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MINIMAL AND MAXIMAL SOLUTIONS TO SYSTEMS OF
DIFFERENTIAL EQUATIONS WITH A SINGULAR MATRIX
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Abstract

The monotone iterative technique is applied to a system of ordinary differential equations
with a singular matrix. The existence of extremal solutions is proved.

1. Introduction

Many problems arising in the physical sciences, engineering, biology and applied
mathematics lead to mathematical models described by systems of differential equa-
tions with initial conditions of the form

x'(t)=Mt,x(t)), teJ = [0, T], x(0)=x0e (1.1)

where f\ 6 C(J x Rp, Kp). Conditions on f\ which guarantee the existence of
solutions of problem (1.1) are important analysis theorems. To show that problem
(1.1) has a solution, one can employ fixed point theorems (Banach, Schauder), the
Leray-Schauder theory of topological degree or the method of successive iterations.
Assuming that/! satisfies the Lipschitz condition with respect to the last variable one
can show that problem (1.1) has a unique solution. If we assume that/! satisfies only
a one-sided Lipschitz condition, then we can show that problem (1.1) has extremal
solutions. Such a result can be obtained when the method of upper and lower solutions
is used. This interesting and fruitful technique for proving existence results shows that
corresponding monotone sequences converge to the minimal and maximal solutions of
our problem (there are some applications of this technique, for example, in [3]). The
constructive proofs of existence also provide numerical procedures for the computation
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of solutions. Problem (1.1) may be generalised by adding an algebraic system to obtain
the differential-algebraic system

\x'(t)=Mt,x(t),y(t)), teJ, x(0)=x0

\y(t)=fi(t,x(t),y(t)), teJ.

Note that the last system is a special case of a problem discussed in this paper, namely

Ux'(t)=f(t,x(t),x'(t)), teJ = [0,T],

\x(0) = ko€Rm,

where / e C(7 x 0&m x 0Sm, 0&"1) and A is a singular square matrix of order m. Note
that problem (1.2) is identical to

x \ t ) = (A + B)-x\f{f,x{t),x\t)) + B x \ t ) - \ , t€J,x(O) = ko (1.3)

provided that the matrix B is a square matrix of order m such that A + B is nonsingular.
It is well-known that the method of lower and upper solutions coupled with the

monotone iterative technique provides a practical tool to generate monotone sequences
that converge to extremal solutions (see [1], see also [2-8]). The purpose of this
paper is to extend this technique to problems of type (1.2). This method is useful
since any member of the corresponding linear monotone iterations is an approximate
solution of (1.2). In our discussion, we assume that/ satisfies a one-sided Lipschitz
condition showing that problem (1.2) has extremal solutions. Note that the system
of differential-algebraic equations is a special case of (1.2). Some examples are also
given.

2. Main results

A function v e C\J, Km) is said to be a lower solution of problem (1.2) if

\Av'(t)<f(t,v(t),v'(t)), teJ,

\v(O)<kQ,

and an upper solution of (1.2) if the above inequalities are reversed. In this paper, the
vectorial inequalities mean that the same inequalities hold between their corresponding
components. Note that if the matrix (A + Z?)"1 exists, (A + B)~l > 0 and v is a lower
solution of problem (1.2), then v satisfies the relations

W , v(t), v'(t)) + Bv'(t)], t 6 J,

Here (A + B)~] > 0 means that some entries of {A + 2J)"1 may be equal to zero.
The next lemma is a special case of [4, Theorem 1.1.4].
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LEMMA 2.1. Assume that djj(t) > 0, t 6 J for i ^ j , where D = [</,-,-] is a
continuous square matrix of order m. Let

\p'(t) < D(t)p(t), te J, p € C'(7. Km),

Thenp(t) <0onJ.

Let us define the following set:

£1 = { ( r , « , D ) : ( e 7 , y o ( t ) < u < z o ( t ) , y'0(t) < v < ^ ( f ) , u, v

where yo.zoe C'(A Km).
Now we are in a position to show the following existence result.

