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In this work, we present an alternative approach to obtain a solenoidal Lipschitz
truncation result in the spirit of D. Breit, L. Diening and M. Fuchs [Solenoidal
Lipschitz truncation and applications in fluid mechanics. J. Differ. Equ. 253 (2012),
1910–1942.]. More precisely, the goal of the truncation is to modify a function
u ∈ W 1,p(RN ; R

N ) that satisfies the additional constraint div u = 0, such that its
modification ũ is Lipschitz continuous and divergence-free. This approach is different
to the approaches outlined in the aforementioned work and D. Breit, L. Diening and
S. Schwarzacher [Solenoidal Lipschitz truncation for parabolic PDEs. Math. Models
Methods Appl. Sci. 23 (2013), 2671–2700, Section 4] and is able to obtain the rather
strong bound on the difference between u and ũ from the former article. Finally, we
outline how the approach pursued in this work may be generalized to closed
differential forms.
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1. Introduction

1.1. Lipschitz extensions and truncations

A technique that is important both in functional analytic results and in applica-
tions to partial differential equations (PDEs) is Lipschitz extension. More precisely,
consider a metric space (X, d), a closed subset Y ⊂ X and a function u : Y → R

d

that is Lipschitz continuous, i.e. there is L > 0 such that

|u(x) − u(y)| � Ld(x, y) ∀x, y ∈ Y.

The aim of Lipschitz extension is to find a function ũ : X → R
d that coincides with

u on Y and still is Lipschitz continuous on X with the same Lipschitz constant (or
a constant that is only worse by some additional multiplicative constant). Such an
extension result has been achieved by McShane and Kirszbraun [25, 27] and,
in a slightly different setting, by Whitney [33, 34].
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2 S. Schiffer

In contrast, the task for truncation is as follows. Given u ∈ W 1,p(RN ; Rd), 1 �
p < ∞ and L > 0, find ũ ∈ W 1,∞(RN ; Rd), such that

(T1’) ‖Dũ‖L∞ � C(d)L for a dimensional constant C(d).

(T2’) u and ũ coincide on a set of large measure.

The most common approach to this truncation is to redefine the function u on
a rather small set by using aforementioned Lipschitz extension. The basis for this
work is the extension due to Whitney [34], which has been adapted and refined
for truncations in [1, 2, 15, 35].

There are different ways to quantify (T2’). The first option is

(T2a’) LN ({u �= ũ}) � C(d)L−p‖u‖p
W 1,p ,

whereas another option is

(T2b’) LN ({u �= ũ}) � C(d)L−p

ˆ
{|u|+|Du|�L}

|u|p + |Du|p dx.

We explain the merits of (T2a’) and (T2b’) later (cf. §§ 1.3), but obviously (T2b’)
is stronger than (T2a’).

From (T2b’) we may indeed infer a bound of the W 1,p-distance between u and ũ
(e.g. [35]), namely that

‖u − ũ‖p
W 1,p � C(d)

ˆ
{|u|+|Du|�L}

|u|p + |Du|p dx, (1.1)

for (T2a’) at least the W 1,r-distance, r < p can be effectively bounded.
It is worth mentioning, that for sequences of functions un there is an even stronger

statement (both improving (T1’) and (T2b’)) that not only bounds the Lp distance,
but already the L∞-distance (cf. [28]), i.e.

(T2c’) Suppose that K ⊂ R
N×d compact and convex and that un ∈ W 1,p(RN ; Rd)

is such that dist(Dun, K) → 0 in Lp. Then there is ũn, such that ũn − un →
0 in W 1,p and dist(Dũn, K) → 0 in L∞.

1.2. Solenoidal truncation and the main statement

We might be presented with an additional requirement that u is divergence-free,
for example if u is the velocity of an incompressible flow. The truncated version ũ
then also shall satisfy this differential constraint. In particular, in this work we give
a proof to the following theorem that shows that a truncation satisfying (T1’) and
(T2b’) is possible in a divergence-free setting.

Theorem 1.1. Let N � 2 and suppose that 1 � p < ∞, u ∈ W 1,p(RN ; RN ) obeys
div u = 0 and that L > 0. There is a (dimensional) constant C > 0 and a function
ũ ∈ W 1,∞(RN ; RN ), such that

(T1) ‖ũ‖W 1,∞ � CL;
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Solenoidal truncation 3

(T2) LN ({u �= ũ}) � C(d)L−p
´
{|u|+|Du|�L} |u| + |Du|dx;

(T3) div ũ = 0.

It should be mentioned that (although not explicitly stated in this form), theorem
1.1 was already established by Breit, Diening & Fuchs [7]. We, however, give a
different, more geometric construction of the function ũ in theorem 1.1. We further
comment about the applications in the following §§ 1.3. First, we give some variants
of theorem 1.1.

Remark 1.2.

(i) If (T2) is replaced by (T2a’) and p > 1, then [9, Section 4] offers a quite
elegant truncation using that div u = 0 is (essentially) equivalent to u = curl v
for a suitable v in space dimension three. The approach of [9] is then further
adapted to evolutionary problems, where one, in addition, needs to take care
of the time derivative. In the present work, we stick to the simpler stationary
framework.

(ii) In principle, the approach pursued here might be applied to solenoidal maps
on (orientable) manifolds. As already an unconstrained truncation for maps
on manifolds faces some challenges (cf. [31]), we however only consider R

N .

(iii) One may get the result mentioned in theorem 1.1 not only for u satisfying
div u = 0, but, in more generality, for differential forms v : R

N → Λr that
satisfy dv = 0, where d denotes the exterior derivative. We refer to §§ 4.1 and
proposition 4.1 for further discussion.

(iv) The statement of theorem 1.1 is also relevant for different regularities (e.g.
L∞- instead of W 1,∞), cf. [5, 32] for a discussion of (T2b’) and [21, 22] for
a discussion of (T2c’) in that setting.

(v) In principle, it is also imaginable to construct a divergence-free truncation on
bounded domains that additionally preserves boundary values (cf. [20] in an
unconstrained static setting and [17] for parabolic problems).

We explain the different approaches to proving a statement in the style of theorem
1.1 in § 2. As mentioned in the remark, in [9] the authors use that divergence-free
functions u may be written as u = curl v and then perform a higher-order truncation
on v. Our approach is, however, much closer to the treatment by Breit, Diening
& Fuchs, [7]. There, the truncation is defined as a modification of the usual Lip-
schitz truncation. First, one truncates as if the additional constraint div u = 0 is
not present and then adds small modifications/corrections to return to solenoidal
functions. In [7] this is achieved by application of the Bogovskĭı-operator (cf. [6]).
In the present work we propose to use some structure coming from the definition of
the truncation and explicitly give a quite elementary definition of a local correction.
The connection between both approaches might be seen through a careful definition
of the Bogovskĭı-operator for a special class of functions, also cf. [12].
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4 S. Schiffer

1.3. Solenoidal truncation and its applications

While seemingly being only a technical lemma, adaptations of theorem 1.1 have
a variety of applications in the calculus of variations and partial differential equa-
tions. First and foremost, solenoidal Lipschitz truncation and its generalizations to
parabolic (i.e. time-dependent) problems are used to get existence results for non-
linear problems, in particular for viscous fluid mechanics. e.g. [7, 9, 15, 16, 19]
and [4, 9, 11, 14] for further refinements. The strategy roughly is as follows. The
non-linear problem is approximated by a sequence of problems solvable with clas-
sical methods (e.g. monotonicity method) that have solutions un. The issue is the
incompatibility of the nonlinearity (let us call it f) with weak convergence, i.e. if
un ⇀ u, then in general f(un) does not converge weakly to f(u). Recall that there
are usually effects of concentrations and oscillations present in weakly converging
sequences. While oscillations do not fare well with nonlinearities, concentrations
do. As a consequence, Lipschitz truncation cuts away concentrations and allows us
to focus on oscillation effects (and show that these do not exist). Therefore, one
concludes f(un) ⇀ f(u).

