THE SC_nP -INTEGRAL AND THE P^{n+1} -INTEGRAL

P. S. BULLEN AND C. M. LEE

Introduction. In [2], we have briefly described, as examples of the general theory developed there, a scale of symmetric Cesaro-Perron integrals, namely SC_nP -integral for $n = 1, 2, 3, \ldots$. The purpose of this paper is to consider the integrals in a greater detail.

As a preliminary, we prove some lemmas, which are also interesting for their own sake, concerning the de la Vallée Poussin derivatives in Section 1, and we also state two deep theorems concerning the *n*-convex functions in Section 2. Our main effort is to establish Theorem 3 in Section 3, which is essential to the theory of the SC_nP -integral. In Section 4, the definition of the SC_nP integral is given, while its usual properties are only briefly indicated since they follow from the general theory in [2]. The last section is devoted to the connection between the SC_nP -integral and the symmetric P^{n+1} -integral of James [9].

1. The symmetric de la Vallée Poussin derivatives. Let *F* be a function defined on a bounded closed interval [a, b], and let *x* be a point in the open interval]a, b[. If there are constants $\beta_0, \beta_2, \beta_4, \ldots, \beta_{2r}$ ($r \ge 0$), depending on *x* but not on *h* such that

(1)
$$\frac{1}{2} \{ F(x+h) + F(x-h) \} - \sum_{k=0}^{r} \beta_{2k} \frac{h^{2k}}{(2k)!} = o(h^{2r})$$

as $h \to 0$, then β_{2r} is called the symmetric de la Vallée Poussin (s.d.l.V.P.) derivative of order 2r of F at x, and we write $\beta_{2r} = D_{2r}F(x)$. It is clear that if $D_{2r}F(x)$ exists, so does $D_{2k}F(x)$ for k = 0, 1, 2, ..., r - 1, and $D_{2k}F(x) = \beta_{2k}$.

If $D_{2k}F(x)$ exists for $0 \le k \le m - 1$, $(m \ge 1)$, define $\theta_{2m}(x, h) = \theta_{2m}(F; x, h)$ by

(2)
$$\frac{h^{2m}}{(2m)!}\theta_{2m}(x,h) = \frac{1}{2}\{F(x+h) + F(x-h)\} - \sum_{k=0}^{m-1} \frac{h^{2k}}{(2k)!}D_{2k}F(x),$$

and let

Received July 24, 1972 and in revised form, August 3, 1972.

1274

Then a finite common value for $\neg D_{2m}F(x)$ and $_D_{2m}F(x)$ implies that $D_{2m}F(x)$ exists and equals this common value.

In a similar way, the odd-ordered s.d.l.V.P. derivative is defined by replacing (1) by

(1')
$$\frac{1}{2} \{F(x+h) - F(x-h)\} - \sum_{k=1}^{r} \beta_{2k+1} \frac{h^{2k+1}}{(2k+1)!} = o(h^{2r+1}).$$

Similar changes can be made in (2), (3).

The following lemma is an extension and generalization of Lemma 4, (i) in [13]. For a partial converse in the non-symmetric case, see Lemma 10 in [12].

LEMMA 1. Let H be a function and H'(x) = G(x) in a neighborhood of x_0 . If for some n, $D_nG(x_0)$ exists, then $D_{n+1}H(x_0)$ exists and is equal to $D_nG(x_0)$.

Proof. The proof is by induction on n. To see that it is true for n = 1, consider, for sufficiently small h > 0,

$$\theta_2(H; x_0, h) = \frac{2!}{h^2} \{ \frac{1}{2} [H(x_0 + h) + H(x_0 - h)] - H(x_0) \}.$$

Letting f(h) = 1/2 { $H(x_0 + h) + H(x_0 - h)$ } $- H(x_0)$, and $g(h) = h^2/2!$, one has $f(h) \to 0$ as $h \to 0$ since H is clearly continuous in a neighborhood of x_0 , and also $g(h) \to 0$ as $h \to 0$, and $g'(h) = h \neq 0$. Furthermore

$$\frac{f'(h)}{g'(h)} = \frac{H'(x_0+h) - H'(x-h)}{2h} = \frac{G(x_0+h) - G(x_0-h)}{2h},$$

which approaches to $D_1G(x_0)$ as $h \to 0$ if $D_1G(x_0)$ exists. Hence by l'Hôpital's rule, $D_2H(x_0) = \lim_{h\to 0}\theta_2(H; x_0, h) = D_1G(x_0)$ if $D_1G(x_0)$ exists, completing the proof for n = 1.

