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THE SC,P-INTEGRAL AND THE P»+1-INTEGRAL
P.S. BULLEN AND C. M. LEE

Introduction. In [2], we have briefly described, as examples of the general
theory developed there, a scale of symmetric Cesaro-Perron integrals, namely
SC,P-integral for n = 1, 2, 3, . ... The purpose of this paper is to consider
the integrals in a greater detail.

As a preliminary, we prove some lemmas, which are also interesting for their
own sake, concerning the de la Vallée Poussin derivatives in Section 1, and we
also state two deep theorems concerning the n-convex functions in Section 2.
Our main effort is to establish Theorem 3 in Section 3, which is essential to
the theory of the SC,P-integral. In Section 4, the definition of the SC,P-
integral is given, while its usual properties are only briefly indicated since
they follow from the general theory in [2]. The last section is devoted to the

connection between the SC,P-integral and the symmetric P**l-integral of
James [9].

1. The symmetric de 1la Vallée Poussin derivatives. Let F be a function
defined on a bounded closed interval [a, ], and let ¥ be a point in the open
interval Ja, b[. If there are constants B, B2, 84, . . . , B2: (r = 0), depending on x
but not on % such that

h?k

Eob

) HFG+ 1) + Pl =)} — 2 b

as h — 0, then B., is called the symmetric de la Vallée Poussin (s.d.l.V.P.)
derivative of order 27 of F at x, and we write B2, = Dy, F(x). It is clear that

if D,,F(x) exists, so does Dy F(x) fork =0,1,2,...,7 — 1, and Dy F(x) =
BMif Do F(x) existsfor0 £ k <m — 1, im = 1), define 0y, (x, h) = 04, (F; x, k)
by

th m—1 h2k
(2) mﬂzm(ﬂc, h) = 3{Flx + h) + Flx — h)} — ;ﬂ (2—k)-!Dsz(x),
and let

"Dy F(x) = lim sup 0o (x, &),
h0

_Ds,F(x) = lim inf 0s, (x, £).
k0
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Then a finite common value for ~Ds, F(x) and _D,, F(x) implies that D,, F(x)
exists and equals this common value.
In a similar way, the odd-ordered s.d.1.V.P. derivative is defined by replac-

ing (1) by
, . T h2k+1 B ari1
1) ${F+h) — Flx — h)} — k;l ﬂzk+1m—0(h )-

Similar changes can be made in (2), (3).
The following lemma is an extension and generalization of Lemma 4, (i) in
[13]. For a partial converse in the non-symmetric case, see Lemma 10 in [12].

LeMMA 1. Let H be a function and H' (x) = G(x) in a neighborhood of x.. If
for some n, D,G(x,) exists, then D,.1H (xo) exists and is equal to D,G (x).

Proof. The proof is by induction on #. To see that it is true for » = 1,
consider, for sufficiently small # > 0,

Ol w0, ) = 23 (HH oo + ) + Hso — 1)) — H(xo)).

Letting f(k) = 1/2 {H(xo + k) + H(xo — k)} — H(xo), and g(kh) = h?/2!,
one has f(k) — 0 as & — 0 since H is clearly continuous in a neighborhood of
%9, and also g(#) —» 0as 2 — 0, and g’ (k) = h # 0. Furthermore

f') Hxo+h) —H'@x—h) Gxo+h)—Gxo—h)

g 2h - 2h ’
which approaches to DG (x) as & — 0 if D1G(x,) exists. Hence by I’'Hopital’s
rule, D2H (x¢) = limu_o02(H; xo, ) = D1G(xo) if D1G(x0) exists, completing
the proof for n = 1.

Now, suppose that the conclusion of the lemma is true for n < r, where

r = 2. We prove that it is also true for n = r as follows. For r even, r = 2m,
say, suppose that D»,G(x,) exists. Then DyG (x) exists for 0 < k = m — 1,
and hence by induction hypotheses, Da1H (x0) exists and equals DG (x0)
for 0 < k < m — 1. Consider

2 1)!
02m+1(H; Xo, h) = (—1:77-71:—_1)—

—1 2k+1
m h k+

X {%[H(xo + k) — H(xo — )] — kz_% mD2k+1H(xo)} .

