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On lower estimates for linear

forms involving certain

transcendental numbers

Keijo Vaananen

Let

cUs) = £ 2K/(A+1) ... (X+n) ,
A n=0

where X is rational and not an integer. The author investigates

lower estimates for example for

where the a. are distinct rational numbers not 0 , and where
Is

xn , .. -, xv are integers and x\ = maxfl, l^vl) -

1 . Introduction

In 1965 Baker [ J ] obtained lower bounds for the expressions

A = 1 * ^ . . . xk[xlFl + . . . + xkPk)\ , B = I J ^ - J ^ I . . . \yFk-yk\

where F. = e , a- (i = 1, 2 k) are distinct rational numbers,

and in S all a. t 0 ; x. (i = 1, 2, ..., ?c) are non-zero integers,

and w. (i = 1, 2, , k) , y > 0 are integers. He proved that there

exist positive constants e 0, e depending only on k , a., a., ..., OL

such that the inequalities
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162 K e i j o V a a n a n e n

1-e (loglogx)" -1-c (loglogy)

A < x , B < y

where x = max{|x.|, |x2|, ..., l̂ ij } > are respectively satisfied only by

a finite number of sets of non-zero integers x, , x2, ..., x, , and only by

a finite number of positive integers y . In a recent paper Mahler [4]

improved these estimates by obtaining bounds containing no unknown

constants.

In order to prove the above estimates Baker developed a new method in

which he used certain ideas of Siegel [6], [7]. The aim of the present

paper is to use this same method to obtain estimates analogous to those of

Baker, but here F. (i = 1, 2, ..., k) are certain values of the function

A «=o
with ra t ional X # 0, ±1, ±2, . . . .

We define

(2) / \ ( s ) = ^ ( c t ^ ) U = 1, 2, . . . . k) ,

where a. are d i s t inc t non-zero ra t ional numbers. The following theorems

wi l l be proved.

THEOREM 1. Let X $ 0, ±1, ±2, he a rational nwriber, and let

the nvartoevs / ( l ) , / 2 ( l ) , . . . , / ^ ( l ) be defined by {2), where

a. , a_, , oiii are distinct non-zero rational numbers. There then exists

a constant c = c (k, X, a ou.) > 0 such that for any integer y

the inequality

-c ( log logx)"*
(3) | * ^ . . . ^ ( x ^ d ) + . . . + xkfk(l) + y)\ < x °

where x. (i = 1, 2, . . . , k) cere integers,, x'. = maxfl, |x. |} and

x = m a x { x | , x ' , , x£} , can he satisfied only if x < c ,

log log e = 2 [cQ/20k)k .
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Es t ima tes f o r l i n e a r forms 163

THEOREM 2. Let X, a±, a2> . . . , ou satisfy the hypotheses of

Theorem 1. Then there exist constants a. = o.{k, X, OL ou) > 0 and

c[a ) > 0 suoh that for any integers y^, y^, . . . , y. the inequality

-l-o (loglogy)"*

W lyf^-y^ • • • \yfk(D-yk\ <y

can be satisfied only if the positive integer y is less than c .

Fel'dman [3] considered the function values <j>, (a) , proving that if
i

a t 0 is a rational number and X. , X , — , X, are rational numbers

other than negative integers satisfying X . - X . t Z if i ? j , then

there exists a constant c_ = e.(a, X., — , X.) > 0 such that, for all

2 2 2
integers x±, x&, ..., xfc , y , xx + x^ + ... + xfe > 0 ,

-±-on uogi.ogu+^; * ~
(a) + ... + ay)), (a) + y

-1-e (loglogU+2))"
> X °

where X = x'±x'2 ... x^ , xi = max{l, 1^1

It should be noted that the arithmetic nature of the function values

<f>, (a.) has been considered in many papers. SidlovskiT [5] hasKi 3

established the algebraic independence over Q of the mn numbers

(|>, (a.) , if X , X , , X are rational numbers such that X. ,

X. - X. (i, j = 1, 2, ..., n; i f j) are not integers, and

a , a?, ..., a are distinct non-zero algebraic numbers.

In the present paper we follow Baker's method. First we shall

establish certain lemmas analogous to those of [/], and we shall then prove

the above theorems using deductions analogous to the corresponding proofs

of [?].