Now, suppose that the conclusion of the lemma is true for n < r, where $r \ge 2$. We prove that it is also true for n = r as follows. For r even, r = 2m, say, suppose that $D_{2m}G(x_0)$ exists. Then $D_{2k}G(x_0)$ exists for $0 \le k \le m - 1$, and hence by induction hypotheses, $D_{2k+1}H(x_0)$ exists and equals $D_{2k}G(x_0)$ for $0 \le k \le m - 1$. Consider

$$\begin{aligned} \theta_{2m+1}(H;x_0,h) &= \frac{(2m+1)!}{h^{2m+1}} \\ &\times \left\{ \frac{1}{2} [H(x_0+h) - H(x_0-h)] - \sum_{k=0}^{m-1} \frac{h^{2k+1}}{(2k+1)!} D_{2k+1} H(x_0) \right\}. \end{aligned}$$

Applying l'Hôpital's rule, one gets $\lim_{h\to 0} \theta_{2m+1}(H; x_0, h) = D_{2m}G(x_0)$, completing the proof for even r. A similar argument will give the case for r odd.

Following James [9], we say that a function F is *n*-smooth at x if $D_{n-2}F(x)$ exists and $\lim_{h\to 0} h\theta_n(F; x, h) = 0$. By an argument similar to that in the proof of Lemma 1, one has

LEMMA 2. Let H be a function and H'(x) = G(x) in a neighborhood of x_0 . Then H is (n + 1)-smooth at x_0 if G is n-smooth at x_0 . LEMMA 3. Let H be a function and H'(x) = G(x) in a neighborhood of x_0 . Then for $n \ge 1$,

(4)
$$^{-}D_{n}G(x_{0}) \geq ^{-}D_{n+1}H(x_{0}) \geq ^{-}D_{n+1}H(x_{0}) \geq ^{-}D_{n}G(x_{0})$$

whenever $\theta_n(G; x_0, h)$ makes sense.

Proof. By Lemma 1, if $\theta_n(G; x_0, h)$ makes sense, so does $\theta_{n+1}(H; x_0, h)$. The inequalities (4) then follow from the inequalities [8, p. 359]

$$\limsup_{h \to 0} \frac{f'(h)}{g'(h)} \ge \limsup_{h \to 0} \frac{f(h)}{g(h)} \ge \liminf_{h \to 0} \frac{f(h)}{g(h)} \ge \liminf_{h \to 0} \frac{f'(h)}{g'(h)}$$

for suitable choices of f and g.

2. Some properties of *n*-convex functions. For the definition of *n*-convex function, we refer to [1] and [9]. To state two deep results concerning *n*-convex functions, we recall some concepts first.

A function F defined on [a, b] is said to satisfy the condition (C_{27}) in [a, b] if

(a) F is continuous in [a, b];

(b) $D_{2k}F$ exists, is finite and has no simple discontinuities in]a, b[for $0 \le k \le r-1;$

(c) F is 2r-smooth at all points in]a, b[except perhaps for points of a countable set.

Similarly, the condition $(C_{2\tau+1})$ is defined, so that the condition (C_n) makes sense for all integer $n \ge 2$.

If it is true that

$$F(x+h) - F(x) = \sum_{k=1}^{r} \alpha_k \frac{h^k}{k!} + o(h^r) \text{ as } h \to 0,$$

then α_k (1 < k < r) is called the Peano derivative of order k of F at x, written $\alpha_k = F_{(k)}(x)$, where $\alpha_1, \alpha_2, \ldots, \alpha_k$ are constants depending on x only, not on h. It is clear that if $F_{(k)}(x)$ exists, so does $D_k F(x)$ and the two are equal. But the converse is not true in general.

