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THE £CWP-INTEGRAL AND THE P^-INTEGRAL 

P. S. BULLEN AND C. M. LEE 

I n t r o d u c t i o n . In [2], we have briefly described, as examples of the general 
theory developed there, a scale of symmetr ic Cesaro-Perron integrals, namely 
5C nP-integral for n = 1, 2, 3, . . . . T h e purpose of this paper is to consider 
the integrals in a greater detail . 

As a preliminary, we prove some lemmas, which are also interesting for their 
own sake, concerning the de la Vallée Poussin derivatives in Section 1, and we 
also s ta te two deep theorems concerning the w-convex functions in Section 2. 
Our main effort is to establish Theorem 3 in Section 3, which is essential to 
the theory of the 5C^P-integral . In Section 4, the definition of the SCnP-
integral is given, while its usual properties are only briefly indicated since 
they follow from the general theory in [2]. T h e last section is devoted to the 
connection between the SC^P-integral and the symmetr ic Pw + 1- integral of 
James [9]. 

1. T h e s y m m e t r i c de la Val lée P o u s s i n derivat ives . Let F be a function 
defined on a bounded closed interval [a, b], and let x be a point in the open 
interval ]a, b[. If there are constants 0O, 02, 04, • • • , 02r (r ^ 0) , depending on x 
but not on h such t h a t 

(1) ±{F(x + h) + F(x - h)} - E pu-£— = 0(h
2r) 

as h^O, then (32r is called the symmetr ic de la Vallée Poussin (s.d.l.V.P.) 
derivat ive of order 2r of F a t x, and we write /32r = D2rF(x). I t is clear t h a t 
if D2rF(x) exists, so does D2kF(x) for k = 0, 1, 2, . . . , r — 1, and D2kF(x) = 

02,. 
If D2kF(x) exists for 0 ^ k ^ m — 1, ( m ^ 1), define 62m(x, h) = d2m(F)x,h) 

by 

7 2 m m - 1 7.2A; 

(2) ^ôjÔ 2 m { x ' h) = MF(x + h) + F(x -h)\- g -Jajj^VC*). 

and let 

~D2mF(x) = lim supd2m(xf h), 

-D2mF(x) = lim inf d2m(x, h). 
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SC^P-INTEGRAL AND PW+1-INTEGRAL 1275 

Then a finite common value for ~D2mF(x) and -D2mF(x) implies t ha t D2mF(x) 
exists and equals this common value. 

In a similar way, the odd-ordered s.d.l.V.P. derivative is defined by replac
ing (1) by 

r h2k+1 

(1') |{F(x + h) - F{x - h)} - g / W i ( 2 a + 1 ) , = o(h2r+1). 

Similar changes can be made in (2), (3). 
The following lemma is an extension and generalization of Lemma 4, (i) in 

[13]. For a partial converse in the non-symmetric case, see Lemma 10 in [12]. 

LEMMA 1. Let H be a function and H' (x) = G(x) in a neighborhood of x0. / / 
for some n, DnG(x0) exists, then Dn+iH(x0) exists and is equal to DnG(x0). 

Proof. The proof is by induction on n. T o see tha t it is t rue for n = 1, 
consider, for sufficiently small h > 0, 

d2(H;x0, h) = | i {%[H(xo + h) + H(x0 - h)] - H(x0)}. 

Lett ing f(h) = 1/2 {H(x0 + h) + H(x0 - h)} - H(x0)y and g(h) = h2/2l, 
one has f{h) —> 0 as h —> 0 since H is clearly continuous in a neighborhood of 
xo, and also g(h) —» 0 as h —» 0, and g''(h) = h 9e 0. Fur thermore 

f'(h) = H'(xp + h) - H'(x - h) = G(x0 + h) - G(x0 - h) 
g(h) 2A " 2h 

which approaches to DIG(XQ) as h —> 0 if DiG(x0) exists. Hence by l 'HôpitaFs 
rule, DïHfao) = l i m ^ o ^ C ^ ; x0, h) = DiG(x0) if D\G(XQ) exists, completing 
the proof for n = 1. 