THEOREM 2.2. Assume thatf e C(fi, Km)

(0 yo> £o e C (y , Rm) are lower and upper solutions of (1.2), respectively, and
such thatyo(t) < z0(0 andy'0(t) < z^(/) on 7;

(ii) f/iere exists a square matrix B of order m such that (A + B)~l exists, (A +
B)~] > 0, and the condition f (t, u,a) - f (r, u, a) < B[a - a] holds for yo(t) <
u < Zo(O and y'0(t) < a < a < z^(t), t € 7;

(iii) r/iere ej:wrj a square matrix N of order m such that N > 0, and for yo(t) <
u < it < zo(t), t e J, it holds that f (t, u,a) — f (t, «, a) < —N[u - «].

Then there exist monotone sequences {yn} and {zn} such that yn(t) —> y(t) and
zn(0 -*• z(t) on J as n -*• oo and this convergence is uniform and monotonic on J.
Moreover the functions y and z are minimal and maximal solutions of problem (1.2),
respectively.

PROOF. We construct the sequences [yn] and {zn} using the formulas

First of all, we are going to show the following relation:

J <zi(0<zo(0.

Put p = y0 - yx on J. Then p(0) < 0. Since (A + B)~x > 0, by assumption (i) we
have

p\t) < (A + B)~x{f (t,yo,y'o) + By'o(t)-f {t,yo,y'Q)-By'Q{t)-N[yy(t)-y0(t)]}

= (A+B)-iNp(t).
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By Lemma 2.1, we have p(t) < 0 and then p'(t) < Oon J showing that yo(t) < y\{t),
y'0U) < y[(t), t e J. Similarly, we can show that z,(r) < zo(t), z\(t) < z^{t), t e J.

Put p = y\ — Z\, so p(0) = 0. Then, by (ii) and (iii), we have

P\t) = (A + B)~]{f (t, y0, y'o) - f (t, zo, y'o) +f(t, zo, y'o) - f (t, zo, 4 )

- B[z'0(t) - yi(t)] + JVb-.W - yo(t) - z,(r) + zo(t)]}

< (A + By'i-Nlzoit) - yo(t)] + B[z'0(t) - y'0«)]

+ B[y'0(t) - z'0(0] + N[yi(t) - yo(t) - z,(0 + Zb(01}
l teJ.

Hence we have p(t) < 0 and then p'{t) < 0 on J showing that y\(t) < z\(t) and
y[(t) <z\(t),teJ. Thus (2.1) holds.

In the next step we need to show that y\ and z\ are lower and upper solutions of
problem (1.2), respectively. Then, by assumptions (ii) and (iii), we obtain

Ay[(t) = / (r, y0, y'o) + B[y'0(t) - y[(t)] + N[yi(t) - yo(t)]

- f (', J.. y'o) +f(t, yu y',) -fit, yi, y[) +f (r, yu y[)
<f(t,yuy[)-N[ydt)-yo(t)]

+ B\y[(t) - y'0(t)] + B\y'0(t) - y[(t)] + N[yi(t) -

= f(t,yuy\)

and

Az\(t) =f(t, zo, 4) + B[z^(t) - z\(t)] + N[zi(t) -

>/(*, zi, zl) + N[zo(t) - z,(01 - *[zi(0 - zi(01

= f(t,ZuZ'1),

showing that yt and z\ are lower and upper solutions of problem (1.2), respectively.
For some k > 1, let us assume that

\yk-i W < y*(0 < z*(0 < z*_i(0, f e 7,

4(t) < zi_,(0, ' e J,

and let yk and zt be lower and upper solutions of problem (1.2), respectively. We shall
prove that

| < z*+i(0 < z*(0. ' e 7,

< i ( O i ( O y
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Putp = yk — yk+]. Then

with p(0) = 0. Hence, by Lemma 2.1, p(t) < 0 and p'(t) < 0, t e J, showing that
yiciO < yk+\(t) and y'k(t) < y'k+](t), t e J. Using the same argument we can prove
that zk+dt) < zdt) and z'k+l(t) < z'k(t), t e J.