Applying I'Hépital’s rule, one gets limy_o0om+1(H; %0, B) = D2, G (%), com-
pleting the proof for even r. A similar argument will give the case for 7 odd.

Following James [9], we say that a function F is n-smooth at x if D,_oF(x)
exists and lim,_ k8, (F; x, k) = 0. By an argument similar to that in the proof
of Lemma 1, one has

LemMMA 2. Let H be a funciion and H'(x) = G(x) in a neighborhood of x,.
Then H is (n + 1)-smooth at x, if G is n-smooth at x.
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LeEMMA 3. Let H be a function and H'(x) = G(x) in a neighborhood of x,.
Then forn = 1,

(4) ~D,G(x0) Z ~Dypy1H (x0) Z _DyppiH (x0) = _D,G (x0)
whenever 6,(G; xo, h) makes sense.

Proof. By Lemma 1, if 6,(G; xo, #) makes sense, so does 6,1 (H; xo, ). The
inequalities (4) then follow from the inequalities [8, p. 359]

0 1B 5 g i L)

. 3 . M : M Af,(h)
> > > -
lm;fou Pemy = lm;jng(k) = hrzf:f) gh) = hr;flénfg (k)

for suitable choices of f and g.

2. Some properties of z-convex functions. For the definition of #-convex
function, we refer to [1] and [9]. To state two deep results concerning #-convex
functions, we recall some concepts first.

A function F defined on [a, b] is said to satisfy the condition (Cs,) in [a, b] if

(a) Fis continuous in [a, b];

(b) Do F exists, is finite and has no simple discontinuities in Ja, b[ for
0k=r—1;

(¢) F is 2r-smooth at all points in Ja, b[ except perhaps for points of a
countable set.

Similarly, the condition (Cs,41) is defined, so that the condition (C,) makes
sense for all integer n = 2.
If it is true that

4 k
FGo+ 1) = P) = 3 ak%+o(h’) as b —0,

then o, (1 < k < 7) is called the Peano derivative of order & of I at x, written
ay = Fyy(x), where ai, as, . . . , o are constants depending on x only, not on 4.
It is clear that if F,(x) exists, so does DyF(x) and the two are equal. But the
converse is not true in general.

If F possesses Peano derivatives Fgy(x), 1 < kB < r — 1, write

4 7—1

B Fim ) = Fa 1) = o) = 3 Fuo ).

Then define
“Fi(6) = lim sup v (F; x, b).
h—04

-Foy 4y —Fin -, —F(y — are similarly defined, and then F(, 4, F(, _ are defined
in the usual way. It is easy to show that F, (x) exists if and only if F¢, 4,
F( — exist and are equal and in this case, F(,(x) = F(y +(x) = Fuy —(x).

A linear set is called a scattered set if it contains no subset that is dense-in-
itself. For properties of scattered sets, we refer to [11].
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TuareoreM 1. Let F satisfy the condition (C,) in [a, b], and
(i) ~D,F(x) = 0 almost everywhere in Ja, b[;
(ii) =D, F(x) > — @ for x € la, b ~ S, S a scattered set;
(iii) lim supy_ohb,(F; x, k) = 0 = lim inf,_oh8,(F; x, k) for x € S.
Then F is n-convex in [a, b].

Note that for # = 2m, even, this is just [1, Theorem 16], of which the similar
argument gives the case n = 2m + 1 (odd), too.

THEOREM 2 [1, Theorem 7]. Let F be n-convex in [a, b]. Then
(1) FM exists and ¢s continuous in [a, b] for 1 < r < n — 2, where FV (x)
denotes the ordinary rth derivative of F at x;
(i) both Fe—1y,—, Fu—1y + are monotone increasing in [a, b);
(iii) Fu-n+ = (F® )" and Fon,— = (FO2)';
(iv) F®=V(x) exists at all except a countable set of poinis.

