THE $S C_{n} P$-INTEGRAL AND THE P^{n+1}-INTEGRAL

P. S. BULLEN AND C. M. LEE

Introduction. In [2], we have briefly described, as examples of the general theory developed there, a scale of symmetric Cesaro-Perron integrals, namely $S C_{n} P$-integral for $n=1,2,3, \ldots$ The purpose of this paper is to consider the integrals in a greater detail.

As a preliminary, we prove some lemmas, which are also interesting for their own sake, concerning the de la Vallée Poussin derivatives in Section 1, and we also state two deep theorems concerning the n-convex functions in Section 2. Our main effort is to establish Theorem 3 in Section 3, which is essential to the theory of the $S C_{n} P$-integral. In Section 4, the definition of the $S C_{n} P$ integral is given, while its usual properties are only briefly indicated since they follow from the general theory in [2]. The last section is devoted to the connection between the $S C_{n} P$-integral and the symmetric P^{n+1}-integral of James [9].

1. The symmetric de la Vallée Poussin derivatives. Let F be a function defined on a bounded closed interval $[a, b]$, and let x be a point in the open interval $] a, b\left[\right.$. If there are constants $\beta_{0}, \beta_{2}, \beta_{4}, \ldots, \beta_{2 r}(r \geqq 0)$, depending on x but not on h such that

$$
\begin{equation*}
\frac{1}{2}\{F(x+h)+F(x-h)\}-\sum_{k=0}^{\tau} \beta_{2 k} \frac{h^{2 k}}{(2 k)!}=o\left(h^{2 r}\right) \tag{1}
\end{equation*}
$$

as $h \rightarrow 0$, then $\beta_{2 r}$ is called the symmetric de la Vallée Poussin (s.d.l.V.P.) derivative of order $2 r$ of F at x, and we write $\beta_{2 r}=D_{2 r} F(x)$. It is clear that if $D_{2 r} F(x)$ exists, so does $D_{2 k} F(x)$ for $k=0,1,2, \ldots, r-1$, and $D_{2 k} F(x)=$ $\beta_{2 k}$.

If $D_{2 k} F(x)$ exists for $0 \leqq k \leqq m-1,(m \geqq 1)$, define $\theta_{2 m}(x, h)=\theta_{2 m}(F ; x, h)$ by

$$
\begin{equation*}
\frac{h^{2 m}}{(2 m)!} \theta_{2 m}(x, h)=\frac{1}{2}\{F(x+h)+F(x-h)\}-\sum_{k=0}^{m-1} \frac{h^{2 k}}{(2 k)!} D_{2 k} F(x), \tag{2}
\end{equation*}
$$

and let

$$
\begin{aligned}
& -D_{2 m} F(x)=\underset{h \rightarrow 0}{\lim \sup } \theta_{2 m}(x, h), \\
& -D_{2 m} F(x)=\underset{h \rightarrow 0}{\lim \inf } \theta_{2 m}(x, h) .
\end{aligned}
$$

[^0]Then a finite common value for $-D_{2 m} F(x)$ and ${ }_{_} D_{2 m} F(x)$ implies that $D_{2 m} F(x)$ exists and equals this common value.

In a similar way, the odd-ordered s.d.l.V.P. derivative is defined by replacing (1) by

$$
\frac{1}{2}\{F(x+h)-F(x-h)\}-\sum_{k=1}^{r} \beta_{2 k+1} \frac{h^{2 k+1}}{(2 k+1)!}=o\left(h^{2 r+1}\right)
$$

Similar changes can be made in (2), (3).
The following lemma is an extension and generalization of Lemma 4, (i) in [13]. For a partial converse in the non-symmetric case, see Lemma 10 in [12].

Lemma 1. Let H be a function and $H^{\prime}(x)=G(x)$ in a neighborhood of x_{0}. If for some $n, D_{n} G\left(x_{0}\right)$ exists, then $D_{n+1} H\left(x_{0}\right)$ exists and is equal to $D_{n} G\left(x_{0}\right)$.

Proof. The proof is by induction on n. To see that it is true for $n=1$, consider, for sufficiently small $h>0$,

$$
\theta_{2}\left(H ; x_{0}, h\right)=\frac{2!}{h^{2}}\left\{\frac{1}{2}\left[H\left(x_{0}+h\right)+H\left(x_{0}-h\right)\right]-H\left(x_{0}\right)\right\} .
$$