2. Lemmas

We begin with a lemma which can be proved easily by means of a box

argument (see [7], p. 36).
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164 K e i j o Vaananen

LEMMA 1. Let m, n be positive integers with n > m . Suppose that

a., ( i = 1, 2, . . . , m; j = 1, 2, . . . , n) are integers with absolute

values at most A . Then there are integers x , x^, , x , not all

zero, with absolute values at most (nA)m ^n~m + 2 , such that

n
£ a..x. =0 (i = 1, 2, . . . , m) .

3=1 V° 3

In the fol lowing l e t c_ , <?_, ••• denote p o s i t i v e cons tan t s which

depend only on k, X, a, , . . . , o u . F i r s t we should aim a t a r e s u l t

analogous t o Baker ' s [ 7 ] , Lemma 2 .

LEMMA 2. Let r , , r , ..., r, be positive integers and let

r = maxfr.} > 2 , rn = r . Then there are polynomials P.(z)

{i = 0, 1, . . . , k) , not all identically zero, with the following

properties:

1°. for each i , P-(s) has degree at most r , a zero at

3 = 0 of order at least r - r. , and integer coefficients

with absolute values at most

2°. the approximation form

k °°
(5) i?U) = PAB) + £ PAz)f.{z) = £ P j /

0 i«l * ^ fc=0 "

vanishes at z = 0 <?/ order at least

(6) n = r + r x + . . . + *>fe + k - [r(log r ) " ^

and, for each h ,

(7) \Ph\ <

Proof. Put L = max{ | a . | } . F u r t h e r , l e t 1 denote the l e a s t common

denominator of t h e numbers a , a , . . . , OL and l e t L, (h = 0, 1 , . . . )
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denote the l eas t common denominator of the numbers

We put p. . = 0 for all integral values i, 3 other than the

n = r + r + ... + r. + fe + 1 pairs given by 0 5 i s fe ,

r - J?£ 5 j £ r . For these values £, j we define p. . as integers, not

all zero, satisfying the following system of m equations;

k h
(8) v p o h

 +,?. ,?0 y v \ (x+i)(x:2)'::.(x^-t7-)PiJ- = °
{h = 0, 1, ..., m-1) .

Lemma 1 implies that such integers exist. Further, since

Lh{h-j)l

(see [7 ] , pp. 56-58), we can take p . . with absolute values at most

M = \n[2o, II) \ + 2 .
I ** ;

We may now prove that the polynomials

PA*) = i"! t p-.(j!)~V (i = 0, 1, ..., k)
3=0

satisfy the conditions of Lemma 2.

First consider 1°. We have m < n < 2(k+l)r and

n - m > r(log r) . Thus

(9) M < {2(fe+l)r(2 c^)
2 ( k + l ) r} 2 ( k + l ) ( l 0 s r ) %

 + 2 < c^
10^ .

By noting that p. . = 0 for 3 < r - r. we obtain the upper bound

for the absolute values of the coefficients of P.(a) . By (9) th is gives

part 1° of our lemma.
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To prove 2° we note that

where, for each h , L-JL 0", denotes the left-hand side of (8) . We thus

have (5) with p^ = rl(h\)~Xa satisfying (6) . For h 2 m we have, by

( 9 ) ,

This implies (7)> a n ^ thus Lemma 2 i s proved.

The function $Az) sa t i s f ies the different ia l equation

do) » .- „•„ z

Thus the functions fAz) = 1 , /-(s) = <i>i (a.z) (i = 1, 2, ..., fe)

satisfy the following homogeneous system of differential equations,

i

(ID

' _ A + fa —1 r -
Z- 2 0 1 tf Z\ If

tet 2/_, y. , .. -, y« be an arbitrary solution of (11) and let
U X K

Pn» Pn , ..., P-, be the polynomials given in Lemma 2. We denote
U 1 K

J k

0 dz3 ° i=0

where, by (11),

7 J
( i = 1, 2, . . . , fe; j = 1, 2, . . . )

LEMMA 3. Suppose that Q.Az) i O ( i = 1, 2, . . . , h; 1 £ h 5 k) ,
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and Q, n = = Qhn = 0 . Then the determinant

A (a) = detf3
Je .] £ 0 .