3. The SC,-derivative and the SC,-continuity. We assume the theory of
C,P-integral in [4]. For » = 1, and for a C,_;P-integrable function F on [a, b],
let

r+1

AT(F;xyh) = 7 {CT(F;xyx + h) - CT(F; X, X — h‘)}y

SC,D,F(x) = lim inf A,(F; x, k),
h0

where x € Ja, b[ and C,(F; x, x + k) is as defined in [4]. The notations SC,D*
and SC.D then have the obvious meanings. We call SC,DF(x), if exists, the
symmetric Cesaro derivative of order 7 of F at x, or simply SC,-derivative of
Fatx. If limy_ o kA (F;x, k) = 0, Fissaid to be SC,-continuous atx. [tisclear
that F is SC,-continuous at x whenever it is C,-continuous at x, and SC,DF(x)
exists and equals C,DF(x) whenever C,DF(x) exists. But neither of the con-
verses is true. It is also easy to check that the SC,-derivates and derivatives
are measurable.

LEMMA 4. For r 2 0, let F be C,-continuous in [a, b]. Then F has no simple

discontinuities in [a, b]. In particular, every C.P-integral of a function has no
simple discontinuities.

Proof. For r = 0, the result is immediate since Cy-continuity is just the
ordinary continuity. For » = 1, suppose that x € Ja, 0], and lim,_,,,_F(x) = B.
Then for ¢ > 0, there exists 6 > 0 such that

B—e<Flx)<B+e for xg—8<x < x
or

B—e< Flx) <B+4¢e for xg—h £ x < x,
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where % is such that 0 < & < 4. Hence.
B—-—e@—x+h)™1=(x—x+h)™Fx) < B+ el —xy+ k)1
for xo — & = x < %, which implies that

Z0

B—¢= i:—, (C—1P) — f (x —xo+ k) 'F(x)dx £ B + ¢

zo—h

for 0 < h < §, so that limy_0+C,(F; x, xo — k) = B. But

F(xo) = lim C,(F;x0,x0 — h) = lim C,(F;xo, X0 — k).
h-0

h-04
Hence F(x,) = B.
Similarly, if %o € [a, [, and lim,_,+F(x) = B’, then F(x,) = B’. Hence F
has no simple discontinuities in [a, b].
The last statement of the lemma is now immediate since it is well-known that
each C,P-integral is C,-continuous.

LEMMA 5. For n = 0, let F be C,P-integrable on [a, b], and for x € [a, b], let

G (%)

cp - | roa,

G'k(x) = (CkP) - f Gk+1(i)dt, 0 = k é n — 1,

G(x) = Go(x).

Then

(1) G 1s continuous in [a, b];

(1) if F 1s SCyy1-continuous at x, then D,G exists and D,_9,G(x) = Gp_o(x)
for 0 < k < [n/2], and G s (n + 2)-smooth at x, and 0,42(G; x, x + h) =
A1 (F; %, B);

(iii) #f F is Cpri-continuous at x, then Guiny(x) exists and Ggy(x) = Gip(x)
for 0 =k =< n -+ 1, where Gy41 = F.

Proof. (i) is immediate since G is just a CoP-integral. For (ii) and (iii), note
that by integration by parts,

®) Cutin+1) = EE 66 iy 6w - 3 Eam),

k=1

and

Con(Ps,5 = ) = (s {G(x -1 -6 - 3 5P Gk<x>}'
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for b % 0 with x 4+ & € [a, b]. Hence for # even, say n = 2m,

!
(Be) Cua(Fix,2+h) — Cou(Fyx,x — h) = (2722,;';11)'

m h?k
{G(x +h)+Glx—h) — L @0l sz(x)}
and for # odd, say n = 2m + 1,

!
(50) Cun(Fim,x + b) — Cun(Fi s, — ) = 2t 2)

2k+1
hk:+

X {G(x ) = GE -k -2 Y 1),sz+1<x>}

For both cases, if F is SC,yi-continuous at x, then D,G(x) exists and
D, _5G(x) = Gu_or(x) for0 = k = [n/2],and G is (n + 2)-smooth at x, where
[#n/2] = the greatest integer less than #/2 4 1. Furthermore, 6,,2(G; x, k) =
A1 (F; x, b)), proving (ii). (iii) follows from the equality (5).