If F possesses Peano derivatives $F_{(k)}(x), 1 \leq k \leq r - 1$, write

$$\frac{h^{r}}{r!}\gamma_{r}(F;x,h) = F(x+h) - F(x) - \sum_{k=1}^{r-1} F_{(k)}(x).$$

Then define

$${}^{-}F_{(r),+}(x) = \limsup_{h\to 0+} \gamma(F;x,h).$$

 $_{F_{(\tau),+}}$, $_{F_{(\tau),-}}$, $_{F_{(\tau),-}}$ are similarly defined, and then $F_{(\tau),+}$, $F_{(\tau),-}$ are defined in the usual way. It is easy to show that $F_{(\tau)}(x)$ exists if and only if $F_{(\tau),+}$, $F_{(\tau),-}$ exist and are equal and in this case, $F_{(\tau)}(x) = F_{(\tau),+}(x) = F_{(\tau),-}(x)$.

A linear set is called a scattered set if it contains no subset that is dense-initself. For properties of scattered sets, we refer to [11]. THEOREM 1. Let F satisfy the condition (C_n) in [a, b], and

(i) $-D_n F(x) \ge 0$ almost everywhere in]a, b[;

(ii) $-D_nF(x) > -\infty$ for $x \in]a, b[\sim S, S a scattered set;$

(iii) $\limsup_{h\to 0} h\theta_n(F; x, h) \ge 0 \ge \liminf_{h\to 0} h\theta_n(F; x, h)$ for $x \in S$.

Then F is n-convex in [a, b].

Note that for n = 2m, even, this is just [1, Theorem 16], of which the similar argument gives the case n = 2m + 1 (odd), too.

THEOREM 2 [1, Theorem 7]. Let F be n-convex in [a, b]. Then

(i) $F^{(r)}$ exists and is continuous in [a, b] for $1 \leq r \leq n - 2$, where $F^{(r)}(x)$ denotes the ordinary rth derivative of F at x;

(ii) both $F_{(n-1),-}$, $F_{(n-1),+}$ are monotone increasing in [a, b];

(iii) $F_{(n-1),+} = (F^{(n-2)})_{+}'$ and $F_{(n-1),-} = (F^{(n-2)})_{-}';$

(iv) $F^{(n-1)}(x)$ exists at all except a countable set of points.

3. The SC_r -derivative and the SC_r -continuity. We assume the theory of C_nP -integral in [4]. For $r \ge 1$, and for a $C_{r-1}P$ -integrable function F on [a, b], let

$$\Delta_{r}(F;x,h) = \frac{r+1}{2h} \{ C_{r}(F;x,x+h) - C_{r}(F;x,x-h) \},$$

$$SC_{r}D_{*}F(x) = \liminf_{h \to 0} \Delta_{r}(F;x,h),$$

where $x \in]a, b[$ and $C_r(F; x, x + h)$ is as defined in [4]. The notations SC_rD^* and SC_rD then have the obvious meanings. We call $SC_rDF(x)$, if exists, the symmetric Cesáro derivative of order r of F at x, or simply SC_r -derivative of F at x. If $\lim_{h\to 0+} h\Delta_r(F; x, h) = 0$, F is said to be SC_r -continuous at x. It is clear that F is SC_r -continuous at x whenever it is C_r -continuous at x, and $SC_rDF(x)$ exists and equals $C_rDF(x)$ whenever $C_rDF(x)$ exists. But neither of the converses is true. It is also easy to check that the SC_r -derivates and derivatives are measurable.

LEMMA 4. For $r \ge 0$, let F be C_r -continuous in [a, b]. Then F has no simple discontinuities in [a, b]. In particular, every C_rP -integral of a function has no simple discontinuities.

Proof. For r = 0, the result is immediate since C_0 -continuity is just the ordinary continuity. For $r \ge 1$, suppose that $x_0 \in [a, b]$, and $\lim_{x\to x_0-} F(x) = B$. Then for $\epsilon > 0$, there exists $\delta > 0$ such that

$$B - \epsilon < F(x) < B + \epsilon$$
 for $x_0 - \delta < x < x_0$,

or

$$B - \epsilon < F(x) < B + \epsilon$$
 for $x_0 - h \leq x < x_0$,

where h is such that $0 < h < \delta$. Hence.

