YÞ ! 0:

Therefore, we get (1).

(2) This is a consequence of (1). &

As a corollary, we have the following.

COROLLARY 1.5.2. ð1Þ Let a and b be nonnegative integers, and T and S non-empty

finite sets with T \ S ¼ ;, 2a� 2þ jTj > 0 and 2b� 2þ jSj > 0. Let us fix s 2 S and

t 2 T, and set T 0 ¼ T n ftg and S 0 ¼ S n fsg. Let a: �Ma;T � �Mb;B! �Maþb;T 0[S 0 be the

clutching map, and p : �Ma;T � �Mb;S ! �Ma;T and q: �Ma;T � �Mb;S ! �Mb;S the projec-

tion to the first factor and the projection to the second factor respectively. We set

divisors D 2 Picð �Maþb;T 0[S 0 Þ �Q, E 2 Picð �Ma;TÞ �Q and F 2 Picð �Mb;SÞ �Q as

follows:

D ¼ clþ
X

l2T 0[S 0

dlcl þ eirrdirr þ
X

fði;IÞ;ðj;JÞg2Uaþb;T 0[S 0

efði;IÞ;ðj;JÞgdfði;IÞ;ðj;JÞg;

E ¼ cl� efða;T 0Þ;ðb;S 0Þgct þ
X
l2T 0

dlcl þ eirrdirrþ

þ
X

fði 0;I 0Þ;ðj 0;J0Þg2Ua;T
t2 J0

efði 0;I 0Þ;ðj 0þb;J0[S 0nftgÞgdfði 0;I 0Þ;ðj 0;J0Þg;

F ¼ cl� efða;T 0Þ;ðb;S 0Þgcs þ
X
l2S 0

dlcl þ eirrdirrþ

þ
X

fði 00;I 00Þ;ðj 00;J00Þg2Ub;S

s2 J00

efði 00;I 00Þ;ðj 00þa;J00[T 0nfsgÞgdfði 00;I 00Þ;ðj 00;J00Þg:

Then a�ðDÞ ¼ p�ðEÞ þ q�ðFÞ.

ð2Þ Let g be a nonnegative integer and T a finite set with jTj5 2 and 2g� 2þ

jTj > 0. Let us fix two elements t; t0 2 T, and set T 0 ¼ T n ft; t0g. Let
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b : �Mg;T ! �Mgþ1;T 0 be the clutching map. We set D 2 Picð �Mgþ1;T 0 Þ �Q and

E 2 Picð �Mg;TÞ �Q as follows:

D ¼ clþ
X
l2T 0

dlcl þ eirrdirr þ
X

fði;IÞ;ðj;JÞg2Ugþ1;T 0

efði;IÞ;ðj;JÞgdfði;IÞ;ðj;JÞg;

E ¼ cl� eirrðct þ ct0 Þ þ
X
l2T 0

dlcl þ eirrdirr þ
X

fði 0;I 0Þ;ðj 0;J0Þg2Ug;T

t2I 0;t02J0

eirrdfði 0;I 0Þ;ðj 0;J0Þgþ

þ
X

fði 0;I 0Þ;ðj 0;J0Þg2Ug;T

t;t02J0

efði 0;I 0Þ;ðj 0þ1;J0nft;t0gÞgdfði 0;I 0Þ;ðj 0;J0Þg:

Then b�ðDÞ ¼ E.

Proof. In the following, for x 2 �M�;�, we denote by Cx the corresponding nodal

curve to x.

(1) If Caðx;yÞ has two nodes, then we denote by tyðx; yÞ the type of the node differ-

ent from the node arising from the clutching map. Then,

tyðx; yÞ ¼

fði 0; I 0Þ; ðj 0 þ b; J0 [ S 0 n ftgÞg; if x 2 Dfði 0;I 0Þ;ðj 0;J0Þg \ �M
½1�

a;T; y 2Mb;S and t 2 J0;

fði 00; I 00Þ; ðj 00 þ a; J00 [ T 0 n fsgÞg; if x 2Ma;T; y 2 Dfði 00;I 00Þ;ð j 00;J00Þg \ �M
½1�

b;S and s 2 J00:

Thus, we get (1) by the above proposition.

(2) In the same way as above, if CbðxÞ has two nodes, then we denote by ty0ðxÞ the

type of the node different from the node arising from the clutching map. Then,

ty0ðxÞ ¼
0; if x 2 Dirr [

S
t2I 0;t02J0 Dfði 0;I 0Þ;ðj 0;J0Þg

� �
\ �M

½1�

g;T;

fði 0; I 0Þ; ð j 0 þ 1; J0 n ft; t0gÞg; if x 2 Dfði 0;I 0Þ;ðj 0;J0Þg \ �M
½1�

g;T

and t; t0 2 J0;

8><
>:

which implies (2) by the above proposition. &

2. A Generalization of Relative Bogomolov’s Inequality

Let f : X! Y be a projective morphism of quasi-projective varieties of the relative

dimension one, and let E be a locally free sheaf on X. Let us fix a point y 2 Y.

Assume that f is smooth over y and Ejf�1ðyÞ is strongly semistable. In the paper

[11], we proved that disX=YðEÞ is weakly positive at y under the assumption that Y

is smooth. In this section, we generalize it to the case where Y is normal.

PROPOSITION 2:1 ðcharðkÞ5 0Þ. Let X and Y be algebraic varieties, and f : X! Y

a surjective and projective morphism of dim f ¼ d. Let L and A be line bundles on X. If

Y is normal, then there are Q-divisors Z0; . . . ;Zd on Y such that

c1 Rf�ðL
�n � AÞ

� �
	Q

f�ðc1ðLÞ
dþ1
Þ

ðdþ 1Þ!
ndþ1 þ

Xd
i¼0

Zin
i

�
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for all n > 0.

Proof. We set

Y 0 ¼ Y n SingðYÞ; X0 ¼ f �1ðY0Þ and f 0 ¼ f
��
X0 :

Then, we have

c1ðRf
0
� ððL

�n � AÞ
��
X0ÞÞ ¼ c1ðRf�ðL

�n � AÞÞ
��
Y0

and

f 0
� ðc1ðLjX0Þ

dþ1
Þ ¼ f�ðc1ðLÞ

dþ1
Þ

���
Y0
:

Thus, by virtue of [11, Lemma 2.3], there are Q-divisors Z0
0; . . . ;Z

0
d on Y0 such that

c1ðRf�ðL
�n � AÞÞ

��
Y0	Q

f�ðc1ðLÞ
dþ1
Þ

���
Y0

ðdþ 1Þ!
ndþ1 þ

Xd
i¼0

Z0
i n

i

for all n > 0. Let Zi be the Zariski closure of Z0
i in Y. Then, since

codimðSingðYÞÞ5 2,

c1ðRf�ðL
�n � AÞÞ 	Q

f�ðc1ðLÞ
dþ1
Þ

ðdþ 1Þ!
ndþ1 þ

Xd
i¼0

Zin
i

for all n > 0. &

THEOREM 2.2. ðcharðkÞ5 0Þ. Let X be a quasi-projective variety, Y a normal quasi-

projective variety, and f : X! Y a surjective and projective morphism of dim f ¼ 1.

Let F be a locally free sheaf on X with f�ðc1ðFÞÞ ¼ 0, and S a finite subset of Y. We

assume that f is flat over any points of S, and that, for all s 2 S, there are line bundles

L �s and M�s on the geometric fiber X�s over s such that

H0ðX�s; Sym
m
ðF�sÞ � L �sÞ ¼ H1ðX�s; Sym

m
ðF�sÞ �M �sÞ ¼ 0

for m
 0. Then, f� c2ðFÞ � c1ðFÞ
2

� �
is weakly positive over S.

Proof. The proof of this theorem is exactly the same as [11, Theorem 2.4] using

Proposition 2.1, Proposition 1.2.1 and [11, Proposition 2.2]. For reader’s con-

venience, we give the sketch of the proof of it.

Let A be a very ample line bundle on X such that A�s � L �s and A�s �M��1�s are very

ample on X�s for all s 2 S. Then, we can see the following claim in the same way as in

[11, Claim 2.4.1]

CLAIM 2.2.1. H0ðXs; Sym
mðFsÞ � A��1

s Þ ¼ H1ðXs; Sym
mðFsÞ � AsÞ ¼ 0 for all s 2 S

and m � 0.

Since X is an integral scheme of dimension greater than or equal to 2, and Xs

(s 2 S) is a one-dimensional scheme over kðsÞ, there is B 2 jA�2j such that B is
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integral, and that B \ Xs is finite for all s 2 S, i.e., B is finite over any points of S. Let

p: B! Y be the morphism induced by f. Let H be an ample line bundle on Y such

that p�ðFBÞ �H and p�ðABÞ �H are generated by global sections at any points of S,

where FB ¼ FjB and AB ¼ AjB.

By using Proposition 2.1, there are Q-divisors Z0; . . . ;Zr on Y such thatX
i5 0

ð�1Þic1ðR
if�ðSym

m
ðF� f �ðHÞÞ � A��1 � f �ðHÞÞÞ

	Q �
1

ðrþ 1Þ!
f�ðc2ðFÞ � c1ðFÞ

2
Þmrþ1 þ

Xr
i¼0

Zim
i

in the same way as in the proof of [11, Theorem 2.4]. The following claim can also be

proved in the same way as in [11, Claim 2.4.2].

CLAIM 2.2.2. If m � 0, then we have the following.

(a) c1ðR
if�ðSym

m
ðF� f �ðHÞÞ � A��1 � f �ðHÞÞÞ ¼ 0 for all i5 2.

(b) f�ðSym
m
ðF� f �ðHÞÞ � A��1 � f �ðHÞÞ ¼ 0.

(c) R1f� Symm
ðF� f �ðHÞÞ � A��1 � f �ðHÞ

� �
is free at any points of S.