Remark. 1f D,_5,G(x) = Gu—ox(x) for 0 = & < [#/2], and G is (n + 2)-
smooth at x, then F is SC,ii-continuous at x. This is clear since replacing
Gu_2,(x) by D,_2,G(x) in (5e) and (50) one has that

Conr(Fix, 0+ h) — Coa(Fi2, 6 — h) = hons2(G; %, h).

—I— n+2
LEMMA 6. For n = 0, let I be C,P-integrable on [a, b], and SC,y1-continuous
in Ja, b[, and G be defined as in Lemma 5. If
(@) SC,.1D*F(x) = 0 almost everywhere in [a, b], and
(b) SC,y1D*F(x) > — ® for x € Ja, b[ ~ S, S a scattered set,
then G is (n + 2)-convex in [a, b].

Proof. This is immediate since by Lemma 5, (ii), and Lemma 4, G satisfies
all the conditions in Theorem 1 with » + 2 replacing #n.

THEOREM 3. For n = 0, let F be C,P-integrable on [a, b] and SC,,-continuous
in Ja, b[. If

(a) SC,1.1D*F(x) = 0 almost everywhere in [a, ],

(b) SCoi1D*F(x) > — ® for x € Ja, b[ ~ S, S scattered, and

(c) Fis Cypr-continuous in a set B C [a, b], then F is monotone increasing in B.

Proof. Let G be defined as in Lemma 5. Then by Lemma 6, G is (n + 2)-
convex in [a, b], so that by Theorem 2, (iv), G®™ and hence Gy exists at
all except a countable set of points. By Theorem 2, (ii), G¢41) is monotone
increasing where it exists. Thus the condition (c) and Lemma 5, (iii) imply
that F is monotone increasing in B.

THEOREM 4. For n = 0, let F be C,P-integrable on [a, b], and x, € ]a, b[.
If Fis SCpy1- contmuous at xo, then F is SCyyo-continuous at x,, and

(6) Scn+1D*F(x0) = SCn+2D*F(xo) = SCn+2D*F(x0) P SCn+1D*F(xO)-
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Proof. Note first that F is C,,,P-integrable on [a, b] by the consistency of
the CP-scale. For x € [a, b], let

G) = () — | Faa,
Gi(x) = (CP) — J‘f G (t)dt for0=k=n—1,
Hoa@) = Ga) — | PO,

Hk(x) = (CkP) - f H}d_]_(t)dt fOI‘ 0 é k é n.

Then H;,; = Gy for 0 = k = n and

Ho) = (L) — | Gote

By Lemma 5, (ii), Go is (n + 2)-smooth at x, so that Hy is (# + 3)-smooth
at xo by Lemma 2. Hence by the remark following Lemma 5, F is SC,yo-
continuous at x,. The inequalities (6) follow from Lemma 5 and Lemma 3,
completing the proof.

THEOREM 5. Let { M} be a sequence of SCy,-continuous functions in la, b[, and
each My is C,-continuous in a set B C [a, b] with a, b € B and the measure of B
being b — a. Suppose that My(x) — M(x) as k — + © uniformly in B. Then
M is SC,-continuous in la, b[ and C,-continuous in B.

m

Proof. Given e > 0, choose k such that for allx € B, [M(x) — M;(x)| <
For each ¢ € B, choose & > 0 such that |C,(My; ¢, ¢ + h) — Mi(c)| <
whenever |h| < 6 with x 4+ % € [q, b]. Then

|Co(M; e, c 4+ h) — C(Mys ¢, ¢+ )| < %

W ol
m

so that |C,(M; ¢, ¢ + h) — M(c)| < e whenever |h| < § with x + & € [a, b],
proving that M is C,-continuous at c.

That M is SC,-continuous at each point ¢ € Ja, b is proved in a similar way,
only replacing M;(c), M(c) in the above argument by C,(M;; ¢ — k, ¢) and
C.,(M; ¢ — h, ¢), h now being restricted to ¢ = & € [a, b].

