On lower estimates for linear forms involving certain transcendental numbers

Keijo Väänänen

Let

$$
\phi_{\lambda}(z)=\sum_{n=0}^{\infty} z^{n} /(\lambda+1) \ldots(\lambda+n)
$$

where λ is rational and not an integer. The author investigates lower estimates for example for

$$
\left|x_{1}^{\prime} x_{2}^{\prime} \ldots x_{k}^{\prime}\left(x_{1} \phi_{\lambda}\left(\alpha_{1}\right)+\ldots+x_{k} \phi_{\lambda}\left(\alpha_{k}\right)\right)\right|
$$

where the α_{i} are distinct rational numbers not 0 , and where x_{1}, \ldots, x_{k} are integers and $x_{i}^{\prime}=\max \left(1,\left|x_{i}\right|\right)$.

1. Introduction

In 1965 Baker [1] obtained lower bounds for the expressions $A=\left|x_{1} x_{2} \ldots x_{k}\left(x_{1} F_{1}+\ldots+x_{k} F_{k}\right)\right|, \quad B=\left|y F_{1}-y_{1}\right| \ldots\left|y F_{k}-y_{k}\right|$, where $F_{i}=e^{\alpha_{i}}, \alpha_{i}(i=1,2, \ldots, k)$ are distinct rational numbers, and in B all $\alpha_{i} \neq 0 ; x_{i}(i=1,2, \ldots, k)$ are non-zero integers, and $y_{i}(i=1,2, \ldots, k), y>0$ are integers. He proved that there exist positive constants c_{0}, c_{1} depending only on $k, \alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}$ such that the inequalities

Received 11 November 1975. Cormunicated by Kurt Mahler.

$$
A<x^{1-c_{0}(\log \log x)^{-\frac{3}{2}}}, B<y^{-1-c_{1}(\log \log y)^{-\frac{3}{2}}},
$$

where $x=\max \left\{\left|x_{1}\right|,\left|x_{2}\right|, \ldots,\left|x_{k}\right|\right\}$, are respectively satisfied only by a finite number of sets of non-zero integers $x_{1}, x_{2}, \ldots, x_{k}$, and only by a finite number of positive integers y. In a recent paper Mahler [4] improved these estimates by obtaining bounds containing no unknown constants.

In order to prove the above estimates Baker developed a new method in which he used certain ideas of Siegel [6], [7]. The aim of the present paper is to use this same method to obtain estimates analogous to those of Baker, but here $F_{i}(i=1,2, \ldots, k)$ are certain values of the function

$$
\begin{equation*}
\phi_{\lambda}(z)=\sum_{n=0}^{\infty} z^{n} /(\lambda+1) \ldots(\lambda+n) \tag{1}
\end{equation*}
$$

with rational $\lambda \neq 0, \pm 1, \pm 2, \ldots$.
We define

$$
\begin{equation*}
f_{i}(z)=\phi_{\lambda}\left(\alpha_{i} z\right) \quad(i=1,2, \ldots, k), \tag{2}
\end{equation*}
$$

where α_{i} are distinct non-zero rational numbers. The following theorems will be proved.

THEOREM 1. Let $\lambda \neq 0, \pm 1, \pm 2, \ldots$ be a rational number, and let the numbers $f_{1}(1), f_{2}(1), \ldots, f_{k}(1)$ be defined by (2), where $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}$ are distinct non-zero rational numbers. There then exists a constant $c_{0}=c_{0}\left(k, \lambda, \alpha_{1}, \ldots, \alpha_{k}\right)>0$ such that for any integer y the inequality
(3) $\left|x_{1}^{\prime} x_{2}^{\prime} \ldots x_{k}^{\prime}\left(x_{1} f_{1}(1)+\ldots+x_{k} f_{k}(1)+y\right)\right|<x^{-c_{0}(\log \log x)^{-\frac{1}{2}}}$, where $x_{i}(i=1,2, \ldots, k)$ are integers, $x_{i}^{1}=\max \left\{1,\left|x_{i}\right|\right\}$ and $x=\max \left\{x_{1}^{\prime}, x_{2}^{\prime}, \ldots, x_{k}^{\prime}\right\}$, can be satisfied only if $x<c$, $\log \log c=2\left(c_{0} / 20 k\right)^{4}$.

THEOREM 2. Let $\lambda, \alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}$ satisfy the hypotheses of Theorem 1. Then there exist constant $c_{1}=c_{1}\left(k, \lambda, \alpha_{1}, \ldots, \alpha_{k}\right)>0$ and $\bar{c}\left(c_{1}\right)>0$ such that for any integers $y_{1}, y_{2}, \ldots, y_{k}$ the inequality

$$
\begin{equation*}
\left|y f_{1}(1)-y_{1}\right| \cdots\left|y f_{k}(1)-y_{k}\right|<y^{-1-c_{1}(\log \log y)^{-\frac{1}{2}}} \tag{4}
\end{equation*}
$$

can be satisfied only if the positive integer y is less than \bar{c}.
Fel'dman [3] considered the function values $\phi_{\lambda_{i}}(\alpha)$, proving that if $\alpha \neq 0$ is a rational number and $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}$ are rational numbers other than negative integers satisfying $\lambda_{i}-\lambda_{j} \notin Z$ if $i \neq j$, then there exists a constant $c_{0}=c_{0}\left(\alpha, \lambda_{1}, \ldots, \lambda_{k}\right)>0$ such that, for all integers $x_{1}, x_{2}, \ldots, x_{k}, y, x_{1}^{2}+x_{2}^{2}+\ldots+x_{k}^{2}>0$,