Consequently, especially for the (non-Newtonian) Navier–Stokes equations (cf.
[7, 9, 16]), where one expects concentration effects for a sequence un (also see the
survey [10]), it is clear that truncation property (T2a’) is enough. In particular,
when considering such a sequence un, for fixed L > 0, we do not have

ˆ
{|un|+|Dun|�L}

|un| + |Dun|dx −→ 0 uniformly in n as L → ∞,

so, in such a context, (T2a’) and (T2b’) do not offer a qualitative difference, and so
(T2a’) is sufficient (eg. [9]). That theorem 1.1 is proven in [7] with (T2b’) instead
of (T2a’) is, in that context, only an interesting byproduct.

It should also be mentioned that the time-dependent case (cf. [9]) features an
additional challenge compared to the present stationary setting (cf. [7]): The time
derivative ∂tu usually is an element of a space like Lr((0, T ); (W 1

r )′); i.e. it features
a negative Sobolev space. This also motivates the potential truncation (cf. § 2.3.1),
as writing u = curl v means that ∂tv ∈ Lr((0, T );Lr). While this method is very
effective in Lp-spaces (cf. [9, 11, 17]), it falls short in spaces, in which classical
solution theory to the equation curl v = u fails, for instance in L1. It remains to be
seen, whether the present ’direct’ approach of constructing the truncation can be
translated to a time-dependent setting.

In contrast, in problems arising in the broad context of solid mechanics, bound
(T2b’) is explicitly required, cf. [1, 2, 20, 35] and [29] for an overview. In particular,
the goal of ruling out concentrations is different: Oscillations do occur and we
can ignore concentrations effects for the sequences (e.g. as they are minimizing
sequences to certain functionals). So when truncating, we need to further quantify
the difference between the function and its truncation, i.e. (T2b’). We refer to [5,
29, 32, 35] for more discussions on that matter.

The even stronger bound (T2c’) is for instance relevant for convex integration
(e.g. for the (in)compressible Euler equation), cf. [21, 22] for more discussions.
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Solenoidal truncation 5

Finally, we shall also mentioned, that apart from W 1,p-W 1,∞ and Lp-L∞ trunca-
tion also other regularities of (solenoidal) truncation may be studied, for example
in BV (cf. [18, Ch. 6],[8]).

1.4. Structure of the article

The remainder of this article is organized as follows. In § 2 we revisit the classical
Whitney’s extension/truncation theorem and its modern variant with the additional
constraint of solenoidality. In more detail, we recall the construction of a Whit-
ney cover in § 2.1 and recall its application in form of Whitney’s extension and
truncation result in § 2.2. Furthermore, we shortly outline two previous methods
to obtain solenoidal Lipschitz truncations and thus also theorem 1.1 in particu-
lar: The potential truncation, following [9] and a truncation via local corrections,
following [7].

In § 3 we present a proof to theorem 1.1. First of all, without the usage of
differential forms, we give a formula for the truncation in dimension N = 3. Higher
dimensions require writing divergence-free functions as closed (N − 1)-forms, hence
we take a short detour on differential forms and Stokes’ theorem in § 3.2. Then we
are ready to define the truncation in § 3.3. Sections 3.4, 3.5 & 3.6 are then devoted
to the proof of theorem 1.1.

Finally, in § 4 we discuss some possible extensions, in particular a parallel result
to theorem 1.1 for closed differential forms, and open questions.

2. Whitney’s truncation theorem and its application to (solenoidal)
Lipschitz truncation

In this section, we revisit approaches to obtain a (solenoidal) Lipschitz truncation
based on Whitney’s extension. First, we recall Whitney’s original approach and
its consequences for truncation theorems, cf. [1, 35]. Then we shortly discuss the
modifications to this approach to obtain a solenoidal Lipschitz truncation from [7]
and [9] (in the stationary case) and compare it to the ansatz of the present work.

2.1. Whitney cubes

Our goal is to extend a function from a closed set X ⊂ R
N to R

N . In the context
of truncation, we leave the function u : R

N → R
N untouched on some set X and

modify it on XC . We often refer to X as the ‘good set’ and to its complement as
the ‘bad set’. Further, we assume that X is closed and, therefore, XC is open.

Following Stein’s book [33, Chapter VI], we can cover XC by open, dyadic cubes
(Q∗

i )i∈N with the following properties:

(i*) XC =
⋃

i∈N
Q̄∗

i ;

(ii*) Q∗
i ∩ Q∗

j = ∅ if i �= j;

(iii*) 1/4 dist(Q∗
i , X) � l(Q∗

i ) � 4 dist(Q∗
i , X) where l(Q∗

i ) denotes the sidelength
of Q∗

i ;

(iv*) if Q̄∗
i ∩ Q̄∗

j �= ∅, then 1/4l(Q∗
i ) � l(Q∗

j ) � 4l(Q∗
i );
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6 S. Schiffer

(v*) for each i ∈ N, the number of cubes Q∗
j such that Q̄∗

i ∩ Q̄∗
j �= ∅ is bounded by

a dimensional constant C(N).

Furthermore, for each cube Q∗
i , we denote by ci the centre of the cube Q∗

i . We
may also find a projection point zi ∈ X, such that dist(Q∗

i , zi) � 4 dist(Q∗
i , X).

Moreover, we define the measure μi as

μi = LN

(
1
2
Q∗

i

)−1 (
LN�

(
1
2
Q∗

i

))
,

where 1/2Q∗
i is the open cube with axis parallel faces, centre ci and sidelength

1/2l(Q∗
i ).

In addition, we also consider slightly blown-up open cubes Qi = (1 + ε)Q∗
i with

the same centre ci but sidelength (1 + ε)l(Q∗
i ). If ε is sufficiently small (e.g. ε <

1/32), then these cubes have the following properties:

(i*) XC =
⋃

i∈N
Qi;

(ii*) for all i ∈ N, the number of cubes Qj with Qj ∩ Qi �= ∅ is bounded by C(N);

(iii*) 1/5 dist(Qi, X) � l(Qi) � 5 dist(Qi, X), where l(Qi) is the sidelength of Qi

(l(Qi) = (1 + ε)l(Q∗
i );

(iv*) if Qi ∩ Qj �= ∅, then 1/4l(Qi) � l(Qj) � 4l(Qi).

We now take ϕ ∈ C∞
c ((−ε/2, 1 + ε/2)N ) with ϕ ≡ 1 on [0, 1]N . By translation

and scaling we get ϕ∗
j ∈ C∞

c (Qj) with ϕ∗
j ≡ 1 on Q∗

j .
Using the properties of the cubes Qj we can show (again, cf. [33]), that

ϕj =
ϕ∗

j∑
i∈N

ϕ∗
i

(2.1)

defines a partition of unity on XC , i.e.∑
j∈N

ϕj(y) = χXC (y) :=
{

1 on XC ,
0 on X.

Moreover, ϕj ∈ C∞
c (Qj) and they satisfy the bound

‖Dkϕj‖L∞ � C(N, k)l(Qj)−k. (2.2)

Before we continue with Whitney’s extension theorem, we again point out that all
the dimensional constants C(N) and C(N, k) in above construction do not depend
on the regularity of the set X; all we need is the set X to be closed.