Now, suppose tha t the conclusion of the lemma is true for n < r, where 
r ^ 2. We prove tha t it is also true for n = r as follows. For r even, r = 2m, 
say, suppose tha t D2mG(xo) exists. Then D2kG(x0) exists for 0 ^ k ^ m — 1, 
and hence by induction hypotheses, D2k+iH(xo) exists and equals D2kG(x0) 
for 0 ^ fe ^ m — 1. Consider 

(2m + 1)! 
U2m+l(Fl', Xoj h) — 72m+l 

X \m(xo + h)- H(x0 - h)\ - g (2k + iVD2k+1H(xo)J . 

Applying l 'HôpitaFs rule, one gets lim^o02m+iC^; #o, h) = D2mG(xo), com
pleting the proof for even r. A similar argument will give the case for r odd. 

Following James [9], we say tha t a function F is w-smooth a t x if Dn-2F(x) 
exists and l i m ^ o ^ C ^ ; x, h) — 0. By an argument similar to tha t in the proof 
of Lemma 1, one has 

LEMMA 2. Let H be a function and Hf (x) = G(x) in a neighborhood of x<>. 
Then H is (n + 1)-smooth at x0 if G is n-smooth at XQ. 
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LEMMA 3. Let H be a function and Hf (%) = G(x) in a neighborhood of x0. 
Then for n ^ 1, 

(4) ~DnG(xo) ^ -Dn+1H(x0) ^ -Dn+1H(x0) ^ -DnG(x0) 

whenever 6n(G; x0, h) makes sense. 

Proof. By Lemma 1, if 6n(G) Xo, h) makes sense, so does 6n+i(H; x0, h). The 
inequalities (4) then follow from the inequalities [8, p. 359] 

lim SUOSTTT ^ lim sup-7-^- ^ lim mlJ-~rz ^ lim inr-777T 
n^o g W ^o g(h) ^o g{h) M g (h) 

for suitable choices of/ and g. 

2. Some properties of ^-convex functions. For the definition of n-convex 
function, we refer to [1] and [9]. To state two deep results concerning w-convex 
functions, we recall some concepts first. 

A function F defined on [a, b] is said to satisfy the condition (C2r) in [a, b] if 
(a) F is continuous in [a, b] ; 
(b) D2icF exists, is finite and has no simple discontinuities in ]a, b[ for 

0 ^ k ^ r - 1; 
(c) F is 2r-smooth at all points in ]a, b[ except perhaps for points of a 

countable set. 
Similarly, the condition (C2r+i) is defined, so that the condition (C„) makes 
sense for all integer n §: 2. 

If it is true that 

F(x + h) - F(x) = é «*T7 + o(Ar) as /*-+0, 

then ak (1 < k < r) is called the Peano derivative of order k of F at x, written 
«* = F(k) (#)> where «i, «2 «jk are constants depending on x only, not on h. 
It is clear that if Fik) (x) exists, so does DkF(x) and the two are equal. But the 
converse is not true in general. 

If F possesses Peano derivatives F(k)(x), 1 ^ k S r — 1, write 

%yr(F;x,h) = F(x + h) - F(x) - £ Fa)(x). 

Then define 
7

(r),+ (x) = lim sup y(F; x, h). 

(r),+ , -r(r),- _, _77(r)f_ are similarly defined, and then F(r)>+1 F^T)_ are defined 
in the usual way. It is easy to show that F{r)(x) exists if and only if F(r)t+, 
F(T)f- exist and are equal and in this case, F(r)(x) = F{r),+ (x) = F ( r ) i_(x). 