Letting $f(h)=1 / 2\left\{H\left(x_{0}+h\right)+H\left(x_{0}-h\right)\right\}-H\left(x_{0}\right)$, and $g(h)=h^{2} / 2!$, one has $f(h) \rightarrow 0$ as $h \rightarrow 0$ since H is clearly continuous in a neighborhood of x_{0}, and also $g(h) \rightarrow 0$ as $h \rightarrow 0$, and $g^{\prime}(h)=h \neq 0$. Furthermore

$$
\frac{f^{\prime}(h)}{g^{\prime}(h)}=\frac{H^{\prime}\left(x_{0}+h\right)-H^{\prime}(x-h)}{2 h}=\frac{G\left(x_{0}+h\right)-G\left(x_{0}-h\right)}{2 h},
$$

which approaches to $D_{1} G\left(x_{0}\right)$ as $h \rightarrow 0$ if $D_{1} G\left(x_{0}\right)$ exists. Hence by l'Hôpital's rule, $D_{2} H\left(x_{0}\right)=\lim _{h \rightarrow 0} \theta_{2}\left(H ; x_{0}, h\right)=D_{1} G\left(x_{0}\right)$ if $D_{1} G\left(x_{0}\right)$ exists, completing the proof for $n=1$.

Now, suppose that the conclusion of the lemma is true for $n<r$, where $r \geqq 2$. We prove that it is also true for $n=r$ as follows. For r even, $r=2 m$, say, suppose that $D_{2 m} G\left(x_{0}\right)$ exists. Then $D_{2 k} G\left(x_{0}\right)$ exists for $0 \leqq k \leqq m-1$, and hence by induction hypotheses, $D_{2 k+1} H\left(x_{0}\right)$ exists and equals $D_{2 k} G\left(x_{0}\right)$ for $0 \leqq k \leqq m-1$. Consider

$$
\begin{aligned}
\theta_{2 m+1}\left(H ; x_{0}, h\right)= & \frac{(2 m+1)!}{h^{2 m+1}} \\
& \times\left\{\frac{1}{2}\left[H\left(x_{0}+h\right)-H\left(x_{0}-h\right)\right]-\sum_{k=0}^{m-1} \frac{h^{2 k+1}}{(2 k+1)!} D_{2 k+1} H\left(x_{0}\right)\right\} .
\end{aligned}
$$

Applying l'Hôpital's rule, one gets $\lim _{h \rightarrow 0} \theta_{2_{m+1}}\left(H ; x_{0}, h\right)=D_{2_{m}} G\left(x_{0}\right)$, completing the proof for even r. A similar argument will give the case for r odd.

Following James [9], we say that a function F is n-smooth at x if $D_{n-2} F(x)$ exists and $\lim _{h \rightarrow 0} h \theta_{n}(F ; x, h)=0$. By an argument similar to that in the proof of Lemma 1, one has

Lemma 2. Let H be a function and $H^{\prime}(x)=G(x)$ in a neighborhood of x_{0}. Then H is $(n+1)$-smooth at x_{0} if G is n-smooth at x_{0}.

Lemma 3. Let H be a function and $H^{\prime}(x)=G(x)$ in a neighborhood of x_{0}. Then for $n \geqq 1$,

$$
\begin{equation*}
-D_{n} G\left(x_{0}\right) \geqq-D_{n+1} H\left(x_{0}\right) \geqq-D_{n+1} \mathrm{H}\left(x_{0}\right) \geqq-D_{n} G\left(x_{0}\right) \tag{4}
\end{equation*}
$$

whenever $\theta_{n}\left(G ; x_{0}, h\right)$ makes sense.
Proof. By Lemma 1, if $\theta_{n}\left(G ; x_{0}, h\right)$ makes sense, so does $\theta_{n+1}\left(H ; x_{0}, h\right)$. The inequalities (4) then follow from the inequalities [8, p. 359]

$$
\limsup _{h \rightarrow 0} \frac{f^{\prime}(h)}{g^{\prime}(h)} \geqq \limsup _{h \rightarrow 0} \frac{f(h)}{g(h)} \geqq \liminf _{h \rightarrow 0} \frac{f(h)}{g(h)} \geqq \liminf _{h \rightarrow 0} \frac{f^{\prime}(h)}{g^{\prime}(h)}
$$

for suitable choices of f and g.
2. Some properties of n-convex functions. For the definition of n-convex function, we refer to [1] and [9]. To state two deep results concerning n-convex functions, we recall some concepts first.

A function F defined on $[a, b]$ is said to satisfy the condition $\left(C_{2_{r}}\right)$ in $[a, b]$ if
(a) F is continuous in $[a, b]$;
(b) $D_{2 k} F$ exists, is finite and has no simple discontinuities in $] a, b[$ for $0 \leqq k \leqq r-1$;
(c) F is $2 r$-smooth at all points in]a, b [except perhaps for points of a countable set.
Similarly, the condition $\left(C_{2 r+1}\right)$ is defined, so that the condition $\left(C_{n}\right)$ makes sense for all integer $n \geqq 2$.

If it is true that

$$
F(x+h)-F(x)=\sum_{k=1}^{r} \alpha_{k} \frac{h^{k}}{k!}+o\left(h^{r}\right) \quad \text { as } h \rightarrow 0
$$

then $\alpha_{k}(1<k<r)$ is called the Peano derivative of order k of F at x, written $\alpha_{k}=F_{(k)}(x)$, where $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}$ are constants depending on x only, not on h. It is clear that if $F_{(k)}(x)$ exists, so does $D_{k} F(x)$ and the two are equal. But the converse is not true in general.