$$
\left|x_{1} \phi_{\lambda_{1}}(\alpha)+\ldots+x_{k} \phi_{\lambda_{k}}(\alpha)+y\right|>X^{-1-c_{0}(\log \log (X+2))^{-1}}
$$

where $X=x_{1}^{\prime} x_{2}^{\prime} \ldots x_{k}^{\prime}, x_{i}^{\prime}=\max \left\{1,\left|x_{i}\right|\right\}$.
It should be noted that the arithmetic nature of the function values $\phi_{\lambda_{i}}\left(\alpha_{j}\right)$ has been considered in many papers. SidiovskiY [5] has established the algebraic independence over Q of the $m n$ numbers $\phi_{\lambda_{i}}\left(\alpha_{j}\right)$, if $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ are rational numbers such that λ_{i}, $\lambda_{i}-\lambda_{j}(i, j=1,2, \ldots, n ; i \neq j)$ are not integers, and $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m}$ are distinct non-zero algebraic numbers.

In the present paper we follow Baker's method. First we shall establish certain lemmas analogous to those of [1], and we shall then prove the above theorems using deductions analogous to the corresponding proofs of [1].

2. Lemmas

We begin with a lemma which can be proved easily by means of a box argument (see [1], p. 36).

LEMMA 1. Let m, n be positive integers with $n>m$. Suppose that $a_{i j}(i=1,2, \ldots, m ; j=1,2, \ldots, n)$ are integers with absolute values at most A. Then there are integers $x_{1}, x_{2}, \ldots, x_{n}$, not all zero, with absolute values at most $(n A)^{m /(n-m)}+2$, such that

$$
\sum_{j=1}^{n} a_{i j} x_{j}=0 \quad(i=1,2, \ldots, m)
$$

In the following let c_{2}, c_{3}, \ldots denote positive constants which depend only on $k, \lambda, \alpha_{1}, \ldots, \alpha_{k}$. First we should aim at a result analogous to Baker's [1], Lemma 2.

LEMMA 2. Let $r_{1}, r_{2}, \ldots, r_{k}$ be positive integers and let $r=\max \left\{r_{i}\right\}>2, r_{0}=r$. Then there are polynomials $P_{i}(z)$ ($i=0,1, \ldots, k$), not all identically zero, with the following properties:
1°. for each $i, P_{i}(z)$ has degree at most r, a zero at $z=0$ of order at least $r-r_{i}$, and integer coefficients with absolute values at most

$$
r_{i}!c_{2}^{r(\log r)^{\frac{3}{2}}} ;
$$

2°. the approximation form

$$
\begin{equation*}
R(z)=P_{0}(z)+\sum_{i=1}^{k} P_{i}(z) f_{i}(z)=\sum_{h=0}^{\infty} \rho_{h} z^{h} \tag{5}
\end{equation*}
$$

vanishes at $z=0$ of order at least

$$
\begin{equation*}
m=r+r_{1}+\ldots+r_{k}+k-\left[r(\log r)^{-\frac{3}{2}}\right], \tag{6}
\end{equation*}
$$

and, for each h,

$$
\begin{equation*}
\left|\rho_{h}\right|<r!(h!)^{-1} c_{3}^{h+r(\log r)^{\frac{3}{2}}} \tag{7}
\end{equation*}
$$

Proof. Put $L=\max \left\{\left|\alpha_{i}\right|\right\}$. Further, let Z denote the least common denominator of the numbers $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}$ and let $L_{h}(h=0,1, \ldots)$
denote the least common denominator of the numbers

$$
\frac{j!}{(\lambda+1)(\lambda+2) \ldots(\lambda+j)}(j=0,1, \ldots, h)
$$

We put $p_{i j}=0$ for all integral values i, j other than the $n=r+r_{1}+\ldots+r_{k}+k+1$ pairs given by $0 \leq i \leq k$, $r-r_{i} \leq j \leq r$. For these values i, j we define $p_{i j}$ as integers, not all zero, satisfying the following system of m equations;
(8) $L_{h} z^{h} p_{0 h}+\sum_{i=1}^{k} \sum_{j=0}^{h}\binom{h}{j} L_{h} z^{h} \alpha_{i}^{h-j} \frac{(h-j)!}{(\lambda+1)(\lambda+2) \ldots(\lambda+h-j)} p_{i j}=0$

$$
(h=0,1, \ldots, m-1)
$$

Lemma 1 implies that such integers exist. Further, since

$$
\max _{j=0,1, \ldots, h}\left\{L_{h},\left|\frac{L_{h}(h-j)!}{(\lambda+1)(\lambda+2) \ldots(\lambda+h-j)}\right|\right\}<c_{4}^{h} \quad(h=0,1, \ldots)
$$

(see [7], pp. 56-58), we can take $p_{i j}$ with absolute values at most

$$
M=\left\{n\left(2 c_{4} Z L\right)^{m}\right\}^{m /(n-m)}+2
$$

We may now prove that the polynomials

$$
P_{i}(z)=r!\sum_{j=0}^{r} p_{i, j}(j!)^{-1} z^{j} \quad(i=0,1, \ldots, k)
$$

satisfy the conditions of Lemma 2.
First consider 1°. We have $m<n<2(k+1) r$ and $n-m>r(\log r)^{-\frac{1}{2}} \cdot T$ Thus
(9) $\quad M<\left\{2(k+1) r\left(2 c_{4} Z L\right)^{2(k+1) r}\right\} 2(k+1)(\log r)^{\frac{3}{2}}+2<c_{5}^{r(\log r)^{\frac{1}{2}}}$. By noting that $p_{i j}=0$ for $j<r-r_{i}$ we obtain the upper bound

$$
\frac{r!M}{\left(r-r_{i}\right)!} \leq 2^{r} M\left(r_{i}!\right)
$$

for the absolute values of the coefficients of $P_{i}(z)$. By (9) this gives part 1° of our lemma.