2.2. Whitney extension and the related truncation theorem

Given a closed set X ⊂ R
N and a Lipschitz continuous function u : X → R with

Lipschitz constant L > 0, we define

ũ(y) =

{∑
i∈N

ϕi(y)u(zi) y ∈ XC ,

u(y) y ∈ X.
(2.3)
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Solenoidal truncation 7

Lemma 2.1 Whitney truncation. If u : X → R is Lipschitz continuous with Lips-
chitz constant L, then ũ : R

N → R is Lipschitz continuous with Lipschitz constant
CNL for a purely dimensional constant CN .

A detailed proof can be found in [33, Chapter VI]. We give a brief heuristic idea,
why lemma 2.1 works, as a similar argument is used in § 3.

Observe that ũ ∈ C∞(XC) and that locally, only finitely many terms are nonzero.
Therefore, we can compute its derivative for y ∈ XC :

Dũ(y) =
∑
i∈N

Dϕi(y)u(xi) =
∑

i,j∈N

ϕjDϕi(y)(u(xi) − u(xj)).

Note that we explicitly used in the second step that (ϕi)i∈N and (ϕj)j∈N are parti-
tions of unity. Applying the bound for the derivative of ϕi and the Lipschitz bound
for u(xi) − u(xj) yields an L∞-bound for the derivative of ũ.

Together with the observation, that ũ is continuous, this leads to Lipschitz
continuity of ũ.

This approach can then be applied to Lipschitz truncation as follows: First, we
find a ‘good set’ X, on which u is Lipschitz continuous. For the truncation we then
take ũ ≡ u on the good set and redefine is on the bad set as in (2.3). An important
part in showing Lipschitz continuity for ũ is therefore the following lemma 2.3 that
connects Lipschitz continuity to the (centred) Hardy–Littlewood maximal function
Mu that is defined via

Mu(x) := sup
r>0

 
Br(x)

|u(z)|dz,

where
ffl

denotes the average integral. The associated operator then has the following
properties.

Lemma 2.2 The maximal function. The maximal operator is sublinear, i.e.

M (u + v)(y) � Mu(y) + M v(y)

for almost every y ∈ R
N . Moreover, it is bounded as a map from Lp(RN ) →

Lp(RN ), whenever 1 < p � ∞. For p = 1, M is not bounded from L1(RN ) to
L1(RN ), but from L1(RN ) to L1,∞(RN ), i.e.

LN ({|Mu| � λ}) � Cλ−1‖u‖L1

for every λ > 0 and u ∈ L1(RN ).

Key to the truncation statement then are the following two observations. The
first one, proven in [1, 26] proves that a function u is Lipschitz continuous on
sublevel sets of its maximal function.

Lemma 2.3. Let u ∈ W 1,p(RN ; Rd) be continuous. There exists a dimensional
constant C, such that for all λ > 0 and all x, y ∈ Xλ = {M (Du) � λ} we have

|u(x) − u(y)| � Cλ|x − y|. (2.4)
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8 S. Schiffer

The second ingredient is an estimate on the measure of the ‘bad set’, the
complement of Xλ, cf. [35].

Lemma 2.4. Let v ∈ Lp(RN ; Rd), 1 � p < ∞. There is a dimensional constant C,
such that for all λ > 0 we have

LN ({M v > λ}) � Cλ−p

ˆ
{|v|�λ/2}

|v|p dx. (2.5)

These results are combined to get a Lipschitz truncation in the fashion we already
mentioned: We take u : R

N → R
d, set ũ = u on the ‘good set’ Xλ and then extend

this restriction via Lipschitz extension (2.3) to the full space.
Defining the extension as in (2.3) only bears the problem that u(zi) might not

be well-defined for an arbitrarily chosen zi. There are several workarounds for this
problem, e.g. only taking Lebesgue points, considering u ∈ C1(RN ) first and then
using a density argument or using an averaged value of the function instead.

In the following, we pursue the third approach. Therefore, we define:

TLipu(y) =
{ ∑

i∈N
ϕi(y)

´
u(xi) dμi(xi) y ∈ XC

λ ,
u(y) y ∈ Xλ.

(2.6)

A suitable adaptation of lemma 2.3 and the estimate (2.5) then yield the following:

Lemma 2.5 Lipschitz truncation. Let u ∈ W 1,p(RN ; Rd). Define the set Xλ =
{Mu � λ} ∪ {M (Du) � λ}. Then, for a dimensional constant C > 0, the trun-
cation TLipu as in (2.6) has the following properties

(i) the function TLipu is Lipschitz continuous and ‖TLipu‖W 1,∞ � Cλ;

(ii) the set XC
λ ⊃ {u �= TLipu} has LN -measure bounded by

LN (XC
λ ) � Cλ−p

ˆ
{|u|�λ}∪{|Du|�λ}

|u|p + |Du|p dx;

(iii) as a consequence of (ii) we have

‖u − TLipu‖p
W 1,p � C

ˆ
{|u|�λ}∪{|Du|�λ}

|u|p + |Du|p dx.

2.3. Solenoidal truncation

In this section we shortly describe previous approaches to solenoidal Lipschitz
truncation and compare it to the approach in the present work.

2.3.1. Potential truncation. First of all, in [9, Section 4] (see also [5, 21] for related
discussions), the truncation is obtained by writing a divergence-free function u ∈
W 1,p(R3; R3) as

u = curl v

for a function v ∈ Ẇ 2,p(R3; R3), truncate v to obtain some ṽ ∈ W 2,∞(R3; R3) and
set ũ = curl ṽ.
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Solenoidal truncation 9

This approach is particularly well-suited to evolutionary problems (i.e.
u : [0, ∞) × R

N → R
N ) and can (together with parabolic Lipschitz truncation) also

tackle the usually quite low regularity of the time derivative ∂tu.
Seeking for a sharper result in space and not in space-time (which severely compli-

cates the matter), this form of truncation can, however, only achieve property (T2a’)
and not (T2b’). Even if u ∈ W 1,∞(R3; R3), its potential v is not in W 2,∞(R3; R3) in
general (Ornstein’s non-inequality [13, 30]) and ṽ �= v regardless of the truncation
parameter L.

Let us further note that in dimension N = 2, (T2b’) is satisfied ; the reason being
that the map u �→ v is bounded from W 1,∞(R2; R2) to W 2,∞(R2). Hence, the trun-
cation of [9] (together with the correct spaces), actually yields property (T2b’)
both in space and space-time. Moreover, the truncation constructed in [9] in the
stationary setting coincides with the truncation constructed in this work in space
dimension two.

2.3.2. Truncation via local corrections. In contrast, the work [7] is directly suited
towards stationary problems in more involved spaces, e.g. Orlicz spaces. In par-
ticular, the truncation outlined in [7] is able to obtain (T2b’). Instead of writing
u = curl v, we work with u directly, find ũ as in (2.3) and then add corrector terms
to restore solenoidality. As the ‘good set’ one takes the set where the maximal
function of u and of Du is small1 .

In more detail, we first add a global corrector term Πu, such ũ + Πu =: T̃ u is
still a W 1,∞-truncation of u. In the second step, one adds local corrector terms
Cori ∈ W 1,∞

0 (Qi; R3), that satisfy the divergence-equation

div Cori = div(ϕi(ũ + Πu)). (2.7)

Finally, one obtains the divergence-free truncation via

Tdivu = T̃ u −
∑
i∈N

Cori.