$$(B - \epsilon)(x - x_0 + h)^{r-1} \leq (x - x_0 + h)^{r-1}F(x) \leq (B + \epsilon)(x - x_0 + h)^{r-1}$$

for $x_0 - h \leq x < x_0$, which implies that

$$B - \epsilon \leq \frac{r}{h^{r}} \left(C_{r-1} P \right) - \int_{x_0 - h}^{x_0} \left(x - x_0 + h \right)^{r-1} F(x) dx \leq B + \epsilon$$

for $0 < h < \delta$, so that $\lim_{h \to 0+} C_r(F; x_0, x_0 - h) = B$. But

$$F(x_0) = \lim_{h \to 0} C_r(F; x_0, x_0 - h) = \lim_{h \to 0+} C_r(F; x_0, x_0 - h).$$

Hence $F(x_0) = B$.

Similarly, if $x_0 \in [a, b[$, and $\lim_{x\to x_0+} F(x) = B'$, then $F(x_0) = B'$. Hence F has no simple discontinuities in [a, b].

The last statement of the lemma is now immediate since it is well-known that each C_rP -integral is C_r -continuous.

LEMMA 5. For $n \ge 0$, let F be C_nP -integrable on [a, b], and for $x \in [a, b]$, let

$$G_n(x) = (C_n P) - \int_a^x F(t)dt,$$

$$G_k(x) = (C_k P) - \int_a^x G_{k+1}(t)dt, \qquad 0 \le k \le n - 1,$$

$$G(x) = G_0(x).$$

Then

(i) G is continuous in [a, b];

(ii) if F is SC_{n+1} -continuous at x, then D_nG exists and $D_{n-2k}G(x) = G_{n-2k}(x)$ for $0 \le k \le \lfloor n/2 \rfloor$, and G is (n + 2)-smooth at x, and $\theta_{n+2}(G; x, x + h) = \Delta_{n+1}(F; x, h);$

(iii) if F is C_{n+1} -continuous at x, then $G_{(n+1)}(x)$ exists and $G_{(k)}(x) = G_k(x)$ for $0 \le k \le n+1$, where $G_{n+1} = F$.

Proof. (i) is immediate since G is just a C_0P -integral. For (ii) and (iii), note that by integration by parts,

(5)
$$C_{n+1}(F; x, x+h) = \frac{(n+1)!}{h^{n+1}} \left\{ G(x+h) - G(x) - \sum_{k=1}^{n} \frac{h^{k}}{k!} G_{k}(x) \right\},$$

and

$$C_{n+1}(F; x, x-h) = \frac{(n+1)!}{(-h)^{n+1}} \left\{ G(x-h) - G(x) - \sum_{k=1}^{n} \frac{(-h)^{k}}{k!} G_{k}(x) \right\}$$

for $h \neq 0$ with $x + h \in [a, b]$. Hence for *n* even, say n = 2m,

(5e)
$$C_{n+1}(F; x, x+h) - C_{n+1}(F; x, x-h) = \frac{(2m+1)!}{h^{2m+1}} \times \left\{ G(x+h) + G(x-h) - 2 \sum_{k=1}^{m} \frac{h^{2k}}{(2k)!} G_{2k}(x) \right\};$$

and for n odd, say n = 2m + 1,

(50)
$$C_{n+1}(F; x, x+h) - C_{n+1}(F; x, x-h) = \frac{(2m+2)!}{h^{2m+2}} \times \left\{ G(x+h) - G(x-h) - 2 \sum_{k=0}^{m} \frac{h^{2k+1}}{(2k+1)!} G_{2k+1}(x) \right\}.$$

For both cases, if *F* is SC_{n+1} -continuous at *x*, then $D_nG(x)$ exists and $D_{n-2k}G(x) = G_{n-2k}(x)$ for $0 \le k \le \lfloor n/2 \rfloor$, and *G* is (n + 2)-smooth at *x*, where $\lfloor n/2 \rfloor$ = the greatest integer less than n/2 + 1. Furthermore, $\theta_{n+2}(G; x, h) = \Delta_{n+1}(F; x, h)$, proving (ii). (iii) follows from the equality (5).