To prove 2° we note that

$$
P_{0}(z)+\sum_{i=1}^{k} P_{i}(z) f_{i}(z)=r!\sum_{h=0}^{\infty} \sigma_{h}(h!)^{-1} z^{h}
$$

where, for each $h, L_{h} z^{h} \sigma_{h}$ denotes the left-hand side of (8). We thus have (5) with $\rho_{h}=r!(h!)^{-1} \sigma_{h}$ satisfying (6). For $h \geq m$ we have, by (9),

$$
\left.\left|\sigma_{h}\right|<\left(2 L c_{4}\right)^{h_{M(}} k+1\right)(h+1)<c_{3}^{h+r(\log r)^{\frac{3}{2}}}
$$

This implies (7), and thus Lemma 2 is proved.
The function $\phi_{\lambda}(z)$ satisfies the differential equation

$$
\begin{equation*}
y^{\prime}=\left(1-\frac{\lambda}{z}\right) y+\frac{\lambda}{z} \tag{10}
\end{equation*}
$$

Thus the functions $f_{0}(z) \equiv 1, f_{i}(z)=\phi_{\lambda}\left(\alpha_{i} z\right)(i=1,2, \ldots, k)$ satisfy the following homogeneous system of differential equations,

$$
\begin{align*}
& y_{0}^{\prime}=0 \tag{11}\\
& y_{i}^{\prime}=\frac{\lambda}{z} y_{0}+\left(\alpha_{i}-\frac{\lambda}{z}\right) y_{i} \quad(i=1,2, \ldots, k)
\end{align*}
$$

Let $y_{0}, y_{1}, \ldots, y_{k}$ be an arbitrary solution of (11) and let $P_{0}, P_{1}, \ldots, P_{k}$ be the polynomials given in Lemma 2. We denote

$$
\begin{gathered}
R_{0}^{*}=\sum_{i=0}^{k} Q_{i 0^{y}} y_{i}, Q_{i 0}=P_{i}(i=0,1, \ldots, k), \\
R_{j}^{*}=\frac{a^{j}}{d z^{j}} R_{0}^{*}=\sum_{i=0}^{k} Q_{i j^{\prime}} y_{i}(j=1,2, \ldots),
\end{gathered}
$$

where, by (11),
(12)

$$
\begin{aligned}
Q_{0 j}=Q_{0, j-1}^{\prime}+\frac{\lambda}{z} \sum_{i=1}^{k} Q_{i, j-1}, Q_{i, j} & =Q_{i, j-1}^{\prime}+\left(\alpha_{i}-\frac{\lambda}{z}\right) Q_{i, j-1} \\
& (i=1,2, \ldots, k ; j=1,2, \ldots) .
\end{aligned}
$$

LEMMA 3. Suppose that $Q_{i 0}(z) \neq 0 \quad(i=1,2, \ldots, h ; 1 \leq h \leq k)$,
and $Q_{h+1,0}=\cdots=Q_{k 0} \equiv 0$. Then the determinant

$$
\Delta_{1}(z)=\operatorname{det}\left(z^{j} Q_{i j}\right)_{i, j=0,1, \ldots, h} \neq 0 .
$$

Proof. We follow Siegel's deduction (see [7], p. 43). If $\Delta_{1}(z) \equiv 0$, then there exist $\mu+1 \leq h+1$ polynomials A_{0}, \ldots, A_{μ} satisfying

$$
\begin{gathered}
A_{0} Q_{i 0}+A_{1} z Q_{i 1}+\ldots+A_{\mu} z^{\mu} Q_{i \mu}=0 \quad(i=0,1, \ldots, h) ; \\
A_{\mu} \neq 0 .
\end{gathered}
$$

This implies that

$$
B_{0} R_{0}^{*}+B_{1} R_{1}^{*}+\ldots+B_{\mu} R_{\mu}^{*}=0 ; B_{j}=z^{j} A_{j} \quad(j=0,1, \ldots, \mu)
$$

and, by the definition of R_{j}^{*},

$$
\begin{equation*}
B_{\mu} R_{0}^{*}(\mu)+\ldots+B_{1} R_{0}^{*}+B_{0} R_{0}^{*}=0 \tag{13}
\end{equation*}
$$

Thus each of the functions

$$
R_{0, l}^{*}=\sum_{i=0}^{k} Q_{i 0^{y}}{ }_{i l}(l=0,1, \ldots, h)
$$

where

$$
\begin{aligned}
& \quad y_{i, 0}=f_{i}(z), y_{i, l}=\delta_{i l} z^{-\lambda} e^{\alpha_{i}^{z}}(i=0,1, \ldots, k ; l=1,2, \ldots, h) \\
& \text { (here } \left.\delta_{i l}=1 \text { if } i=l \text {, and } \delta_{i l}=0 \text { if } i \neq l\right) \text { satisfy the } \\
& \text { homogeneous linear differential equation (13) of order } \mu \leq h \text {. This means } \\
& \text { that we have constants } C_{0}, \ldots, C_{h} \text {, not all zero, such that }
\end{aligned}
$$

$$
\sum_{z=0}^{h} c_{\imath} R_{0, z}^{*}=0
$$

We now immediately obtain

$$
c_{0}\left(Q_{00}+Q_{10} f_{1}(z)+\ldots+Q_{k 0} f_{k}(z)\right)=-z^{-\lambda} \sum_{l=1}^{h} c_{\eta} Q_{20} e^{\alpha_{2} z}
$$