As one only modifies the function on the bad set {Mu > λ} ∪ {M (Du) > λ}, one is
able to obtain (T2b’). One crucial observation (cf. [7, Lemma 2.11]) to get Tdivu ∈
W 1,∞ is the following:

First note that the observation that Cori belongs to W 1,∞ is not trivial; the
divergence equation (2.7) and its solution operator (the Bogovskĭı operator [6]) is
not bounded from L∞ to W 1,∞. Instead, one uses that div(ϕi(ũ + Πu)) has a very
specific form. It is a much smoother function, hence the solution to the divergence
equation is in W 1,∞. A uniform W 1,∞-bound for the solution is achieved via the
following argument: The partition of unity is obtained by formula (2.1) for a cover
consisting of Q∗

i and associated functions ϕ∗
i . But actually, as all cubes Q∗

i are
dyadic, there are only finitely many configurations how the cover can locally look

1In the original paper [7] the authors only considered the symmetric part Eu of the gradient,
but the approach stays the same.
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10 S. Schiffer

like. In particular, up to scaling and translation, we only need to solve

div Cori = div
(
ϕi · (ũ + Πu)

)
in Q∗

i with zero boundary values

a finite amount of times as, up to scaling and translation, there are only finitely
many functions the right-hand-side can realize. As we then only argue about finitely
many different corrector terms, the uniform W 1,∞-bound is an easy consequence.

2.3.3. Truncations via local corrections II. In this work, we study a modification of
the second approach by explicitly constructing the corrector terms using that our
truncation has a very particular form. This approach only relies on

(a) some purely geometric estimates;

(b) the existence of a cover with sets Qi (that are not necessarily cubes);

(c) a partition of unity ϕi that satisfies estimate (2.2).

In particular, the assumptions on the cover over cubes and the partition of unity
are less restrictive than in [7], which, for instance, might be useful for geometries
on manifolds.

Comparing the present ansatz to [7], we also add correctors such that ũ first given
by (2.3) is modified to be divergence-free. Instead of solving the divergence-equation
via the Bogovskĭı operator, we give explicit formulas for the corrector terms that
rely on certain cancellations and Stokes’ theorem. In space dimension three, those
corrections are defined on pairs and tuples of cubes, i.e.

Tdivu = ũ +
∑

i,j∈N

Cori,j +
∑

i,j,k∈N

Cori,j,k.

In general dimension, we need more corrector terms, which is connected to the nice
algebraic structure provided for the divergence operator.

2.4. Truncation for differential forms

The construction done for the divergence (in three space dimensions) fits into
a more general framework for closed differential forms - we introduce the exact
notation in § 3. Recall that a divergence-free function u : R

N → R
N can be identified

with a closed differential form (meaning the exterior derivative vanishes) û : R
N →

ΛN−1; in particular the divergence operator might be identified with the operator
of exterior differentiation.

The approach of constructing the corrector terms heavily builds on this algebraic
structure and, correspondingly, on Stokes’ theorem. This connection becomes easily
visible when dealing with curl-free functions, these are v : R

N → R
N obeys

(curl v)ij := ∂ivj − ∂jvi = 0.

These can also be put into the framework of closed forms, i.e. v̂ : R
N → Λ1. The

results then reads as follows.
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Solenoidal truncation 11

Lemma 2.6. Let N � 2 and suppose that 1 � p < ∞, v ∈ W 1,p(RN ; RN ) obeys
curl v = 0 and that L > 0. There is a (dimensional) constant C > 0 and a function
ṽ ∈ W 1,∞(RN ; RN ), such that

(T1) ‖ṽ‖W 1,∞ � CL;

(T2) LN ({v �= ṽ}) � C(d)L−p
´
{|v|+|Dv|�L} |v| + |Dv|dx;

(T3) curl ṽ = 0.

The proof of this result can be achieved quite directly by writing v = ∇V for
some V ∈ Ẇ 2,p(RN , R

N ), truncating V to obtain some V̄ and then considering the
derivative of V̄ . The existence of such a V is ensured by the differential constraint
curl v = 0.

In particular, on the ’bad set’ XC , we have (recall that zi was a projection point
of Qi onto X)

V̄ (y) =
∑
i∈N

ϕi(y)
(
v(zi) + Dv(zi) · (y − zi)

)
.

Now, one can calculate the derivative of V̄ and then replace Du by v to obtain

v̄(y) =
∑
i∈N

ϕi(y)v(zi) +
∑

i,j∈N

ϕj(y)Dϕi(y)
ˆ

[zi,zj ]

(y − ξ)T · Dv(z) · zi − zj

|zi − zj | dξ;

(2.8)
if zi = zj , we define the integral in (2.8) to be zero.

Observe that (2.8) features the previously discussed structure. That is, the
first sum in (2.8) coincides with the unconstrained extension and the second is
a correction to satisfy the constraint curl v̄ = 0.

The general case of differential forms (curl-free functions are closed 1-forms)
requires multiple steps of corrections. This is carried out in § 3. On the other hand,
such a construction involving corrections does not seem to be limited to differential
forms, but probably can be achieved for a wider class of differential operators (cf.
§ 4.2).

3. Solenoidal Lipschitz truncation

This section is concerned with the proof of theorem 1.1 and its immediate conse-
quences. The proof in general dimension requires some basic methods of differential
geometry; to demonstrate the strategy we shortly outline the strategy in 3D (which
corresponds to closed 2-forms in higher dimensions), as there a coordinate-wise
computation is still feasible.

3.1. Definition of the truncation in three space dimensions

We shortly outline the three-dimensional case. To this end, let X ⊂ R
3 be a closed

set and (Qi)i∈N be a Whitney cover of XC featuring a partition of unity ϕi and
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12 S. Schiffer

measures μi (cf. § 2.1). For simplicity, we write

dμi,j := dμi(xi) dμj(xj), dμi,j,k = dμi(xi) dμj(xj) dμk(xk).

For points xi1 , . . . , xik
∈ R

3 denote by

Sim(i1, . . . , ik) = Sim(xi1 , . . . , xik) := conv(xi1 , ..., xik
)

the convex hull of those points. If k = 2, we denote this by the direct line [xi1 , xi2 ] :=
Sim(i1, i2) between these points. If k = 2, 3, 4, we call this object a non-degenerate
simplex if its dimension is (k − 1), i.e. Hk−1(Sim(i1, . . . , ik)) > 0.

Definition 3.1. Given u ∈ W 1,p(R3; R3), tuples (a, b, c) ∈ {(1, 2, 3), (2, 3, 1),
(3, 1, 2)} and X ⊂ R

3, we define the truncation operator T as follows:

(Tu(y))a =

⎧⎪⎨
⎪⎩

∑
i∈N

ϕi(y)
ˆ

ua(xi) dμi(xi) + (Su(y))a + (Ru(y))a y ∈ XC ,

u(y) y ∈ X,

(3.1)

where the correction term S is defined as

(Su)a := −1
2

∑
i,j∈N

(
ϕj∂bϕi(Aab(i, j) − Aba(i, j))

)
+

(
ϕj∂cϕi(Aac(i, j) − Aca(i, j))

)
,

(3.2)

Aαβ(i, j) :=
ˆ  

[xi,xj ]

Duβ(z) · (xi − xj)(y − z)α dH1(z) dμi,j , (3.3)

if i �= j and Aαβ(i, i) = 0 for all i ∈ N.
The corrector R is defined via

(Ru)a := −
∑

i,j,k∈N

ϕk∂bϕj∂cϕiB(i, j, k), (3.4)

B(i, j, k) :=
ˆ  

Sim(i,j,k)

1
2
(xi − xj) × (xj − xk) ·

(
∂1u(y − z)1 + ∂2u(y − z)2

(3.5)

+ ∂3u(y − z)3
)

dH2(z) dμi,j,k, (3.6)

if i, j and k are pairwise disjoint and B(i, i, k) = B(i, j, i) = B(i, j, j) = 0.

We may prove the following statement, which is part of the higher dimensional
treatment in § 3.3 ff.