If F possesses Peano derivatives $F_{(k)}(x), 1 \leqq k \leqq r-1$, write

$$
\frac{h^{r}}{r!} \gamma_{r}(F ; x, h)=F(x+h)-F(x)-\sum_{k=1}^{r-1} F_{(k)}(x)
$$

Then define

$$
{ }^{-} F_{(r),+}(x)=\lim _{h \rightarrow 0+} \gamma(F ; x, h)
$$

${ }_{-} F_{(r),+,} F_{(r),-,} F_{(r),-}$ are similarly defined, and then $F_{(r),+}, F_{(r),-}$ are defined in the usual way. It is easy to show that $F_{(r)}(x)$ exists if and only if $F_{(r),+}$, $F_{(r),-}$ exist and are equal and in this case, $F_{(r)}(x)=F_{(r),+}(x)=F_{(r),-}(x)$.

A linear set is called a scattered set if it contains no subset that is dense-initself. For properties of scattered sets, we refer to [11].

Theorem 1. Let F satisfy the condition $\left(C_{n}\right)$ in $[a, b]$, and
(i) $-D_{n} F(x) \geqq 0$ almost everywhere in $] a, b[$;
(ii) $-D_{n} F(x)>-\infty$ for $\left.x \in\right] a, b[\sim S, S$ a scattered set;

Then F is n-convex in $[a, b]$.
Note that for $n=2 m$, even, this is just [$\mathbf{1}$, Theorem 16], of which the similar argument gives the case $n=2 m+1$ (odd), too.

Theorem 2 [1, Theorem 7]. Let F be n-convex in $[a, b]$. Then
(i) $F^{(r)}$ exists and is continuous in $[a, b]$ for $1 \leqq r \leqq n-2$, where $F^{(r)}(x)$ denotes the ordinary rth derivative of F at x;
(ii) both $F_{(n-1),-}, F_{(n-1),+}$ are monotone increasing in $[a, b]$;
(iii) $F_{(n-1),+}=\left(F^{(n-2)}\right)_{+}^{\prime}$ and $F_{(n-1),-}=\left(F^{(n-2)}\right)_{C^{\prime}}$;
(iv) $F^{(n-1)}(x)$ exists at all except a countable set of points.
3. The $S C_{r}$-derivative and the $S C_{r}$-continuity. We assume the theory of $C_{n} P$-integral in [4]. For $r \geqq 1$, and for a $C_{r-1} P$-integrable function F on $[a, b]$, let

$$
\begin{aligned}
\Delta_{r}(F ; x, h) & =\frac{r+1}{2 h}\left\{C_{r}(F ; x, x+h)-C_{r}(F ; x, x-h)\right\}, \\
S C_{r} D_{*} F(x) & =\underset{h \rightarrow 0}{\lim \inf } \Delta_{r}(F ; x, h),
\end{aligned}
$$

where $x \in] a, b\left[\right.$ and $C_{r}(F ; x, x+h)$ is as defined in [4]. The notations $S C_{r} D^{*}$ and $S C_{r} D$ then have the obvious meanings. We call $S C_{r} D F(x)$, if exists, the symmetric Cesáro derivative of order r of F at x, or simply $S C_{r}$-derivative of F at x. If $\lim _{h \rightarrow 0+} h \Delta_{r}(F ; x, h)=0, F$ is said to be $S C_{r}$-continuous at x. It is clear that F is $S C_{r}$-continuous at x whenever it is C_{r}-continuous at x, and $S C_{r} D F(x)$ exists and equals $C_{r} D F(x)$ whenever $C_{r} D F(x)$ exists. But neither of the converses is true. It is also easy to check that the $S C_{r}$-derivates and derivatives are measurable.

Lemma 4. For $r \geqq 0$, let F be C_{r}-continuous in $[a, b]$. Then F has no simple discontinuities in $[a, b]$. In particular, every $C_{r} P$-integral of a function has no simple discontinuities.

Proof. For $r=0$, the result is immediate since C_{0}-continuity is just the ordinary continuity. For $r \geqq 1$, suppose that $\left.\left.x_{0} \in\right] a, b\right]$, and $\lim _{x \rightarrow x_{0}-} F(x)=B$. Then for $\epsilon>0$, there exists $\delta>0$ such that

$$
B-\epsilon<F(x)<B+\epsilon \text { for } x_{0}-\delta<x<x_{0},
$$

or

$$
B-\epsilon<F(x)<B+\epsilon \text { for } x_{0}-h \leqq x<x_{0},
$$

where h is such that $0<h<\delta$. Hence.
$(B-\epsilon)\left(x-x_{0}+h\right)^{r-1} \leqq\left(x-x_{0}+h\right)^{r-1} F(x) \leqq(B+\epsilon)\left(x-x_{0}+h\right)^{r-1}$ for $x_{0}-h \leqq x<x_{0}$, which implies that

