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Abstract

We are interested in continuous-time, denumerable state controlled Markov chains
(CMCs), with compact Borel action sets, and possibly unbounded transition and reward
rates, under the discounted reward optimality criterion. For such CMCs, we propose a
definition of a sequence of control models {Mn} converging to a given control model
M, which ensures that the discount optimal reward and policies of Mn converge to those
of M. As an application, we propose a finite-state and finite-action truncation technique
of the original control model M, which is illustrated by approximating numerically the
optimal reward and policy of a controlled population system with catastrophes. We study
the corresponding convergence rates.
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1. Introduction

When solving a control problem by following the dynamic programming approach, one
usually ends up with a so-called optimality equation (also known as the Bellman or the
Hamilton–Jacobi–Bellman equation, depending on the nature of the control problem under
study). Except for some particular cases (such as, e.g. linear-quadratic control problems), such
optimality equations cannot be explicitly solved because they are ‘highly’ nonlinear.

One usual tool to obtain numerical solutions to the optimality equation is by means of the
Markov chain approximating method. The idea is to define, starting from the original control
model, a controlled Markov chain (CMC) with finite state space whose optimal reward and
policies approximate the optimal reward and policies of the original control model. Such
methods have been developed to approximate, e.g. controlled diffusions [7], [13], average re-
ward continuous-time CMCs [11], discrete-time finite-horizon and infinite-horizon discounted
CMCs [8], [15], average reward discrete-time CMCs [9], and discrete-time control models
involving constraints [1], among others.

In this paper we are concerned with a continuous-time CMC model M with denumerable
state space, under the discounted reward optimality criterion. As for the already mentioned
control problems, the corresponding Bellman optimality equation cannot be explicitly solved.
There exist, however, algorithms that are shown to converge to the optimal reward and policies
of M. These include the value iteration algorithm—developed in [3] and [5] for discounted
CMCs—and the policy iteration algorithm—introduced in [4] for average CMCs, and in [11]
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Convergence of discounted continuous-time CMCs 1073

for discounted CMCs. For our CMC model M with denumerable state space, however, the
value iteration and the policy iteration algorithms are not viable in practice because they
require a ‘denumerable’ number of calculations at each step. Hence, as in the Markov chain
approximation scheme [7], this suggests the idea of considering finite-state and finite-action
control models Mn whose optimal reward and policies we can explicitly compute (by using,
e.g. the value or the policy iteration algorithm). Then, the optimal reward and policies of Mn

are used as approximations of those of the original control model M. Following this approach,
in this paper we introduce a finite-state and finite-action truncation technique to obtain the
approximating control models Mn. Similar discretization procedures can be found in, e.g. [1],
[6], and [11].

In addition to the convergence of the truncation technique itself, we are interested here in a
more general framework. More precisely, our goal in this paper is to propose a definition of the
convergence of discounted CMC models. Namely, given continuous-time, denumerable state
CMC models M and Mn for n ≥ 1, the idea is to give a suitable definition of the convergence
Mn → M ensuring that the optimal reward and policies of Mn converge to those of M. Such
an approach can be found in [8] for finite-horizon and infinite-horizon discounted discrete-time
CMCs, in [2] and [14] for constrained discrete-time models, and in [11] for average reward
continuous-time CMCs. Then, as a particular case, we will prove the convergence of the
finite-state and finite-action truncations Mn of our original control model M.

The rest of the paper is organized as follows. In Section 2 we introduce the control model
we are interested in, and recall some useful results on discount optimality. In Section 3 we give
the definition of convergence of CMCs, and prove our main result. The applications are given
in Section 4, in which we solve numerically a controlled population system.

2. Model definition

We are concerned with the control model M := {S, A, (A(i)), (qij (a)), (r(i, a))}, which is
defined by the following elements.

• The state space of the system is the denumerable set S. We suppose that S = {0, 1, 2, . . . }.
• The action space A is a complete and separable metric space.

• The action set in state i ∈ S is A(i), which is a measurable subset of A. (In this paper,
measurability is always referred to the corresponding Borel σ -field.) The family of
feasible state-action pairs is defined as

K := {(i, a) ∈ S × A : i ∈ S, a ∈ A(i)}.
• Let qij (a) be the transition rate from the state i ∈ S to the state j ∈ S under the action

a ∈ A(i). We assume that a �→ qij (a) is measurable for each fixed i, j ∈ S. The
transition rates verify that qij (a) ≥ 0 for every (i, a) ∈ K and j �= i. Finally, we
suppose that the transition rates are conservative, i.e.∑

j∈S

qij (a) = 0 for all (i, a) ∈ K,

and stable, i.e.
q(i) := sup

a∈A(i)

{−qii(a)} < ∞ for all i ∈ S.

• The reward rate function r : K → R is assumed to be measurable.

This continuous-time CMC model can be found in, e.g. [3], [5], and [11].

https://doi.org/10.1239/jap/1354716658 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1354716658


1074 T. PRIETO-RUMEAU AND O. HERNÁNDEZ-LERMA

2.1. Control policies

Our next definition uses the notation B(X) for the Borel σ -field of X. Let � be the family
of functions

ϕ ≡ {ϕt (B | i) : t ≥ 0, i ∈ S, B ∈ B(A(i))}
that verify the following properties.

(i) The mapping B �→ ϕt (B | i) is a probability measure on (A(i), B(A(i))) for each t ≥ 0
and i ∈ S.

(ii) The function t �→ ϕt (B | i) is measurable on [0, ∞) for every i ∈ S and B ∈ B(A(i)).

We say that ϕ ∈ � is a randomized Markov policy, or a Markov policy for short.
If ϕ ∈ � is a Markov policy such that ϕt (B | i) does not depend on t ≥ 0, and, moreover,

the probability measure ϕ(B | i) is a Dirac measure, then we say that ϕ is a deterministic
stationary policy. The class of deterministic stationary policies can be identified with the
family of functions f : S → A with f (i) ∈ A(i) for all i ∈ S. The set of such functions will
be denoted by F.

2.2. The controlled Markov process

The transition rates of the Markov policy ϕ ∈ � are defined as

qij (t, ϕ) :=
∫

A(i)

qij (a)ϕt (da | i) for all i, j ∈ S, t ≥ 0. (2.1)

The so-defined transition rates are finite because the qij (a) are conservative and stable (recall
the definition of the control model M). If f ∈ F is a deterministic stationary policy then the
corresponding transition rates will be written qij (f ) := qij (f (i)) for i, j ∈ S.

For each Markov policy ϕ ∈ �, consider the matrix [qij (t, ϕ)]i,j for t ≥ 0, which
is a nonhomogeneous Qϕ-matrix. By Proposition C.4 of [5, Appendix C], there exists a
nonhomogeneous transition function P

ϕ
ij (s, t) for i, j ∈ S and t ≥ s ≥ 0 whose transition

rates are given by (2.1). To ensure that this transition function is unique and regular, we impose
Assumption 2.1(a) below.