Let p = yk+x - zk+u sop(0) - 0. Then we get

p'(t) = (A + B)~l{f (/, yk, y'k) + By'k(t) + N[yk+i (r) - yk(t)] - f (t, zk, y'k)

' . Zk, y'k) -fit, zk, z'k) - Bz'k(t) - N[zk+1(0 - zk(t)]}

+ B)-'{-N[zk(t) - yk(t)] + B[z'k(t) - y'k(t)]

N[yk+i(t) - yk(t) - zt+i(t) + Zk(t)] + B[y'k(t) - z'k(t)])
l t€J.

Thus yk+l(t) < zM(t) and y'k+l(t) < z'k+l(t), t e J, so (2.2) holds.
Hence, by induction, we have

Jyo(t) <yi(t) <••• < yn(0 < zn(t) < < z,(/) < zo(O. > € J,

\ t e J

for all n.
We now show that the sequences [yn} and [zn} converge uniformly and monoton-

ically to y and z, respectively, where y and z are solutions of (1.2). The sequences
{yn} and {y'n} are uniformly bounded because

< y»(0 < Zo(t) and y'0(t) < ^ ( r ) < Zait), t e J

for all n, where ;y0 and zo e C'(y, 0Sm). Note that the sequences {yn} and {zn} are
well-defined because yn and zn are unique solutions of the corresponding linear IVP's.
Moreover, yn e C1 (J, Rm) and

J Gn.l(s)ds'\, t e J,
L Jo J

with K = (A + B)~lN and

Gj(j) = e-"(A + 5)" ' {/ (s, yj (s), y](s)) + By](s) - Nyj(s)}.

It is easy to see that [yn] is a sequence of equicontinuous functions. Indeed, [zn] is a
sequence of equicontinuous functions too.
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Note that {y'n) and {z'n} are sequences of continuous functions on the interval [0, b],
so uniform continuity implies that for any e > 0 there exists S > 0 such that for all n
and t\, h € J and |/i — t2\ < S we have

I (A + By'Nly^) - yn(t2) - ?„_,(*,) + yn_,(r2)]|j+ < e/3

because / is continuous on a closed set. Here we used the norm:

|M||* = max |w,|.
i=l,2 m

From the above and the relation

yn{ti) + yn-i(t2)]}

we see that [y'n] is a sequence of equicontinuous functions. Hence yn —> y, y'n -*• y'
and y € C'(7, Km), by Arzeli's theorem. Similarly we have zn —>• z, z'n -*• z' and
z e C'(y, Km). The Lebesgue theorem yields that

[f(s,y(s),y'(s)) + By'(s)]ds\, t G J,

z(0 = jfco + (A + B)-1 { J [f (s, z(s), z'(5)) + Bz'(s)] ds\, t € J.

Thus y and z are solutions of problem (1.2).
In the next step we will show that y and z are minimal and maximal solutions of

(1.2). Let x be any solution of problem (1.2) such that yo(t) < x(t) < z0(0 and
y'o(t)<x'(t)<z'o(t),teJ.

We are going to show that

y n ( t ) < x ( t ) < z n ( t ) a n d y ' n ( t ) < x ' ( t ) < z ' n ( t ) , t e J (2.3)

for all natural n.
Put p = yi - x on J. Then

p'{t) = {A+ Byl[f(t, y0, y'o) + By'0(t) + N[y,(t) - yo(t)] -f(t,x, y'o)

+ f{t,x,y'0)-f(t,x,x')-Bx'(t)}

<(A + B)-l[-N[x(t) - yo(t)] + B[x\t) - y'0(t)] + By'0(t)

+ N[yi(t) - yo(t)] - Bx\t)) = (A + By'Npit), p(0) = 0.
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Hence >>i(r) < x(t) andyj(f) < x'(t), t e J, by Lemma 2.1.
Le tp = x — z\, t 6 J. Then

p'(t) = (A + Byl[f(t,x,x') + Bx'it) -f(t,zo,x') +f(t,zo,x')
- f (t, zo, 4) - * 4 « - N[zi(t) -

Lemma 2.1 yields x(r) < z,(r) andx'(t) < z[(t), t e J. Thus (2.3) holds forn = 1.
Assume that (2.3) holds for some k > 1. Put p = yt+] — x. Then

p\t) = (A + Byx{f(t, yk, y'k) + By'k(t) + N[yk+l«) - yk(t)]

-f(.t,x,y'k)+f(t,x,y'k)-f(t,x,x')-Bx'(t))

< (A + fl)-'{-W[x(O - yk(t)] + B[x'(t) - y'k(t)] + By'k(t)

+ N[yk+l(t) - yk(t)] - Bx'(t)) = (A + B)-]Np(t), p(0) = 0.