Remark. If $D_{n-2k}G(x) = G_{n-2k}(x)$ for $0 \le k \le \lfloor n/2 \rfloor$, and G is (n+2)-smooth at x, then F is SC_{n+1} -continuous at x. This is clear since replacing $G_{n-2k}(x)$ by $D_{n-2k}G(x)$ in (5e) and (5o) one has that

$$C_{n+1}(F; x, x+h) - C_{n+1}(F; x, x-h) = \frac{2}{n+2} h \theta_{n+2}(G; x, h).$$

LEMMA 6. For $n \ge 0$, let F be C_nP -integrable on [a, b], and SC_{n+1} -continuous in [a, b], and G be defined as in Lemma 5. If

(a) $SC_{n+1}D^*F(x) \ge 0$ almost everywhere in [a, b], and

(b) $SC_{n+1}D^*F(x) > -\infty$ for $x \in]a, b[\sim S, S a scattered set, then G is <math>(n + 2)$ -convex in [a, b].

Proof. This is immediate since by Lemma 5, (ii), and Lemma 4, G satisfies all the conditions in Theorem 1 with n + 2 replacing n.

THEOREM 3. For $n \ge 0$, let F be C_nP -integrable on [a, b] and SC_{n+1} -continuous in [a, b[. If

(a) $SC_{n+1}D^*F(x) \ge 0$ almost everywhere in [a, b],

(b) $SC_{n+1}D^*F(x) > -\infty$ for $x \in]a, b[\sim S, S \text{ scattered}, and$

(c) F is C_{n+1} -continuous in a set $B \subset [a, b]$, then F is monotone increasing in B.

Proof. Let G be defined as in Lemma 5. Then by Lemma 6, G is (n + 2)-convex in [a, b], so that by Theorem 2, (iv), $G^{(n+1)}$ and hence $G_{(n+1)}$ exists at all except a countable set of points. By Theorem 2, (ii), $G_{(n+1)}$ is monotone increasing where it exists. Thus the condition (c) and Lemma 5, (iii) imply that F is monotone increasing in B.

THEOREM 4. For $n \ge 0$, let F be C_nP -integrable on [a, b], and $x_0 \in]a, b[$. If F is SC_{n+1} -continuous at x_0 , then F is SC_{n+2} -continuous at x_0 , and

(6) $SC_{n+1}D^*F(x_0) \ge SC_{n+2}D^*F(x_0) \ge SC_{n+2}D_*F(x_0) \ge SC_{n+1}D_*F(x_0).$

Proof. Note first that F is $C_{n+1}P$ -integrable on [a, b] by the consistency of the CP-scale. For $x \in [a, b]$, let

$$G_{n}(x) = (C_{n}P) - \int_{a}^{x} F(t)dt,$$

$$G_{k}(x) = (C_{k}P) - \int_{a}^{x} G_{k+1}(t)dt \quad \text{for } 0 \leq k \leq n - 1$$

$$H_{n+1}(x) = (C_{n+1}P) - \int_{a}^{x} F(t)dt,$$

$$H_{k}(x) = (C_{k}P) - \int_{a}^{x} H_{k+1}(t)dt \quad \text{for } 0 \leq k \leq n.$$

Then $H_{k+1} = G_k$ for $0 \leq k \leq n$ and

$$H_0(x) = (L) - \int_a^x G_0(t) dt.$$

By Lemma 5, (ii), G_0 is (n + 2)-smooth at x_0 , so that H_0 is (n + 3)-smooth at x_0 by Lemma 2. Hence by the remark following Lemma 5, F is SC_{n+2} -continuous at x_0 . The inequalities (6) follow from Lemma 5 and Lemma 3, completing the proof.

THEOREM 5. Let $\{M_k\}$ be a sequence of SC_n -continuous functions in]a, b[, and each M_k is C_n -continuous in a set $B \subset [a, b]$ with $a, b \in B$ and the measure of Bbeing b - a. Suppose that $M_k(x) \to M(x)$ as $k \to +\infty$ uniformly in B. Then M is SC_n -continuous in]a, b[and C_n -continuous in B.