Assumption 2.1 uses the notion of a Lyapunov function. We say that w : S → [1, ∞) is a
Lyapunov function on S if w is monotone nondecreasing and, in addition, limi→∞ w(i) = ∞.
Next, we state all our hypotheses on the control model M.

Assumption 2.1. There exists a Lyapunov function w on S such that the following hypotheses
hold.

(a) There exist constants c �= 0 and b ≥ 0, with b ≥ c, such that∑
j∈S

qij (a)w(j) ≤ −cw(i) + b for all (i, a) ∈ K.

(b) For each i ∈ S, q(i) ≤ w(i).

(c) There exist constants c′ ∈ R and b′ ≥ 0, with b′ ≥ c′, such that∑
j∈S

qij (a)w2(j) ≤ −c′w2(i) + b′ for all (i, a) ∈ K.
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(d) There exists an M > 0 such that |r(i, a)| ≤ Mw(i) for all (i, a) ∈ K.

(e) For each fixed i, j ∈ S, the functions a �→ r(i, a) and a �→ qij (a) are continuous on
A(i).

(f) The action set A(i) is compact for every i ∈ S.

Let us make some comments on Assumption 2.1. As already mentioned, Assumption 2.1(a)
ensures that the transition function {P ϕ

ij (s, t)} is regular for each ϕ ∈ �; see [5, Theorem 2.3].
Hence, for each Markov policyϕ ∈ � and every initial state i ∈ S, there exists a regularS-valued
Markov process, denoted by {xϕ(t)}t≥0, or {x(t)}t≥0 when there is no risk of confusion, with
transition rates (2.1). The corresponding expectation operator will be denoted by Eϕ

i . As a
consequence of Assumption 2.1(a) and [5, Lemma 6.3], we have

Eϕ
i [w(x(t))] ≤ e−ctw(i) + b

c
(1 − e−ct ) for all ϕ ∈ �, i ∈ S, t ≥ 0. (2.2)

Assumption 2.1(b) and (c) are needed to ensure that the Dynkin formula holds; see [5,
Appendix C.3].

Assumption 2.1(d) ensures that the growth of the reward rate function r(i, a) is bounded by
w(i) uniformly in a. We will also need the following notation. For a Markov policy ϕ ∈ �, let

r(t, i, ϕ) :=
∫

A(i)

r(i, a)ϕt (da | i) for all t ≥ 0, i ∈ S.

For a deterministic stationary policy f ∈ F, we will simply write r(i, f ) := r(i, f (i)) for
i ∈ S.

Finally, Assumption 2.1(e)–(f) are the standard continuity and compactness conditions.
We now introduce some notation and terminology. Let Bw(S) be the family of functions

u : S → R such that

‖u‖w := sup
i∈S

{ |u(i)|
w(i)

}
is finite. We observe that ‖ · ‖w is a norm, with respect to which Bw(S) is a Banach space. We
will call ‖ · ‖w the w-norm.

2.3. The total expected discounted reward optimality criterion

We suppose that the rewards depreciate at a constant discount rate α > 0, which satisfies
the next condition.

Assumption 2.2. The discount rate α > 0 satisfies α + c > 0, where c is the constant in
Assumption 2.1(a).

The total expected discounted reward (or discounted reward) of the Markov policy ϕ ∈ �

when i ∈ S is the initial state is defined as

v(i, ϕ) := Eϕ
i

[∫ ∞

0
e−αt r(t, x(t), ϕ) dt

]
.

It follows fromAssumptions 2.1(d) and 2.2, together with inequality (2.2), that the discounted
reward verifies

|v(i, ϕ)| ≤ Mw(i)

α + c
+ bM

α(α + c)
for all i ∈ S, ϕ ∈ �. (2.3)
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Therefore, the optimal discounted reward, defined as

v∗(i) := sup
ϕ∈�

v(i, ϕ) for all i ∈ S,

is finite, and we say that a Markov policy ϕ ∈ � is discount optimal if v(i, ϕ) = v∗(i) for all
i ∈ S. We note that, as a consequence of (2.3), and letting C := M(b + α)/α(c + α), we have

‖v(·, ϕ)‖w ≤ C for all ϕ ∈ �, and ‖v∗‖w ≤ C. (2.4)

Our next result summarizes the main results on the dynamic programming optimality equa-
tion for M and the existence of discount optimal policies. Regarding Theorem 2.1(a) below
and as a consequence of Assumption 2.1, for every u ∈ Bw(S), the function r(i, a) +∑

j∈S qij (a)u(j) is continuous in a ∈ A(i) for each fixed i ∈ S.

Theorem 2.1. Let the control model M satisfy Assumptions 2.1 and 2.2.

(a) The optimal discounted reward v∗ is the unique solution in Bw(S) of the discounted
reward optimality equation (DROE)

αu(i) = max
a∈A(i)

{
r(i, a) +

∑
j∈S

qij (a)u(j)

}
for all i ∈ S.

(b) A policy f ∈ F is discount optimal if and only if it attains the maximum in the DROE,
i.e.

αv∗(i) = max
a∈A(i)

{
r(i, a)+

∑
j∈S

qij (a)v∗(j)

}
= r(i, f )+

∑
j∈S

qij (f )v∗(j) for all i ∈ S.

The proof of Theorem 2.1 given in [3, Theorem 3.2] and [5, Chapter 6] uses the value
iteration algorithm. In [10, Theorem 1], however, Theorem 2.1 is established by showing the
convergence of the policy iteration algorithm.

3. Convergence of control models

Suppose that {Mn}n≥1 is a sequence of control models that converges (in a suitably defined
sense) to the control model M in Section 2. We want to find conditions on the sequence {Mn}n≥1
of ‘approximating’ control models ensuring that the optimal discounted reward of Mn, say v∗

n,
converges as n → ∞ to the optimal discounted reward v∗ of M, and that, in addition, discount
optimal policies for Mn converge to discount optimal policies for M. Such approximation
procedures have been studied for continuous-time CMCs under the average reward optimality
criterion in [11], and for discrete-time constrained control models in [1], [2], and [14].

For each n ≥ 1, the control model Mn is

Mn := {Sn, A, (An(i)), (q
n
ij (a)), (rn(i, a))},

with the following elements.

• The state space Sn, which is assumed to be a subset of S. (Note that Sn may be finite or
infinite.)

• The action space A, which is the same as the action space of the control model M defined
in Section 2.
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• The action sets An(i) for i ∈ Sn, which are measurable subsets of A(i). Also, let Kn be
the family of state-action pairs for Mn, i.e.