A linear set is called a scattered set if it contains no subset that is dense-in-
itself. For properties of scattered sets, we refer to [11]. 

https://doi.org/10.4153/CJM-1973-134-7 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1973-134-7


SCWP-INTEGRAL AND P^+1-INTEGRAL 1277 

T H E O R E M 1. Let F satisfy the condition (Cn) in [a, b], and 

(i) ~DnF(x) ^ 0 almost everywhere in]a, b[; 
(ii) ~DnF(x) > — oo j o r x £ ]a, b[~ S, S a scattered set; 

(iii) lim suph_>ohdn(F; x, h) ^ 0 ^ lim mih^h6n(F; x, h) for x £ S. 
Then F is n-convex in [a, b]. 

Note t h a t for n = 2m, even, this is jus t [1, Theorem 16], of which the similar 
a rgument gives the case n = 2m + 1 (odd), too. 

T H E O R E M 2 [1, Theorem 7]. Let F be n-convex in [a, b]. Then 
(i) F^r) exists and is continuous in [a, b] for 1 ^ r ^ n — 2, where F(r)(x) 

denotes the ordinary rth derivative of F at x; 
(ii) both F(n_D-, P(w_i ) f+ are monotone increasing in [a, b]; 

(iii) / V D , + = V ( W - 2 ) V and /Vi) ,_ = (P(w-2))-/ 
(iv) T^ - 1 ) (#) a w / 5 at all except a countable set of points. 

3 . T h e SCV-derivative a n d t h e SCV-continuity. We assume the theory of 
CnP-integral in [4]. For r ^ 1, and for a C r_iP-integrable function F on [a, b], 
let 

Ar(F;x,h) = ~^{Cr(F;x,x + h) - Cr(F;x,x - h)}, 

SCrD^Fix) = lim inf A r (F ; x, A), 

where x G ]a, b[ and C r ( F ; x, x + A) is as defined in [4]. T h e notat ions SCrD* 
and SCTD then have the obvious meanings. We call SCrDF(x), if exists, the 
symmetr ic Cesâro derivative of order r of F a t x, or simply SCV-derivative of 
Fditx. \i\\mh^+hkT(F\x,h) = 0, Fis said to beSCV-continuousatx. I t is clear 
t h a t T7 is 5C r-continuous a t x whenever it is C r-continuous a t x, and SCTDF(x) 
exists and equals CTDF(x) whenever CrDF(x) exists. Bu t neither of the con
verses is t rue. I t is also easy to check t ha t the 5C r-derivates and derivatives 
are measurable. 

L E M M A 4. For r ^ 0, let F be C\-continuous in [a, b]. Then F has no simple 
discontinuities in [a, b]. In particular, every CrP-integral of a function has no 
simple discontinuities. 

Proof. For r = 0, the result is immediate since Co-continuity is jus t the 
ordinary continuity. For r ^ 1, suppose tha t x0 £ ]a, b], and \imx_>X0^F(x) = B. 
Then for e > 0, there exists 8 > 0 such tha t 

B — e < F(x) < B + e for XQ — ô < x < x0, 

or 

B — e < F(x) < B + e for x0 — h ^ x < xo, 
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where h is such that 0 < h < ô. Hence. 

(B - e)(x - xo + h)'-1 S (x - x0 + h)r-lF(x) S (5 + e) (x - x0 + h)r~l 

for Xo — h ^ x < x0, which implies that 

r rxo 

B - e^Tf (Cr-iP) - (x-xo + h)'-1F(x)dx g B + € 
h Jxo-h 

for 0 < h < ô, so that \imh^o+Cr(F; x0, x0 — h) = B. But 

F(x0) = lim Cr(F\ Xo, x0 — h) = lim Cr(F; x0, x0 — A). 

Hence F(x0) = 5 . 
Similarly, if x0 G [a, b[, and lim:c_>:ro+JF(x) = 5 ' , then F(x0) = .£>'. Hence F 

has no simple discontinuities in [a, b]. 
The last statement of the lemma is now immediate since it is well-known that 

each CrP-integral is Cr-continuous. 