(d) R1f� Sym
m
ðF� f �ðHÞÞ � A� f �ðHÞð Þ ¼ 0 around any points of S.

By (a) and (b) of Claim 2.2.2,

f�ðc2ðFÞ � c1ðFÞ
2
Þ

ðrþ 1Þ!
	Q

c1ðR
1f�ðSym

m
ðF� f �ðHÞÞ � A��1 � f �ðHÞÞÞ

mrþ1
þ
Xr
i¼0

Zi

mrþ1�i
:

Hence, it is sufficient to show that

c1ðR
1f�ðSym

m
ðF� f �ðHÞÞ � A��1 � f �ðHÞÞÞ

is semi-ample over S. This can be proved in the same way as in the proof of [11,

Theorem 2.4] by using [11, Proposition 2.2], Claim 2.2.2 and Proposition 1.2.1. &

Let C be a smooth projective curve and E a vector bundle on C. We say E is

strongly semistable if, for any finite morphisms f : C0 ! C of smooth projective

curves, f�ðEÞ is semistable. Note that if charðkÞ ¼ 0 and E is semistable, then E is

strongly semistable. As a corollary, we have the following, which can be proved in

the exactly same way as [11, Corollary 2.5].

COROLLARY 2.3 (charðkÞ5 0). Let X be a quasi-projective variety, Y a normal

quasi-projective variety, and f : X! Y a surjective and projective morphism of

dim f ¼ 1. Let E be a locally free sheaf on X and S a finite subset of Y. If, for all s 2 S,

f is flat over s, the geometric fiber X�s over s is reduced and Gorenstein, and E is strongly

semistable on each connected component of the normalization of X �s, then disX=YðEÞ is

weakly positive over S.
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Remark 2.4. (charðkÞ ¼ 0). In [11], we proved that the divisor

ð8gþ 4Þl� gdirr �
X½g=2�
i¼1

4iðg� iÞdi

on �Mg is weakly positive over any finite subsets of Mg. Here we give an alternative

proof of this inequality.

Fix a polynomial PgðmÞ ¼ ð6m� 1Þðg� 1Þ. Let Hg � Hilb
Pg

P5g�6 be a subscheme of

all tricanonically embedded stable curves, Zg � Hg � P5g�6 the universal tricanoni-

cally embedded stable curves, and fg : Zg ! Hg the natural projection. Then,

G ¼ PGL ð5g� 5Þ acts on Zg and Hg, and fg is a G-morphism. Let f : Hg! �Mg

be the natural morphism of the geometric quotient. Then, by Seshadri’s theorem

[13, Theorem 6.1], there is a finite morphism h : Y! �Mg of normal varieties with

the following properties. Let Wg be the normalization of Hg � �Mg
Y, and let

p : Wg! Hg and f0 : Wg! Y be the induced morphisms by the projections of

Hg � �Mg
Y! Hg and Hg � �Mg

Y! Y respectively. Then, we have the following.

(1) G acts on Wg, and p is a G-morphism.

(2) f0 : Wg ! Y is a principal G-bundle.

Thus, f 0g : Ug ¼ Zg �Hg
Wg!Wg is a stable curve, G acts on Ug and f 0g is a G-

morphism. Since f0 : Wg! Y is a principal G-bundle, we can easily see that Ug is

also a principal G-bundle and the geometric quotient X ¼ Ug=G gives rise to a stable

curve f : X! Y over Y. Moreover, Ug ¼Wg �Y X. Then, we have the following

commutative diagram:

Let D be the minimal closed subset of Hg such that fg is not smooth over a point of

D. Then, by [2, Theorem (1.6) and Corollary (1.9)], Zg and Hg are quasi-projective

and smooth, and D is a divisor with only normal crossings. Let D ¼
Dirr [ D1 [ � � � [ D½g=2� be the irreducible decomposition of D such that, if

x 2 Di n SingðDÞ (resp. x 2 Dirr n SingðDÞ), then f�1g ðxÞ is a stable curve with one node

of type i (resp. irreducible stable curve with one node).
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Form now on, we consider everything over �M
½1�

g . (Recall that �M
½1�

g is the set of

stable curves with one node at most.) In the following, the superscript ‘0’ means

the objects over �M
½1�

g .

In [10, x 3], we constructed a locally sheaf F on Z0
g with the following properties.

(a) F is invariant by the action of G.

(b) For each y 2 H0
g n ðD1 [ � � � [ D½g=2�Þ,

Fjf�1g ðyÞ
¼ KerðH0ðof�1g ðyÞ

Þ �Of�1g ðyÞ
! of�1g ðyÞ

Þ;

which is semistable on f�1g ðyÞ.

(c) disZ0
g=H

0
g
ðF Þ ¼ ð8gþ 4Þ detðp�ðoZ0

g=H
0
g
ÞÞ � gD0

irr �
P g

2½ �
i¼1 4iðg� iÞD0

i .

Then, p0�ðF Þ is a G-invariant locally free sheaf on U0
g, so that p0�ðF Þ can be des-

cended to X0 because Ug ! X is a principal G-bundle. Namely, there is a locally

free sheaf F 0 on X0 such that f00�ðF 0Þ ¼ p0�ðF Þ. Therefore, by Lemma 1.3.1,

f0�ðdisX0=Y0 ðF0ÞÞ ¼ p�ðdisZ0
g=H

0
g
ðF ÞÞ. On the other hand, if we set

D ¼ ð8gþ 4Þl� gdirr �
Xg

2½ �

i¼1

4iðg� iÞdi;

then f�ðD0Þ ¼ disZ0
g=H

0
g
ðFÞ. Therefore, we get f0�ðh�ðD0ÞÞ ¼ f0�ðdisX0=Y0 ðF0ÞÞ, which

implies that h�ðD0Þ ¼ disX 0=Y 0 ðF0Þ because PicðWgÞ
G
¼ PicðYÞ. Moreover, by

Corollary 2.3, disX 0=Y 0ðF0Þ is weakly positive over any finite subsets of h�1ðMgÞ.

Thus, h�ðdisX0=Y0 ðF0ÞÞ ¼ degðhÞD0 is weakly positive over any finite subsets of Mg

by (2) of Proposition 1.1.2. Hence, D is weakly positive over any finite subsets of

Mg because codimð �Mg n �M
½1�

g Þ5 2.

3. A Certain Kind of Hyperelliptic Fibrations

We say f : X! Y is a hyperelliptic fibered surface of genus g if X is a smooth pro-

jective surface, Y is a smooth projective curve, the generic fiber of f is a smooth

hyperelliptic curve of genus g. Let Y0 be the maximal open set of Y such that f is

smooth over Y0. Then, the hyperelliptic involution of the generic fiber extends to

an automorphism of X0 ¼ f�1ðY0Þ over Y0. We denote this automorphism by j.

Clearly, the order of j is 2, namely, j 6¼ idX0
and j2 ¼ idX0

. Let G be a section of

f : X! Y and G0 ¼ G \ X0. By abuse of notation, we denote by jðGÞ the Zariski clo-
sure of jðG0Þ. The purpose of this section is to show the existence of a special kind of

hyperelliptic fibered surfaces as described in the following propositions.

PROPOSITION 3.1 ðcharðkÞ ¼ 0Þ. For fixed integers g and i with g5 2 and

04 i4 g� 1, there is a hyperelliptic fibered surface f : X! Y of genus g, and a

section G of f such that
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ð1Þ Singð f Þ 6¼ ;, jðGÞ ¼ G,
ð2Þ every singular fiber of f is a reduced curve consisting of a smooth projective curve of

genus i and a smooth projective curve of genus g� i meeting transversally at one

point, and that

ð3Þ G intersects with the component of genus g� i on every singular fiber.

PROPOSITION 3.2 ðcharðkÞ ¼ 0Þ. For fixed integers g and i with g5 2 and

04 i4 g, there is a hyperelliptic fibered surface f: X! Y of genus g, and a section G
of f such that

ð1Þ Singð f Þ 6¼ ;, jðGÞ \ G ¼ ;,
ð2Þ every singular fiber of f is a reduced curve consisting of a smooth projective curve of

genus i and a smooth projective curve of genus g� i meeting transversally at one

point, and that

ð3Þ G intersects with the component of genus g� i on every singular fiber.

PROPOSITION 3.3 ðcharðkÞ ¼ 0Þ. For fixed integers g and i with g5 2 and

04 i4 g� 1, there is a hyperelliptic fibered surface f : X! Y of genus g, and a

section G of f such that

ð1Þ Singð f Þ 6¼ ;, jðGÞ ¼ G,
ð2Þ every singular fiber of f is a reduced curve consisting of a smooth projective curve of

genus i and a smooth projective curve of genus g� i� 1 meeting transversally at

two points, and that

ð3Þ G intersects with the component of genus g� i� 1 on every singular fiber.

PROPOSITION 3.4 ðcharðkÞ ¼ 0Þ. For fixed integers g and i with g5 2 and

04 i4 g� 1, there is a hyperelliptic fibered surface f : X! Y of genus g, and a

section G of f such that

ð1Þ Singð f Þ 6¼ ;, jðGÞ \ G ¼ ;,
ð2Þ every singular fiber of f is a reduced curve consisting of a smooth projective curve of

genus i and a smooth projective curve of genus g� i� 1 meeting transversally at

two points, and that

ð3Þ G intersects with the component of genus g� i� 1 on every singular fiber.