Kn := {(i, a) ∈ S × A : i ∈ Sn, a ∈ An(i)}.
• The transition rates qn

ij (a), which are assumed to be measurable on An(i) for each fixed
i, j ∈ Sn. The transition rates are conservative and stable, that is,

∑
j∈Sn

qn
ij (a) = 0 for

all (i, a) ∈ Kn, and

qn(i) := sup
a∈An(i)

{−qn
ii(a)} < ∞ for all i ∈ Sn.

• The reward rates rn(i, a), which are measurable in a ∈ An(i) for each fixed i ∈ Sn.

Next, we state our hypotheses on the sequence {Mn}n≥1 of approximating control models.
Roughly speaking, we will suppose that the conditions in Assumption 2.1 hold ‘uniformly’ in
n ≥ 1.

Assumption 3.1. Let w be the Lyapunov function in Assumption 2.1.

(a) For every n ≥ 1, ∑
j∈Sn

qn
ij (a)w(j) ≤ −cw(i) + b for all (i, a) ∈ Kn,

where the constants c �= 0 and b ≥ 0 are as in Assumption 2.1(a).

(b) For each n ≥ 1 and i ∈ Sn, qn(i) ≤ w(i).

(c) For all n ≥ 1, ∑
j∈Sn

qn
ij (a)w2(j) ≤ −c′w2(i) + b′ for all (i, a) ∈ Kn,

with c′ ∈ R and b′ ≥ 0 as in Assumption 2.1(c).

(d) For every n ≥ 1 and (i, a) ∈ Kn, we have |rn(i, a)| ≤ Mw(i), with the constant M > 0
as in Assumption 2.1(d).

(e) For each n ≥ 1 and each fixed i, j ∈ Sn, a �→ rn(i, a) and a �→ qn
ij (a) are continuous

on An(i).

(f) For every n ≥ 1 and i ∈ Sn, the action set An(i) is compact.

Our definitions in Section 2 can be easily modified to account for the control models Mn.
For instance, given u : Sn → R, its w-norm is defined as

‖u‖w := sup
i∈Sn

{ |u(i)|
w(i)

}
,

and Bw(Sn) is the family of functions on Sn with finite w-norm. The class of Markov policies
for the control model Mn is denoted by �n. Also, we denote by Fn the set of deterministic
stationary policies for the control model Mn; that is, f : Sn → A is in Fn if f (i) ∈ An(i) for
all i ∈ Sn. The expectation operator under the control model Mn for the control policy ϕ ∈ �n,
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given the initial state i ∈ Sn, is denoted by Eϕ
i,n. Notation such as, e.g. {xϕ(t)}t≥0, or rn(t, i, ϕ)

for ϕ ∈ �n, i ∈ Sn, and t ≥ 0, is given the obvious definition.
We suppose that the discount rate α > 0 satisfies Assumption 2.2 (that is, α + c > 0, with c

the constant in Assumptions 2.1(a) and 3.1(a)). The total expected discounted reward of the
policy ϕ ∈ �n for the control model Mn, n ≥ 1, is defined as

vn(i, ϕ) := Eϕ
i,n

[∫ ∞

0
e−αt rn(t, x(t), ϕ) dt

]
for all i ∈ Sn.

Obviously, each control model Mn satisfies Assumption 2.1 and, therefore, the results in
Section 2 hold for every Mn. In particular, the optimal discounted reward of the control model
Mn, which we will denote by v∗

n, is the unique solution in Bw(Sn) of the corresponding DROE.
Moreover, a policy in Fn is discount optimal for Mn if and only if it attains the maximum in
the DROE of the control model Mn. Furthermore, as in (2.4), we obtain the bounds

‖vn(·, ϕ)‖w ≤ C for all ϕ ∈ �n and ‖v∗
n‖w ≤ C, (3.1)

where the bounding constant C := M(b + α)/α(c + α) is uniform in n ≥ 1 because the
constants b, c, and M are the same for every control model Mn (recall Assumption 3.1).

Lemma 3.1. Suppose that the control models Mn for n ≥ 1 verify Assumption 3.1(b)–(c).
Given i ∈ S and ε > 0, there exists K > i such that, for every n ≥ 1 with i ∈ Sn and all
a ∈ An(i), ∑

j∈Sn, j≥K

qn
ij (a)w(j) < ε.

Proof. We suppose that i ∈ S and ε > 0 are fixed. If K > i and n is such that i ∈ Sn, then,
for all a ∈ An(i),∑

j∈Sn, j≥K

qn
ij (a)w(j) ≤ 1

w(K)

∑
j∈Sn, j≥K

qn
ij (a)w2(j) (3.2)

≤ 1

w(K)

(∑
j∈Sn

qn
ij (a)w2(j) − qn

ii(a)w2(i)

)

≤ −c′w2(i) + b′ + w3(i)

w(K)
, (3.3)

where (3.2) is derived from the fact that qn
ij (a) ≥ 0 because j ≥ K > i, while (3.3) follows

from Assumption 3.1(b)–(c). Finally, it is clear from (3.3) that we can choose K large enough
(note that K depends only on i and ε, and not on n or a) such that∑

j∈Sn, j≥K

qn
ij (a)w(j) < ε

for all (i, a) ∈ Kn.

Remark 3.1. We note that, as a consequence ofAssumption 2.1(b)–(c), the result in Lemma 3.1
is also valid for the control model M. More precisely, for arbitrary i ∈ S and ε > 0, there
exists K > i such that

∑
j≥K qij (a)w(j) < ε for all a ∈ A(i).

Next, we give the definition of the convergence of control models.
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Definition 3.1. Suppose that M is the control model defined in Section 2, and let {Mn}n≥1
be the sequence of control models defined above. We say that {Mn}n≥1 converges to M as
n → ∞, which will be denoted by Mn → M, if the following conditions are satisfied.

(a) The sequence {Sn}n≥1 of state spaces is monotone nondecreasing, and Sn ↑ S.

As a consequence, if, for each i ∈ S, we define n(i) := min{n ≥ 1 : i ∈ Sn}, we have i ∈ Sn if
and only if n ≥ n(i).

(b) For each i ∈ S, the action sets An(i) converge to A(i) as n → ∞ in the Kuratowski
sense. Equivalently, for all i ∈ S,

lim
n→∞ inf{dA(a, a′) : a′ ∈ An(i)} = 0 for all a ∈ A(i),

where dA is the metric in the action space A.

(c) For each fixed i, j ∈ S, if the sequence an ∈ An(i) for n ≥ n(i) ∨ n(j) converges to
a ∈ A(i) as n → ∞, then qn

ij (an) → qij (a).

(d) For each fixed i ∈ S, if the sequence an ∈ An(i) for n ≥ n(i) converges to a ∈ A(i) as
n → ∞, then rn(i, an) → r(i, a).

The condition in Definition 3.1(b) is equivalent to the following statement. For each fixed
(i, a) ∈ K and every subsequence {n′}, there exists a further subsequence {n′′} and actions
an′′ ∈ An′′(i) for all n′′ ≥ n(i) such that an′′ → a as n′′ → ∞.