LEMMA 5. For n ^ 0, let F be CnP-integrable on [a, 6], and for x £ [a, 6], /<?/ 

Gn(x) = (CnP)- f F(t)dt, 
•'a 

Gk(x) = (CkP) - f Gk+i(t)dt, O g i g n - 1 , 

G(x) = G0(x). 

Then 
(i) G is continuous in [a, 6]; 

(ii) i/ F is SCn+\-continuous at x, then DnG exists and Dn-2kG(x) = Gn^k(x) 
for 0 ^ k ^ [n/2], and G is (n + 2)-smooth at x, araZ 0W+2(G; x, x + A) = 
Aw+i(F; x, A); 

(iii) i/ F is Cn+i-continuous at x, //ze?z G(W+D(X) exists and Gw(x) = Gk(x) 
for 0 ^ k ^ n + 1, where Gn+1 = F. 

Proof, (i) is immediate since G is just a CoP-integral. For (ii) and (iii), note 
that by integration by parts, 

(5) Cn+1(F; Xlx + h) = ( ^ t + i 1 ) ! {G(X + h) - G(x) - g f{ G , (x ) | , 

and 

Cn+1(F; x,x-h) = ^ + . 1 j l { G ( X - A) - G(x) - g ^ - ^ G*(x)} 
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for h 7e 0 with x + h 6 [a, b]. Hence for n even, say n = 2m, 

(5e) CB+i(^; x,x + h) - Cn+i(F; x, x - h) = — p ^ + r ^ 

h2k 

X)G(x + h)+ G(x -h)-2 g ^ G « ( * ) 

and for w odd, say n = 2m + 1, 

(5o) Cn+i(F) x, x + h) - C„+i(F; * , * - * ) = —rsâ+ï 
(2m + 2)! 

h2 

( * h2k+1 ) 
X \G(x + h)- G(x - h) - 2 £ @îf+~ï)! G2n-i(*)| . 

For both cases, if i7 is 5Cw+i-continuous at x} then DnG(x) exists and 
Dn-2kG(x) = Gn-2jc(x) for 0 ^ & ̂  1.^/2], and G is (w + 2)-smooth a tx , where 
[rc/2] = the greatest integer less than w/2 + 1. Furthermore, 0W+2(G; x, Zt) = 
An+i(F; x, h), proving (ii). (iii) follows from the equality (5). 

Remark. If Dn-2kG(x) = Gw_2/c(x) for 0 S k ^ [w/2], and G is (w + 2)-
smooth at x, then F is 5Cn+i-continuous at x. This is clear since replacing 
Gn-2k(x) by Dn-2kG(x) in (5e) and (5o) one has that 

2 
C„+iCF; x, x + h) — Cn+i{F\ x, x — h) = A0n+2(G; x, h). 

LEMMA 6. For n ^ 0, let F be CnP-integrable on [a, b], and SCn+i-continuous 
in ]a, b[, and G be defined as in Lemma 5. If 

(a) SCn+iD*F(x) ^ 0 almost everywhere in [a, b], and 
(b) SCn+iD*F{x) > — oo for x £ ]a, b[~ S, S a scattered set, 

then G is (n + 2)-convex in [a, b]. 

Proof. This is immediate since by Lemma 5, (ii), and Lemma 4, G satisfies 
all the conditions in Theorem 1 with n + 2 replacing n. 

THEOREM 3. For n ^ 0, let F be CnP-integrable on [a, b] and SCn+i-continuous 
in ]a, b[. If 

(a) SCn+iD*F(x) §; 0 almost everywhere in [a, b], 
(b) SCn+iD*F(x) > — oo for x ç. ]a^ &[ ^ s, S scattered, and 
(c) F is Cn+i-continuous in a setB C [#, &], £/̂ w ^ is monotone increasing in B. 