Here the left-hand side of this equation and $\sum_{Z=1}^{h} C_{2} Q_{10} e^{\alpha_{2} z}$ are entire functions, and since $\lambda \neq Z$, we get

$$
c_{0}\left(Q_{00}+Q_{10} f_{1}(z)+\ldots+Q_{k 0} f_{k}(z)\right)=0 ; \sum_{l=1}^{h} c_{2} Q_{20} e^{\alpha_{Z} z}=0
$$

The functions $f_{l}(z), \ldots, f_{k}(z)$ are algebraically independent over $C(z)$ (see [5]), and so $C_{0}=0$. Further $\alpha_{i} \neq \alpha_{j}$ if $i \neq j$, and thus the functions $e^{\alpha_{i} z}(i=1,2, \ldots, h)$ are linearly independent over $C(z)$. This means that $C_{\eta} Q_{Z_{0}}=0 \quad(z=1,2, \ldots, h)$. Our assumption $Q_{Z_{0}} \neq 0$ $(Z=1,2, \ldots, h)$ implies $C_{\mathcal{L}}=0$ for all these Z. This contradiction means that $\Delta_{1}(z) \neq 0$, thus proving our lemma.

We now denote

$$
\begin{equation*}
R_{j}(z)=z^{j} \frac{a^{j}}{\lambda z^{j}}\left(\sum_{i=0}^{k} P_{i}(z) f_{i}(z)\right)(j=0,1, \ldots) \tag{14}
\end{equation*}
$$

obtaining

$$
\begin{equation*}
R_{j}(z)=\sum_{i=0}^{k} P_{i j}(z) f_{i}(z) \quad(j=0,1, \ldots), \tag{15}
\end{equation*}
$$

where the polynomials $P_{i j}$ are given by

$$
\begin{equation*}
P_{i j}(z)=z^{j} Q_{i j}(z) \quad(i=0,1, \ldots, k ; j=0,1, \ldots) \tag{16}
\end{equation*}
$$

LEMMA 4. Let the hypotheses of Lemma 2 be true, and let $P_{i}(z)$ $(i=0, l, \ldots, k)$ be the polynomials given there. Let

$$
\begin{equation*}
s=\left[r(\log r)^{-\frac{1}{2}}\right]+k(k-1) / 2, \tag{17}
\end{equation*}
$$

and suppose that $r_{i}>2 s$ for all i. Let the polynomials $P_{i j}(z)$ $(i=0,1, \ldots, k ; j=0,1, \ldots$) be defined inductively by the equations (12) and (16). Then the determinant

$$
\Delta(z)=\operatorname{det}\left(P_{i j}(z)\right)_{i, j=0,1, \ldots, k} \neq 0,
$$

and connot have a zero at $z=\alpha \neq 0$ of order greater than s.
Proof. First we prove that $P_{i}(z) \neq 0 \quad(i=1,2, \ldots, k)$. The argument here is similar to that of Baker ([1], pp. 619-620). We suppose that exactly h of the polynomials $P_{i}(z)(i=1,2, \ldots, k)$ do not vanish identically. Without loss of generality we may assume that these are $P_{1}(z), \ldots, P_{h}(z)$ (clearly $h \geq 1$). Let

$$
\Delta_{1}(z)=\operatorname{det}\left(P_{i j}(z)\right)_{i, j=0,1, \ldots, h} .
$$

From Lemma 3 it follows that $\Delta_{1}(z)$ 丰 0 . Thus $\Delta_{1}(z)$ is a polynomial of degree at most

$$
d=(h+1) r+h(h+1) / 2 .
$$

On the other hand

$$
\Delta_{1}(z)=\left|\begin{array}{cccc}
R_{0}(z) & R_{1}(z) & \ldots & R_{h}(z) \\
P_{10}(z) & P_{11}(z) & \ldots & P_{1 h}(z) \\
\cdot & \cdot & \ldots & \cdot \\
P_{h 0}(z) & P_{h 1}(z) & \ldots & P_{h h}(z)
\end{array}\right|
$$

and thus $\Delta_{1}(z)$ has a zero at $z=0$ of order at least

$$
d_{0}=m+\sum_{i=1}^{h}\left(r-r_{i}\right)=(h+1) r+k-\left[r(\log r)^{-\frac{1}{2}}\right]+\sum_{i=h+1}^{k} r_{i}
$$

Since $r_{i}>2 \boldsymbol{s}$, we obtain $d<d_{0}$ if $h<k$. Hence $h=k$. Thus Lemma 3 implies that $\Delta(z) \neq 0$ ،

The polynomial $\Delta(z)$ is of degree at most

$$
d_{1}=(k+1) r+k(k+1) / 2
$$

As before, we find immediately that $\Delta(z)$ has a zero at $z=0$ of order at least

$$
d_{2}=m+\sum_{i=1}^{k}\left(r-r_{i}\right)=(k+1) r+k-\left[r(\log r)^{-\frac{1}{2}}\right] .
$$

Thus $d_{1}-d_{2} \leq s$, which proves our lemma.

LEMMA 5. Let the hypotheses of Lemma 4 be valid. Then there are integers $0 \leq J(0)<J(1)<\ldots<J(k) \leq k+s$ such that

$$
D=\operatorname{det}\left(P_{i, J(j)}(1)\right)_{i, j=0,1, \ldots, k} \neq 0
$$

Proof. Let $J(j)(j=0,1, \ldots, k)$ be any integers satisfying $0 \leq J(0)<J(1)<\ldots<J(k)$. We denote

$$
D(z ; J(0), J(1), \ldots, J(k))=\left|\begin{array}{cccc}
P_{0, J(0)} & P_{0, J(1)} & \cdots & P_{0, J(k)} \\
P_{1, J}(0) & P_{1, J(1)} & \ldots & P_{1, J}(k) \\
. & \cdot & \ldots & \cdot \\
P_{k, J(0)} & P_{k, J(1)} & \cdots & P_{k, J(k)}
\end{array}\right|
$$