PROPOSITION 3.5 ðcharðkÞ ¼ 0Þ. For fixed integers g and i with g5 2 and

14 i4 g� 1, there is a hyperelliptic fibered surface f : X! Y of genus g, and non-

crossing sections G1 and G2 of f such that

ð1Þ Singð f Þ 6¼ ;, jðG1Þ ¼ G1, jðG2Þ ¼ G2,

ð2Þ every singular fiber of f is a reduced curve consisting of a smooth projective curve of

genus i and a smooth projective curve of genus g� i meeting transversally at one

point,
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ð3Þ G1 and G2 gives rise to a 2-pointed stable curve ð f : X! Y;G1;G2Þ, and that

ð4Þ the type of x in f�1ð fðxÞÞ as 2-pointed stable curve is fði; f1gÞ; ðg� i; f2gÞg for all

x 2 Singð f Þ.

Let us begin with the following lemma.

LEMMA 3.6 ðcharðkÞ ¼ 0Þ. For nonnegative integers a1 and a2, there are a morphism

f1 : X1! Y1 of smooth projective varieties, an effective divisor D1 on X1, a line bundle

L1 on X1, a line bundle M1 on Y1, and noncrossing sections G1 and G2 of f1 : X1! Y1

with the following properties.

ð1Þ dimX1 ¼ 2 and dimY1 ¼ 1.

ð2Þ Let S1 be the set of all critical values of f1, i.e., P 2 S1 if and only if f�11 ðPÞ is a

singular variety. Then, for any P 2 Y1 n S1, f
�1
1 ðPÞ is a smooth rational curve.

ð3Þ S1 6¼ ;, and for any P 2 S1, f
�1
1 ðPÞ is a reduced curve consisting of two smooth

rational curves E1
P and E2

P joined at one point transversally.

ð4Þ D1 is smooth and f1
��
D1
: D1 ! Y1 is etale.

ð5Þ ðE1
P �D1Þ ¼ a1 þ 1 and ðE2

P �D1Þ ¼ a2 þ 1 for any P 2 S1. Moreover, D1 does not

pass through E1
P \ E

2
P.

ð6Þ There is a map s: S1! f1; 2g such that

D1 2 L�a1þa2þ21 � f �1 ðM1Þ �OX1
�
X
P2S1

ðasðPÞ þ 1ÞE
sðPÞ
P

 !�����
�����:

ð7Þ degðM1Þ is divisible by ða1 þ 1Þða2 þ 1Þ.

ð8Þ

G1 2 L1 �OX1
�
X
P2S1

sðPÞ¼1

E1
P

0
BB@

1
CCA

��������

�������� and G2 2 L1 �OX1
�
X
P2S1

sðPÞ¼2

E2
P

0
BB@

1
CCA

��������

��������:
Moreover,

ðD1 � G1Þ ¼ ðD1 � G2Þ ¼ 0 and ðEi
P � GjÞ ¼

0 if i 6¼ j;
1 if i ¼ j:

�

Proof. We can prove this lemma in the exactly same way as in [11, Lemma A.1]

with a slight effort. We use the notation in [11, Lemma A.1]. Let F1 and F2 be curves

in P1
ðX;YÞ � P1

ðS;TÞ defined by fX ¼ 0g and fX ¼ Yg respectively. Note that

F1 ¼ p�1ðð0 : 1ÞÞ; F2 ¼ p�1ðð1 : 1ÞÞ;

D00 ¼ p�1ðð1 : 0ÞÞ; ðD0 � F1Þ ¼ ðD
0 � F2Þ ¼ 1;

D0 \ F1 ¼ fQ1g and D0 \ F2 ¼ fQ2g:
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Then, since

u�1ðF1Þ ¼ p�11 ðð0 : 1ÞÞ and u�1ðF2Þ ¼ p�11 ðð1 : 1ÞÞ;

in [11, Claim A.1.3], we can see that each tangent of u�1ðDÞ at Qi;j (i ¼ 1; 2) is different

from u�1ðFiÞ.

Let Gi be the strict transform of u�1ðFiÞ by m1: Z1 ! P1
ðX;YÞ � Y. Then,

Gi 2 m�1ðp
�
1ðOP1 ð1ÞÞÞ �OZ1

�
X
j

Ei;j

 !�����
�����:

Thus, if we set Gi ¼ ðv1Þ�ðGiÞ, then we get our lemma. &

In the following proofs, we use the notation in [11, Proposition A.2 and

Proposition A.3].

The proof of Proposition 3.1. We apply Lemma 3.6 to the case where a1 ¼ 2i and

a2 ¼ 2g� 2i� 1. We replace D2 by D2 þ G2 and a2 by a2 þ 1. Then, (4), (5) and (6)

hold for the new D2 and a2. Thus, we can construct f : X! Y in exactly same way as

in [11, Proposition A.2]. Since u�2ðG2Þ is the ramification locus of m3, G ¼ h�ðu�2ðG2ÞÞred
is a section of f3. Thus, if we set G ¼ v3ðGÞ, then we have our desired example.

The proof of Proposition 3.2. Applying Lemma 3.6 to the case where a1 ¼ 2i and

a2 ¼ 2g� 2i, we can construct f : X! Y in exactly same way as in [11,

Proposition A.2]. Here let us consider u�2ðG2Þ. Then, u
�
2ðG2Þ is a section of f2 such that

u�2ðG2Þ \ ðD2 þ BÞ ¼ ;, ðu�2ðG2Þ � E
1

QÞ ¼ 0 and ðu�2ðG2Þ � E
2

QÞ ¼ 1 for all Q 2 S2. Here

we set G0 ¼ n3ðm�3ðu
�
2ðG2ÞÞÞ. Then, since m�3ðu

�
2ðG2ÞÞ does not intersect with the rami-

fication locus of m3, G
0 is etale over Y. Moreover, we can see ðG0 � C1

QÞ ¼ 0 and

ðG0 � C2
QÞ ¼ 2 for all Q 2 S2. If G0 is not irreducible, then we choose G as one of

irreducible component of G0. If G0 is irreducible, then we consider X�Y G! G and

the natural section of X�Y G! G. Then we get our desired example.

The proof of Proposition 3.3. We apply Lemma 3.6 to the case where a1 ¼ 2iþ 1

and a2 ¼ 2g� 2i� 2. We replace D2 by D2 þ G2 and a2 by a2 þ 1. Then, (4), (5) and

(6) hold for the new D2 and a2. Note that degðM1Þ is even. Thus, we can get a double

covering m : X! X1 in exactly same way as in [11, Proposition A.3]. Let f : X! Y1

be the induced morphism, and G ¼ m�ðG2Þred. Then, we have our desired example.

The proof of Proposition 3.4. Applying Lemma 3.6 to the case where a1 ¼ 2iþ 1

and a2 ¼ 2g� 2i� 1, we can get a double covering m : X! X1 in exactly same way

as in [11, Proposition A.3]. Let f : X! Y1 be the induced morphism and

G0 ¼ m�ðG2Þ. Then, G0 is etale over Y1. If G0 is not irreducible, then we choose G as

one of irreducible component of G0. If G0 is irreducible, then we consider

X�Y1
G! G and the natural section of X�Y1

G! G. Then we get our desired

example.
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The proof of Proposition 3.5. We apply Lemma 3.6 to the case where a1 ¼ 2i� 1

and a2 ¼ 2g� 2i� 1. We replace D1 by D1 þ G1, D2 by D2 þ G2, a1 by a1 þ 1, and a2
by a2 þ 1. Then, (4), (5) and (6) hold for the new D1, D2, a1 and a2. Thus, we can

construct f : X! Y in exactly same way as in [11, Proposition A.2]. Since u�2ðG1Þ and

u�2ðG2Þ are the ramification locus of m3, G1 ¼ h�ðu�2ðG1ÞÞred and G2 ¼ h�ðu�2ðG2ÞÞred are

sections of f3. Thus, if we set G1 ¼ n3ðG1Þ and G2 ¼ n3ðG2Þ, then we have our desired

example.

Remark 3.7. As a variant of [11, Lemma A.1], we have the following: For non-

negative integers a1 and a2, there are a morphism f1 : X1! Y1 of smooth projective

varieties, and noncrossing sections G1; . . . ;Ga1þa2þ2 of f1 : X1! Y1 with the fol-

lowing properties:

(1) dimX1 ¼ 2 and dimY1 ¼ 1.

(2) Let S1 be the set of all critical values of f1, i.e., P 2 S1 if and only if f�11 ðPÞ is a

singular variety. Then, for any P 2 Y1 n S1, f
�1
1 ðPÞ is a smooth rational curve.

(3) S1 6¼ ;, and for any P 2 S1, f
�1
1 ðPÞ is a reduced curve consisting of two smooth

rational curves E1
P and E2

P joined at one point transversally.

(4) If we set D1 ¼ G1 þ � � � þ Ga1þa2þ2, then ðE1
P �D1Þ ¼ a1 þ 1 and ðE2

P �D1Þ ¼

a2 þ 1 for any P 2 S1.

This can be proved by taking an etale pull-back of Y1 in [11, Lemma A.1]. Prof.

Keel pointed out that the above implies the following: Let Sn be the nth symmetric

group, and �M0;n=Sn the quotient of �M0;n by the natural action of Sn. Let D be a Q-

divisor on �M0;n=Sn. Then D is nef over M0;n=Sn if and only if D is Q-linearly equiva-

lent to an effective sum of boundary components.

Finally, let us consider the following two lemmas, which will be used in the later

section.

LEMMA 3.8 ðcharðkÞ5 0Þ. Let X be a smooth projective surface and Y a smooth

projective curve. Let f : X! Y be a surjective morphism with connected fibers, and let

L be a line bundle on X. If LjXZ
gives rise to a torsion element of PicðXZÞ on the generic

fiber XZ of f and degðLjFÞ ¼ 0 for every irreducible component F of fibers, then we have

ðL2Þ ¼ 0.