Proof. Let G be defined as in Lemma 5. Then by Lemma 6, G is (n + 2)-
convex in [a, b], so that by Theorem 2, (iv), G(w+1) and hence G^+D exists at 
all except a countable set of points. By Theorem 2, (ii), G(n+1) is monotone 
increasing where it exists. Thus the condition (c) and Lemma 5, (iii) imply 
that F is monotone increasing in B. 

THEOREM 4. For n ^ 0, ZeJ F be CnP-integrable on [a, b], and x0 £ ]a, &[. 
/ / F is SCn+i-continuous at x0, then F is SCn+2-continuous at x0, and 

(6) SCn+1D*F(xQ) ^ SCn+2D*F(x0) è SCn+2D*F(x0) è 5Cw+1D*F(x0). 
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Proof. Note first that F is Cn+iP-integrable on [a, b] by the consistency of 
the CP-scale. For x 6 [a, 6], let 

Gn(x) = (CnP) - f F(t)dt, 

Gk(x) = (C,P) - f Gk+l(t)dt lorO^k^n- 1, 
"a 

Hn+i(x) = (C+iP) - f F(f)dt, 

Hk(x) = (CkP) - JXHk+1(t)dt îorO^k^n. 

Then ff^+i = Gk for 0 ^ k ^ w and 

ff0(x) = (L) - rGo(/)*-

By Lemma 5, (ii), G0 is (n + 2)-smooth at x0, so that ff0 is (n + 3)-smooth 
at Xo by Lemma 2. Hence by the remark following Lemma 5, F is 5Cw+2-
continuous at x0. The inequalities (6) follow from Lemma 5 and Lemma 3, 
completing the proof. 

THEOREM 5. Let [Mk] be a sequence of SCn-continuous functions in ]a, ô[, and 
each Mk is Cn-continuous in a set B C [#, b] with a, b (z B and the measure of B 
being b — a. Suppose that Mk(x) —» M(x) as k —» + oo uniformly in B. Then 
M is SCn-continuous in ]a, b[ and Cn-continuous in B. 

Proof. Given e > 0, choose k such that for all x £ B, \M(x) — Mk(x)\ < \ e. 
For each c Ç B, choose ô > 0 such that \Cn(Mk; c, c + ft) — -MA;(C)| < J e 
whenever |ft| < ô with x + ft £ [a, 6]. Then 

|C„(ilf; c, c + ft) - Cn(M*; c, c + ft)| < i e, 

so that |Cn(M; c, c + ft) - Af(c)| < e whenever |ft| < <5 with x + ft G [a, 6], 
proving that I f is Cn-continuous at c. 

That I f is 5Cw-continuous at each point c G ]#, 6[ is proved in a similar way, 
only replacing Mk(c), M(c) in the above argument by Cn(Mk; c — ft, c) and 
Cn(M; c — ft, c), ft now being restricted to c =b ft £ [a, &]. 

4. The SC nP-Integral . We have defined in [2] a system SCnP = 
SCWD, 3!,<yV , ~In),SCnD being the SCnD* here. By Theorem 3 and Theorem 5, 
it is easy to check that ^C^P is in fact a derivate system as defined in [2], 
and hence one obtains a 5 C„P-integral and its usual properties follow from 
the general theory in [2]. For completeness, we give the direct definition of 
the 5C^P-integral here, n = 1, 2, 3, . . . . 

Suppose t h a t / is a function defined and finite almost everywhere in [a, b], 
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and B a subset of [a, b] of measure b — a, and a, b £ B. A Cw_iP-integrable 
function M will be called an 5C^P-major function of / on [a, b] with base B if 

(a) M is 5C^-continuous in ]a, b[ and (^-continuous in B; 

(b) SCnD*M(x) ^ / ( x ) almost everywhere in ]a, b[; 
(c) SCnD*M(x) > — °° except perhaps in a scattered set; 
(d) M (a) = 0. 