From equations (12) and (16) it follows that

$$
\begin{aligned}
& z P_{0 j}^{\prime}=j P_{0 j}+P_{0, j+1}-\lambda \sum_{i=1}^{k} P_{i j}, \\
& z P_{i j}^{\prime}=j P_{i j}+P_{i, j+1}-\left(\alpha_{i} z-\lambda\right) P_{i j}(i=1,2, \ldots, k ; j=0,1, \ldots) .
\end{aligned}
$$

Let $D_{i j}$ denote the complement of D corresponding to the element $P_{i, \mathcal{J}(j)}$. We then obtain

$$
\begin{aligned}
& z D^{\prime}(z ; J(0), J(1), \ldots, J(k)) \\
& \quad=\sum_{j=0}^{k}\{J(j) D(z ; J(0), J(1), \ldots, J(k))
\end{aligned}
$$

$$
+D(z ; J(0), \ldots, J(j-1), J(j)+1, J(j+1), \ldots, J(k))-\lambda \sum_{i=1}^{k} P_{i, J(j)} D_{0 j}
$$

$$
\left.-\sum_{i=1}^{k}\left(\alpha_{i} z-\lambda\right) P_{i, J}{ }^{\prime}(j)_{i j}\right\}
$$

$$
=D(z ; J(0), J(1), \ldots, J(k))\left(J(0)+\sum_{j=1}^{k}\left(J(j)-\alpha_{j} z+\lambda\right)\right)
$$

$$
+\sum_{j=0}^{k} D(z ; J(0), \ldots, J(j-1), J(j)+1, J(j+1), \ldots, J(k))
$$

Thus, if our lemma were not true, then for all $J(k) \leq k+s-\tau$,

$$
D^{(\tau)}(1 ; J(0), J(1), \ldots, J(k))=0
$$

On the other hand, by Lemma 4, there exists $\tau \leq s$ such that

$$
D^{(\tau)}(1 ; 0,1, \ldots, k) \neq 0
$$

Hence $k>k+s-\tau$, which is impossible. Thus there exist the suffixes $J(j) \quad(j=0,1, \ldots, k)$ such that Lemma 5 holds.

Next we prove our final lemma, which is for use in the proof of Theorem 1.

LEMMA 6. Let the hypothesis of Lemma 4 be valid. Then we can find $(k+1)^{2}$ integers $q_{i j}(i, j=0,1, \ldots, k)$ satisfying the following properties:
$1^{\circ} . \operatorname{det}\left(q_{i j}\right) \neq 0 ;$
2. for each pair i, j we have

$$
\begin{equation*}
\left|q_{i j}\right|<r_{i}!c_{6}^{r(\log r)^{\frac{1}{2}}} \tag{18}
\end{equation*}
$$

30. the inequality

$$
\begin{equation*}
\left|\sum_{i=0}^{\ddot{k}} q_{i j} f_{i}(1)\right|<c_{7}^{r(\log r)^{\frac{3}{2}}} \prod_{i=1}^{k}\left(r_{i}!\right)^{-1} \tag{19}
\end{equation*}
$$

holds for each $j=0,1, \ldots, k$.
Proof. Let \mathcal{Z} be the least common denominator of the numbers $\lambda, \alpha_{1}, \ldots, \alpha_{k}$, and put $L=\max \left\{1,|\lambda|,\left|\alpha_{1}\right|, \ldots,\left|\alpha_{k}\right|\right\}$. We shall prove that the integers

$$
q_{i j}=2^{k+s_{P_{i, J(j)}}}(1) \quad(i, j=0,1, \ldots, k)
$$

where $J(j)(j=0,1, \ldots, k)$ are given in Lemma 5 , have the required properties.

We see immediately by Lemma 5 that 1° holds.
To prove 2° we note, by Lemma 2, (12) and (16), that the coefficients $P_{i, J}(j)$ have absolute values of at most

$$
(r+K L)^{k+\sigma}\left(r_{i}!\right) c_{2}^{r(\log r)^{\frac{1}{2}}}<r_{i}!c_{8}^{r(\log r)^{\frac{1}{2}}}, \quad K=\max \{2, k\}
$$

We see easily that this implies (18).
From our definitions of $q_{i j}$ and R_{j} it follows that

$$
\left|\sum_{i=0}^{k} q_{i j} f_{i}(1)\right|=i^{k+s}\left|R_{J(j)}(1)\right|
$$

Further, by (14),

$$
R_{J(j)}(z)=z^{J(j)} \frac{d^{J(j)}}{d z^{J(j)}}\left(\sum_{i=0}^{k} P_{i}(z) f_{i}(z)\right)=\sum_{h=m}^{\infty} \frac{h!}{(h-J(j)]!} \rho_{h^{2}} z^{h},
$$

and here $\rho_{h}=r!(h!)^{-1} \sigma_{h}$, where σ_{h} is defined in the proof of Lemma 2. There it is also proved that

$$
\left|\sigma_{h}\right|<c_{3}^{h+r(\log r)^{\frac{1}{2}}} \quad(h=0,1, \ldots)
$$