Theorem 3.2. If u ∈ W 1,p(R3; R3) with div u = 0 and λ > 0, set

X = Xλ = {Mu � λ} ∪ {M (Du) � λ}.
Then the truncated Tu defined in definition 3.1 satisfies all the assertions of theorem
1.1 for a.e. L > 0 with L = λ/2.
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Solenoidal truncation 13

This is of course just a special case of the statement for general dimension below,
cf. theorem 3.5. In 3D, however, every computation can also be done in the local
coordinates. The proof then roughly proceeds as follows:

St.1: Argue that T0u ∈ W 1,p(R3; R3) and that Su, Ru ∈ W 1,p
0 (XC ; R3);

St.2: Compute that in XC we have div Tu = 0 (which we can do via pointwise
computation).

St.3: Show L∞-bounds on D(Tu).

Furthermore, we mention that the treatment of curl-free functions, i.e. closed 1-
forms (lemma 2.8), is also done in a coordinate-wise fashion, cf. formula (2.8).
Extending above to arbitrary space dimension, one may get a truncation result
for closed two-forms. The goal of the following subsections is to generalize it to
arbitrary dimension.

3.2. Intermezzo: differential forms and Stokes’ theorem

We shortly recall some basic notation and properties of differential forms. Taking
R

N as the physical space, (RN )∗ denotes its dual and

Λr = (RN )∗ ∧ . . . ∧ (RN )∗︸ ︷︷ ︸
r copies

denotes the r-fold wedge product of the dual. Likewise, V r denotes the r-fold wedge
product of R

N with itself. Observe that Λ0 = R, Λ1 = (RN )∗ and that ΛN is iso-
morphic to R. Moreover, Λr is the dual of V r and we write ω[ν] to indicate the
dual pairing of ω ∈ Λr with ν ∈ V r.

We call a (smooth) map u : R
N → Λr an r-form. Moreover, there is the exterior

derivative d, that maps r-forms into (r + 1)-forms with the following properties:

(i) d ◦ d = 0;

(ii) If α ∈ C∞(RN ; Λr) and β ∈ C∞(RN ; Λs), then

d(α ∧ β) = dα ∧ β + (−1)rα ∧ dβ

(iii) d : C∞(RN ; Λ0) → C∞(RN ; Λ1) is the gradient.

Usually, one may identify a divergence-free function u : R
N → R

N with a function
ū ∈ R

N → Λ1 obeying d∗u = 0 through seeing the divergence as the adjoint to the
gradient. Instead of this, we use a different identification with (N − 1)-forms. In
particular, for the standard basis ei of R

N denote by dxi the map in (RN )∗ given
by

N∑
i=1

uiei �→ ui.

Then the vectors

ωi := (−1)idx1 ∧ . . . dxi−1 ∧ dxi+1 ∧ . . . ∧ dxN
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14 S. Schiffer

form a basis of ΛN−1 and we may define an isomorphism Ψ: R
N → ΛN−1 that is

defined on the standard basis as ei �→ ωi. Then we have

div u = 0 ⇐⇒ d(Ψ(u)) = 0

and therefore we routinely identify u with the (N − 1)-form Ψ(u).
One then can formulate Stokes’ theorem that, for a (r + 1)-dimensional manifold

M links the integral of du on M to the boundary integral of u. Of special interest
in the present setting is the case where M is a simplex; to this end recall that for
an index I = (i1, . . . , ik) and xi1 , . . . , xik

∈ R
N we denote by

Sim(xI) = Sim(xi1 , . . . , xik
) := conv(xi1 , ..., xik

).

If the dimension of Sim(xI) is (k − 1), we call the simplex non-degenerate. In that
case, we define

ν(xI) = 1
(k−1)! (xi1 − xi2) ∧ . . . ∧ (xik−1 − xik

) ∈ V k−1

to be the generalized normal. For any (k − 2)-dimensional face opposite to xil
, i.e.

Siml(xI) = Sim(xi1 , . . . , xil−1 , xil+1 , . . . , xik
) we can accordingly define a normal

vector νl(xI) on this face. Further observe that |ν(xI)| = Hk−1(Sim(xI)).
Stokes’ theorem on simplices now reads as follows:

 
Sim(xI)

du[ν(xI)] dHk−1 =
k∑

l=1

(−1)l

 
Siml(xI)

u[νl(xI)] dHk−2. (3.7)

3.3. Definition of the truncation for divergence-free functions

Similarly to definition 3.1, we are now able to define the truncation through one
part, that corresponds to W 1,∞-truncation, and another part consisting of a bunch
of corrector terms.

From now on, instead of working with u : R
N → R

N , through the identification
discussed in the previous subsection we instead consider a non-renamed (N − 1)-
form u : R

N → ΛN−1. The condition of solenoidality then coincides with closedness
of the form, i.e. that the exterior derivative vanishes.

To define correct analogues of Aαβ and B as in definition 3.1, for u : R
N → ΛN−1

we define the objects

Du[ν] and Du[ν] · (y − z)

as follows: We first understand v = Du as an element of Λ1 ⊗ ΛN−1 and consider
the pairing of the first component of this tensor with some ν ∈ V r as

(v1 ⊗ v2)[ν] �→ (v1[ν] ⊗ v2) ∈ V r−1 ⊗ ΛN−1,

((v1 ⊗ v2)[ν])(y − z) �→ (v1[ν] ∧ (y − z)) ⊗ v2) ∈ V r ⊗ ΛN−1.

and then map V s ⊗ ΛN−1, s = r − 1, r to ΛN−1−s through a duality pairing, i.e.
finally

(v1 ⊗ v2)[ν] := v2 (v1(ν)) ∈ ΛN−r,

(v1 ⊗ v2)[ν](y − z) := v2 (v1(ν) ∧ (y − z)) ∈ ΛN−r−1.

https://doi.org/10.1017/prm.2024.38 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2024.38


Solenoidal truncation 15

Corresponding to definition 3.1, let X ⊂ R
N be a closed set and cover its comple-

ment with Whitney cubes Qi. Consider a partition of unity ϕi on Qi, measures μi

and the product measure μI for I = (i1, . . . , ir) and, for simplicity, write

dμI := dμi1(xi1) . . . dμir
(xir

).

Definition 3.3 Formula for divergence-free extension. Let u ∈ W 1,p(RN ; ΛN−1),
X ⊂ R

N closed. We define

Tu(y) :=

{
T0u(y) +

∑N−1
k=1 Sku(y) y ∈ XC ,

u(y) y ∈ X,
(3.8)

where

T0u(y) =
∑
i∈N

ϕi(y)
ˆ

u(xi) dμi(xi) (3.9)

and

Sku(y) := (−1)k(N−k)!
N !

∑
I∈Nk+1

ϕik+1(y) ∧ dϕik
(y) ∧ . . . ∧ dϕi1(y) ∧ Ak(I); (3.10)

Ak(I) :=
ˆ  

Sim(xI)

Du[ν(xI)](y − z) dHk(z) dμ(xI). (3.11)

We define the integral in (3.11) to be zero if the simplex Sim(xI) is degenerate.

Observe that the definition of Ak(I) is antisymmetric in the index, i.e. if σ ∈
S(k + 1) is a permutation and Ĩ = (iσ(1), . . . , iσ(k+1)), then

Ak(I) = sgn(σ)Ak(Ĩ);

and in particular Ak(I) = 0 if ij1 = ij2 for some j1 �= j2. Further, as a minor note,
Sku maps to ΛN−1: The wedge product of all ϕ’s is an element of Λk and, by
definition, Ak(I) ∈ ΛN−k−1.

Remark 3.4 Definition 3.1 vs definition 3.3. For clarity, we shortly argue why
definition 3.3 is the generalization of the 3D-case, definition 3.1. As mentioned
before, we identify (R3)∗ ∧ (R3)∗ with R

3 in the following way:

e1 �→ dx2 ∧ dx3, e2 �→ dx3 ∧ dx1, e3 �→ dx1 ∧ dx2.