An ,SCnP-minor function is similarly denned. I f / has 5C nP-major and -minor 
functions and if 

inf M(b) = sup m(b) ^ ± oo, 

then / is said to be 5CwP-integrable on [a, b] with base B, and the common 
value, denoted by 

(scnp)~ r MM 
J[a,b] 

is called the 5CwP-integral o f / on [a, b] with base i3. As remarked in [2], we 
can often without ambiguity leave the base unspecified. 

Except for those properties obtainable from the general theory in [2], it is 
easy to see t ha t the SC^P-integral is more general than the CwP-integral [4] 
since SCnD*M(x) ^ CnD*M{x). Fur thermore, we have the consistency 
theorem for the scale: 

T H E O R E M 6. / / / is SCnP-integrable on [a, b] with base B, then f is SCn+iP-
integrable on [a, b] with base B and the two integrals are equal. 

Proof. This is immediate from Theorem 4 and the general comparison 
theorem in [2]. 

Remarks, (i) Note t h a t the 5£YP-integral is equivalent to Burkill 's SCP-
integral [5] as we have remarked in [2]. 

(ii) Burkill in [5] listed an integration by par ts formula for his SCP-integral 
and s ta ted t ha t the proof followed from tha t given for the CP-integral in [3]. 
This is not t rue since the proof in [3] used essentially the following inequali ty 

CD*(MG)(x) è M(x)G'(x) + [CD*M(x)]G(x), 

but we do not have a similar inequality for the 5CVD-derivate. For example, let 

M{x) = x~l,\ for x > 0, 

= (-x)~1/2, forx < 0, 

= k, for x = 0, where k is any 

constant , 

and let G(x) = — x. Then 

SCiZ>(AfG)(0) = - co $ - k = jlf(0) G'(0) + [SdDM(0)]G(0). 

Thus , whether the formula for SCP-integral in [5] is t rue remains an open 
question. 
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If such an integration by parts formula exists for the SGP-integral, then 
one can use this to define the SC2P-integral instead of using GP-integral. 
Then a more general scale would be obtained by induction. 

5. The S CnP-integral and the P n + 1 - in tegral . As we mentioned in the 
introduction, in this section we are going to investigate the relation of the 
Pw+1-integral and the 5CwP-integral. 

By Pw+1-integral, we mean the modified symmetric one as in [10]. For con
venience, we give the definition of its major functions here. 

L e t / be a function defined almost everywhere in [a, 6], and let aui = 1,2, 3, 
. . . , n + 1, be fixed points such that a = a,\ < ai < . . . < an+i = b. A func
tion Q is called a J^+i-major function of / over (at) if 

(a) Q satisfies the condition (Cn+i) in [a, b] (cf. Section 2) ; 
(b) -Dn+iQ(x) ^ f(x) almost everywhere in [a, b]; 
(c) JDn+\Q{x) > — °°, x Ç ]a, b[ ~ S, S a scattered set; 
(d) Q(at) = 0 for i = 1, 2, 3, . . . , n + 1. 

THEOREM 7. Let f be SCnP-integrable on [a, b] with base B. Then f is Pn+l-
integrable over {at; c), where a = a± < a% < . . . < an < an+i = 6, and c £ [a, b]. 
Moreover, letting 

Fn(x) = (SCnP) - (Xf(t)dt, xtB, 

FJC(X) = (CkP) - j Fk+1(t)dt, x G [a, b], 0 ^ k ^ n - 1, 

F = Po, 

one has for as ^ c < as+i, 

(7) ( - l ) s f f(t)dn+1t = F(c) - £ \(c;at)F(at), 
J (ai) i=l 

where \ (c ; at) = I I j^iic — a f) /(a t — a j) is a polynomial incof degree at most n. 

Proof. Let M be an .SC^P-major function and let 

G(x) = (CoP) - f ( d P ) - f l (C2P) - f \ . . (C„_1P) 

I 
tn-l 

M(fn)dtndtn-i. . . dt2dti. 