The conditions in Definition 3.1(c) and (d) state, roughly speaking, that rn(i, a) and qn
ij (a)

converge to r(i, a) and qij (a), respectively, uniformly in a for each fixed states i and j .

Remark 3.2. Let us comment on Definition 3.1. Note that we allow all the elements of the
control models Mn (namely, the state space, the action sets, and the transition and reward rates)
to depend on n ≥ 1.

When dealing with similar definitions of convergence of control models, the state space is
usually allowed to depend on n; see [1], [6], and [11]. The transition and reward rates may as
well depend on n. In this case, the uniform convergence property in Definition 3.1(c)–(d) is
a usual requirement; see, e.g. Condition (2) of [1, Theorem 6.1], and Assumptions 3.1(c) and
3.3(c) of [2].

The notion of the Kuratowski convergence for the approximation of control models was used
in [8]. Let us also mention that the Kuratowski convergence of the action sets An(i) is related to
the discretization of the state space made in [6, Section 6.3] for a discrete-time Markov control
process. We note however that in [1], [2], [6], and [11] the action sets of Mn are the same as
the action sets of the original control model M.

Before stating our main result, we prove the following preliminary fact.

Lemma 3.2. Suppose that the control models M and Mn for n ≥ 1 satisfy Assumptions 2.1
and 3.1, respectively, as well as Definition 3.1(a). Also, let the discount rate α verify Assump-
tion 2.2, and let v∗

n ∈ Bw(Sn) and f ∗
n ∈ Fn be the optimal discounted reward and a discount

optimal policy for Mn, n ≥ 1, respectively. Then the following statements hold.

(a) There exists a subsequence {n′} and some u ∈ Bw(S) such that

lim
n′→∞

v∗
n′(i) = u(i) for all i ∈ S.
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(b) There exists a subsequence {n′} and a policy f ∈ F with

lim
n′→∞

f ∗
n′(i) = f (i) for all i ∈ S. (3.4)

In this case, we say that f is a limit policy of {f ∗
n }n≥1.

Proof. (i) Note that, for each fixed i ∈ S, and as a consequence of (3.1), the sequence of
optimal discounted rewards v∗

n(i) for n ≥ n(i) is bounded. Therefore, it has a convergent
subsequence. Moreover, by using a diagonal argument we deduce that, for some further
subsequence, denoted by {n′}, the sequence {v∗

n′ } converges pointwise to some u ∈ Bw(S).
More explicitly, there exists u ∈ Bw(S) such that, for every i ∈ S, the sequence {v∗

n′(i)}n′≥n(i)

converges to u(i). Moreover, (3.1) yields ‖u‖w ≤ C.
(ii) Fix i ∈ S, and suppose that n ≥ n(i), that is, i ∈ Sn. Then we have f ∗

n (i) ∈ An(i) ⊆
A(i). Thus, the sequence {f ∗

n (i)}n≥n(i) is a sequence in the compact space A(i). Therefore,
it has a convergent subsequence. Hence, as in the proof of (i), it follows that there exists a
subsequence {n′} and f ∈ F such that the sequence {f ∗

n′(i)}n′≥n(i) converges to f (i) for all
i ∈ S.

Finally, we state our main result.

Theorem 3.1. Suppose that the control models M and {Mn}n≥1 satisfy Assumptions 2.1 and
3.1, respectively, and let the discount rate α > 0 satisfy Assumption 2.2. If Mn → M then the
following statements hold.

(a) For every i ∈ S, limn→∞ v∗
n(i) = v∗(i).

(b) If f ∗
n ∈ Fn for n ≥ 1 is a discount optimal policy for Mn then any limit policy f ∗ ∈ F

of {f ∗
n }n≥1 is discount optimal for M.

Proof. Suppose that {n′} is a subsequence such that {v∗
n′ } converges pointwise to some

u ∈ Bw(S) (with, necessarily, ‖u‖w ≤ C), and such that {f ∗
n′ } converges to some f ∗ ∈ F;

recall (3.4). The existence of such {n′} is given by Lemma 3.2.
Fix an arbitrary state i ∈ S, an action a ∈ A(i), and ε > 0. By Definition 3.1(b) (recall

the comment after Definition 3.1), there exists a subsequence n′′ ≥ n(i) of {n′} and actions
an′′ ∈ An′′(i) such that an′′ → a as n′′ → ∞. To ease the notation, and without loss of
generality, this subsequence will still be denoted by {n′}. For such n′, from the DROE for the
control model Mn′ we obtain

αv∗
n′(i) ≥ rn′(i, an′) +

∑
j∈Sn′

qn′
ij (an′)v∗

n′(j). (3.5)

Now, by Lemma 3.1 and Remark 3.1, there exists K > i (which depends only on i and ε) such
that ∣∣∣∣ ∑

j≥K

qij (a)u(j)

∣∣∣∣ ≤ C
∑
j≥K

qij (a)w(j) ≤ Cε

and, by (3.1), for all n′ ≥ n(i),∣∣∣∣ ∑
j∈Sn′ , j≥K

qn′
ij (an′)v∗

n′(j)

∣∣∣∣ ≤ C
∑

j∈Sn′ , j≥K

qn′
ij (an′)w(j) ≤ Cε.
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Hence, from (3.5), we deduce that, for all n′ ≥ n(i),

αv∗
n′(i) ≥ rn′(i, an′) +

∑
j∈Sn′ , j<K

qn′
ij (an′)v∗

n′(j) +
∑
j≥K

qij (a)u(j) − 2Cε. (3.6)

Observe now that, as a consequence of Definition 3.1(c) and (d),

rn′(i, an′) → r(i, a) and qn′
ij (an′) → qij (a)

as n′ → ∞. On the other hand, for large n′, we have {0, 1, . . . , K − 1} ⊆ Sn′ . Finally, for
every state 0 ≤ j < K , the limit v∗

n′(j) → u(j) as n′ → ∞ holds. Hence, taking the limit as
n′ → ∞ in (3.6) yields

αu(i) ≥ r(i, a) +
∑
j<K

qij (a)u(j) +
∑
j≥K

qij (a)u(j) − 2Cε = r(i, a) +
∑
j∈S

qij (a)u(j) − 2Cε.

Since ε > 0 and (i, a) ∈ K are arbitrary, it follows that

αu(i) ≥ r(i, a) +
∑
j∈S

qij (a)u(j) for all (i, a) ∈ K.