Using these facts and the inequality $J(j) \leq k+s$, we obtain the following relations

$$
\begin{aligned}
\left|\sum_{i=0}^{k} q_{i j} f_{i}(1)\right| & =2^{k+s}\left|\sum_{h=m}^{\infty}((h-J(j))!)^{-1} r_{r!\sigma_{h}}\right| \\
& \left.<\left.i^{k+s}(r!) c_{3}^{r(\log r)^{\frac{7}{2}}}\right|_{h=m} ^{\infty}((h-J(j))!)^{-1} c_{3}^{h} \right\rvert\, \\
& <i^{k+s}(r!) c_{3}^{r(\log r)^{\frac{3}{2}}} c_{3}^{m}((m-J(j))!)^{-1} e^{c_{3}} \\
& <c_{9}^{r}(r!) c_{3}^{r(\log r)^{\frac{1}{2}}}\left(\left(r+r_{1}+\ldots+r_{k}-2 s\right)!\right)^{-1} \\
& <c_{9}^{r}(r!) c_{3}^{r(\log r)^{\frac{3}{2}}}((k+1) r)^{2 s} \prod_{i=0}^{k}\left(r_{i}!\right)^{-1} \\
& <c_{7}^{r(\log r)^{\frac{1}{2}} \prod_{i=1}^{k}\left(r_{i}!\right)^{-1} .}
\end{aligned}
$$

This completes the proof of our lemma.
3. Proof of Theorem 1

We define positive constants a, b, and c by setting
(20) $\quad a=\left(4 k c_{6} c_{7}\right)^{16 k^{2}}, \quad b=20 k \log a, \log \log c=2(\log a)^{4}$, where c_{6} and c_{7} are constants appearing in Lemma 6. Here we assume, as we may without loss of generality, that c_{6} and c_{7} are greater than 1 . To prove Theorem 1 we suppose that (3), where $c_{0}=b$, is valid for some $x_{1}, x_{2}, \ldots, x_{k}, y$, and prove that this implies

$$
x=\max \left\{x_{1}^{\prime}, x_{2}^{\prime}, \ldots, x_{k}^{\prime}\right\}<c .
$$

Let us assume, against this, that $x \geq c$.
We define the function f of the positive integer r by putting

$$
\begin{equation*}
f(r)=r!a^{-r(\log r)^{\frac{1}{2}}} . \tag{21}
\end{equation*}
$$

Since (see [4], p. 73)

$$
r!=\sqrt{2 \pi r} r^{r} e^{-r+g(r)}, \quad 0<g(r)<\frac{1}{12 r}
$$

we have, for $r \geq 2$,
(22) $\log r-(\log r)^{\frac{7}{2}} \log a-1<\frac{\log f(r)}{r}<\log r-(\log r)^{\frac{3}{2}} \log a$.

From this it follows that there exists a positive integer r satisfying

$$
\begin{equation*}
\log r>(\log a)^{2}, f(r-1) \leq x<f(r) . \tag{23}
\end{equation*}
$$

This yields

$$
\begin{equation*}
(r-1)!\leq a^{r(\log r)^{\frac{1}{2}}} x<r!. \tag{24}
\end{equation*}
$$

Further we define the integers $r_{1}, r_{2}, \ldots, r_{k}$ by the inequalities

$$
\begin{equation*}
\left(r_{i}-1\right)!\leq a^{r(\log r)^{\frac{1}{2}}} x_{i}^{\prime}<r_{i}!\quad(i=1,2, \ldots, k) \tag{25}
\end{equation*}
$$

Clearly, we have $r=\max \left\{r_{1}, r_{2}, \ldots, r_{k}\right\}$. We may now proceed by proving that these integers r_{i} satisfy all the other hypotheses of Lemma 4. By (20) and (23),

$$
r(\log r)^{-\frac{3}{2}}>(\log r)^{\frac{3}{2}}>\log a>16 k^{2}
$$

and thus $2 s<3 r(\log r)^{-\frac{7}{2}}$. By using this inequality we obtain, if $r_{i} \leq 2 s$,
$\log r_{i}!\leq r_{i} \log r_{i} \leq 2 s \log 2 s$

$$
<3 r(\log r)^{-\frac{3}{2}} \log \left(3 r(\log r)^{-\frac{3}{2}}\right)<3 r(\log r)^{\frac{3}{2}} .
$$

This implies

$$
r_{i}!<e^{3 x(\log x)^{\frac{1}{2}}},
$$

which is impossible by (25). Thus we have $r_{i}>2 s$ for all $i=1,2, \ldots, k$.

From (3) and (25) we obtain, by denoting

$$
L=y+x_{1} f_{1}(1)+x_{2} f_{2}(1)+\ldots+x_{k} f_{k}(1),
$$

(26) $|L|<x^{-b(\log \log x)^{-\frac{1}{2}}} \prod_{i=1}^{k} \frac{1}{x_{i}^{1}} \leq x^{-b(\log \log x)^{-\frac{1}{2}}} a^{k r(\log x)^{\frac{1}{2}}} \prod_{i=1}^{k} r_{i}\left(r_{i}!\right)^{-1}$

$$
\leq a^{-x(\log r)^{\frac{1}{2}}}\left(\prod_{i=1}^{k}\left(r_{i}!\right)^{-1}\right) x^{-b(\log \log x)^{-\frac{3}{2}}} a^{(k+1) r(\log r)^{\frac{3}{2}}}{ }_{r^{k}}^{k} .
$$

We have

$$
c \leq x<r!<r^{r}<e^{r^{2}} .
$$

Using (20) we obtain

$$
\log r>(\log \log x) / 2 \geq(\log a)^{4}>.16^{4} .
$$

By (21) and (22), this gives

$$
\begin{aligned}
\log f(r-1) & >(r-1)\left\{\log (r-1)-(\log (r-1))^{\frac{7}{2}} \log a-1\right\} \\
& >(r-1)\left\{\log (r-1)-(\log r)^{\frac{3}{4}}-1\right\}>(r \log r) / 2 .
\end{aligned}
$$