Proof. Replacing L by L�n (n 6¼ 0), we may assume that LjXZ
’ OXZ . Thus, f�ðLÞ is

a line bundle on Y, and the natural homomorphism f �f�ðLÞ ! L is injective. Hence,

there is an effective divisor E on X such that f �f�ðLÞ �OXðEÞ ’ L. Since

f �f�ðLÞ ! L is surjective on the generic fiber, E is a vertical divisor. Moreover,

ðE � FÞ ¼ 0 for every irreducible component F of fibers. Therefore, by Zariski’s

lemma, ðE2Þ ¼ 0. Hence, ðL2Þ ¼ ðE2Þ ¼ 0. &

LEMMA 3.9 ðcharðkÞ5 0Þ. Let C be a smooth projective curve of genus g5 2. Let W
be a line bundle on C with W�2 ¼ oC. Let D be the diagonal of C� C, and
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p : C� C! C and q : C� C! C the projection to the first factor and the projection

to the second factor respectively. Then, p�ðW�nÞ � q�ðW�nÞ �OC�Cððn� 1ÞDÞ is gen-

erated by global sections for all n5 3.

Proof. Since p�ðW�nÞ � q�ðW�nÞ is generated by global sections, the base locus of

p�ðW�nÞ � q�ðW�nÞ �OC�Cððn� 1ÞDÞ is contained in D. Moreover,

p�ðW�nÞ � q�ðW�nÞ �OC�Cððn� 1ÞDÞ
��
D’ oC:

Thus, it is sufficient to see that

H0ðp�ðW�nÞ � q�ðW�nÞ �OC�Cððn� 1ÞDÞÞ

! H0ðp�ðW�nÞ � q�ðW�nÞ �OC�Cððn� 1ÞDÞ
��
DÞ

is surjective.

We define Ln;i to be

Ln;i ¼ p�ðW�nÞ � q�ðW�nÞ �OC�CðiDÞ:

Then, it suffices to check H1ðLn;n�2Þ ¼ 0 for the above assertion. By induction on i,

we will see that H1ðLn;iÞ ¼ 0 for 04 i4 n� 2.

First of all, note that H1ðW�nÞ ¼ 0 for n5 3. Thus,

H1ðp�ðW�nÞ � q�ðW�nÞÞ ¼ H1ðp�ðp
�ðW�nÞ � q�ðW�nÞÞÞ ¼ H1ðW�nÞ �H1ðW�nÞ ¼ 0:

Moreover, let us consider the exact sequence

0! Ln;i�1! Ln;i ! Ln;i

��
D! 0:

Here since Ln;i

��
D’ o�n�iC , H1ðLn;i

��
DÞ ¼ 0 if i4 n� 2. Thus, by the hypothesis of

induction, we can see H1ðLn;iÞ ¼ 0. &

4. Slope Inequalities on �Mg;T

Let g be a nonnegative integer and T a finite set with 2g� 2þ jTj > 0. Recall that

Ug;T ¼ fði; IÞ j i 2 Z; 04 i4 g and I � Tg n ðfð0; ;Þg [ fð0; ftgÞgt2TÞ;

Ug;T ¼ ffði; IÞ; ð j; JÞg j ði; IÞ; ðj; JÞ 2 Ug;T; iþ j ¼ g; I \ J ¼ ;; I [ J ¼ Tg:

For a subset L of T, let us introduce a function gL : Ug;T � Ug;T! Z given by

gLðði; IÞ; ðj; JÞÞ ¼ det
i jL \ Ij

j jL \ Jj

� �
þ jL \ Ij

� �
�

� det
i jL \ Ij

j jL \ Jj

� �
� jL \ Jj

� �
:
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Note that gLðði; IÞ; ðj; JÞÞ ¼ gLððj; JÞ; ði; IÞÞ, so that gL gives rise to a function on Ug;T.

Further, a Q-divisor yL on �Mg;T is defined to be

yL ¼ 4ðg� 1þ jLjÞðg� 1Þ
X
t2L

ct � 12jLj2lþ jLj2dirr �
X
u2Ug;T

4gLðuÞdu:

Then, we have the following.

THEOREM 4.1 ðcharðkÞ5 0Þ. For any subset L of T, the divisor yL is weakly positive

over any finite subsets of Mg;T.

Proof. Clearly, we may assume T ¼ ½n� for some nonnegative integer n. Let us take

an n-pointed stable curve f : X! Y such that the induced morphism h : Y! �Mg;½n�

is a finite and surjective morphism of normal varieties. Let Y0 be the maximal Zariski

open set of Y over which f is smooth. Let Y n Y0 ¼ B1 [ � � � [ Bs be the irreducible

decomposition of Y n Y0. By using [3, Lemma 3.2], we can take a Zariski open set Y1

with the following properties.

(1) codimðY n Y1Þ5 2 and Y0 � Y1.

(2) Y1 is smooth at any points of Y1 \ ðY n Y0Þ.

(3) f : Singð f Þ \ f�1ðY1Þ ! fðSingð f ÞÞ \ Y1 is an isomorphism, so that for all y 2 Y1,

the number of nodes of f�1ðyÞ is one at most.

(4) There is a projective birational morphism f : Z1! X1 ¼ f�1ðY1Þ such that if we

set f1 ¼ f � f, then Z1 is smooth at any points of Singð f1Þ \ f
�1
1 ðY n Y0Þ and

f1 : Z1 ! Y1 is an n-pointed semi-stable curve. Moreover, f is an isomorphism

over X1 n Singð f Þ.

(5) For each l ¼ 1; . . . ; s, there is a tl such that multxðXÞ ¼ tl þ 1 for all x 2 Singð f Þ

with fðxÞ 2 Bl \ Y1.

Let K0 be a subset of f1; . . . ; sg such that f�1ðxÞ is irreducible for all x 2 Bl \ Y1,

and let K1 ¼ f1; . . . ; sg n K0. For each l 2 K1, there is a ðgl; IlÞ; ðhl; JlÞ 2 Ug;½n� such

that the type of x is fðgl; IlÞ; ðhl; JlÞg for all x 2 SingðfÞ with fðxÞ 2 Bl \ Y1. From

now on, by abuse of notation, we denote Bl \ Y1 by Bl. For l 2 K1, f
�1
1 ðBlÞ has

two essential components T1
l and T2

l , and the components of ð�2Þ-curves

E1; . . . ;Etl such that T1
l ! Bl is an Il-pointed smooth curve of genus gl and

T2
l ! Bl is a Jl-pointed smooth curve of genus hl. Moreover, the numbering of

E1; . . . ;Etl is arranged as the following figure:

Let G1; . . . ;Gn be the sections of the n-pointed stable curve of f : X! Y. By abuse

of notation, the lifting of Ga to Z1 is also denoted by Ga. Here we consider a line
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bundle L on Z1 given by

L ¼ o�jLjZ1=Y1
�OZ1

�ð2g� 2Þ
X
a2L

Ga þ
X
l2K1

jLjð2gl � 1Þ � ð2g� 2ÞjL \ Iljð Þ ~T1
l

 !
;

where

~T1
l ¼ ðtl þ 1ÞT1

l þ
Xtl
a¼1

ðtl þ 1� aÞEa:

We set E ¼ OX1
� L. Then, disX1=Y1

ðEÞ ¼ �ðf1Þ�ðc1ðLÞ
2
Þ. Here, we know the follow-

ing formulae:

f�ðc1ðoZ1=Y1
Þ � ~T1

l Þ ¼ ðtl þ 1Þð2gl � 1ÞBl;

f�ð ~T
1
l �

~T1
l0 Þ ¼

0; if l 6¼ l0;

�ðtl þ 1ÞBl; if l ¼ l0

�

f�
X
a2L

Ga � ~T
1
l

 !
¼ ðtl þ 1ÞjL \ IljBl;

f�ðc1ðoZ1=Y1
Þ � GaÞ ¼ �f�ðGa � GaÞ (adjunction formula);

12 detðf�ðoZ1=Y1
ÞÞ �

Xs
l¼1

ðtl þ 1ÞBl ¼ f�ðc1ðoZ1=Y1
Þ
2
Þ (Noether’s formula):

Thus, we can see that

disZ1=Y1
ðEÞ¼4ðg�1þjLjÞðg�1Þf� c1ðoZ1=Y1

Þ �
X
a2L

Ga

 !
�12jLj2detðf�ðoZ1=Y1

ÞÞþ

þ
X
l2K0

jLj2ðtlþ1ÞBl�
X
l2K1

4ðtlþ1ÞgLðfðgl;IlÞ;ðhl;JlÞgÞBl:

On the other hand, for y 2 Y0, let f : C0 ! f�1ðyÞ be a finite morphism of smooth

projective curves. Then, f�ðEjf�1ðyÞÞ ¼ OC0 � f�ðLjf�1ðyÞÞ and

degðf�ðLjf�1ðyÞÞÞ ¼ degðfÞdegðLjf�1ðyÞÞ ¼ 0:

Therefore, f�ðEjf�1ðyÞÞ is semistable, which means that Ejf�1ðyÞ is strongly semistable

for all y 2 Y0. Thus, by Corollary 2.3, disZ1=Y1
ðEÞ is weakly positive over any finite

subsets of Y0 as a divisor on Y1. Therefore, if we set

y0L ¼ 4ðg� 1þ jLjÞðg� 1Þf� c1ðoZ1=Y1
Þ �
X
a2L

Ga

 !
� 12jLj2 detðf�ðoZ1=Y1

ÞÞþ

þ
X
l2K0

jLj2ðtl þ 1ÞBl �
X
l2K1

4ðtl þ 1ÞgLðfðgl; IlÞ; ðhl; JlÞgÞBl:

on Y, then y0L is weakly positive over any finite subsets of Y0 as a divisor on Y. Here

h�ðyLÞ ¼ y0L, so that h�ðy
0
LÞ ¼ degðhÞyL by the projection formula. Hence, we have

our theorem by (2) of Proposition 1.1.2. &
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Let us apply Theorem 4.1 to the cases �Mg;1 and �Mg;2.