Hence, from [5, Theorem 6.9] we conclude that v∗ ≤ u.
Let us now prove the reverse inequality. Recall that we are assuming that there is a

subsequence {n′} and a policy f ∗ ∈ F such that f ∗
n′(i) → f ∗(i) for all i ∈ S. Fix a state

i ∈ S, and suppose that n′ ≥ n(i). With the policy f ∗
n′ ∈ Fn′ being discount optimal for the

control model Mn′ , by Theorem 2.1(b) we have

αv∗
n′(i) = rn′(i, f ∗

n′) +
∑
j∈Sn′

qn′
ij (f ∗

n′)v∗
n′(j). (3.7)

Given ε > 0, by Lemma 3.1 and Remark 3.1 again, there exists K > i (which depends only
on i and ε) such that ∣∣∣∣ ∑

j≥K

qij (f
∗)u(j)

∣∣∣∣ ≤ C
∑
j≥K

qij (f
∗)w(j) ≤ Cε,

where u ∈ Bw(S) is the pointwise limit of {v∗
n′ }, and, for all n′ ≥ n(i),∣∣∣∣ ∑

j∈Sn′ , j≥K

qn′
ij (f ∗

n′)v∗
n′(j)

∣∣∣∣ ≤ C
∑

j∈Sn′ , j≥K

qn′
ij (f ∗

n′)w(j) ≤ Cε.

Thus, as a consequence of (3.7),

αv∗
n′(i) ≤ rn′(i, f ∗

n′) +
∑

j∈Sn′ , j<K

qn′
ij (f ∗

n′)v∗
n′(j) +

∑
j≥K

qij (f
∗)u(j) + 2Cε.

Letting n′ → ∞ in the above inequality, and recalling that (see Definition 3.1(c) and (d))

rn′(i, f ∗
n′) → r(i, f ∗) and qn′

ij (f ∗
n′) → qij (f

∗),

https://doi.org/10.1239/jap/1354716658 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1354716658


1082 T. PRIETO-RUMEAU AND O. HERNÁNDEZ-LERMA

and also that v∗
n′(j) → u(j) for all 0 ≤ j < K , it follows that

αu(i) ≤ r(i, f ∗) +
∑
j∈S

qij (f
∗)u(j) + 2Cε.

With the state i ∈ S and the constant ε > 0 being arbitrary, we conclude that

αu(i) ≤ r(i, f ∗) +
∑
j∈S

qij (f
∗)u(j) for all i ∈ S.

From [5, Theorem 6.9] we obtain u ≤ v(·, f ∗) ≤ v∗. Combined with the previously established
inequality v∗ ≤ u, we find that u equals the optimal discounted reward v∗. In addition, we find
that f ∗ is discount optimal. Hence, we have shown that the pointwise limit of {v∗

n′ } through
any convergent subsequence is necessarily v∗. Therefore, the whole sequence {v∗

n} converges
pointwise to v∗. This proves part (a) of the theorem, while part (b) is a direct consequence of
the arguments above.

Remark 3.3. Theorem 3.1 gives the pointwise convergence of the optimal discounted rewards
v∗
n of Mn to v∗, and also the convergence of the optimal policies of Mn to an optimal policy of M.

There still remains one important open issue, which is to study the speed of this convergence,
or to give bounds on the approximation errors. For some particular cases, such convergence
rates can be explicitly determined—see the example in Section 4. For general control models,
however, determining the convergence rates is an open problem.

4. Application to finite approximations

Suppose that M is a control model whose optimal discounted reward and policies we want
to approximate. The simplest way of obtaining a sequence {Mn}n≥1 of control models that
converges to M is by the finite-state and finite-action truncation procedure defined next.

Let M = {S, A, (A(i)), (qij (a)), (r(i, a))} be the control model in Section 2, assumed to
satisfy the conditions in Assumption 2.1. For each n ≥ 1, define the control model

Mn := {Sn, A, (An(i)), (q
n
ij (a)), (rn(i, a))}

as follows.

• The state space is Sn := {0, 1, . . . , n}.
• For each i ∈ Sn, let An(i) be a finite subset of A(i). In addition, suppose that the sets

An(i) verify the condition in Definition 3.1(b).

• Given states i ∈ Sn and 0 ≤ j < n, let

qn
ij (a) := qij (a) and qn

in(a) :=
∑
j≥n

qij (a)

for a ∈ An(i).

• The reward rate is rn(i, a) := r(i, a) for i ∈ Sn and a ∈ An(i).

Roughly speaking, the control model Mn consists in restarting the control process at state n

when it reaches the set {n + 1, n + 2, . . . }.
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Proposition 4.1. Suppose that M is a control model that satisfies Assumption 2.1. If {Mn}n≥1
is the sequence of finite-state and finite-action control models defined above, then the Mn for
n ≥ 1 satisfy Assumption 3.1, and, moreover, Mn → M.

Proof. Before proceeding with the proof itself, note that the particular definition of qn
in(a)

means that ∑
j∈Sn

qn
ij (a) = 0 for all (i, a) ∈ Kn,

so the transition rates of Mn are conservative. Their stability will be proved below, together
with Assumption 3.1(b).

Let us check that Assumption 3.1(a) is satisfied. Recall that the Lyapunov function w, as
well as the constants c �= 0 and b ≥ 0, are taken from Assumption 2.1. Given n ≥ 1 and
(i, a) ∈ Kn, ∑

j∈Sn

qn
ij (a)w(j) =

∑
0≤j≤n

qij (a)w(j) +
∑
j>n

qij (a)w(n)

≤
∑

0≤j≤n

qij (a)w(j) +
∑
j>n

qij (a)w(j) (4.1)

=
∑
j∈S

qij (a)w(j)

≤ −cw(i) + b, (4.2)

where (4.1) follows from the monotonicity of w and the fact that qij (a) ≥ 0 for j > n ≥ i,
while (4.2) is derived from Assumption 2.1(a). Hence, Assumption 3.1(a) is satisfied, and,
obviously, Assumption 3.1(c) is derived similarly.

ConcerningAssumption 3.1(b), note that, byAssumption 2.1(b), given i ∈ Sn and a ∈ An(i),

−qn
ii(a) = −qii(a) ≤ w(i) for 0 ≤ i < n,

while −qn
nn(a) ≤ −qnn(a) ≤ w(n). Therefore, for every n ≥ 1 and i ∈ Sn, we have

qn(i) ≤ w(i).
Assumption 3.1(d) is a straightforward consequence of the definition of rn and Assump-

tion 2.1(d). Finally, Assumption 3.1(e) and (f) hold because the action sets An(i) for n ≥ 1 and
i ∈ Sn are finite.

To conclude the proof of this proposition, let us check that Mn → M as n → ∞. It is clear
that the conditions in Definition 3.1(a) and (b) are satisfied. Regarding (c) and (d), suppose
that, given i, j ∈ S, the sequence an ∈ An(i) for n ≥ i converges to a ∈ A(i). Since, for large
n, we have qn

ij (an) = qij (an), the convergence qn
ij (an) → qij (a) follows from the continuity

of the transition rates qij (a) in Assumption 2.1(e). In the same way, we can prove that rn(i, an)

converges to r(i, a). Hence, we have shown that Mn → M.