1 I ^ J i j = O l f c

Proof. We follow Siegel's deduction (see [7], p. 1*3). If

A (a) = 0 , then there exist u + 1 - h + 1 polynomials A~, ..., A

satisfying

4 y ^ 0 .

This implies that

v s + V i + •••+ V P = ° ; SJ = z'Ai u = °-x- •••-y)

and, "by the definition of R*. ,
3

(13) S/*(y) + ... +8^*' + V S = ° •

Thus each of the functions

where

yi,0 = ^ i ^ 5 ' yi,l = 6US~ e (i = 0, 1, ..-, k; I = 1, 2, ..., h)

(here 6 ^ = 1 if i = Z- , and 6 ^ = 0 if i * I ) satisfy the

homogeneous linear differential equation (13) of order u £ ft . This means

that we have constants Cn, ••., C, , not all zero, such that

E ciRo i =

We now immediately obtain
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h a^z
Here the left-hand side of this equation and Y, C7S7 e a r e entire

1=1 L i 0

functions, and since A j: Z , we get

The functions / (2 ) , . . . , fj,(z) a r e algebraically independent over C(z)

(see [5 ] ) , and so C = 0 . Further a. # a . i f £ ± 3 , and thus the

a.z

functions e {i = 1, 2, . .., h) are linearly independent over C{a) .

This means that C-fi-ir, = ° (I = 1, 2, . .. , h) . Our assumption $7- | 0

(Z. = 1, 2, ..., h) implies Cy = 0 for all these Z- . This contradiction

means that A (3) | 0 , thus proving our lemma.

We now denote

(lfc)

obtaining

3 3z3 i=0
i d 1

 v „ / _ ^ ,_x u = Q j l f ___) s

( 1 5 ) * . ( a ) = I P . . ( a ) / . ( a ) («/ = 0 , 1 , . . . ) ,
3 i=0 V3 ^

where the polynomials P. . a re given by

(16) P^ . (a) = z3QiXz) (i = 0 , 1 , . . . , & ; j = 0 , 1 , . . . ) .

LEMMA 4. Let the hypotheses of Lemma 2 be true, and let P-(s)
X-

(•£ = 0, 1, . . . , k) be the polynomials given there. Let

(IT) e = [r(log *•)"*] + k(k-l)/2 ,

and suppose that r.>2s for all i . Let the polynomials P. . ( s )
•z - i-3

{i = 0, 1, . . . , k; o'= 0, 1, ) be defined inductively by the equations

(12) and (16). Then the determinant
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and cannot have a zero at z = a + 0 of order greater than s .

Proof. First we prove that P.{z) $ 0 (i = 1, 2, ..., k) . The

argument here is similar to that of Baker ([J], pp. 619-620). We suppose

that exactly h of the polynomials P.{z) (i = 1, 2, ..., k) do not
1s

vanish identically. Without loss of generality we may assume that these

(clearly 7z > 1 ). Letare P±(z), ...,

From Lemma 3 it follows that A (3) ̂  0 . Thus A (2) is a polynomial of

degree at most

d = (71+1)2* + h(h+l)/2 .

On the other hand

P1Q(z)

V2)

and thus A,(2) has a zero at s = 0 of order at leas t

k

T r.
h %

k - [r(log

Since r. > 2e , we obtain d < dQ if h < k . Hence h = k . Thus Lemma

3 implies that A(s) £ 0 <

The polynomial A(s) is of degree at most

k(k+l)/2 .

As before, we find immediately that A(s) has a zero at 3 = 0 of order

at least

= m
•£=1

k - [r(log

Thus <i - dp £ s , which proves our lemma.
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LEMMA 5. Let the hypotheses of Lemma h be valid. Then there are

•integers 0 ± </(o) < J ( l ) < . . . < J(k) S k + s such that

= detfP. T, .,(1)1 • • „ , i * 0

Proof. Let J{j) {j = 0, 1, ..., k) be any integers satisfying

0 £ c7-(0) < J(l) < ... < J{k) . We denote

D{z; J(O), J(l) J(k)) =

0,j(0) ... p

... p.