COROLLARY 4.2 (charðkÞ ¼ 0). Let �Mg;1 ¼ �Mg;f1g be the moduli space of one-

pointed stable curves of genus g5 1. We set di; m; y1 2 Picð �Mg;1Þ �Q as follows:

di ¼ dfði;;Þ;ðg�i;f1gÞg ð14 i4 g� 1Þ;

m ¼ ð8gþ 4Þl� gdirr �
Xg�1
i¼1

4iðg� iÞdi;

y1 ¼ 4gðg� 1Þc1 � 12lþ dirr �
Xg�1
i¼1

4iði� 1Þdi:

Then, we have the following:

(1) m and y1 are weakly positive over any finite subsets of Mg;1. In particular,

QþmþQþy1 þQþdirr þ
Xg�1
i¼1

Qþdi � Nefð �Mg;1;Mg;1Þ;

where Qþ ¼ fx 2 Q j x5 0g. (Note that m ¼ y1 ¼ 0 if g ¼ 1, and m ¼ 0 if g ¼ 2.)

(2) We assume g ¼ 1. Then, amþ by1 þ cirrdirr is nef over M1;1 if and only if cirr 5 0.

(3) We assume g5 2. If a Q-divisor

D ¼ amþ by1 þ cirrdirr þ
Xg�1
i¼1

cidi

is nef over Mg;1, then b; cirr; c1; . . . ; cg�1 are nonnegative.

Proof. (1) m is weakly positive over any finite subsets of Mg;1 by [11, Theorem B]

or Remark 2.4, and (2) of Proposition 1.1.3. Moreover, y1 is weakly positive over

any finite subsets of Mg;1 by virtue of the case T ¼ L ¼ f1g in Theorem 4.1.

(2) This is obvious because m ¼ y1 ¼ 0.

(3) We assume that D is nef over Mg;1. Let C be a smooth curve of genus g, and D
the diagonal of C� C. Let p : C� C! C be the projection to the first factor. Then,

D gives rise to a section of p. Hence, we get a morphism j1 : C! �Mg;1 with

j1ðCÞ �Mg;1. By our assumption, degðj�1ðDÞÞ5 0. On the other hand,

degðj�1ðmÞÞ ¼ degðj�1ðdirrÞÞ ¼ degðj�1ðd1ÞÞ ¼ � � � ¼ degðj�1ðdg�1ÞÞ ¼ 0

and degðj�1ðy1ÞÞ ¼ 8gðg� 1Þ2. Thus, b5 0.

Let f2 : X2! Y2 be a hyperelliptic fibered surface and G2 a section as in

Proposition 3.3 for i ¼ 0. Let j2 : Y2 ! �Mg;1 be the induced morphism. Then,

j2ðY2Þ \Mg;1 6¼ ;,

degðj�2ðmÞÞ ¼ degðj�2ðd1ÞÞ ¼ � � � ¼ degðj�2ðdg�1ÞÞ ¼ 0
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and degðj�2ðdirrÞÞ ¼ degðdirrðX2=Y2ÞÞ > 0. On the generic fiber, G2 is a ramification

point of the hyperelliptic covering. Thus,

L2 ¼ oX2=Y2
�OX2

ð�ð2g� 2ÞG2Þ

satisfies the conditions of Lemma 3.8. Thus, ðL2
2Þ ¼ 0, which says us that

degðj�2ðy1ÞÞ ¼ 0. Therefore, we get cirr 5 0.

Finally we fix i with 14 i4 g� 1. Let f3 : X3! Y3 be a hyperelliptic fibered sur-

face and G3 a section as in Proposition 3.1. Let j3 : Y3! �Mg;1 be the induced

morphism. Then, j3ðY3Þ \Mg;1 6¼ ;, degðj�3ðmÞÞ ¼ 0, degðj�3ðdlÞÞ ¼ 0 (l 6¼ i) and

degðj�3ðdiÞÞ ¼ degðdiðX3=Y3ÞÞ > 0. Let S3 be the set of critical values of f3. For each

P 2 S3, let EP be the component of genus i in f�13 ðPÞ. On the generic fiber, G2 is a

ramification point of the hyperelliptic covering. Thus,

L3 ¼ oX3=Y3
�OX3

�ð2g� 2ÞG3 þ
X
P2S3

ð2i� 1ÞEP

 !

satisfies the conditions of Lemma 3.8. Therefore, ðL2
3Þ ¼ 0, which says us that

degðj�3ðy1ÞÞ ¼ 0. Hence, we get ci 5 0. &

COROLLARY 4.3 (charðkÞ ¼ 0). Let �Mg;2 ¼ �Mg;f1;2g be the moduli space of two-

pointed stable curves of genus g5 2. We set di; si; m; y1;2 2 Picð �Mg;2Þ �Q as follows:

di ¼ dfði;;Þ;ðg�i;f1;2gÞg ð14 i4 gÞ;

si ¼ dfði;f1gÞ;ðg�i;f2gÞg ð14 i4 g� 1Þ;

m ¼ ð8gþ 4Þl� gdirr �
Xg�1
i¼1

4iðg� iÞsi �
Xg
i¼1

4iðg� iÞdi;

y1;2 ¼ ðg� 1Þðgþ 1Þðc1 þ c2Þ � 12lþ dirr�

�
Xg�1
i¼1

ð2i� g� 1Þð2i� gþ 1Þsi �
Xg
i¼1

4iði� 1Þdi:

Then, we have the following:

(1) m and y1;2 are weakly positive over any finite subsets of Mg;2. In particular,

QþmþQþy1;2 þQþdirr þ
Xg�1
i¼1

Qþsi þ
Xg
i¼1

Qþdi � Nefð �Mg;2;Mg;2Þ:

(2) If a Q-divisor

D ¼ amþ by1;2 þ cirrdirr þ
Xg�1
i¼1

cisi þ
Xg
i¼1

didi

on �Mg;2 is nef over Mg;2, then

b5 0; cirr 5 0; ci 5 0 ð8i ¼ 1; . . . ; g� 1Þ; di 5 0 ð8i ¼ 1; . . . ; gÞ:
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(3) Here we set s, m0 and y01;2 as follows:

s ¼ dirr þ
Xg�1
i¼1

si;

m0 ¼ ð8gþ 4Þl� gs�
Xg
i¼1

4iðg� iÞdi;

y01;2 ¼ ðg� 1Þðgþ 1Þðc1 þ c2Þ � 12lþ s�
Xg
i¼1

4iði� 1Þdi:

Then, we have

Qþm0 þQþy
0
1;2 þQþsþ

Xg
i¼1

Qþdi � Nefð �Mg;2;Mg;2Þ:

Moreover, if a Q-divisor am0 þ by01;2 þ csþ
Pg

i¼1 didi on �Mg;2 is nef over Mg;2, then

b, c, d1; . . . ; dg are nonnegative.

Proof. (1) By [11, Theorem B] or Remark 2.4, and (2) of Proposition 1.1.3, m is

weakly positive over any finite subsets of Mg;2. Further, y1;2 is weakly positive over

any finite subsets of Mg;2 by the case T ¼ L ¼ f1; 2g in Theorem 4.1.

(2) We assume that D is nef over Mg;2. Let C be a smooth curve of genus g, and D
the diagonal of C� C. Let p : C� C! C and q : C� C! C be the projection to

the first factor and the second factor respectively. Moreover, let W be a line bundle

on C with W�2 ¼ oC and Ln ¼ p�ðW�nÞ � q�ðW�nÞ �OC�Cððn� 1ÞDÞ. For n5 3, let

Tn be a general member of Lnj j. Then, since ðL
2
nÞ > 0, by Lemma 3.9, Tn is smooth

and irreducible. Moreover, Tn meets D transversally. Then, we have two morphisms

pn : Tn ! C and qn : Tn! C given by Tn,!C� C �!
p

C and Tn,!C� C �!
q

C

respectively. Let Gpn and Gqn be the graph of pn and qn in C� Tn respectively. Then,

it is easy to see that Gpn and Gqn meet transversally, and ðGpn � Gqn Þ ¼

ðTn � DÞ ¼ 2g� 2. Let X! C� Tn be the blowing-ups at points in Gpn \ Gqn , and

let Gpn and Gqn be the strict transform of Gpn and Gqn respectively. Then, Gpn and

Gqn give rise to two noncrossing sections of X! Tn. Moreover,

ðoX=Tn
� GpnÞ ¼ ðoC�Tn=Tn

� GpnÞ ¼ 2ðg� 1ÞdegðGpn ! CÞ ¼ 2ðg� 1Þðng� 1Þ:

In the same way, ðoX=Tn
� Gqn Þ ¼ 2ðg� 1Þðng� 1Þ. Let pn : Tn! �Mg;2 be the induced

morphism. Then, we can see that

degðp�nðlÞÞ ¼ degðp�nðsiÞÞ ¼ degðp�nðdiÞÞ ¼ 0; for all i ¼ 1; . . . ; g� 1:

Moreover,

degðp�nðc1 þ c2ÞÞ ¼ 4ðg� 1Þðng� 1Þ and degðp�nðdgÞÞ ¼ 2ðg� 1Þ:
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Thus,

degðp�nðDÞÞ ¼ 4ðgþ 1Þðg� 1Þ2ðng� 1Þb� 8gðg� 1Þ2dg 5 0

for all n5 3. Therefore, we get b5 0.

Let f2 : X2! Y2 be a hyperelliptic fibered surface and G2 a section as in

Proposition for i ¼ 0. Then, G2 and jðG2Þ gives two points of X2 over Y2. Let

j2 : Y2! �Mg;2 be the induced morphism. Then, j2ðY2Þ \Mg;2 6¼ ;, degðj�2ðmÞÞ ¼ 0,

degðj�2ðsiÞÞ ¼ 0 for all i ¼ 1; . . . ; g� 1, and degðj�2ðdiÞÞ ¼ 0 for all i ¼ 1; . . . ; g.