$$
B-\epsilon \leqq \frac{r}{h^{r}}\left(C_{r-1} P\right)-\int_{x_{0}-h}^{x_{0}}\left(x-x_{0}+h\right)^{r-1} F(x) d x \leqq B+\epsilon
$$

for $0<h<\delta$, so that $\lim _{h \rightarrow 0+} C_{r}\left(F ; x_{0}, x_{0}-h\right)=B$. But

$$
F\left(x_{0}\right)=\lim _{h \rightarrow 0} C_{r}\left(F ; x_{0}, x_{0}-h\right)=\lim _{h \rightarrow 0+} C_{r}\left(F ; x_{0}, x_{0}-h\right) .
$$

Hence $F\left(x_{0}\right)=B$.
Similarly, if $x_{0} \in\left[a, b\left[\right.\right.$, and $\lim _{x \rightarrow x_{0}+} F(x)=B^{\prime}$, then $F\left(x_{0}\right)=B^{\prime}$. Hence F has no simple discontinuities in $[a, b]$.

The last statement of the lemma is now immediate since it is well-known that each $C_{r} P$-integral is C_{r}-continuous.

Lemma 5. For $n \geqq 0$, let F be $C_{n} P$-integrable on $[a, b]$, and for $x \in[a, b]$, let

$$
\begin{aligned}
G_{n}(x) & =\left(C_{n} P\right)-\int_{a}^{x} F(t) d t, \\
G_{k}(x) & =\left(C_{k} P\right)-\int_{a}^{x} G_{k+1}(t) d t, \quad 0 \leqq k \leqq n-1, \\
G(x) & =G_{0}(x)
\end{aligned}
$$

Then
(i) G is continuous in $[a, b]$;
(ii) if F is $S C_{n+1}$-continuous at x, then $D_{n} G$ exists and $D_{n-2 k} G(x)=G_{n-2 k}(x)$ for $0 \leqq k \leqq[n / 2]$, and G is $(n+2)$-smooth at x, and $\theta_{n+2}(G ; x, x+h)=$ $\Delta_{n+1}(F ; x, h)$;
(iii) if F is C_{n+1}-continuous at x, then $G_{(n+1)}(x)$ exists and $G_{(k)}(x)=G_{k}(x)$ for $0 \leqq k \leqq n+1$, where $G_{n+1}=F$.

Proof. (i) is immediate since G is just a $C_{0} P$-integral. For (ii) and (iii), note that by integration by parts,

$$
\begin{equation*}
C_{n+1}(F ; x, x+h)=\frac{(n+1)!}{h^{n+1}}\left\{G(x+h)-G(x)-\sum_{k=1}^{n} \frac{h^{k}}{k!} G_{k}(x)\right\}, \tag{5}
\end{equation*}
$$

and

$$
C_{n+1}(F ; x, x-h)=\frac{(n+1)!}{(-h)^{n+1}}\left\{G(x-h)-G(x)-\sum_{k=1}^{n} \frac{(-h)^{k}}{k!} G_{k}(x)\right\}
$$

for $h \neq 0$ with $x+h \in[a, b]$. Hence for n even, say $n=2 m$,

$$
\begin{align*}
& C_{n+1}(F ; x, x+h)-C_{n+1}(F ; x, x-h)=\frac{(2 m+1)!}{h^{2 m+1}} \tag{5e}\\
& \times\left\{G(x+h)+G(x-h)-2 \sum_{k=1}^{m} \frac{h^{2 k}}{(2 k)!} G_{2 k}(x)\right\} ;
\end{align*}
$$

and for n odd, say $n=2 m+1$,

$$
\begin{align*}
C_{n+1}(F ; x, x+h) & -C_{n+1}(F ; x, x-h)=\frac{(2 m+2)!}{h^{2 m+2}} \tag{5o}\\
& \times\left\{G(x+h)-G(x-h)-2 \sum_{k=0}^{m} \frac{h^{2 k+1}}{(2 k+1)!} G_{2 k+1}(x)\right\} .
\end{align*}
$$

For both cases, if F is $S C_{n+1}$-continuous at x, then $D_{n} G(x)$ exists and $D_{n-2 k} G(x)=G_{n-2 k}(x)$ for $0 \leqq k \leqq[n / 2]$, and G is $(n+2)$-smooth at x, where $[n / 2]=$ the greatest integer less than $n / 2+1$. Furthermore, $\theta_{n+2}(G ; x, h)=$ $\Delta_{n+1}(F ; x, h)$, proving (ii). (iii) follows from the equality (5).