Proof. Given $\epsilon > 0$, choose k such that for all $x \in B$, $|M(x) - M_k(x)| < \frac{1}{3}\epsilon$. For each $c \in B$, choose $\delta > 0$ such that $|C_n(M_k; c, c+h) - M_k(c)| < \frac{1}{3}\epsilon$ whenever $|h| < \delta$ with $x + h \in [a, b]$. Then

$$|C_n(M; c, c+h) - C_n(M_k; c, c+h)| < \frac{1}{3} \epsilon,$$

so that $|C_n(M; c, c + h) - M(c)| < \epsilon$ whenever $|h| < \delta$ with $x + h \in [a, b]$, proving that M is C_n -continuous at c.

That M is SC_n -continuous at each point $c \in]a, b[$ is proved in a similar way, only replacing $M_k(c)$, M(c) in the above argument by $C_n(M_k; c - h, c)$ and $C_n(M; c - h, c)$, h now being restricted to $c \pm h \in [a, b]$.

4. The SC_nP -Integral. We have defined in [2] a system $SC_nP = (S\mathcal{M}^n, SC_nD, \mathcal{B}, \mathcal{N}, \neg I_n), SC_nD$ being the SC_nD_* here. By Theorem 3 and Theorem 5, it is easy to check that SC_nP is in fact a derivate system as defined in [2], and hence one obtains a SC_nP -integral and its usual properties follow from the general theory in [2]. For completeness, we give the direct definition of the SC_nP -integral here, $n = 1, 2, 3, \ldots$

Suppose that f is a function defined and finite almost everywhere in [a, b],

https://doi.org/10.4153/CJM-1973-134-7 Published online by Cambridge University Press

and *B* a subset of [a, b] of measure b - a, and $a, b \in B$. A $C_{n-1}P$ -integrable function *M* will be called an SC_nP -major function of *f* on [a, b] with base *B* if

(a) M is SC_n -continuous in]a, b[and C_n -continuous in B;

(b) $SC_nD_*M(x) \ge f(x)$ almost everywhere in]a, b[;

(c) $SC_nD_*M(x) > -\infty$ except perhaps in a scattered set;

(d) M(a) = 0.

An SC_nP -minor function is similarly defined. If f has SC_nP -major and -minor functions and if

$$\inf M(b) = \sup m(b) \neq \pm \infty,$$

then f is said to be SC_nP -integrable on [a, b] with base B, and the common value, denoted by

$$(SC_nP) - \int_{[a,b]}^{B} f(t)dt,$$

is called the SC_nP -integral of f on [a, b] with base B. As remarked in [2], we can often without ambiguity leave the base unspecified.

Except for those properties obtainable from the general theory in [2], it is easy to see that the SC_nP -integral is more general than the C_nP -integral [4] since $SC_nD_*M(x) \ge C_nD_*M(x)$. Furthermore, we have the consistency theorem for the scale:

THEOREM 6. If f is SC_nP -integrable on [a, b] with base B, then f is $SC_{n+1}P$ -integrable on [a, b] with base B and the two integrals are equal.

Proof. This is immediate from Theorem 4 and the general comparison theorem in [2].

Remarks. (i) Note that the SC_1P -integral is equivalent to Burkill's SCP-integral [5] as we have remarked in [2].

(ii) Burkill in [5] listed an integration by parts formula for his *SCP*-integral and stated that the proof followed from that given for the *CP*-integral in [3]. This is not true since the proof in [3] used essentially the following inequality

$$CD_*(MG)(x) \ge M(x)G'(x) + [CD_*M(x)]G(x),$$

but we do not have a similar inequality for the SC_1D -derivate. For example, let

$$M(x) = x^{-1/2},$$
 for $x > 0,$
= $(-x)^{-1/2}$, for $x < 0,$
= $k,$ for $x = 0$, where k is any constant,

and let G(x) = -x. Then

$$SC_1D(MG)(0) = -\infty \ge -k = M(0) G'(0) + [SC_1DM(0)]G(0).$$

Thus, whether the formula for *SCP*-integral in [5] is true remains an open question.

If such an integration by parts formula exists for the SC_1P -integral, then one can use this to define the SC_2P -integral instead of using C_1P -integral. Then a more general scale would be obtained by induction.

5. The SC_nP -integral and the P^{n+1} -integral. As we mentioned in the introduction, in this section we are going to investigate the relation of the P^{n+1} -integral and the SC_nP -integral.

By P^{n+1} -integral, we mean the modified symmetric one as in [10]. For convenience, we give the definition of its major functions here.