Then by Lemma 4 and Lemma 5, G satisfies conditions (a), (b), (c) in the 
above definition. Hence setting 

Q(x) = G(x) — E M*\ai)G(ai), 

we see that Q is a J^+i-major function of/ over (a*). Similarly, an 5CwP-minor 
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function m yields a Jw+i-minor function 
n + l 

q(x) = g(x) - X) Hx',ai)z(a>i), 

where g is defined similar to G. 
For e > 0, if we choose M, m such that 

M(b) - m(b) < e 1+ Z Xfofl,)Ift-a)11, 
*=i J 

then the corresponding Q, q have 

|<2(c) - 2(c)| ^ \G(c) - g(c)\ + Z\\(c;at)\\G(at) - g(at)\ g e. 

Hence, the Pn+1-integrability of/ follows. 
The equality (7) follows as above by using the property that Fn can be 

uniformly approximated in B by a sequence of SC^-major or minor functions. 

COROLLARY 1. F(n)(x) exists for each x in B and Dn-\F(x) exists for each 
x G ]a, b[. Furthermore, P(w) = Fn on B, and DkF = Fk on ]a, b[for k = 0, 1, 2, 
. . . , n — 1, where F, Fk are those in Theorem 7. 

Proof. As Fn can be proved to be (^-continuous in B and 5Cw-continuous in 
]a, b[ (see property (F) in [2]), the required results follow from Lemma 5. 

COROLLARY 2. There exists a function which is Pn+1-integrable on [a, b] but 
not SCn-Pintegrable on [a, b]. 

Proof. This is similar to that of Cross in [7] for n = 1. In fact, 

if n is odd, let F(x) = x cos 1/x, for x ^ 0, 

0, for x = 0, 
if n is even, let F(x) = x sin 1/x, for x ^ 0 , 

0, for x = 0. 
In either case, let 

f(x) = /w-D(x), forx ^ 0, 

= 0, for x = 0. 
Then 2)w+iP(x) = f(x) for all x, including x = 0, and as shown in [9], / is 
Pw+1-integrable over any interval containing 0. However, / is not 5CwP-integra-
ble over [0, b] for any b > 0. For otherwise, it would follow from Corollary 1 
that P(W) (0) exists. But not even P (D (0) exists. 

COROLLARY 3. Let f be periodic of period 2b, b > 0. For n ^ 1, let m = 
[n — 1/2]. Then if f is SCnP-integrable on [ — 2(m + l)b, 2{n — m)b] with a 
base B, one has 

Tobfcîî) f /(O*H.I*=(sc„p)- r /(o*f 
(26) \ w + l / Jfo,.) J[-&,6] 

«Aere (a,) = ( - 2 ( w + 1)6, -2m6, -2(m - 1)6, . . . ,-2b, 2b, 4 6 , . . . , 
2(w — m)b). 
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The proof, exactly similar to that of Cross in [6] for the unsymmetric case, 
is omitted. 

Remarks, (i) Although Pw+1-integral is more general than the S CnP-integral, 
the 5CnP-integral has the nice "additive" property that a function SCnP-
integral over two abutting intervals is .SC^P-integrable over their union, (see 
property (C) in [2]), while Pw+1-integral has no such property. For example, 
let F be as defined in the proof of Corollary 2. Consider the function/ defined by 

f(x) = F^(x), for x e ]0, i/ir], 

= 0, forx G [ - i/ir, 0], 

where i = 2 if n is odd and 1 if n is even. T h e n / is Pw+1-integrable over each of 
the intervals [— i/w, 0] and [0, i/ir], but not over [— i/ir, i/ir]. Note that this 
has been pointed out by Skvorcov in [14] for the case n = 1, i.e. for the 
P2-integral. 

(ii) As mentioned in [2], the SCiP-integral solves the coefficient problem of 
convergent trigonometric series. Whether the SC^P-integral (for n ^ 2) 
solves the coefficient problem of (C, n — 1) summable trigonometric series, 
considered by James in [10], is under consideration. 
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