Remark. If $D_{n-2 k} G(x)=G_{n-2 k}(x)$ for $0 \leqq k \leqq[n / 2]$, and G is $(n+2)$ smooth at x, then F is $S C_{n+1}$-continuous at x. This is clear since replacing $G_{n-2 k}(x)$ by $D_{n-2 k} G(x)$ in (5e) and (5o) one has that

$$
C_{n+1}(F ; x, x+h)-C_{n+1}(F ; x, x-h)=\frac{2}{n+2} h \theta_{n+2}(G ; x, h) .
$$

Lemma 6. For $n \geqq 0$, let F be $C_{n} P$-integrable on $[a, b]$, and $S C_{n+1}$-continuous in $] a, b[$, and G be defined as in Lemma 5. If
(a) $S C_{n+1} D^{*} F(x) \geqq 0$ almost everywhere in $[a, b]$, and
(b) $S C_{n+1} D^{*} F(x)>-\infty$ for $\left.x \in\right] a, b[\sim S, S$ a scattered set, then G is $(n+2)$-convex in $[a, b]$.

Proof. This is immediate since by Lemma 5, (ii), and Lemma 4, G satisfies all the conditions in Theorem 1 with $n+2$ replacing n.

Theorem 3. For $n \geqq 0$, let F be $C_{n} P$-integrable on $[a, b]$ and $S C_{n+1}$-continuous in] $a, b[$. If
(a) $S C_{n+1} D^{*} F(x) \geqq 0$ almost everywhere in $[a, b]$,
(b) $S C_{n+1} D^{*} F(x)>-\infty$ for $\left.x \in\right] a, b[\sim S, S$ scattered, and
(c) F is C_{n+1}-continuous in a set $B \subset[a, b]$, then F is monotone increasing in B.

Proof. Let G be defined as in Lemma 5. Then by Lemma $6, G$ is $(n+2)$. convex in $[a, b]$, so that by Theorem 2, (iv), $G^{(n+1)}$ and hence $G_{(n+1)}$ exists at all except a countable set of points. By Theorem 2, (ii), $G_{(n+1)}$ is monotone increasing where it exists. Thus the condition (c) and Lemma 5, (iii) imply that F is monotone increasing in B.

Theorem 4. For $n \geqq 0$, let F be $C_{n} P$-integrable on $[a, b]$, and $\left.x_{0} \in\right] a, b[$. If F is $S C_{n+1}$-continuous at x_{0}, then F is $S C_{n+2}$-continuous at x_{0}, and

$$
\begin{equation*}
S C_{n+1} D^{*} F\left(x_{0}\right) \geqq S C_{n+2} D^{*} F\left(x_{0}\right) \geqq S C_{n+2} D_{*} F\left(x_{0}\right) \geqq S C_{n+1} D_{*} F\left(x_{0}\right) . \tag{6}
\end{equation*}
$$

Proof. Note first that F is $C_{n+1} P$-integrable on $[a, b]$ by the consistency of the $C P$-scale. For $x \in[a, b]$, let

$$
\begin{aligned}
G_{n}(x) & =\left(C_{n} P\right)-\int_{a}^{x} F(t) d t, \\
G_{k}(x) & =\left(C_{k} P\right)-\int_{a}^{x} G_{k+1}(t) d t \quad \text { for } 0 \leqq k \leqq n-1, \\
H_{n+1}(x) & =\left(C_{n+1} P\right)-\int_{a}^{x} F(t) d t, \\
H_{k}(x) & =\left(C_{k} P\right)-\int_{a}^{x} H_{k+1}(t) d t \quad \text { for } 0 \leqq k \leqq n .
\end{aligned}
$$

Then $H_{k+1}=G_{k}$ for $0 \leqq k \leqq n$ and

$$
H_{0}(x)=(L)-\int_{a}^{x} G_{0}(t) d t .
$$

By Lemma 5, (ii), G_{0} is $(n+2)$-smooth at x_{0}, so that H_{0} is $(n+3)$-smooth at x_{0} by Lemma 2. Hence by the remark following Lemma 5, F is $S C_{n+2}{ }^{-}$ continuous at x_{0}. The inequalities (6) follow from Lemma 5 and Lemma 3, completing the proof.

Theorem 5 . Let $\left\{M_{k}\right\}$ be a sequence of $S C_{n}$-continuous functions in $]$ a, $b[$, and each M_{k} is C_{n}-continuous in a set $B \subset[a, b]$ with $a, b \in B$ and the measure of B being $b-a$. Suppose that $M_{k}(x) \rightarrow M(x)$ as $k \rightarrow+\infty$ uniformly in B. Then M is $S C_{n}$-continuous in $] a$, $b\left[\right.$ and C_{n}-continuous in B.