Let f be a function defined almost everywhere in [a, b], and let $a_i, i = 1, 2, 3, ..., n + 1$, be fixed points such that $a = a_1 < a_2 < ... < a_{n+1} = b$. A function Q is called a J_{n+1} -major function of f over (a_i) if

- (a) Q satisfies the condition (C_{n+1}) in [a, b] (cf. Section 2);
- (b) $_D_{n+1}Q(x) \ge f(x)$ almost everywhere in [a, b];
- (c) $_{-D_{n+1}Q(x)} > -\infty$, $x \in]a, b[\sim S, S \text{ a scattered set};$
- (d) $Q(a_i) = 0$ for i = 1, 2, 3, ..., n + 1.

THEOREM 7. Let f be SC_nP -integrable on [a, b] with base B. Then f is P^{n+1} -integrable over $(a_i; c)$, where $a = a_1 < a_2 < \ldots < a_n < a_{n+1} = b$, and $c \in [a, b]$. Moreover, letting

$$F_{n}(x) = (SC_{n}P) - \int_{a}^{x} f(t)dt, \quad x \in B,$$

$$F_{k}(x) = (C_{k}P) - \int_{a}^{x} F_{k+1}(t)dt, \quad x \in [a, b], \quad 0 \leq k \leq n - 1,$$

$$F = F_{0},$$

one has for $a_s \leq c < a_{s+1}$,

(7)
$$(-1)^{s} \int_{(a_{i})}^{c} f(t) d_{n+1}t = F(c) - \sum_{i=1}^{n+1} \lambda(c; a_{i}) F(a_{i}),$$

where $\lambda(c; a_i) = \prod_{j \neq i} (c - a_j) / (a_i - a_j)$ is a polynomial in c of degree at most n.

Proof. Let M be an SC_nP -major function and let

$$G(x) = (C_0P) - \int_a^x (C_1P) - \int_a^{t_1} (C_2P) - \int_a^{t_2} \dots (C_{n-1}P) - \int_a^{t_{n-1}} M(t_n) dt_n dt_{n-1} \dots dt_2 dt_1.$$

Then by Lemma 4 and Lemma 5, G satisfies conditions (a), (b), (c) in the above definition. Hence setting

$$Q(x) = G(x) - \sum_{i=1}^{n+1} \lambda(x;a_i)G(a_i)$$

we see that Q is a J_{n+1} -major function of f over (a_i) . Similarly, an SC_nP -minor

function m yields a J_{n+1} -minor function

$$q(x) = g(x) - \sum_{i=1}^{n+1} \lambda(x; a_i)g(a_i),$$

where g is defined similar to G.

For $\epsilon > 0$, if we choose M, m such that

$$M(b) - m(b) < \epsilon \Big/ \left[1 + \sum_{i=1}^{n+1} \lambda(c; a_i) \right] (b-a)^n,$$

then the corresponding Q, q have

 $|Q(c) - q(c)| \le |G(c) - g(c)| + \sum |\lambda(c; a_i)| |G(a_i) - g(a_i)| \le \epsilon.$

Hence, the P^{n+1} -integrability of f follows.

The equality (7) follows as above by using the property that F_n can be uniformly approximated in B by a sequence of SC_n -major or minor functions.

COROLLARY 1. $F_{(n)}(x)$ exists for each x in B and $D_{n-1}F(x)$ exists for each $x \in]a, b[$. Furthermore, $F_{(n)} = F_n$ on B, and $D_kF = F_k$ on]a, b[for $k = 0, 1, 2, \ldots, n - 1$, where F, F_k are those in Theorem 7.

Proof. As F_n can be proved to be C_n -continuous in B and SC_n -continuous in [a, b] (see property (F) in [2]), the required results follow from Lemma 5.

COROLLARY 2. There exists a function which is P^{n+1} -integrable on [a, b] but not SC_n -Pintegrable on [a, b].

Proof. This is similar to that of Cross in [7] for n = 1. In fact,

if n is odd, let
$$F(x) = x \cos 1/x$$
, for $x \neq 0$,
0, for $x = 0$,
if n is even, let $F(x) = x \sin 1/x$, for $x \neq 0$,
0, for $x = 0$.