Now it follows from (23) that

$$
(r \log r) / 2<\log x<r \log r .
$$

Hence

$$
\begin{aligned}
x^{b(\log \log x)^{-\frac{3}{2}}=\exp (b \log } & \left.x(\log \log x)^{-\frac{3}{2}}\right) \\
& >\exp \left(b r \log r / 4(\log r)^{\frac{1}{2}}\right)=\exp \left(5 k r(\log r)^{\frac{1}{2}} \log a\right) \\
& >a^{4 k r(\log r)^{\frac{1}{2}} r^{k}},
\end{aligned}
$$

and this with (26) gives an inequality

$$
\begin{equation*}
|L|<a^{-r(\log r)^{\frac{7}{2}}} \prod_{i=1}^{k}\left(r_{i}!\right)^{-1} . \tag{27}
\end{equation*}
$$

Since the hypotheses of Lemma 6 hold, we can now use linearly independent forms

$$
L_{j}=\sum_{i=0}^{k} q_{i j} f_{i}(1) \quad(j=0,1, \ldots, k)
$$

obtained by this lemma. We can select k forms, say $L_{1}, L_{2}, \ldots, L_{k}$ that together with L are linearly independent. We have

$$
\left|\begin{array}{cccc}
y & q_{01} & \cdots & q_{0 k} \\
x_{1} & q_{11} & \cdots & q_{1 k} \\
\vdots & & & \vdots \\
x_{k} & q_{k 1} & \cdots & q_{k k}
\end{array}\right|=\left|\begin{array}{cccc}
L & L_{1} & \cdots & L_{k} \\
x_{1} & q_{11} & \cdots & q_{1 k} \\
\vdots & & & \vdots \\
x_{k} & q_{k 1} & \cdots & q_{k k}
\end{array}\right|
$$

and since the left-hand side of this equation is a non-zero integer, we obtain, by (18),
$1 \leq \sum_{i=1}^{k}\left|L_{i}\right|(k-1)!\sum_{j=1}^{k}\left|x_{j}\right|\left(\prod_{\substack{z=1 \\ z \neq j}}^{k}\left(r_{\eta}!c_{6}^{r(\log r)^{\frac{3}{2}}}\right)\right)$

$$
+|L| k!\prod_{i=1}^{k}\left(p_{i}!c_{6}^{r(\log r)^{\frac{1}{2}}}\right) .
$$

From the inequalities (19), (25), and (27) it follows that

$$
1 \leq(k+1):\left\{\left(c_{6}^{k-1} c_{7^{a}}\right)^{r(\log r)^{\frac{1}{2}}}+\left(c_{6}^{k} a^{-1}\right)^{r(\log r)^{\frac{1}{2}}}\right\} .
$$

From the definition of a it follows that this is impossible. This contradiction proves our Theorem 1.

4. Proof of Theorem 2

Let a, b, and c be the numbers given in the preceeding section. Let $\alpha=2 k b, \beta=4 k c$, and, further, let γ be given by the equation $\log \log \gamma=(b \beta)^{2}$. We shall prove that if $c_{1}=\alpha$, then (4) has no solution $y>\gamma$. Assume, against this, that there exist integers $y>\gamma$, $y_{1}, y_{2}, \ldots, y_{k}$ such that

$$
y^{1+\alpha(\log \log y)^{-\frac{1}{2}}}\left|y f_{1}(1)-y_{1}\right| \ldots\left|y f_{k}(1)-y_{k}\right|<1 .
$$

We shall prove that this leads to a contradiction.
For this purpose we denote

$$
\begin{gather*}
w=y\left|y f_{1}(1)-y_{1}\right| \ldots\left|y f_{k}(1)-y_{k}\right| \tag{28}\\
t_{i}=w^{1 / k}\left|y f_{i}(1)-y_{i}\right|^{-1} \quad(i=1,2, \ldots, k) \tag{29}
\end{gather*}
$$

Without loss of generality we may assume that

$$
t_{1} \geq t_{2} \geq \ldots \geq t_{k}>0 .
$$

Since

$$
t_{1} t_{2} \cdots t_{k}=y
$$

we find the smallest integer $K \leq k$ for which

$$
t_{K+1} t_{K+2} \cdots t_{k} \leq 1 .
$$

Consider now the following system of $K+1$ linear inequalities $\left|x_{i}\right| \leq t_{i} \quad(i=1,2, \ldots, K-1) ; \quad\left|x_{K}\right| \leq t_{K} t_{K+1} \cdots t_{k} \leq t_{K} ;$

$$
\begin{equation*}
\left|x_{1} y_{1}+\ldots+x_{K} y_{K}+x y\right|<1 \tag{30}
\end{equation*}
$$

for $x_{1}, x_{2}, \ldots, x_{K}, X$. By Minkoswki's Theorem on linear forms (see [2], p. 151) there exist integers $x_{1}, x_{2}, \ldots, x_{K}, X$, not all zero, satisfying these inequalities. From the last inequality we get

$$
\begin{equation*}
x_{1} y_{1}+\ldots+x_{K} y_{K}+X y=0 \tag{SI}
\end{equation*}
$$

Thus we have non-zero integers in the set $\left\{x_{1}, x_{2}, \ldots, x_{K}\right\}$. Let these be $x_{i(1)}, x_{i(2)}, \ldots, x_{i(\imath)}$. Clearly, $1 \leq \tau \leq K$. Further, from (30) it follows that

$$
\begin{equation*}
\left|x_{i(1)} x_{i(2)} \cdots x_{i(\imath)}\right| \leq t_{1} t_{2} \cdots t_{k}=y \tag{32}
\end{equation*}
$$