4. The SC,P-Integral. We have defined in [2] a system SC,P = (S4",
SC,D, #,N ,~I,),SC,D being the SC,Dy here. By Theorem 3 and Theorem 5,
it is easy to check that SC,P is in fact a derivate system as defined in [2],
and hence one obtains a SC,P-integral and its usual properties follow from
the general theory in [2]. For completeness, we give the direct definition of
the SC,P-integral here, n = 1,2, 3, .. ..

Suppose that f is a function defined and finite almost everywhere in [a, b],
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and B a subset of [a, b] of measure b — @, and a, b € B. A C,_;P-integrable
function M will be called an SC,P-major function of f on [a, b] with base B if

(a) M is SC,-continuous in Ja, b[ and C,-continuous in B;

(b) SC. D&M (x) = f(x) almost everywhere in ]a, b[;

(c) SC,DyM(x) > — 0© except perhaps in a scattered set;

(d) M(a) = 0.
An SC,P-minor function is similarly defined. If f has SC,P-major and -minor
functions and if

inf M(b) = sup m(b) # =+ o0,

then f is said to be SC,P-integrable on [a, b] with base B, and the common
value, denoted by

(SC.P) — f[ fw,

is called the SC,P-integral of f on [a, b] with base B. As remarked in [2], we
can often without ambiguity leave the base unspecified.

Except for those properties obtainable from the general theory in [2], it is
easy to see that the SC,P-integral is more general than the C,P-integral [4]
since SC,DyM(x) = C,DyM(x). Furthermore, we have the consistency
theorem for the scale:

THEOREM 6. If f is SC,P-integrable on [a, b] with base B, then f is SC,1P-
integrable on [a, b] with base B and the two integrals are equal.

Proof. This is immediate from Theorem 4 and the general comparison
theorem in [2].

Remarks. (i) Note that the SC,P-integral is equivalent to Burkill's SCP-
integral [5] as we have remarked in [2].

(ii) Burkill in [5] listed an integration by parts formula for his SCP-integral
and stated that the proof followed from that given for the CP-integral in [3].
This is not true since the proof in [3] used essentially the following inequality

CD(MG)(x) 2 M(x)G'(x) + [CDxM (x)]G (x),

but we do not have a similar inequality for the SC1D-derivate. For example, let

M(x) = x~1/2, for x > 0,
= (—x)"12 for x < 0,
=k, for x = 0, where k is any
constant,

and let G(x) = —x. Then

SC.D(MG)(0) = —© % —k = M(0) G'(0) + [SC:DM(0)]G(0).
Thus, whether the formula for SCP-integral in [5] is true remains an open
question.
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If such an integration by parts formula exists for the SC;P-integral, then
one can use this to define the SC.P-integral instead of using C;P-integral.
Then a more general scale would be obtained by induction.

5. The SC,P-integral and the P"t'-integral. As we mentioned in the
introduction, in this section we are going to investigate the relation of the
Prtlintegral and the SC,P-integral.

By P**lintegral, we mean the modified symmetric one as in [10]. For con-
venience, we give the definition of its major functions here.

Let f be a function defined almost everywhere in [a, b], and leta;, 1 = 1, 2, 3,

., # + 1, be fixed points such thata = a1 < a2 < ... < @y41 = b. A func-
tion Q is called a J,y;-major function of f over (a;) if

(a) Q satisfies the condition (C,;:) in [a, b] (cf. Section 2);

(b) _D,+:0(x) = f(x) almost everywhere in [a, b];

(€) _Dp41Q(x) > — @, x € Ja, b[ ~ S, S a scattered set;

(d) Q(a;)) =0forz=1,2,3,...,n+ 1.

THEOREM 7. Let f be SC,P-integrable on [a, b] with base B. Then f is P*+1-
integrable over (a;; c), wherea = a1 < as < ... < a, < apy1 = b,and ¢ € [a, b].
Moreover, letting

Fi) = (SGP) — | foa,  we B,

F) = GP) — [ Fua@dt,  xclapl, 0sksn—1,
F = F01
one has for a; = ¢ < @41,

n+41

@ 1 f FOdurst = PO = 3 2G5 0)FG0),

where \(c; a;) = I, .:(c — a;)/(a; — a;) is a polynomial in c of degree al most n.