Hence yk+i(t) <x(t) and yk+1(t) < x'(t), t e J, by Lemma 2.1.
Let/? = x — zk+i, t € J. Then

p'(t) = (A + B)~x{f (t,x,x') + Bx'(t) - f (t, Zk,x') + f (t, Zk,x')

-fit, zt, z'k) - Bz'k{t) - N[zk+i(t) - zt(t)])

<(A + fi)-'{-/V[Zi(r) -X(t)] + B[z'k(t) - jc'(

+ B[x'(t) - z'k(t)] - N[zk+i(t) - zt(t)])

Lemma 2.1 yields x(t) < zk+i(t) and^:'(0 < z'k+l(t), t € J. Thus (2.3) holds for all
natural n.

Now, if n ->• oo, then (2.3) yields y(t) < x(t) < z(t) and y'(t) < x'(t) < z'(t),
t e J, showing that y and z are minimal and maximal solutions of problem (1.2),
respectively.

This ends the proof.

3. A special case of (1.2)

Let m = 2 and A = [l
0 ~o

b], b > 0. Then problem (1.2) takes the form

\x'l(t)-bx'2(t)=fdt,xl(t),x2(t),x'l(t),x'2(t)), Xl(0)=x0.u

I 0=fi(t,xl(.t),x2(t),x\(t),x'2(t)), x2(,0)=x0,2.
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Assume that/i and/2 satisfy the following conditions:

fi(t,x1,x2,y1,y2) - fi(,t,xx,x2,yx,y2) < b^[yi - yi] + bia[y2 - y2] (3.2)

if y~i > yi, and

fi(t,xl,x2,yl,y2) -fi(t,xux2,yuy2) < -cu[xt -xt] - cii2[x2 - x2] (3.3)

if xi > x{ for i = 1,2 with bu, cu >0,i=l,2,j=l,2.
Note that in this case

i b22]' [c21 c22

(A + By1 =
det(A + B) l-bii 1 + bu

provided that det(A + B) = 622 + 62i6+det(fl) ^ 0. Note that if £> > 612and621 = 0,
then (A + B)~x > 0, so assumptions (ii) and (iii) of Theorem 2.2 hold.

The following system

\x[(t)=fl(t,xl(t),x2(t),x\{t)), , ( ) o . i ,

( 0=f2(t,Xi(t),x2(t),x2(t)), x2(0)=x0,2

is a special case of problem (3.1). Note that in this case we have bn = b2i = 0, so

It is quite simple to formulate corresponding theorems to Theorem 2.2 for problems
(3.1) and (3.4).

EXAMPLE. Let us consider the following problem:

x[(0 - 2x'2(t) = 2x,(t) + 3x2(t) - 8[x[(t)f - [x'2(t)]
2 + t, t e J,

0 = xx(0 + [JC,(r)]2 + 5x2(t) - l0[x'2(t)]
2, t e J, (3.5)

J C I ( 0 ) = J C 2 ( 0 ) = 0 .

Comparing this with (3.1) we have A = [Q~Q], 6 = 2 and

/ i 0 , x u x2, yi,y2) = 2xx + 3x2 - 8vf - y2 + t,

fi(t,x\,x2,yx,y2) = xx + x2 + 5x2 -
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It is simple to check that

and

are lower and upper solutions of problem (3.5), respectively.

Let 0 < JCI < i | < t,0 < x2 <x2 < t,0 < yi < Vi < 1 and 0 < y2 < y2 < 1.

Then conditions (3.2) and (3.3) hold with

B

Indeed we have

-['„' I]

Thus all assumptions of Theorem 2.2 are satisfied. By Theorem 2.2, problem (3.5)

has minimal and maximal solutions.
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