By using the policy iteration algorithm—see [10]—we can explicitly obtain the optimal
discounted reward v∗

n of Mn, as well as the corresponding optimal policies f ∗
n ∈ Fn. This is

because, with the state space Sn and the action sets An(i) being finite, the set Fn of deterministic
stationary policies is finite, and so the policy iteration algorithm converges in a finite number
of steps.

Finally, Theorem 3.1 ensures that v∗
n → v∗, the optimal discounted reward of M, and that

any limit policy in F of {f ∗
n }n≥1 is discount optimal for M.
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4.1. A population system with catastrophes

Our next example is a generalization of the population system proposed in [5, Example 7.2];
see also [11, Section IV].

The state space is S = {0, 1, 2, . . . }, which stands for the size of the population. The birth
and death rates of the population are λ > 0 and µ > 0, respectively. We suppose that the
decision maker controls an immigration rate a ∈ [0, a2] for some a2 > 0. When the population
size is i ∈ S, we assume that a catastrophe occurs at a rate d(i, b) ≥ 0. This rate is controlled by
the action b ∈ [b1, b2] chosen by the controller. We will suppose that the function b �→ d(i, b)

is continuous on [b1, b2] for each fixed i ∈ S, and that there exists C > 0 such that

sup
b∈[b1,b2]

d(i, b) ≤ C(i + 1) for all i ∈ S.

Let γi(j) for 1 ≤ j ≤ i be the probability that j individuals perish if a catastrophe happens
when the size of the population is i > 0. We have, obviously,

i∑
j=1

γi(j) = 1 for each i > 0.

We will denote by Eγi
the expectation operator associated with the distribution {γi(j)}1≤j≤i ,

and by Xi the random number of perished individuals.
The action sets of our control model are A(0) = [0, a2] and

A ≡ A(i) = [0, a2] × [b1, b2] for all i > 0.

The system’s transition rates in state i = 0 are given by

q01(a) = a = −q00(a) for all a ∈ A(0),

while, for i > 0 and (a, b) ∈ A, they are given by

qij (a, b) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 for j > i + 1,

λi + a forj = i + 1,

−(λ + µ)i − a − d(i, b) for j = i,

µi + d(i, b)γi(1) for j = i − 1,

d(i, b)γi(i − j) for 0 ≤ j < i − 1.

When the population size is i ∈ S, the controller receives a reward at a rate pi for some
p > 0. The cost rate for controlling both the immigration and the catastrophe rates is c(i, a, b).
We assume that the function c(i, ·, ·) is continuous on A(i) for each i ∈ S and, furthermore,
that, for some constant C′ > 0,

sup
(a,b)∈A(i)

|c(i, a, b)| ≤ C′(i + 1) for all i ∈ S.

We will consider the net reward rate r(i, a, b) = pi − c(i, a, b) for i ∈ S and (a, b) ∈ A(i).

Proposition 4.2. The controlled population system M verifies Assumption 2.1.

Proof. For some constant R ≥ 1 such that R > λ+µ+ a2 +C, we consider the Lyapunov
function w(i) = R(i + 1) for i ∈ S.
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It is easily seen that the conditions in Assumption 2.1(b) and (d)–(f) are satisfied. Hence, it
remains to show that Assumption 2.1(a) and (c) hold.

By a direct calculation we obtain, for states i > 0 and actions (a, b) ∈ A,

∑
j∈S

qij (a, b)w(j) =
(

λ − µ − d(i, b) Eγi

[
Xi

i + 1

])
w(i) + R(a − λ + µ)

≤ (λ − µ)w(i) + R(a2 − λ + µ) (4.3)

and ∑
j∈S

qij (a, b)w2(j) =
(

2(λ − µ) + d(i, b)

(
Eγi

[(
Xi

i + 1

)2]
− 2Eγi

[
Xi

i + 1

])

+ 2a − λ + 3µ

i + 1

)
w2(i) + R2(a − λ − µ)

≤
(

2(λ − µ) + |2a2 − λ + 3µ|
2

)
w2(i) + R2(a2 − λ − µ).

Assumption 2.1(a) and (c) easily follow from the above inequalities.

Remark 4.1. The proof of Proposition 4.2 shows that the constant c in Assumption 2.1(a) is
equal to µ − λ. Consequently, for the discounted control problem, we can choose a discount
rate α > 0 such that α > λ − µ. In particular, if µ ≥ λ (that is, the death rate is larger than or
equal to the birth rate) then we can choose any α > 0.

Under some additional hypotheses, however, we can make a sharper choice for c. Suppose,
for instance, that there exists D > 0 such that

inf
b∈[b1,b2]

d(i, b) ≥ Di for all i > 0. (4.4)

From (4.3), it follows that the constant c in Assumption 2.1(a) is equal to µ + D − λ. In this
case, the discount rate α > 0 must be such that α > λ − µ − D. So, if µ + D ≥ λ (and, in
particular, this allows the birth rate λ to be larger than the death rate µ) then we can choose an
arbitrary discount rate α > 0.

Now, we give the definition of the truncated control models Mn for n ≥ 1. The state space
is Sn = {0, 1, . . . , n}. Regarding the action sets, let

An(0) =
{

�1a2

Pn

: 0 ≤ �1 ≤ Pn

}

and

An(i) =
{(

�1a2

Pn

, b1 + �2

Pn

(b2 − b1)

)
: 0 ≤ �1, �2 ≤ Pn

}
for i > 0,

where {Pn}n≥1 is an arbitrary sequence of positive integers such that limn Pn = ∞. Thus, the
action sets An(i) consist of a finite grid of points in A(i), which are the vertices of rectangles
with dimensions a2/Pn×(b2−b1)/Pn. In particular, the action sets An(i) verify the Kuratowski
convergence property in Definition 3.1(b). The transition and reward rates of Mn are defined
as at the start of this section. Hence, it is clear that the truncated control models Mn verify
Proposition 4.1.
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We choose a discount rate α > 0 according to Remark 4.1. We can use the policy iteration
algorithm to obtain explicitly the optimal discounted reward v∗

n and a discount optimal policy
f ∗

n of Mn. By Theorem 3.1, v∗
n converges pointwise to the optimal discounted reward of M,

and the limit policies of {f ∗
n }n≥1 are discount optimal for M.

4.2. Convergence rate results

Consider the control model M and the finite truncations Mn defined above, and suppose
that, in addition, the condition in (4.4) is satisfied. Given an initial state i ∈ S, our goal now is
to give lower bounds of v∗(i) based on the approximations v∗

n(i). As we shall see, such lower
bounds can be established with a certain level of generality. Upper bounds will be obtained
later for a particular choice of the functions r(i, a, b) and d(i, b).