By (31),
$0=x_{1} y_{1}+\ldots+x_{K} y_{K}+X y=\left(x_{1} f_{1}(1)+\ldots+x_{K} f_{K}(1)+X\right) y$

$$
-\sum_{i=1}^{K} x_{i}\left(y f_{i}(1)-y_{i}\right),
$$

which implies

$$
\left(x_{1} f_{1}(1)+\ldots+x_{K} f_{K}(1)+X\right) y=\sum_{i=1}^{K} x_{i}\left(y f_{i}(1)-y_{i}\right) .
$$

By (29) and (30),

$$
\left|x_{i}\right| \leq t_{i}, \quad\left|y f_{i}(1)-y_{i}\right|=w^{1 / k_{t}}{ }_{i}^{-1} \quad(i=1,2, \ldots, K) .
$$

Hence

$$
\begin{equation*}
\left|x_{1} f_{1}(1)+\ldots+x_{K} f_{K}(1)+X\right| \leq K w^{1 / k_{y}-1} . \tag{33}
\end{equation*}
$$

We define $x_{K+1}=\ldots=x_{k}=0$, and denote as before

$$
x=\max \left\{x_{i}^{\prime}\right\}, \quad x_{i}^{\prime}=\max \left\{1,\left|x_{i}\right|\right\} \quad(i=1,2, \ldots, k) .
$$

Then we obtain, by (32),

$$
\begin{equation*}
x \leq x_{1}^{\prime} x_{2}^{\prime} \cdots x_{k}^{\prime}=\left|x_{i(1)} x_{i(2)} \cdots x_{i(2)}\right| \leq y . \tag{34}
\end{equation*}
$$

By (28), (33), (34), and our original hypothesis we obtain
(35)

$$
\left|x_{1}^{\prime} x_{2}^{\prime} \ldots x_{k}^{\prime}\left(x_{1} f_{1}(1)+\ldots+x_{k} f_{k}(1)+X\right)\right|
$$

$$
. \leq k w^{1 / k}<k y^{-2 b(\log \log y)^{-\frac{3}{2}}}
$$

We now define rational integers v_{i} by putting $v_{i}=2[c] x_{i}$ $(i=1,2, \ldots, k)$. Again let

$$
v=\max \left\{v_{i}^{\prime}\right\}, \quad v_{i}^{\prime}=\max \left\{1,\left|v_{i}\right|\right\} \quad(i=1,2, \ldots, k)
$$

We then have, by (35),

$$
\begin{equation*}
\left|v_{1}^{\prime} v_{2}^{\prime} \ldots v_{k}^{\prime}\left(v_{1} f_{1}(1)+\ldots+v_{k} f_{k}(1)+V\right)\right| \tag{36}
\end{equation*}
$$

$$
<k(2 c)^{k+1} y^{-2 b(\log \log y)^{-\frac{1}{2}}}
$$

where $V=2[c] X$.

$$
\text { Since } y>\gamma \text {, where } \log \log \gamma=(b \beta)^{2} \text {, we obtain }
$$

$$
y^{-b(\log \log y)^{-\frac{1}{2}}}=\exp \left(-b(\log \log y)^{-\frac{1}{2}} \log y\right)<\exp \left(-b(\log \log y)^{\frac{1}{2}}\right)
$$

$$
<\exp \left(-b^{2} \beta\right)<\exp (-20 k \beta)<\beta^{-20 k}
$$

The use of (34) gives

$$
c<v \leq 2 c x \leq 2 c y<B y .
$$

This implies

$$
\begin{aligned}
y^{-b(\log \log y)^{-\frac{3}{2}}} & <\beta(\beta y)^{-b(\log \log y)^{-\frac{1}{2}}}<\beta(\beta y)^{-b(\log \log (\beta y))^{-\frac{1}{2}}} \\
& <\beta v^{-b(\log \log v)^{-\frac{1}{2}}}
\end{aligned}
$$

By these estimates and (36) we obtain the following inequality

$$
\left|v_{1}^{\prime} v_{2}^{\prime} \ldots v_{k}^{\prime}\left(v_{1} f_{1}(1)+\ldots+v_{k} f_{k}(1)+v\right)\right|<v^{-b(\log \log v)^{-\frac{1}{2}}}
$$

Since $v>c$, this is impossible by the previous section. Thus we have established the truth of Theorem 2.

References

[1] A. Baker, "On some diophantine inequalities involving the exponential function", Canad. J. Math. 17 (1965), 616-626.
[2] J.S.W. Cassels, An introduction to diophantine approximations (Cambridge Tracts in Mathematics and Mathematical Physics, 45. Cambridge University Press, Cambridge, 1957).
[3] Н.H. Фельдман [N.I. Fel'dman], "Оценнн сниэу для некоторых линейных форм" [Lower estimates for certain linear forms], Vestnik Moskov. Univ. Ser. I Mat. Meh. 22, No. 2 (1967), 63-72.
[4] Kurt Mahler, "On a paper by A. Baker on the approximation of rational powers of e ", Acta Arith. 27 (1975), 61-87.
[5] A.E. Шидловсний [A.B. ŠidlovskiY̌], "О трансцендентностн и алгебраичесной неэависимости значений неноторых фуннций" [Transcendentality and algebraic independence of the values of certain functions], Trudy Moskov. Mat. Obšc. 8 (1959), 283-320; Amer. Math. Soc. Transl. (2) 27 (1963), 191-230.
[6] C.L. Siegel, "Über einige Anwendungen diophantischer Approximationen", Abh. Preuss. Akad. Wiss. Phys.-mat. Kl. Berlin (1929), no. 1; Carl Lucwig Siegel Gesamnelte Abhandlungen, I, 209-266 (Springer-Verlag, Berlin, Heidelberg, New York, 1966).
[7] Carl Ludwig Siegel, Tronscendental numbers (Annals of Mathematics Studies, 16. Princeton University Press, Princeton, 1949).

Department of Mathematics, University of Oulu, Oulu, Finland.