Moreover, degðj2ðdirrÞÞ > 0. On the generic fiber, two points arising from G2 and

jðG2Þ are invariant under the action of the hyperelliptic involution. Thus,

L2 ¼ oX2=Y2
�OX2

ð�ðg� 1ÞðG2 þ jðG2ÞÞ

satisfies the conditions of Lemma 3.8. Thus, ðL2
2Þ ¼ 0, which says us that

degðj�2ðy1;2ÞÞ ¼ 0. Thus, we get cirr 5 0.

We fix i with 14 i4 g. Let f3 : X3 ! Y3 be a hyperelliptic fibered surface and G3 a

section as in Proposition 3.2. Let j3 : Y3! �Mg;2 be the induced morphism arising

from the 2-pointed curve f f3 : X3! Y3;G3; jðG3Þg. Then, j3ðY3Þ \Mg;2 6¼ ;,

degðj�3ðmÞÞ ¼ 0, degðj�3ðssÞÞ ¼ 0 (8s ¼ 1; . . . ; g� 1), degðj�3ðdsÞÞ ¼ 0 (8s 6¼ i) and

degðj�3ðdiÞÞ ¼ degðdiðX3=Y3ÞÞ > 0. Let S3 be the set of critical values of f3. For each

P 2 S3, let EP be the component of genus i in f�13 ðPÞ. On the generic fiber, two points

arising from G2 and jðG2Þ are invariant under the action of the hyperelliptic involu-

tion. Thus,

L3 ¼ oX3=Y3
�OX3

�ðg� 1ÞðG3 þ jðG3ÞÞ þ
X
P2S3

ð2i� 1ÞEP

 !

satisfies the conditions of Lemma 3.8. Therefore, ðL2
3Þ ¼ 0, which says us that

degðj�3ðy1;2ÞÞ ¼ 0. Hence, we get di 5 0.

Finally we fix i with 14 i4 g� 1. Let f4 : X4! Y4 be a hyperelliptic fibered sur-

face and G4;G04 sections as in Proposition 3.5. Let j4 : Y4! �Mg;2 be the induced

morphism. Then, j4ðY4Þ \Mg;2 6¼ ;, degðj�4ðmÞÞ ¼ 0, degðj�4ðdsÞÞ ¼ 0 (8s),

degðj�4ðssÞÞ ¼ 0 (8s 6¼ i), and degðj�4ðsiÞÞ > 0. Let S4 be the set of critical values of

f4. For each P 2 S4, let EP be the component of genus i in f�14 ðPÞ. On the generic

fiber, G4 and G04 are a ramification point of the hyperelliptic covering. Thus,

L4 ¼ oX4=Y4
�OX4

�ðg� 1ÞðG4 þ G04Þ þ
X
P2S4

ð2i� 1Þ � ðg� 1Þð ÞEP

 !

satisfies the conditions of Lemma 3.8. Therefore, ðL2
4Þ ¼ 0, which says us that

degðj�4ðy1;2ÞÞ ¼ 0. Hence, we get ci 5 0.
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(3) There are nonnegative integers ei and fi (14 i4 g� 1) with

m0 ¼ mþ
Xg�1
i¼1

eisi and y01;2 ¼ y1;2 þ
Xg�1
i¼1

fisi:

Thus, (3) is a consequence of (1) and (2). &

5. The Proof of the Main Result

Throughout this section, we fix an integer g5 3. The purpose of this section is to

prove the following theorem.

THEOREM 5.1 ðcharðkÞ ¼ 0Þ. A Q-divisor amþ birrdirr þ
P½g=2�

i¼1 bidi on �Mg is nef

over �M
½1�

g if and only if the following system of inequalities hold:

a5 max
bi

4iðg� iÞ
j i ¼ 1; . . . ; ½g=2�

� �
;

B0 5B1 5B2 5 � � � 5B½g=2�;

B�½g=2�5 � � � 5B�2 5B�1 5B�0;

where B0, B
�
0, Bi and B�i (i ¼ 1; . . . ; ½g=2�) are given by

B0 ¼ 4birr; B�0 ¼
4birr

gð2g� 1Þ
; Bi ¼

bi
ið2iþ 1Þ

and B�i ¼
bi

ðg� iÞð2ðg� iÞ þ 1Þ
:

Proof. In the following proof, we denote di by dfi;g�ig. Moreover, we set

ug ¼ ffi; jg j 14 i; j4 g; iþ j ¼ gg:

For a Q-divisor D ¼ amþ birrdirr þ
P
fi;jg2ug bfi;jgdfi;jg, let us consider the following

inequalities:

a5
bfs;tg
4st

ð8fs; tg 2 �vgÞ; ð5:1:1Þ

4birr 5
bfs;tg

sð2sþ 1Þ
;

bfs;tg
tð2tþ 1Þ

5
4birr

gð2g� 1Þ
ð8fs; tg 2 ug with s4 tÞ; ð5:1:2Þ

bfl;kg
lð2lþ 1Þ

5
bfs;tg

sð2sþ 1Þ
;

bfs;tg
tð2tþ 1Þ

5
bfl;kg

kð2kþ 1Þ

ð8fs; tg; fl; kg 2 ug with l < s4 t < kÞ; ð5:1:3Þ

a5 0; birr 5 0; bfs;tg5 0 ð8fs; tg 2 ugÞ: ð5:1:4Þ

Let b : �Mg�1;2! �Mg and as;t : �Ms;1 � �Mt;1! �Mg (fs; tg 2 ug) be the clutching maps.

First, we claim the following:
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CLAIM 5.1.5. The following are equivalent.

(1) b�ðDÞ is nef over Mg�1;2 and a�s;tðDÞ is nef over Ms;1 �Mt;1 for all fs; tg 2 ug
(2) (5.1.1), (5.1.2), (5.1.3) and (5.1.4) hold.

On �Mg�1;2, we define s and di (i ¼ 1; . . . ; g� 1) as in Corollary 4.3. Moreover, we

set

m0 ¼ ð8g� 4Þl� ðg� 1Þs�
Xg�1
i¼1

4iðg� 1� iÞdi;

y0 ¼ ðg� 2Þgðc1 þ c2Þ � 12lþ s�
Xg�1
i¼1

4iði� 1Þdi:

Then, by using (2) of Corollary 1.5.2, we can see

b�ðDÞ ¼
ðg� 1Þðg� 2Þð2g� 1Þa� 3birr

gðg� 2Þð2g� 1Þ
m0 þ

ag� birr
gðg� 2Þ

y0 ð5:1:aÞ

þ
ðg� 1Þð2gþ 1Þbirr

gð2g� 1Þ
sþ

Xg�1
i¼1

bfi;g�ig �
4ið2iþ 1Þ

gð2g� 1Þ
birr

� �
di:

Thus, by Corollary 4.3, if b�ðDÞ is nef over �Mg�1;2, then

ag5 birr 5 0; ð5:1:6Þ

bfi;g�ig5
4ið2iþ 1Þ

gð2g� 1Þ
birr; ði ¼ 1; . . . ; g� 1Þ: ð5:1:7Þ

Here we set m01 ¼ y01 ¼ 0 on �M1;1, and

m0e ¼
1

e� 1
ð8eþ 4Þl� edirr �

Xe�1
l¼1

4lðe� lÞdl

 !
;

y0e ¼
1

e� 1
4eðe� 1Þc1 � 12lþ dirr �

Xe�1
l¼1

4lðl� 1Þdl

 !

on �Me;1 (e5 2), where dl’s are defined as in Corollary 4.2. Let us fix fs; tg 2 ug. Then,
by using (1) of Corollary 1.5.2, we can see

a�s;tðDÞ ¼ p�ðDsÞ þ q�ðDtÞ;

where p : �Ms;1 � �Mt;1! �Ms;1 and q : �Ms;1 � �Mt;1! �Mt;1 are the projections, and

Ds 2 Picð �Ms;1Þ �Q and Dt 2 Picð �Mt;1Þ �Q are given by

Ds ¼
4ðg� 1Þsð2sþ 1Þa� 3bfs;tg

4sð2sþ 1Þ
m0s þ

4sta� bfs;tg
4s

y0s ð5:1:bÞ

þ birr �
bfs;tg

4sð2sþ 1Þ

� �
dirr þ

Xs�1
l¼1

bfl;g�lg �
lð2lþ 1Þ

sð2sþ 1Þ
bfs;tg

� �
dl
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and

Dt ¼
4ðg� 1Þtð2tþ 1Þa� 3bfs;tg

4tð2tþ 1Þ
m0t þ

4sta� bfs;tg
4t

y0s ð5:1:cÞ

þ birr �
bfs;tg

4tð2tþ 1Þ

� �
dirr þ

Xt�1
l¼1

bfl;g�lg �
lð2lþ 1Þ

tð2tþ 1Þ
bfs;tg

� �
dl:

Thus, by using Corollary 4.2 and Lemma 1.1.4, if a�s;tðDÞ is nef overMs;1 �Mt;1, then

4sta5 bfs;tg; ð5:1:8Þ

birr 5
bfs;tg

4sð2sþ 1Þ
; birr 5

bfs;tg
4tð2tþ 1Þ

; ð5:1:9Þ

bfl;g�lg5
lð2lþ 1Þ

sð2sþ 1Þ
bfs;tg ðl ¼ 1; . . . ; s� 1Þ; ð5:1:10Þ

bfl;g�lg5
lð2lþ 1Þ

tð2tþ 1Þ
bfs;tg ðl ¼ 1; . . . ; t� 1Þ: ð5:1:11Þ

Therefore, (1) implies (5.1.6)–(5.1.11). Conversely, we assume (5.1.6)–(5.1.11).