0,J(k)

i,J{k)

Fk,J(0) Pk,J(l) ••• Pk,J(k)

From equations (12) and (l6) i t follows that

k

Let 0.. denote the complement of D corresponding to the element

P. T/ .s . We then obtainvJ\3)

zD'[z; J(0), JU), ..., J{k))

k (

= I \j{j)D{z; J(0), J(X), ...,
3=0 I

D[z; J(O), ..., J-(j-l), J(j)+1, J(j+D, .-.,J(k)) - \ Y. P. w M
^-•^ t-,t>\3)

= 0(3;

3=0
D[Z; J{0), ..., J(j-l), J(j)+l, J(j+l), ..., Jik))

Thus, if our lemma were not true, then for all j{k) - k + s - T ,

( ) , ..., J(k)) = 0 .
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On the other hand, by Lemma h, there exists x - s such that

D' (1; 0, 1, ..., k) * 0 .

Hence k > k + a - x , which i s impossible. Thus there exist the suffixes

J(J) ( j = 0, 1, . . . , k) such that Lemma 5 holds.

Next we prove our final lemma, which i s for use in the proof of

Theorem 1.

LEMMA 6. Let the hypothesis of Lemma h be valid. Then we can find
2

(fe+1) integers q.. (i, j = 0, 1, , k) satisfying the following

properties:

1°. detfa^O * 0 ;

2°. for each pair i, j we have

3°. the inequality

(19)

/or each j = 0, 1, ..., fe .

Proof. Let I be the least common denominator of the numbers

X, a1, ... , a, , and put L = max{l, | X | , | a± j , ... , | ot, | } . We shall

prove that the integers

where J(j) (j = 0, 1, ..., ?c) are given in Lemma 55 have the required

properties.

We see immediately by Lemma 5 that 1° holds.

To prove 2° we note, by Lemma 2, (12) and (l6), that the coefficients

P. , .> have absolute values of at most
? M 7 )

= m a x { 2 '
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We see easily that this implies (l8).

From our definitions of q.. and R. i t follows that
V 3

k

i=o V3
7k+8\

Further, by (lk) ,

(ill

= 1 hi

and here p, = rl(hl) a. , where a, is defined in the proof of Lemma 2.p, = r!(?z!) a,

There i t is also proved that

Using these facts and the inequality J{j) S k + s , we obtain the

following relations

k

i=0 ^ V
-,k+s

i=l

This completes the proof of our lemma.

3. Proof of Theorem 1

We define positive constants a, b , and a by setting
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2
(20) a = [kke^c ) l 6 k , b = 20k log a , log log o = 2(log a)2* ,

where c,- and e are'constants appearing in Lemma 6. Here we assume, as

we may without loss of generality, that fig and e_ are greater than 1 .

To prove Theorem 1 we suppose that (3) , where a = b , i s valid for some

x. , x , . . . , x,, y , and prove that th i s implies

Let us assume, against t h i s , that x > a .

We define the function / of the positive integer v by putting

(21) f(

Since (see [4 ] , p . 73)

we have, for r 2 2 ,

From this it follows that there exists a positive integer r satisfying

(23) log r > (log a ) 2 , f{r~l) < x < /(r) .

This yields

(21*) (r-D! < a ^ 1 0 ^ < r! .

Further we define the integers T, r , ..., r, by the inequalities
-L c. K.

(25) (r.-l)! S a^^ 0^) x'. < r - (i = 1, 2, ..., fc) .

Clearly, we have r = max{r. , r?» •••, r, } . We may now proceed by

proving that these integers r. satisfy all the other hypotheses of Lemma

h. By (20) and (23),

r(log r) > (log r)2 > log a > l6fc2 ,
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and thus 2s < 3r(log r) . By using this inequality we obtain, if

v. £ 2s ,

log r.! S r. log r . £ 2s log 2s
"Is % %

3r(log r)~* log(3r(log r)~*) < 3r(log

This implies

which i s impossible by (25)- Thus we have r. > 2s for a l l
Is

i = l, 2, ..., k .

From (3) and (25) we obtain, by denoting

L = y + x / ^ l ) + *2.f2(l) + . . . + Vfc(l) •

(26) Kl°&°^*

s a TT(r,!1 "̂ -fc(loglogx) ̂  (

We have

Using (20) we obtain

a — x < r\ < r < e

log r > (log log x)/2 > (log a) >.l6k .

By (21) and (22), this gives

log f(r-l) > (r-l){log(r-l)-(log(r-D)^ log a-l}
3

> (r-l){log(r-l)-(log r)" - l} > (r log r)/2 .