Proof. Given $\epsilon>0$, choose k such that for all $x \in B,\left|M(x)-M_{k}(x)\right|<\frac{1}{3} \epsilon$. For each $c \in B$, choose $\delta>0$ such that $\left|C_{n}\left(M_{k} ; c, c+h\right)-M_{k}(c)\right|<\frac{1}{3} \epsilon$ whenever $|h|<\delta$ with $x+h \in[a, b]$. Then

$$
\left|C_{n}(M ; c, c+h)-C_{n}\left(M_{k} ; c, c+h\right)\right|<\frac{1}{3} \epsilon,
$$

so that $\left|C_{n}(M ; c, c+h)-M(c)\right|<\epsilon$ whenever $|h|<\delta$ with $x+h \in[a, b]$, proving that M is C_{n}-continuous at c.
That M is $S C_{n}$-continuous at each point $\left.c \in\right] a, b[$ is proved in a similar way, only replacing $M_{k}(c), M(c)$ in the above argument by $C_{n}\left(M_{k} ; c-h, c\right)$ and $C_{n}(M ; c-h, c), h$ now being restricted to $c \pm h \in[a, b]$.
4. The $S C_{n} P$-Integral. We have defined in [2] a system $S C_{n} P=\left(S \mathscr{M}^{n}\right.$, $\left.S C_{n} D, \mathscr{B}, \mathcal{N},-I_{n}\right), S C_{n} D$ being the $S C_{n} D_{*}$ here. By Theorem 3 and Theorem 5 , it is easy to check that $S C_{n} P$ is in fact a derivate system as defined in [2], and hence one obtains a $S C_{n} P$-integral and its usual properties follow from the general theory in [2]. For completeness, we give the direct definition of the $S C_{n} P$-integral here, $n=1,2,3, \ldots$.
Suppose that f is a function defined and finite almost everywhere in $[a, b]$,
and B a subset of $[a, b]$ of measure $b-a$, and $a, b \in B$. A $C_{n-1} P$-integrable function M will be called an $S C_{n} P$-major function of f on $[a, b]$ with base B if
(a) M is $S C_{n}$-continuous in $] a, b\left[\right.$ and C_{n}-continuous in B;
(b) $S C_{n} D_{*} M(x) \geqq f(x)$ almost everywhere in $] a, b[$;
(c) $S C_{n} D_{*} M(x)>-\infty$ except perhaps in a scattered set;
(d) $M(a)=0$.

An $S C_{n} P$-minor function is similarly defined. If f has $S C_{n} P$-major and -minor functions and if

$$
\inf M(b)=\sup m(b) \neq \pm \infty
$$

then f is said to be $S C_{n} P$-integrable on $[a, b]$ with base B, and the common value, denoted by

$$
\left(S C_{n} P\right)-\int_{[a, b]}^{B} f(t) d t
$$

is called the $S C_{n} P$-integral of f on $[a, b]$ with base B. As remarked in [2], we can of ten without ambiguity leave the base unspecified.

Except for those properties obtainable from the general theory in [2], it is easy to see that the $S C_{n} P$-integral is more general than the $C_{n} P$-integral [4] since $S C_{n} D_{*} M(x) \geqq C_{n} D_{*} M(x)$. Furthermore, we have the consistency theorem for the scale:

Theorem 6. If f is $S C_{n} P$-integrable on $[a, b]$ with base B, then f is $S C_{n+1} P$ integrable on $[a, b]$ with base B and the two integrals are equal.

Proof. This is immediate from Theorem 4 and the general comparison theorem in [2].

Remarks. (i) Note that the $S C_{1} P$-integral is equivalent to Burkill's $S C P$ integral [5] as we have remarked in [2].
(ii) Burkill in [5] listed an integration by parts formula for his SCP-integral and stated that the proof followed from that given for the $C P$-integral in [3]. This is not true since the proof in [3] used essentially the following inequality

$$
C D_{*}(M G)(x) \geqq M(x) G^{\prime}(x)+\left[C D_{*} M(x)\right] G(x),
$$

but we do not have a similar inequality for the $S C_{1} D$-derivate. For example, let

$$
\begin{array}{rlrl}
M(x) & =x^{-1 / 2}, & & \text { for } x>0, \\
& =(-x)^{-1 / 2}, & \text { for } x<0, \\
& =k, & & \text { for } x=0, \text { where } k \text { is any } \\
& & \text { constant },
\end{array}
$$

and let $G(x)=-x$. Then

$$
S C_{1} D(M G)(0)=-\infty \not \equiv-k=M(0) G^{\prime}(0)+\left[S C_{1} D M(0)\right] G(0) .
$$

Thus, whether the formula for $S C P$-integral in [5] is true remains an open question.

If such an integration by parts formula exists for the $S C_{1} P$-integral, then one can use this to define the $S C_{2} P$-integral instead of using $C_{1} P$-integral. Then a more general scale would be obtained by induction.
5. The $S C_{n} P$-integral and the P^{n+1}-integral. As we mentioned in the introduction, in this section we are going to investigate the relation of the P^{n+1}-integral and the $S C_{n} P$-integral.

By P^{n+1}-integral, we mean the modified symmetric one as in [10]. For convenience, we give the definition of its major functions here.