Then by using (5.1.6) and (5.1.7), we can see (5.1.4). Thus, we have

ag� birr 5 0¼)ðg� 1Þðg� 2Þð2g� 1Þa� 3birr 5 0

4sta5 bfs;tg ¼) 4ðg� 1Þsð2sþ 1Þa5 3bfs;tg and 4ðg� 1Þtð2tþ 1Þa5 3bfs;tg:

Therefore, by Corollary 4.2, Corollary 4.3 and Lemma 1.1.4, we can see that b�ðDÞ is
nef over Mg�1;2 and a�s;tðDÞ is nef over Ms;1 �Mt;1 for all fs; tg 2 ug. Hence it is suffi-

cient to see that the system of inequalities (5.1.6)–(5.1.11) is equivalent to (5.1.1)–

(5.1.3) under the assumption (5.1.4).

The case s ¼ 1, t ¼ g� 1 in (5.1.8) and the case i ¼ g� 1 in (5.1.7) produce

inequalities

4ðg� 1Þa5 bf1;g�1g and bf1;g�1g5
4ðg� 1Þ

g
birr

respectively, which gives rise to (5.1.6). Moreover, it is easy to see that (5.1.7) and

(5.1.9) are equivalent to (5.1.2), so that it is sufficient to see that (5.1.10) and

(5.1.11) are equivalent to (5.1.3).

From now on, we assume s4 t. Since sð2sþ 1Þ4 tð2tþ 1Þ, (5.1.10) and (5.1.11)

are equivalent to saying that

bfl;kg
lð2lþ 1Þ

5
bfs;tg

sð2sþ 1Þ
ð14 l < sÞ ð5:1:12Þ

bfl;kg
lð2lþ 1Þ

5
bfs;tg

tð2tþ 1Þ
ðs < l < tÞ; ð5:1:13Þ
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where k ¼ g� l. In (5.1.12), t < k4 g� 1, Thus, (5.1.12) is nothing more than

bfl;kg
lð2lþ 1Þ

5
bfs;tg

sð2sþ 1Þ
ð14 l < s4 t < k4 g� 1Þ:

Moreover, in (5.1.13), s < k < t. Thus, (5.1.13) is nothing more than

bfl;kg
kð2kþ 1Þ

5
bfs;tg

tð2tþ 1Þ
ð14 s < l4 k < t4 g� 1Þ:

Therefore, replacing fs; tg and fl; kg, we have

bfs;tg
tð2tþ 1Þ

5
bfl;kg

kð2kþ 1Þ
ð14 l < s4 t < k4 g� 1Þ:

Thus, we get Claim 5.1.5.

By Claim 5.1.5, it is sufficient to show the following claim to complete the proof of

Theorem 5.1.

CLAIM 5.1.14. ð1Þ D is nef over �M
½1�
g if and only if D is nef over Mg, b

�ðDÞ is nef
over Mg�1;2, and a�s;tðDÞ is nef over Ms;1 �Mt;1 for all fs; tg 2 ug.

(2) D is nef over Mg if and only if (5.1.4) holds.

(3) (5.1.1), (5.1.2) and (5.1.3) imply (5.1.4)

(1) is obvious because

�M½1�g ¼Mg [ bgðMg�1;2Þ [
[
fs;tg2ug

as;tðMs;1 �Mt;1Þ:

(2) is a consequence of [11, Theorem C]. For (3), let us consider the case s ¼ 1,

t ¼ g� 1 in (5.1.2). Then, we have

12birr 5 bf1;g�1g and bf1;g�1g5
4ðg� 1Þ

g
birr;

which imply birr 5 0. Thus, we can see (5.1.4) using (5.1.1) and (5.1.2). &

COROLLARY 5.2 (charðkÞ ¼ 0). Let eDirr and eDi ði ¼ 1; . . . ; ½g=2�Þ be the normal-

izations of the boundary components Dirr and Di on �Mg, and rirr : eDirr ! �Mg and

ri : eDi ! �Mg the induced morphisms. Then, a Q-divisor D on �Mg is nef over �M
½1�

g if and

only if the following are satisfied:

(1) D is weakly positive at any points of Mg.

(2) r�irrðDÞ is weakly positive at any points of r�1irr ð
�M
½1�

g Þ.
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(3) r�i ðDÞ is weakly positive at any points of r�1i ð
�M
½1�

g Þ for all i.

Proof. Let b : �Mg�1;2! �Mg be the clutching map. Then, there is a finite and

surjective morphism b0 : �Mg�1;2!
eDirr with b ¼ rirr � b

0. Further, for 14 i4 ½g=2�,
let ai;g�i : �Mi;1 � �Mg�i;1! �Mg be the clutching map. Then, there is a finite and

surjective morphism a0i;g�i : �Mi;1 � �Mg�i;1!
eDi with ai;g�i ¼ ri � a

0
i;g�i. In particular,eDirr and eDi’s are Q-factorial. Therefore, if D satisfies (1), (2) and (3), then D is nef

over �M
½1�

g .

Conversely, we assume that D is nef over �M
½1�

g . (1) is nothing more than [11,

Theorem C]. As in Theorem 5.1, we set D ¼ amþ birrdirr þ
P½g=2�

i¼1 bidi on �Mg. If we

trace-back the proof of Theorem 5.1, we can see that

b�ðDÞ 2 Qþm0 þQþy
0
þQþsþ

X
i

Qþdi:

Here m0 and y0 are weakly positive at any points of Mg�1;2 by (1) of Corollary 4.3.

Thus, so is b�ðDÞ ¼ b0�ðr�irrðDÞÞ. Therefore, by virtue of (2) of Proposition 1.1.2,

b0�ðb
�
ðDÞÞ ¼ degðb0Þr�irrðDÞ is weakly positive at any points of r�1irr ð

�M
½1�

g Þ. Finally, let

us consider (3). As in the proof of Theorem 5.1, there are Di 2 Picð �Mi;1Þ �Q and

Dg�i 2 Picð �Mg�i;1Þ �Q with a�i;g�iðDÞ ¼ p�ðDiÞ þ q�ðDg�iÞ, where p : �Mi;1�

�Mg�i;1! �Mi;1 and q : �Mi;1 � �Mg�i;1! �Mg�i;1 are the projections to the first factor

and the second factor respectively. In the same way as for b�ðDÞ, we can see that

Di (resp. Dg�i) is weakly positive at any points of Mi;1 (resp. Mg�i;1) by virtue of

(1) of Corollary 4.2. Thus, by using (2) of Proposition 1.1.3, a�i;g�iðDÞ is weakly posi-

tive at any points of Mi;1 �Mg�i;1. Therefore, we get (3) by (2) of

Proposition 1.1.2. &

COROLLARY 5.3 (charðkÞ ¼ 0). With notation as in Corollary 5.2, if r�irrðDÞ is nef
over r�1irr ð

�M
½1�

g Þ and r�i ðDÞ is nef over r�1i ð
�M
½1�

g Þ for all i, then D is nef over �M
½1�

g . In

particular, the Mori cone of �Mg is the convex hull spanned by curves lying on the

boundary �Mg nMg, which gives rise to a special case of [5, Proposition 3.1].

Proof. Let b0 : �Mg�1;2!
eDirr and a0i;g�i : �Mi;1 � �Mg�i;1 !

eDi be the same as in

Corollary 5.2. By our assumption, b�ðDÞ ¼ b0�ðr�irrðDÞÞ is nef over Mg�1;2 and

a�i;g�iðDÞ ¼ a0�i;g�iðr
�
i ðDÞÞ is nef over Mi;1 �Mg�i;1 for every i. Therefore, by

Claim 5.1.5 in Theorem 5.1, we can see that D is nef over �M
½1�

g .

Let NefDð �MgÞ be the dual cone of the convex hull spanned by curves on the bound-

ary D ¼ �Mg nMg. In order to see the last assertion of this corollary, it is sufficient to

check NefDð �MgÞ ¼ Nefð �MgÞ, which is a consequence of the first assertion. &

EXAMPLE 5.4. For example, the area of ðb0; b1Þ (resp. ðb0; b1; b2Þ) with

l� b0d0 � b1d1 (resp. l� b0d0 � b1d1 � b2d2) nef over �M
½1�

3 (resp. �M
½1�

4 ) is the inside

of the following triangle (resp. polyhedron):
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6. The Dual Cone of Nefð �Mg; �M½1�g Þ

Throughout this section, we assume that the characteristic of the base field k is zero.

We would like to describe the dual cone of Nefð �Mg; �M
½1�

g Þ. First of all, let us intro-

duce the following complete irreducible curves

C1; . . . ;C½g=2�; C�1; . . . ;C
�
½g=2�; Cy1; . . . ;C

y

½g=2�

on �Mg (Note that we denote by j the hyperelliptic involution in the following con-

texts):

C1: Let f1 : X1 ! Y1 be a nonisotrivial elliptic surface, and G1 a section of f1 such

that (1) jðG1Þ ¼ G1, and that (2) every singular fiber of f1 is an irreducible rational

curve with one node. Let j1 : Y1! �M1;1 be the induced morphism by the one-poin-

ted stable curve ðX1! Y1;G1Þ, and a1;g�1 : �M1;1 � �Mg�1;1! �Mg the clutching map.

We choose x1 2 �Mg�1;1 such that the corresponding curve is a smooth hyperelliptic

curve and the marked point is a ramification point of the hyperelliptic curve. Then,

C1 is defined to be a1;g�1ðj1ðY1Þ � fx1gÞ.