How it follows from (23) that

(r log r)/2 < log x < r log r .

Hence
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l o g x ( l o g l o g x

> exp[br log r) ) = exp(5fcr(log r) log a)

and this with (26) gives an inequality

(27)

Since the hypotheses of Lemma 6 hold, we can now use linearly

independent forms

k
£• = I liifA1) (J = 0, 1, .... k)

obtained by this lemma. We can select k forms, say L,, L , ..., L,

that together with L are linearly independent. We have

" • qok

i qkl ••• qkk Xk qkl ••• qkk

and since the left-hand side of this equation is a non-zero integer, we

obtain, by (18),

0=1
l-|TT

p(logr)

nr

From the inequalities (19), (25), and (27) it follows that
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"Jrv1
From the definition of a i t follows that this is impossible. This

contradiction proves our Theorem 1.

4. Proof of Theorem 2

Let a, b , and a be the numbers given in the preceeding section.

Let a = 2kb , 3 = hka , and, further, let y be given by the equation

log log y = (2)3) . We shall prove that if a = a , then (h) has no

solution y > y . Assume, against th is , that there exist integers y > y ,

•, Vk such thatJ/1 . y2

)^1l . . . \yfk(D-yk\

We shall prove that this leads to a contradiction.

For this purpose we denote

(28) w = ylyf^D-y^ . . . \yfk(x)-yk\

(29) tt = w^-^lyf^D-y^-
1 (i = 1, 2 k)

Without loss of generality we may assume that

Since

*1*2 *'*

we find the smallest integer X 2 fe for which

Consider now the following system of K + 1 linear inequalities

(30)

https://doi.org/10.1017/S0004972700025016 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700025016


Es t ima tes f o r l i n e a r forms 177

for xn , x , ..., xv, X . By Minkoswki's Theorem on linear forms (see [2 ] ,
1 2 A

p. 151) there exist integers x. , x_, ..., xv, X , not all zero, satisfying
-L d A

these inequalities. From the last inequality we get

(31) x1y1 + ... + XjgK + Xy = 0 .

Thus we have non-zero integers in the set {x,, x_, ..., xv\ . Let these

be x., > , x.,,. , , x.,7> . Clearly, 1 5 I 5 K . Further, from (30)

it follows that

( 3 2 ) 1^(1)^(2) ••• Xi{l)\ ~ *1*2 •••** = » •

By (3D,

0 = x ^ + . . . + x ^ + ATy = ( x ^ d ) + . . . + xKfK(l) + X]y

l
which implies

K
( x ^ d ) + . . . + xKfK(l) + X)y = J xi (2/^(1)-^)

i=l

By (29) and (30),

| x i | < ^ , lyf^D-y^ = w 1 7 * * ^ 1 ( i = 1 , 2 , • • • ,

Hence

(33) I V i ( l ) + ••• + ^ V 1

We define a^+1 =
 = xi. = ° ' an<^ denote as before

x = max{x£} , xi = max{l, |a;̂  | } (i = 1, 2, ..., k)

Then we obtain, by (32),

(3U) x S x'xx'2 ... x^ = k i ( l ) x i ( 2 ) ... x i U ) | < j/ .

By (28), (33), (3U), and our original hypothesis we obtain
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(35) \x[x'z ... x ^ x ^ d ) + ... + xkfk(l) + X)\

. < kw1/k < ty

We now define rational integers u. by putting v. = 2[e]x.

(v= 1, 2, ..., fe) . Again let

v = max{i>'.} , u'. = max{l, \v. \} (i = 1, 2, ..., k) .

We then have, by (35),

(36) \v[v'2 ... ̂ ( ^ ( 1 ) + ... + vkfk(l) + V)\

where V = 2[e]X .

2
Since y > y , where log logy= (bfi) , we obtain

-%
y- og ogy) _ exp^_2,(log iOg y)~* iOg y) < exp(-fc(log log i/)*)

< exp(-fc2B) < exp(-20fc&)

The use of (31*) gives

a < v < 2ax S 2ay < 8y .

This implies

By these estimates and (36) we obtain the following inequality

Since v > c , this is impossible by the previous section. Thus we have

established the truth of Theorem 2.
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