Given a real number β ≥ 1, direct calculations similar to those made in the proof of
Proposition 4.2 yield some constant D̃β > 0 such that∑

j∈S

qij (a, b)wβ(j) ≤ −β(µ + D − λ)wβ(i) + D̃βwβ−1(i) for all (i, a, b) ∈ K. (4.5)

If µ+D ≥ λ then choose any discount rate α > 0 and an arbitrary β0 > 1, while if µ+D < λ,
choose a discount rate α > λ − µ − D and let β0 satisfy

1 < β0 <
α

λ − µ − D
. (4.6)

From (4.5) we derive the existence of D̂ > 0 such that∑
j∈S

qij (a, b)wβ0(j) ≤ αwβ0(i) + D̂ for all (i, a, b) ∈ K. (4.7)

In what follows, we fix an arbitrary initial state i in S and n ≥ i. Given a policy ϕ0 in � or
�n, define the stopping time τn(ϕ0) as the hitting time of {n, n+1, . . . } (or, equivalently, since
the population augments at most by one individual at each transition, the hitting time of {n}):

τn(ϕ0) := inf{t ≥ 0 : xϕ0(t) ≥ n} = inf{t ≥ 0 : xϕ0(t) = n}.
Given a policy ϕ ∈ �n (defined on the states of Sn), consider an arbitrary extension ϕ̃

of ϕ to � (i.e. to the states of S − Sn). It is clear that, for the initial state i ≤ n, we have
τn := τn(ϕ) = τn(ϕ̃), and that xϕ(t) and xϕ̃(t) coincide on 0 ≤ t ≤ τn. Therefore, for the
control model Mn,

vn(i, ϕ) = Eϕ
n,i

[∫ τn

0
e−αt rn(t, x

ϕ(t), ϕ) dt

]
+ Eϕ

n,i

[∫ ∞

τn

e−αt rn(t, x
ϕ(t), ϕ) dt

]

= Eϕ̃
i

[∫ τn

0
e−αt r(t, xϕ̃(t), ϕ̃) dt

]
+ Eϕ

n,i[e−ατn ]vn(n, ϕ)

= Eϕ̃
i

[∫ τn

0
e−αt r(t, xϕ̃(t), ϕ̃) dt

]
+ Eϕ̃

i [e−ατn ]vn(n, ϕ). (4.8)

On the other hand, for the control model M,

v(i, ϕ̃) = Eϕ̃
i

[∫ τn

0
e−αt r(t, xϕ̃(t), ϕ̃) dt

]
+ Eϕ̃

i

[∫ ∞

τn

e−αt r(t, xϕ̃(t), ϕ̃) dt

]

= Eϕ̃
i

[∫ τn

0
e−αt r(t, xϕ̃(t), ϕ̃) dt

]
+ Eϕ̃

i [e−ατn ]v(n, ϕ̃).
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Now, recalling (2.4) and (3.1), we have |v(n, ϕ̃)| ≤ Cw(n) and |vn(n, ϕ)| ≤ Cw(n). Therefore,

|vn(i, ϕ) − v(i, ϕ̃)| ≤ 2Cw(n) Eϕ̃
i [e−ατn ].

(We note that the above calculations do not exclude the possibility that τn = ∞ with positive
probability.)

Now we use (4.7) and Dynkin’s formula [5, Appendix C.3] for the function (t, i) �→
e−αtwβ0(i) (which indeed applies because (4.5) holds for all β ≥ 1) to obtain, for arbitrary
T > 0,

Eϕ̃
i [e−α(τn∧T )wβ0(x(τn ∧ T ))] ≤ wβ0(i) + Eϕ̃

i

[∫ τn∧T

0
e−αt D̂ dt

]
≤ wβ0(i) + D̂α−1.

In this inequality we let T → ∞ and, by dominated convergence, we obtain

Eϕ̃
i [e−ατnwβ0(n) 1{τn < ∞}] ≤ wβ0(i) + D̂α−1,

and so

Eϕ̃
i [e−ατn ] ≤ wβ0(i) + D̂α−1

wβ0(n)
. (4.9)

Since ϕ ∈ �n is arbitrary, we deduce that

sup
ϕ∈�n

|vn(i, ϕ) − v(i, ϕ̃)| ≤ 2C(wβ0(i) + D̂α−1)

wβ0−1(n)
. (4.10)

Finally, let ϕ = f ∗
n be an optimal policy for Mn and let f̃ ∗

n be an extension of f ∗
n to �. By

(4.10),

v∗
n(i) = v(i, f̃ ∗

n ) + vn(i, f
∗
n ) − v(i, f̃ ∗

n ) ≤ v∗(i) + 2C(wβ0(i) + D̂α−1)

wβ0−1(n)
. (4.11)

Therefore, we obtain a lower bound of v∗(i) at a rate 1/nβ0−1 as n → ∞. Recall that β0 > 1
is arbitrary if µ + D ≥ λ, while if µ + D < λ, the maximal convergence order is given by
α/(λ − µ − D) in (4.6). Finally, let us mention that the argument above cannot be used to
derive an upper bound of v∗(i). Indeed, the restriction to Sn of a discount optimal policy for M
might not be in �n because the corresponding actions need not belong to the action sets An(i)

for i ∈ Sn.

4.3. Numerical results

For the numerical experimentation, we fix the values of the parameters as

λ = 3.05, µ = 3, a2 = 5, b1 = 5, b2 = 8.

The catastrophe rate is given by d(i, b) = ib/10 for i > 0 and b ∈ [5, 8]. The distribution
{γi(j)} of the catastrophe size is a truncated geometric distribution with parameter γ = 0.8;
more precisely, given i > 0,

γi(j) = γ j−1(1 − γ )

1 − γ i
for 1 ≤ j ≤ i.

https://doi.org/10.1239/jap/1354716658 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1354716658


1088 T. PRIETO-RUMEAU AND O. HERNÁNDEZ-LERMA

240

220

200

180

160
503020 4010 60 70

i = 5
i = 10
i = 15

Figure 1: The optimal rewards v∗
n(i) for i = 5, 10, 15.
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Figure 2: The optimal policies f ∗
n (i) for i = 5, 10, 15.

Finally, the net reward rate is

r(i, a, b) = (10 − (a − 2)2 − 0.5(b − 8)2)i.

The interpretation of the term (a − 2)2 is that we suppose that there is a natural immigration
rate (which equals 2), and that augmenting or diminishing this natural immigration rate implies
a cost for the controller. Similarly, the term (b − 8)2 means that there is a natural catastrophe
rate (which equals 8), and the controller incurs a cost when decreasing it. The discount rate is
α = 0.1 and Pn in the definition of the finite action sets An(i) is equal to 2n.

For every 1 ≤ n ≤ 70, we solved the discounted control problem for Mn. Given the
initial states i = 5, 10, 15, the discount optimal rewards v∗

n(i) and actions a∗
n(i) and b∗

n(i) are
displayed in Figures 1 and 2, respectively, as functions of n. Empirically, we observe that the
optimal reward and actions quickly converge, and become stable for relatively small values
of n.