The terms for S, R, A and B in definition 3.1 then are nothing else than S1, S2,
A1 and A2 in above definition 3.3 written in a coordinate-wise fashion.

The remainder of this section is devoted to prove the following result.

Theorem 3.5. Let u ∈ W 1,p(RN , ΛN−1) with du = 0 and λ > 0, set

X = Xλ = {Mu � λ} ∪ {M (Du) � λ}.
Then the truncated Tu defined in definition 3.3 satisfies all the assertions of theorem
1.1 (with the identification of closed (N − 1)-forms to divergence-free functions) for
a.e. L > 0 with L = λ/2.
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16 S. Schiffer

3.4. Structure of the proof and auxiliary results

In this section, we outline the different steps of the proof. First of all, we remind
the reader of the following unconstrained truncation result.

Lemma 3.6 [35]. Let X be as in theorem 3.5 and u ∈ W 1,p(RN ; ΛN−1). Then ũ
defined as

ũ(y) :=

{
T0u(y) y ∈ XC ,

u(y) y ∈ X,

satisfies ũ ∈ W 1,∞(RN ; ΛN−1) and ‖Dũ‖W 1,∞ � Cλ.

Moreover, recall that due to lemma 2.4 we have the following bound on the
measure of Xλ.

Lemma 3.7. Let u ∈ W 1,p(RN ; ΛN−1). Then the set Xλ defined in theorem 3.5
obeys

LN (Xλ) � Cλ−p

ˆ
{|u|�λ/2}∪{|Du|�λ/2}

|u|p + |Du|p dx. (3.12)

It remains to show that the corrector terms S1, . . . , Sk are well-behaved and
achieve their goal, i.e. that those terms are bounded in W 1,∞(RN ; ΛN−1) and
that together with to T0u they give a solenoidal vector field. We formulate these
properties in two separate lemmas.

Lemma 3.8. Let k ∈ 1, . . . , N − 1, u ∈ W 1,p(RN ; ΛN−1) and Xλ be defined as in
theorem 3.5. Then

(i) Sku ∈ C∞(XC
λ ; ΛN−1);

(ii) Sku ∈ W 1,1
0 (XC

λ ; ΛN−1);

(iii) Sku ∈ W 1,∞(RN ; ΛN−1) and ‖Sku‖W 1,∞ � Cλ.

The unconstrained truncation T0u and all Sku are smooth functions in the open
set XC

λ . Therefore, to prove that dTu = 0 globally, it suffices to compute the exterior
derivative pointwisely.

Lemma 3.9. On the bad set XC
λ we have Tu ∈ C∞(XC ; ΛN−1) and, moreover, the

strong derivative satisfies

dTu = dT0u +
N−1∑
k=1

dSku = 0.

This lemma is a quite straightforward calculation and depends on certain cancel-
lations and Stokes’ theorem. Before proving lemmas 3.8 and 3.9, we shortly realize
that these lead directly to the proof of theorem 3.5.
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Proof of theorem 3.5:. Consider Tu as given in (3.8). Lemma 3.6 combined with
lemma 3.8 gives that

N−1∑
k=1

Sku ∈ W 1,1
0 (XC

λ ; ΛN−1)

and therefore Tu ∈ W 1,∞(RN ; ΛN−1). Furthermore, we obtain the bound
‖Tu‖W 1,∞ � Cλ.

Consequently, to prove that d(Tu) = 0, it suffices to check that d(Tu) = 0 point-
wise almost everywhere. But we have d(Tu)(y) = 0 for almost every y ∈ X◦

λ, as
Tu = u in this (open) set. On the other hand, lemma 3.9 shows that d(Tu) = 0 for
every y ∈ (XC

λ ). As for almost every λ > 0 we have LN (∂Xλ) = 0, we are finished
in showing that d(Tu) = 0.

It remains to check the bound for the set where u �= Tu, i.e. (T2). But {u �= Tu}
⊂ XC

λ and the measure of the latter is bounded in lemma 3.7. �

3.5. L∞-bounds

This section is devoted to the proof of lemma 3.8. Before proving the lemma,
shortly recall that Qi is a cover of the bad set, every point is only contained in
finitely many cubes Qi and that ϕi ∈ C∞(Qi; [0, 1]) is a partition of unity.

In order to tackle the terms appearing in the definition of Ak in the appropriate
fashion, let us formulate the following lemma.

Lemma 3.10. Let 1 � k � N − 1, Q1 = [−1/2, 1/2]N , Q2, . . . Qk+1 cubes of
sidelength 1/4 � l(Qr) � 4 with Qr ⊂ B10(0), 2 � r � k + 1. Suppose that v ∈
L1(B10(0)). Then we can estimate 

Q1×...×Qk+1

ˆ
Sim(x1,...,xk+1)

|v(z)|dHk(z) dxk+1 . . . dx1 � C

ˆ
B10(0)

|v(z)| dLN (z).

(3.13)

Observe that this inequality scales as follows: If Q1 = [−1/2ρ, 1/2ρ] and v ∈
L1(B10ρ(0)), then the left-hand-side scales with a factor of ρk and the right-hand-
side scales with ρN .

It is possible to prove the lemma in various different ways (e.g. by transformation
rule or coarea formula), below we use Young’s convolution inequality.

Proof of lemma 3.10:. We extend v by zero outside of B10(0). First of all, we rewrite
the integral in the simplex by transformation rule

=
 

Q1×...×Qk+1

ˆ
Sim(x1,...,xk+1)

|v(z)|dHk(z) dxk+1 . . . dx1

=
 

Q1×...×Qk+1

ˆ
Dk

|v|(t1x1 + . . .

+ tk+1xk+1)Hk(Sim(x1, . . . , xk+1)) dt dxk+1 . . . dx1,

where Dk = {t ∈ [0, 1]k+1 : t1 + . . . tk+1 = 1}. As Hk(Sim(x1, . . . , xk+1)) is uni-
formly bounded, we can absorb it into a constant. We proceed by estimating the
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integral over D
1
k = {t ∈ Dk : t1 � 1/(k + 1)} instead of Dk, the estimate over the

full integral follows from symmetry arguments. We now use Fubini’s theorem and
write 

Q1×...×Qk+1

ˆ
D1

k

|v|(t1x1 + . . . + tk+1xk+1) dt dxk+1 . . . dx1

=
ˆ

D1
k

ˆ
Q1

ˆ
Q2×...×Qk+1

|v|(t1x1 + t2x2 + . . . tk+1xk+1) dxk+1 . . . dx2 dx1 dt

�
ˆ

D1
k

ˆ
RN

ˆ
(RN )k

|v|(t1x1 + x̃2 + . . . x̃k+1)
k+1∏
i=2

t−N
i 1tiQi

(x̃i) dx̃k+1 . . . dx̃2 dx1 dt,

where in this context (and this context only) tiQi is the cube with sidelength til(Qi)
and centre tici. Applying Young’s convolution inequality yields that

 
Q1×...×Qk+1

ˆ
D1

k

|v|(t1x1 + . . . + tk+1xk+1) dt dxk+1 . . . dx1

� C

ˆ
D1

k

‖v(t1·)‖L1(RN ) � C‖v(·)‖L1(RN ),

where in the last inequality we use that t1 � 1/k + 1 in D
1
k. �

We are now ready to prove the Lipschitz bounds, i.e. lemma 3.8.