Ci (24 i4 ½g=2�): As we constructed in Proposition 3.6, let fi : Xi ! Yi be a non-

isotrivial hyperelliptic fibered surface of genus i, and Gi a section of fi such that (1)

jðGiÞ ¼ Gi, (2) every singular fiber of fi is a stable curve consisting of a smooth

projective curve of genus i� 1 and an elliptic curve meeting transversally at one
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point, and that (3) Gi intersects with the elliptic curve on every singular fiber. Let

ji : Yi ! �Mi;1 be the induced morphism by the one-pointed stable curve

ðXi ! Yi;GiÞ, and ai;g�i : �Mi;1 � �Mg�i;1! �Mg the clutching map. We choose

xi 2 �Mg�i;1 such that the corresponding curve is a smooth hyperelliptic curve and

the marked point is a ramification point of the hyperelliptic curve. Then, Ci is defined

to be ai;g�iðjiðYiÞ � fxigÞ.

C�1: As we constructed in Proposition 3.2, let f �1 : X�1 ! Y�1 be a nonisotrivial

hyperelliptic fibered surface of genus g� 1, and G�1 a section of f �1 such that (1)

jðG�1Þ \ G
�
1 ¼ ;, (2) every singular fiber of f �1 is a stable curve consisting of a smooth

projective curve of genus g� 2 and an elliptic curve meeting transversally at one

point, and that (3) G�1 intersects with the elliptic curve on every singular fiber. Let

j�1 : Y
�
1 !

�Mg�1;2 be the induced morphism by the two-pointed stable curve

ðX�1 ! Y�1;G
�
1; jðG

�
1ÞÞ, and b : �Mg�1;2! �Mg the clutching map. Then, C�1 is defined

to be bðj�1ðY
�
1ÞÞ.

C�i (24 i4 ½g=2�): As we constructed in Proposition 3.6, let f �i : X�i ! Y�i be a

nonisotrivial hyperelliptic fibered surface of genus g� iþ 1, and G�i a section of f �i
such that (1) jðG�i Þ ¼ G�i , (2) every singular fiber of f �i is a stable curve consisting

of a smooth projective curve of genus g� i and an elliptic curve meeting transver-

sally at one point, and that (3) G�i intersects with the elliptic curve on every singular

fiber. Let j�i : Y
�
i !

�Mg�iþ1;1 be the induced morphism by the one-pointed stable

curve ðX�i ! Y�i ;G
�
i Þ, and ag�iþ1;i�1 : �Mg�iþ1;1 � �Mi�1;1! �Mg the clutching map.

We choose x�i 2
�Mi�1;1 such that the corresponding curve is a smooth hyperelliptic

curve and the marked point is a ramification point of the hyperelliptic curve. Then,

C�i is defined to be ag�i�1;iþ1ðj�i ðY
�
i Þ � fx

�
i gÞ.

Cyi (14 i4 ½g=2�): Let Ti be a smooth projective curve of genus g� i, Di the diag-

onal of Ti � Ti, and pi : Ti � Ti ! Ti the projection to the first factor. Then,

ðpi : Ti � Ti ! Ti;DiÞ gives rise to a one-pointed stable curve of genus g� i over

Ti. Let ci : Ti ! �Mg�i;1 be the induced morphism by the one-pointed stable curve

ðTi � Ti ! Ti;DiÞ, and ag�i;i : �Mg�i;1 � �Mi;1! �Mg the clutching map. We choose

yi 2 �Mi;1 such that the corresponding curve is a smooth curve. Then, Cyi is defined

to be ag�i;iðciðTiÞ � fyigÞ.

PROPOSITION 6.1.

ð1Þ Ci � Di and Ci \ �M
½1�

g 6¼ ; for all 14 i4 ½g=2�.
ð2Þ C�1 � Dirr, C

�
i � Di�1 (24 i4 ½g=2�) and C�i \

�M
½1�

g 6¼ ; (14 i4 ½g=2�).
ð3Þ Cyi � Di and Cyi \

�M
½1�

g 6¼ ; for all 14 i4 ½g=2�.
ð4Þ For a Q-divisor D ¼ amþ birrdirr þ

P½g=2�
i¼1 bidi on �Mg,

ðD � CiÞ5 0()Bi�1 5Bi

ðD � C�i Þ5 0()B�i�1 4B�i

ðD � Cyi Þ5 0() 4iðg� iÞa5 bi
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ð5Þ Let �Hg be the Zariski closure of the locus of hyperelliptic curves of genus g in �Mg.

Then, Ci;C
�
i �

�Hg for all i ¼ 1; . . . ; ½g=2�.

Proof. (1), (2) and (3) are obvious by our construction. Using calculations in the

proof of Corollary 4.2 and Corollary 4.3 together with formulae (5.1.a), (5.1.b) and

(5.1.c) in the proof of Theorem 5.1, we can see (4). (5) is a consequence of the fol-

lowing well-known facts (actually they can be shown by the similar ways as in [11,

Lemma A.1, Proposition A.2 and Proposition A.3]):

(i) Let C0 and C00 be a smooth hyperelliptic curves of genus i and g� i respectively.

Let P0 2 C0 and P00 2 C00 be ramification points of the double covers C0 ! P1

and C00 ! P1. Let C be a stable curve by gluing C0 and C00 at P0 and P00. Then,

the class of C in �Mg lies in �Hg.

(ii) Let C0 be a smooth hyperelliptic curves of genus g� 1 and j : C0 ! C0 the hyper-

elliptic involution. For P 2 C0 with jðPÞ 6¼ P, let C be an irreducible stable curve

by gluing C0 at P and jðPÞ. Then, the class of C in �Mg lies in �Hg. &

COROLLARY 6.2. The dual cone of Nefð �Mg; �M
½1�

g Þ is generated by the classes of the

curves

C1; . . . ;C½g=2�; C�1; . . . ;C
�
½g=2�; Cy1; . . . ;C

y

½g=2�;

that is, X
C2Curveð �M

½1�

g Þ

Qþ½C� ¼
X½g=2�
i¼1

Qþ½Ci� þ
X½g=2�
i¼1

Qþ½C
�
i � þ

X½g=2�
i¼1

Qþ½C
y

i �;

where Curveð �M½1�g Þ is the set of all complete irreducible curve on �Mg with C \ �M
½1�

g 6¼ ;.

Moreover, a Q-divisor D ¼ amþ birrdirr þ
P½g=2�

i¼1 bidi is nef over �M
½1�

g if and only if Dj �Hg

is nef over �Hg \ �M
½1�

g and 4iðg� iÞa5 bi for all i ¼ 1; . . . ; ½g=2�.

Proof. This is a corollary of Theorem 5.1 and Proposition 6.1. &

Remark 6.3. The dual cone of Nefð �Mg;MgÞ is generated by the following complete

irreducible curves ‘; ‘0; ‘1; . . . ; ‘½g=2� on �Mg.

‘: ‘ is a complete irreducible curve in Mg.
‘0: Let f0 : X0! Y0 be a nonisotrivial hyperelliptic fibered surface of genus g such

that every singular fiber of f0 is an irreducible stable curve with one node. Let

j0 : Y0! �Mg be the induced morphism by the stable curve X0! Y0. Then, ‘0 is

defined to be j0ðY0Þ.

‘i (14 i4 ½g=2�): Let fi : Xi ! Yi be a nonisotrivial hyperelliptic fibered surface of

genus g such that every singular fiber of fi is a stable curve consisting of a smooth

projective curve of genus i and a smooth projective curve of genus g� i meeting

transversally at one point. Let ji : Yi ! �Mg be the induced morphism by the stable

curve Xi ! Yi. Then, ‘i is defined to be jiðYiÞ.
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In particular, D ¼ amþ birrdirr þ
P½g=2�

i¼1 bidi is nef overMg if and only if Dj �Hg
is nef

over Hg and a5 0.

Acknowledgement

We would like to give hearty thanks to Prof. Hain and Prof. Keel for their useful

comments and suggestions for this paper.

References

1. Cornalba, M. and Harris, J.: Divisor classes associated to families of stable varieties, with

application to the moduli space of curves, Ann. Sci. Ecole. Norm. Sup. 21 (1988), 455–475.
2. Deligne, P. and Mumford, D.: The irreducibility of the space of curves of given genus,

Publ. Math. IHES 36 (1969), 75–110.

3. De Jong, A. J.: Smoothness, semi-stability and alteration, Publ. Math. IHES 83 (1996),
51–93.

4. Faber, C.: Intersection-theoretical computation on �Mg, Banach Center Publ. 36, Polish

Acad. Sci., Warsaw, 71–81. (alg-geom/9504005).
5. Gibney, A., Keel, S., and Morrison, I.: Towards the ample cone of �Mg;n, (math.AG/

0006208).
6. Hain, R.: Moriwaki’s inequality and generalizations, talk at Chicago, http://www.math.-

duke.edu/	hain/talks/
7. Keel, S. and McKernan, J.: Contractible extremal rays on �M0;n, Preprint, (alg-geom/

9607009).

8. Kollár, J. and Mori, S.: Birational Geometry of Algebraic Varieties, Cambridge Tracts in
Math. 134, Cambridge University Press.

9. Knudsen, F.: The projectivity of the moduli space of stable curves, II and III, Math.

Scand. 52 (1983), 161–199, 200–212.
10. Moriwaki, A.: A sharp slope inequality for general stable fibrations of curves, J. reine

angew. Math. 480 (1996), 177–195.

11. Moriwaki, A.: Relative Bogomolov’s inequality and the cone of positive divisors on the
moduli space of stable curves, J. Amer. Math. Soc. 11 (1998), 569–600.

12. Moriwaki, A.: The continuity of Deligne’s pairing, Internat. Math. Res. Notices, No. 19,
(1999), 1057–1066.

13. Seshadri, C. S.: Quotient spaces modulo reductive algebraic groups, Ann. of Math. 95
(1972), 511–556.

228 ATSUSHI MORIWAKI

https://doi.org/10.1023/A:1015820111515 Published online by Cambridge University Press

https://doi.org/10.1023/A:1015820111515