In either case, let

$$f(x) = F^{(n+1)}(x), \text{ for } x \neq 0,$$

= 0, for $x = 0.$

Then $D_{n+1}F(x) = f(x)$ for all x, including x = 0, and as shown in [9], f is P^{n+1} -integrable over any interval containing 0. However, f is not SC_nP -integrable over [0, b] for any b > 0. For otherwise, it would follow from Corollary 1 that $F_{(n)}(0)$ exists. But not even $F_{(1)}(0)$ exists.

COROLLARY 3. Let f be periodic of period 2b, b > 0. For $n \ge 1$, let m = [n - 1/2]. Then if f is SC_nP -integrable on [-2(m + 1)b, 2(n - m)b] with a base B, one has

$$\frac{1}{(2b)^n} \binom{n+1}{m+1} \int_{(a_i)}^0 f(t) d_{n+1}t = (SC_n P) - \int_{[-b,b]} f(t) dt,$$

where $(a_i) = (-2(m+1)b, -2mb, -2(m-1)b, \dots, -2b, 2b, 4b, \dots, 2(n-m)b).$

1283

The proof, exactly similar to that of Cross in [6] for the unsymmetric case. is omitted.

Remarks. (i) Although P^{n+1} -integral is more general than the SC_nP -integral, the SC_nP -integral has the nice "additive" property that a function SC_nP integral over two abutting intervals is $SC_{n}P$ -integrable over their union, (see property (C) in [2]), while P^{n+1} -integral has no such property. For example, let F be as defined in the proof of Corollary 2. Consider the function f defined by

$$f(x) = F^{(n+1)}(x), \text{ for } x \in]0, i/\pi],$$

= 0, for $x \in [-i/\pi, 0],$

where i = 2 if n is odd and 1 if n is even. Then f is P^{n+1} -integrable over each of the intervals $[-i/\pi, 0]$ and $[0, i/\pi]$, but not over $[-i/\pi, i/\pi]$. Note that this has been pointed out by Skyorcov in [14] for the case n = 1, i.e. for the P^2 -integral.

(ii) As mentioned in [2], the SC_1P -integral solves the coefficient problem of convergent trigonometric series. Whether the SC_nP -integral (for $n \ge 2$) solves the coefficient problem of (C, n-1) summable trigonometric series, considered by James in [10], is under consideration.

References

- 1. P. S. Bullen, A criterion for n-convexity, Pacific J. Math. 36 (1971), 81-98.
- 2. P. S. Bullen and C. M. Lee, On the integrals of Perron type (to appear in Trans. Amer. Math. Soc.).
- 3. J. C. Burkill, The Cesáro-Perron integral, Proc. London Math. Soc. 34 (1932). 314-322.
- 4. —— The Cesáro-Perron scale of integration, Proc. London Math. Soc. 39 (1935), 541-552.
 5. —— Integrals and trigonometric series, Proc. London Math. Soc. 1 (1951), 46-57.
- 6. G. E. Cross, The relation between two definite integrals, Proc. Amer. Math. Soc. 11 (1960), 578-579.
- The relation between two symmetric integrals, Proc. Amer. Math. Soc. 14 (1963), 7. — 185 - 190
- 8. E. W. Hobson, The theory of functions of a real variable, 3rd ed. (Cambridge Univ. Press, Cambridge, 1927).
- 9. R. D. James, Generalized nth primitives, Trans Amer. Math. Soc. 76 (1954), 149-176.
- 10 ----- Summable trigonometric series, Pacific J. Math. 6 (1956), 99-110.
- 11. K. Kuratowski, Topology (Academic Press, New York, 1966).
- 12. J. Marcinkiewicz and A. Zygmund, On the differentiability of functions and summability of trigonometric series, Fund. Math. 27 (1937), 38-69.
- 13. W. L. C. Sargent, On the generalized derivatives and Cesáro-Denjoy integrals, Proc. London Math. Soc. 52 (1951), 365-376.
- 14. V. A. Skvorcov, Concerning definitions of P²- and SCP-integrals, Vestnik Moskov. Univ. Ser. I Mat. Meh. 21 (1966), 12-19.

University of British Columbia, Vancouver, British Columbia; University of Wisconsin-Milwaukee, Milwaukee, Wisconsin