Proof. Let M be an SC,P-major function and let
z 11 12
cw=@p) - [em- [ @n- [ cap

In—-1
— f M(tn)dtndtn_l .. .dtsdty.

Then by Lemma 4 and Lemma 5, G satisfies conditions (a), (b), (¢) in the
above definition. Hence setting

n+1

Q&) = Gx) — 2;:1 Ax;a:)G(ay),

we see that Q is a J,+1-major function of f over (a;). Similarly, an SC,P-minor
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function m yields a J,;-minor function
n+1
qx) = glx) — 21 Nx;aq)g(aq),
where g is defined similar to G.
For ¢ > 0, if we choose M, m such that

n+1l
M@®) —m@) < e/[l + 21 )\(c;ai)](b —a)",
i=
then the corresponding Q, ¢ have

1Q(c) — q(o)] = |G(c) — g(e)] + X[ (c; ad||G(ar) — glai)] £ e
Hence, the P**+!-integrability of f follows.
The equality (7) follows as above by using the property that F, can be
uniformly approximated in B by a sequence of SC,-major or minor functions.

COROLLARY 1. F,y(x) exists for each x in B and D,_.1F(x) exists for each
x € la, b[. Furthermore, Fi,y = F, on B, and DiF = Fyon]a, bl fork = 0, 1, 2,
., n — 1, where F, F; are those in Theorem 7.

Proof. As F, can be proved to be C,-continuous in B and SC,-continuous in
Ja, b[ (see property (F) in [2]), the required results follow from Lemma 5.

COROLLARY 2. There exists a function which is P"t'-integrable on [a, b] but
not SC,-Pintegrable on [a, b].

Proof. This is similar to that of Cross in [7] for z = 1. In fact,
if » is odd, let F(x) = x cos 1/x, for x # 0,

0, for x = 0,
if # is even, let F(x) = x sin 1/x, for x 5 0,
0, for x = 0.

In either case, let
f(x) = F®D (x), for x 5 0,
= 0, for x = 0.
Then D,1F(x) = f(x) for all x, including x = 0, and as shown in [9], f is
Prtlintegrable over any interval containing 0. However, f is not SC,P-integra-
ble over [0, b] for any b > 0. For otherwise, it would follow from Corollary 1
that F,(0) exists. But not even F(;(0) exists.

COROLLARY 3. Let f be periodic of period 2b, b > 0. For n = 1, let m =
[n — 1/2]. Then if f is SC,P-integrable on [—2(m + 1)b, 2(n — m)b] with a
base B, one has

1 1 0
ey (n 1) Syt = e = [ rou
where (a;) = (—2(m + 1)b, —2mb, —2(m — 1)b,...,—2b, 2b, 4D, ...,

2(n — m)b).
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The proof, exactly similar to that of Cross in [6] for the unsymmetric case,
is omitted.

Remarks. (i) Although P"+!-integral is more general than the SC,P-integral,
the SC,P-integral has the nice ‘‘additive” property that a function SC,P-
integral over two abutting intervals is SC,P-integrable over their union, (see
property (C) in [2]), while P"*'-integral has no such property. For example,
let F be as defined in the proof of Corollary 2. Consider the function f defined by

fx)

FeH (x), for x € 10, /7],
= 0y for x € [_ i/'”v O]v

where? = 2if nis odd and 1 if # is even. Then f is P"*!-integrable over each of
the intervals [— ¢/, 0] and [0, /=], but not over [ — ¢/7, /7). Note that this
has been pointed out by Skvorcov in [14] for the case n = 1, i.e. for the
P2-integral.

(i1) As mentioned in [2], the SCiP-integral solves the coefficient problem of
convergent trigonometric series. Whether the SC,P-integral (for n = 2)
solves the coefficient problem of (C, n — 1) summable trigonometric series,
considered by James in [10], is under consideration.
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