Let f be a function defined almost everywhere in $[a, b]$, and let $a_{i}, i=1,2,3$, $\ldots, n+1$, be fixed points such that $a=a_{1}<a_{2}<\ldots<a_{n+1}=b$. A function Q is called a J_{n+1}-major function of f over $\left(a_{i}\right)$ if
(a) Q satisfies the condition $\left(C_{n+1}\right)$ in $[a, b]$ (cf. Section 2);
(b) $_D_{n+1} Q(x) \geqq f(x)$ almost everywhere in $[a, b]$;
(c) $\left.D_{n+1} Q(x)>-\infty, x \in\right] a, b[\sim S, S$ a scattered set;
(d) $Q\left(a_{i}\right)=0$ for $i=1,2,3, \ldots, n+1$.

Theorem 7. Let f be $S C_{n} P$-integrable on $[a, b]$ with base B. Then f is P^{n+1} integrable over $\left(a_{i} ; c\right)$, where $a=a_{1}<a_{2}<\ldots<a_{n}<a_{n+1}=b$, and $c \in[a, b]$. Moreover, letting

$$
\begin{aligned}
F_{n}(x) & =\left(S C_{n} P\right)-\int_{a}^{x} f(t) d t, \quad x \in B, \\
F_{k}(x) & =\left(C_{k} P\right)-\int_{a}^{x} F_{k+1}(t) d t, \quad x \in[a, b], \quad 0 \leqq k \leqq n-1, \\
F & =F_{0},
\end{aligned}
$$

one has for $a_{s} \leqq c<a_{s+1}$,

$$
\begin{equation*}
(-1)^{s} \int_{\left(a_{i}\right)}^{c} f(t) d_{n+1} t=F(c)-\sum_{i=1}^{n+1} \lambda\left(c ; a_{i}\right) F\left(a_{i}\right), \tag{7}
\end{equation*}
$$

where $\lambda\left(c ; a_{i}\right)=\prod_{j \neq i}\left(c-a_{j}\right) /\left(a_{i}-a_{j}\right)$ is a polynomial in cof degree at most n.
Proof. Let M be an $S C_{n} P$-major function and let

$$
\begin{aligned}
G(x)=\left(C_{0} P\right)-\int_{a}^{x}\left(C_{1} P\right)-\int_{a}^{t_{1}}\left(C_{2} P\right)- & \int_{a}^{t_{2}} \ldots\left(C_{n-1} P\right) \\
& -\int_{a}^{t_{n-1}} M\left(t_{n}\right) d t_{n} d t_{n-1} \ldots d t_{2} d t_{1} .
\end{aligned}
$$

Then by Lemma 4 and Lemma 5, G satisfies conditions $(a),(b),(c)$ in the above definition. Hence setting

$$
Q(x)=G(x)-\sum_{i=1}^{n+1} \lambda\left(x ; a_{i}\right) G\left(a_{i}\right),
$$

we see that Q is a J_{n+1}-major function of f over $\left(a_{i}\right)$. Similarly, an $S C_{n} P$-minor
function m yields a J_{n+1}-minor function

$$
q(x)=g(x)-\sum_{i=1}^{n+1} \lambda\left(x ; a_{i}\right) g\left(a_{i}\right)
$$

where g is defined similar to G.
For $\epsilon>0$, if we choose M, m such that

$$
M(b)-m(b)<\epsilon /\left[1+\sum_{i=1}^{n+1} \lambda\left(c ; a_{i}\right)\right](b-a)^{n}
$$

then the corresponding Q, q have

$$
|Q(c)-q(c)| \leqq|G(c)-g(c)|+\sum\left|\lambda\left(c ; a_{i}\right)\right|\left|G\left(a_{i}\right)-g\left(a_{i}\right)\right| \leqq \epsilon .
$$

Hence, the P^{n+1}-integrability of f follows.
The equality (7) follows as above by using the property that F_{n} can be uniformly approximated in B by a sequence of $S C_{n}$-major or minor functions.

Corollary 1. $F_{(n)}(x)$ exists for each x in B and $D_{n-1} F(x)$ exists for each $x \in] a, b\left[\right.$. Furthermore, $F_{(n)}=F_{n}$ on B, and $D_{k} F=F_{k}$ on $] a, b[$ for $k=0,1,2$, $\ldots, n-1$, where F, F_{k} are those in Theorem 7.

Proof. As F_{n} can be proved to be C_{n}-continuous in B and $S C_{n}$-continuous in $] a, b[$ (see property (F) in [2]), the required results follow from Lemma 5.

Corollary 2. There exists a function which is P^{n+1}-integrable on $[a, b]$ but not $S C_{n}$-Pintegrable on $[a, b]$.