Proof of lemma 3.8:. For (i) observe that all ϕi’s are smooth and therefore any
summand is smooth. Hence, as locally the sum is finite, we conclude Tu ∈
C∞(XC

λ ; ΛN−1). In particular, only summing over a finite index set (e.g. I ∈
{1, . . . , M}k), these sums are contained in C∞

c (Xλ; ΛN−1).
Due to this observation, for (ii), it suffices to prove that the sum converges abso-

lutely in W 1,1(RN ; RN ). Fix the first index of I, i.e. fix i1 ∈ N. Then only finitely
many terms are nonzero. Moreover, Qir

∩ Qi1 �= ∅ and therefore the sidelength of
the cubes are comparable. Therefore,

|ϕik
∧ dϕik−1 ∧ . . . ∧ dϕi1 | � Cl(Qi1)

−(k−1). (3.14)

On the other hand, we apply lemma 3.10 to v = Du[ν] · (y − z). Observe that due
to the definition of Qi, 20Qi ∩ Xλ �= ∅ and therefore, due to the definition of Xλ as
a sublevel set of the maximal function of Du and the estimate |y − z| � Cl(Qi),

 
20Qi

|v|dx � Cλl(Qi).

Therefore,

|Ak(I)| � Cλl(Qi1)
k (3.15)

which leads to

‖ϕik+1 ∧ dϕik
∧ . . . ∧ dϕi1 ∧ Ak(I)‖L∞ � Cl(Qi1).
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The same bounds including the derivative lead to

‖D(ϕik
∧ dϕik−1 ∧ . . . ∧ dϕi1)‖L∞ � Cl(Qi1)

−k, ‖DyAk(I)‖L∞ � Cl(Qi1)
k−1,
(3.16)

and we conclude∥∥ϕik+1(y) ∧ dϕik
(y) ∧ . . . ∧ dϕi1(y) ∧ Ak(I)

∥∥
W 1,∞ � C,

and, as this function is supported on Qi1 , we obtain∥∥ϕik+1(y) ∧ dϕik
(y) ∧ . . . ∧ dϕi1(y) ∧ Ak(I)

∥∥
W 1,1 � Cl(Qi1)

−N ,

Again, for only finitely many indices I with this fixed i1, the summand is nonzero,
hence for any j ∈ N∑

I∈Nk : i1=j

‖ϕik+1(y) ∧ dϕik
(y) ∧ . . . ∧ dϕi1(y) ∧ Ak(I)‖W 1,1 � Cl(Qj)−N .

Summing over all j and realizing that the Qj ’s cover XC
λ only a finite number of

times, we finally obtain∑
I∈Nk

‖ϕik+1(y) ∧ dϕik
(y) ∧ . . . ∧ dϕi1(y) ∧ Ak(I)‖W 1,1 �

∑
j∈N

Cl(Qj)−N �CLN (XC
λ ).

Therefore, the sum converges absolutely in W 1,1
0 (XC

λ ), i.e. each Sku ∈ W 1,1
0 (XC

λ ).
The W 1,∞ bound (iii) now follows from the previously made estimates. �

3.6. Calculations of the pointwise divergence/exterior derivative

In this section we show that for each y ∈ XC
λ we have dTu(y) = 0. This is pure

calculation combined with Stokes’ theorem. We formulate it in the following lemma.
For further reference denote by

Rku :=
(−1)k(N − k)!

N !

∑
I∈Nk+1

ϕik+1 ∧ dϕik(y) ∧ . . . ∧ dϕi1 ∧ Bk(I), (3.17)

Bk(I) :=
ˆ  

Sim(xI)

Du[ν(xI)] dHk(z) dμI(xI). (3.18)

Lemma 3.11. Let y ∈ XC . Then the following identities hold for the truncation
terms as in definition 3.3

(i) We have

dT0u = −R1u.

(ii) For 1 � k � N − 2 we have

dSku = Rku − Rk+1u.

(iii) We have

dSN−1u = RN−1u.

https://doi.org/10.1017/prm.2024.38 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2024.38


20 S. Schiffer

Observe that lemma 3.9 instantly follows by summing over parts (i)–(ii).

Proof. We start with the exterior derivative of T0u, i.e. (i). As the only term
depending on the variable y is ϕi, we obtain for the derivative with respect
to y

dT0u(y) =
∑
i∈N

dϕi(y) ∧
ˆ

u(xi) dμi(xi).

Using that ϕi is a partition of unity, i.e.
∑

j∈N
ϕj = 1 and

∑
i∈N

dϕi = 0 in the
interior of XC , we obtain:

dT0u(y) =
∑

i,j∈N

ϕj ∧ dϕi ∧
(ˆ

u(xi) dμi(xi) −
ˆ

u(xj) dμj(xj)
)

.

Application of the fundamental theorem of calculus (i.e. one-dimensional Stokes’
theorem) component-wise yields

dT0u(y) = −R1u.

A similar trick leads to the second statement, (ii). Observe that, in contrast to
statement (i), Ak(I) does depend on y, hence

dSku =
(−1)k(N − k)!

N !

∑
I∈Nk+1

dϕik+1(y) ∧ . . . ∧ dϕi1(y) ∧ Ak(I)

+
(−1)k(N − k)!

N !

∑
I∈Nk+1

ϕik+1(y) ∧ ϕik
(y) . . . ∧ dϕi1(y) ∧ dAk(I)

(3.19)

Now a computation (it, for instance, suffices to check this coordinate-wise and while
assuming that Du[ν(xI)] = dx1 ∧ . . . ∧ dxN−k) reveals that

dAk(I) = (N − k)Bk(I).

Hence, the second sum in (3.19) equals Rku. For the first term, we observe as ϕir

is a partition of unity on XC

(−1)k(N − k)!
N !

∑
I∈Nk+1

dϕik+1(y) ∧ . . . ∧ dϕi1(y) ∧ Ak(I)

=
(−1)k(N − k)!

N !

∑
Ĩ∈Nk+2

ϕik+2(y)dϕik+1(y) ∧ . . . ∧ dϕi1(y) ∧ (
Ak(Ĩk+2)

−
k+1∑
r=1

Ak(Ĩr)
)
,

(3.20)

where Ĩ = (i1, . . . , ik+2) ∈ N
k+2 and Ĩr = (i1, . . . , ir−1, ir+1, . . . , ik+2). Recall

that

Ak(Ĩr) =
ˆ  

Sim(xĨr
)

Du[ν(xĨr
)](y − z) dHk(z) dμĨr

(xĨr
).
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Thus, the terms in (3.20) form a boundary integral of a (k + 1)-dimensional simplex.
After a suitable identification of spaces (i.e. identifying a wedge product space ΛN−1

with suitable (skew-symmetric) elements in Λk ⊗ ΛN−1−k), we can apply Stokes’
theorem by writing

ˆ  
Sim(xĨr

)

Du[ν(xĨr
)](y − z) dHk(z) dμĨr

(xĨr
)

=
ˆ  

Sim(xĨr
)

F (y, z)[ν(xĨr
] dHk(z) dμĨr

(xĨr
)

for suitable F : R
N → Λk ⊗ ΛN−k−1. Applying Stokes’ theorem componentwise, one

obtains

(−1)k(N − k)!
(N − 1)!

∑
I∈Nk+1

dϕik+1(y) ∧ . . . ∧ dϕi1(y) ∧ Ak(I)

=
(−1)k(N − k)!

(N − 1)!

∑
Ĩ∈Nk+2

ϕik+2(y) ∧ . . . ∧ dϕi1(y)

∧
ˆ  

dzF (y, z)[ν(xĨ)] dHk+1(z) dμĨ(xĨ).

Again, a for instance coordinate-wise computation (using that du = 0) yields that
the latter integral is exactly −(N − k)Bk+1(Ĩ).

For (iii) the calculation is exactly the same. It suffices to see that RNu = 0, i.e.
that BN (I) = 0. Note that for any index I

BN (I) =
ˆ  

Sim(xI)

Du[ν(xI)] dHN (z) dμI(xI).