4.4. Convergence rate results (revisited)

Finally, we study the issue of the upper bounds for v∗(i) for a given i ∈ S. We suppose
that the functions r(i, a, b) and d(i, b) are as defined above. Let f ∗ ∈ F be a discount optimal
policy for the control model M. Given an initial state i ∈ S and n ≥ i, let ṽn(i, f

∗) be the total
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expected discounted reward of the policy f ∗ up to time τn(f
∗), that is,

ṽn(i, f
∗) = Ef ∗

i

[∫ τn(f ∗)

0
e−αt r(t, xf ∗

(t), f ∗) dt

]

with, in particular, ṽn(n, f ∗) = 0. By arguments similar to those used to derive (4.10), we
have

|v∗(i) − ṽn(i, f
∗)| ≤ C(wβ0(i) + D̂α−1)

wβ0−1(n)
. (4.12)

Also, since {ṽn(·, f ∗)}i∈Sn is the expected discounted reward of a policy with transition rates
equal to qjk(f

∗) for 0 ≤ j < n and 0 ≤ k ≤ n, and equal to 0 if j = n, and reward rates equal
to r(j, f ∗) for 0 ≤ j < n and equal to 0 for j = n, ṽn(·, f ∗) verifies (see Theorem 6.9.c of
[5])

αṽn(j, f
∗) = r(j, f ∗) +

∑
0≤k≤n

qjk(f
∗)ṽn(k, f ∗) for all 0 ≤ j < n.

For each 0 ≤ j ≤ n, let fn(j) ∈ An(j) be the closest point to f ∗(j) ∈ A(j). In particular,
‖f ∗(j) − fn(j)‖ ≤ B/Pn, where ‖ · ‖ stands for the Euclidean norm and the constant B > 0
does not depend on n. In this way, we define a policy fn ∈ Fn. Using the mean value theorem
[12, Theorem 5.10], it can be shown after some elementary calculations that, for some constant
B̃ > 0 that does not depend on n,

αṽn(j, f
∗) ≤ r(j, fn) +

∑
0≤k≤n

qjk(fn)ṽn(k, f ∗) + B̃n2

Pn

for all 0 ≤ j < n.

Equivalently,

α

(
ṽn(j, f

∗) − B̃n2

αPn

)
≤ rn(j, fn) +

∑
0≤k≤n

qn
jk(fn)

(
ṽn(k, f ∗) − B̃n2

αPn

)
for all 0 ≤ j < n,

from which [5, Theorem 6.9.b], for 0 ≤ i < n,

ṽn(i, f
∗) − B̃n2

αPn

≤ Efn

n,i

[∫ τn(fn)

0
e−αt rn(t, x

fn(t), fn) dt

]
.

Now, proceeding as in (4.8) and (4.9), we obtain

ṽn(i, f
∗) − B̃n2

αPn

≤ vn(i, fn) + C(wβ0(i) + D̂α−1)

wβ0−1(n)
≤ v∗

n(i) + C(wβ0(i) + D̂α−1)

wβ0−1(n)
.

Together with (4.12), this yields

v∗(i) ≤ v∗
n(i) + 2C(wβ0(i) + D̂α−1)

wβ0−1(n)
+ B̃n2

αPn

.

Therefore, recalling (4.11), it follows that, for sufficiently ‘fine’ partitions of the state space (in
particular, we can choose Pn = O(n1+β0)), we obtain

|v∗
n(i) − v∗(i)| = O(n−(β0−1)).
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Hence, the convergence of v∗
n(i) to v∗(i) is of order β0 − 1, where

• β0 > 1 is arbitrary if µ + D ≥ λ; and

• β0 < α/(λ − µ − D) if µ + D < λ; recall (4.6).

Remark 4.2. We note that the main feature of the functions r(i, a, b), d(i, b), and qij (a, b)

used to derive the above upper bound of v∗(i) is that they are Lipschitz continuous on A(i),
with a Lipschitz constant that is O(i).

References

[1] Altman, E. (1994). Denumerable constrained Markov decision processes and finite approximations. Math.
Operat. Res. 19, 169–191.

[2] Álvarez-Mena, J. and Hernández-Lerma, O. (2002). Convergence of the optimal values of constrained
Markov control processes. Math. Meth. Operat. Res. 55, 461–484.

[3] Guo, X. and Hernández-Lerma, O. (2003). Continuous-time controlled Markov chains with discounted
rewards. Acta Appl. Math. 79, 195–216.

[4] Guo, X. and Hernández-Lerma, O. (2003). Drift and monotonicity conditions for continuous-time controlled
Markov chains with an average criterion. IEEE Trans. Automatic Control 48, 236–245.

[5] Guo, X. and Hernández-Lerma, O. (2009). Continuous-Time Markov Decision Processes. Springer, Berlin.
[6] Hernández-Lerma, O. (1989). Adaptive Markov Control Processes. Springer, New York.
[7] Kushner, H. J. and Dupuis, P. (2001). Numerical Methods for Stochastic Control Problems in Continuous

Time, 2nd edn. Springer, New York.
[8] Langen, H.-J. (1981). Convergence of dynamic programming models. Math. Operat. Res. 6, 493–512.
[9] Leizarowitz, A. and Shwartz, A. (2008). Exact finite approximations of average-cost countable Markov

decision processes. Automatica J. IFAC 44, 1480–1487.
[10] Prieto-Rumeau, T. and Hernández-Lerma, O. (2010). Policy iteration and finite approximations to

discounted continuous-time controlled Markov chains. In Modern Trends in Controlled Stochastic Processes,
ed. A. B. Piunovskiy, Luniver Press, pp. 84–101.

[11] Prieto-Rumeau, T. and Lorenzo, J. M. (2010). Approximating ergodic average reward continuous-time
controlled Markov chains. IEEE Trans. Automatic Control 55, 201–207.

[12] Rudin, W. (1976). Principles of Mathematical Analysis, 3rd edn. McGraw-Hill, New York.
[13] Song, Q. S. (2008). Convergence of Markov chain approximation on generalized HJB equation and its

applications. Automatica J. IFAC 44, 761–766.
[14] Tidball, M. M., Lombardi, A., Pourtallier, O. and Altman, E. (2000). Continuity of optimal values and

solutions for control of Markov chains with constraints. SIAM J. Control Optimization 38, 1204–1222.
[15] Whitt, W. (1978). Approximation of dynamic programs. I. Math. Operat. Res. 3, 231–243.

https://doi.org/10.1239/jap/1354716658 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1354716658

	1 Introduction
	2 Model definition
	2.1 Control policies
	2.2 The controlled Markov process
	2.3 The total expected discounted reward optimality criterion

	3 Convergence of control models
	4 Application to finite approximations
	4.1 A population system with catastrophes
	4.2 Convergence rate results
	4.3 Numerical results
	4.4 Convergence rate results (revisited)

	References