Proof. This is similar to that of Cross in [7] for $n=1$. In fact,

$$
\begin{array}{cc}
\text { if } n \text { is odd, let } F(x)=x \cos 1 / x, \text { for } x \neq 0, \\
& 0, \quad \text { for } x=0 \\
\text { if } n \text { is even, let } F(x)=x \sin 1 / x, \text { for } x \neq 0 \\
& 0, \quad \text { for } x=0
\end{array}
$$

In either case, let

$$
\begin{aligned}
f(x) & =F^{(n+1)}(x), & \text { for } x \neq 0 \\
& =0, & \text { for } x=0 .
\end{aligned}
$$

Then $D_{n+1} F(x)=f(x)$ for all x, including $x=0$, and as shown in [9], f is P^{n+1}-integrable over any interval containing 0 . However, f is not $S C_{n} P$-integrable over $[0, b]$ for any $b>0$. For otherwise, it would follow from Corollary 1 that $F_{(n)}(0)$ exists. But not even $F_{(1)}(0)$ exists.

Corollary 3. Let f be periodic of period $2 b, b>0$. For $n \geqq 1$, let $m=$ $[n-1 / 2]$. Then if f is $S C_{n} P$-integrable on $[-2(m+1) b, 2(n-m) b]$ with a base B, one has

$$
\frac{1}{(2 b)^{n}}\binom{n+1}{m+1} \int_{(a i)}^{0} f(t) d_{n+1} t=\left(S C_{n} P\right)-\int_{[-b, b]} f(t) d t
$$

where $\left(a_{i}\right)=(-2(m+1) b,-2 m b,-2(m-1) b, \ldots,-2 b, 2 b, 4 b, \ldots$, $2(n-m) b)$.

The proof, exactly similar to that of Cross in [6] for the unsymmetric case, is omitted.

Remarks. (i) Although P^{n+1}-integral is more general than the $S C_{n} P$-integral, the $S C_{n} P$-integral has the nice "additive" property that a function $S C_{n} P$ integral over two abutting intervals is $S C_{n} P$-integrable over their union, (see property (C) in [2]), while P^{n+1}-integral has no such property. For example, let F be as defined in the proof of Corollary 2 . Consider the function f defined by

$$
\begin{array}{rlrl}
f(x) & =F^{(n+1)}(x), & \text { for } x \in] 0, i / \pi], \\
& =0, & & \text { for } x \in[-i / \pi, 0],
\end{array}
$$

where $i=2$ if n is odd and 1 if n is even. Then f is P^{n+1}-integrable over each of the intervals $[-i / \pi, 0]$ and $[0, i / \pi]$, but not over $[-i / \pi, i / \pi]$. Note that this has been pointed out by Skvorcov in [14] for the case $n=1$, i.e. for the P^{2}-integral.
(ii) As mentioned in $[\mathbf{2}]$, the $S C_{1} P$-integral solves the coefficient problem of convergent trigonometric series. Whether the $S C_{n} P$-integral (for $n \geqq 2$) solves the coefficient problem of ($C, n-1$) summable trigonometric series, considered by James in [10], is under consideration.

References

1. P. S. Bullen, A criterion for n-convexity, Pacific J. Math. 36 (1971), 81-98.
2. P. S. Bullen and C. M. Lee, On the integrals of Perron type (to appear in Trans. Amer. Math. Soc.).
3. J. C. Burkill, The Cesáro-Perron integral, Proc. London Math. Soc. 34 (1932), 314-322.
4. -_The Cesáro-Perron scale of integration, Proc. London Math. Soc. 39 (1935), 541-552.
5. -Integrals and trigonometric series, Proc. London Math. Soc. 1 (1951), 46-57.
6. G. E. Cross, The relation between two definite integrals, Proc. Amer. Math. Soc. 11 (1960), 578-579.
7. The relation between two symmetric integrals, Proc. Amer. Math. Soc. 14 (1963), 185-190.
8. E. W. Hobson, The theory of functions of a real variable, 3rd ed. (Cambridge Univ. Press, Cambridge, 1927).
9. R. D. James, Generalized nth primitives, Trans Amer. Math. Soc. 76 (1954), 149-176.
10. - Summable trigonometric series, Pacific J. Math. 6 (1956), 99-110.
11. K. Kuratowski, Topology (Academic Press, New York, 1966).
12. J. Marcinkiewicz and A. Zygmund, On the differentiability of functions and summability of trigonometric series, Fund. Math. 27 (1937), 38-69.
13. W. L. C. Sargent, On the generalized derivatives and Cesáro-Denjoy integrals, Proc. London Math. Soc. 52 (1951), 365-376.
14. V. A. Skvorcov, Concerning definitions of P^{2} - and $S C P$-integrals, Vestnik Moskov. Univ. Ser. I Mat. Meh. 21 (1966), 12-19.

University of British Columbia, Vancouver, British Columbia;
University of Wisconsin-Milwaukee, Milwaukee, Wisconsin

[^0]: Received July 24, 1972 and in revised form, August 3, 1972.