Considering the definition of Du[ν(xI)] for ν(xI) ∈ V N � R, we obtain Du[ν(xI)] =
du(ν(xI)). As u is solenoidal, du = 0 and hence BN (I) = 0. Therefore RN = 0,
finishing the proof. �

4. Further remarks

In this closing section we discuss some further applications/variants of the technique
that was used in § 3 to obtain the truncation.

4.1. Truncation for closed differential forms

The solenoidal truncation is achieved by identifying functions u ∈ W 1,p(RN ; RN )
with a non-renamed closed form u ∈ W 1,p(RN ; ΛN−1). Via careful construction
of the corrector terms using the structure of differential forms we then obtained
a solenoidal trunction. This construction with the same arguments can also
be repeated if u ∈ W 1,p(RN ; ΛN−1) is replaced by a lower-order form, i.e. u ∈
W 1,p(RN ; Λr). In particular, we get the following result.
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Proposition 4.1. Let N � 2 and suppose that 1 � p < ∞, u ∈ W 1,p(RN ; Λr) obeys
du = 0 and that L > 0. There is a (dimensional) constant C > 0 and a function
ũ ∈ W 1,∞(RN ; Λr), such that

(T1) ‖ũ‖W 1,∞ � CL;

(T2) LN ({u �= ũ}) � C(d)L−p
´
{|u|+|Du|�L} |u| + |Du|dx;

[(T3) dũ = 0.

As the proof is very similar to the proof in § 3 we only give a brief sketch. We take
the same setup as in § 3.3, i.e. we take the bad set as a sublevel set of the maximal
function, cover it with cubes Qi, consider a partition of unity ϕi and measures μi.

Proof(Sketch):. Parallel to the beginning of § 3.3, for u : R
N → Λr and a normal

ν ∈ V s, 1 � s � r, we may give a meaning to

Du[ν] and Du[ν] · (y − z)

by understanding Du as an element of Λ1 ⊗ Λr. Then,

Du[ν] ∈ Λr+1−s and Du[ν] · (y − z) ∈ Λr−s.

Now as in definition 3.3, consider

Tu(y) :=

{
T0(y) +

∑r
k=1 Sr

ku(y) y ∈ XC ,

u(y) y ∈ X,
(4.1)

where again T0u is the usual Lipschitz extension

T0u(y) =
∑
i∈N

ϕi(y)
ˆ

u(xi) dμi(xi)

and

Sr
ku(y) :=

(−1)k(r + 1 − k)!
(r + 1)!

∑
I∈Nk+1

ϕik+1(y) ∧ dϕik
(y) ∧ . . . ∧ dϕi1(y) ∧ Ar

k(I);

(4.2)

Ar
k(I) :=

ˆ  
Sim(xI)

Du[ν(xI)](y − z) dHk(z) dμ(xI). (4.3)

Define the integral in (4.3) to be zero if the simplex Sim(xI) is degenerate.
We claim that with X = Xλ = {Mu � λ} ∪ {M (Du) � λ} and λ = L/2, Tu

obeys the properties of the proposition.
To show this claim, might argue exactly as in § 3: First of all, parallel to lemma

3.6, T0 is a sufficient unconstrained truncation and the measure of the bad set is
also already bounded; lemma 3.7 still works as it never really used the structure of
the target space ΛN−1.
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Furthermore, by using the same calculation, we can show the natural counterpart
to lemma 3.8 (the Lipschitz bounds). Finally, we may show the analogue of lemma
3.11, i.e. if for 1 � k � r

Rr
ku :=

(−1)k(r + 1 − k)!
(r + 1)!

∑
I∈Nk+1

ϕik+1 ∧ dϕik(y) ∧ . . . ∧ dϕi1 ∧ Br
k(I),

Bk(I) :=
ˆ  

Sim(xI)

Du[ν(xI)] dHk(z) dμI(xI).

then for any 1 � k � r − 1 we have

dT0 = −Rr
1u, dSr

ku = Rku − Rr
k+1u, dSr

ru = Rr
ru.

As seen in § 3, these statements then complete the proof, as we can show the
Lipschitz bound, the bound on the set {u �= Tu} and closedness of the differential
form Tu. �

4.2. General differential constraints

Generalizing above question, taking some u ∈ W 1,p(RN ; Rd), one may ask to
truncate under the first-order differential constraint

A u = 0,

where

A u =
N∑

α=1

Aα∂αu, Aα ∈ Lin(Rd; Rm).

Unconstrained truncation corresponds to A = 0 and the case of differential forms is
represented by A = d and, in particular, closed (N − 1) forms by A = div. While
this general case is out of reach with the results of this paper, the technique of
constructing corrector terms does not seem to be entirely hopeless. Meanwhile,
similar to [5, Conjecture 6.4], we conjecture that a truncation result á la 1.1 is
possible for some A , whenever A satisfies the complex constant rank condition
(i.e. the Fourier symbol has constant rank over all complex Fourier modes).

4.3. Lower regularity

Corresponding to the W 1,p-case one might ask to truncate divergence-free Lp

functions to be in L∞ (cf. [32]). While these questions turn out to be quite different,
they both fit in a larger common framework. In our setting of divergence-free W 1,p-
truncation, consider w = Du. The solenoidal Lipschitz truncation now corresponds
to a L∞-truncation of w under the following constraints

tr(w) = 0, curl w = 0, divT w = 0,

i.e. curl is taken column-wise and div row-wise. This can be abstractly set as Bw =
0. Consequently, Lipschitz truncation of a function u under a constraint A u = 0 is
closely connected to the L∞-truncation of w (= Du) under some constraint Bw =
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0. As mentioned before, the latter has been examined in [5, 32] in greater detail;
in particular (as above) the authors in [5] have conjectured that a low-regularity
truncation is possible whenever B obeys the complex constant rank condition.

4.4. Solenoidal extensions for W 1,∞

As alluded to in § 2.2, extensions and truncations are connected from a technical
perspective. Indeed, in the unconstrained setting, truncation is derived by extend-
ing the function of a cleverly chosen subset to the full space. As it becomes visible
through the formula for the truncation (3.8), the same analogy is not true for con-
strained truncation and extension. In particular, all the approaches to constrained
truncation (cf. [7, 9] etc. and (3.8)) use to a certain extent that the function is
already defined on the bad set. Therefore, constructing an extension is actually
more challenging than constructing a truncation, and while certain key ideas stay
the same, there are a lot of challenges coming from the geometric properties of the
underlying domain. We refer to the forthcoming article [23] for a thorough investi-
gation of solenoidal extension, especially for the borderline cases p = 1 and p = ∞
(also cf. [3, 24] for 1 < p < ∞).

Acknowledgements
The author would like to thank Franz Gmeineder and the anonymous referee for
helpful suggestions. The research conducted in this work was achieved while the
author was still supported by the Deutsche Forschungsgemeinschaft (DFG, German
Research Foundation) through the graduate school BIGS of the Hausdorff Center
for Mathematics (GZ EXC 59 and 2047/1, Projekt-ID 390685813).

References

1 E. Acerbi and N. Fusco. Semicontinuity problems in the calculus of variations. Arch.
Rational Mech. Anal. 86 (1984), 125–145.

2 E. Acerbi and N. Fusco, An approximation lemma for W 1, p functions. In Material insta-
bilities in continuum mechanics (Edinburgh, 1985–1986), Oxford Sci. Publ. (Oxford Univ.
Press, New York, 1988), pp. 1–5.

3 G. Acosta, R. G. Durán and M. A. Muschietti. Solutions of the divergence operator on John
domains. Adv. Math. 206 (2006), 373–401.
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