On lower estimates for linear forms involving certain transcendental numbers

Keijo Väänänen

Let

$$\phi_{\lambda}(z) = \sum_{n=0}^{\infty} z^n / (\lambda + 1) \dots (\lambda + n) ,$$

where λ is rational and not an integer. The author investigates lower estimates for example for

$$|x_1'x_2' \dots x_k'(x_1\phi_\lambda(\alpha_1) + \dots + x_k\phi_\lambda(\alpha_k))|$$
,

where the α_i are distinct rational numbers not 0, and where x_1, \ldots, x_k are integers and $x_i^! = \max(1, |x_i|)$.

1. Introduction

In 1965 Baker [1] obtained lower bounds for the expressions

$$A = |x_1x_2 \cdots x_k(x_1F_1 + \cdots + x_kF_k)|, \quad B = |yF_1-y_1| \cdots |yF_k-y_k|,$$

where $F_i = e^{\alpha_i}$, α_i (i = 1, 2, ..., k) are distinct rational numbers, and in *B* all $\alpha_i \neq 0$; x_i (i = 1, 2, ..., k) are non-zero integers, and y_i (i = 1, 2, ..., k), y > 0 are integers. He proved that there exist positive constants c_0, c_1 depending only on k, $\alpha_1, \alpha_2, ..., \alpha_k$ such that the inequalities

Received 11 November 1975. Communicated by Kurt Mahler.

161

$$\frac{1 - c_0 (\log \log x)^{-\frac{1}{2}}}{A < x}, \quad B < y$$

,

where $x = \max\{|x_1|, |x_2|, ..., |x_k|\}$, are respectively satisfied only by a finite number of sets of non-zero integers $x_1, x_2, ..., x_k$, and only by a finite number of positive integers y. In a recent paper Mahler [4] improved these estimates by obtaining bounds containing no unknown constants.

In order to prove the above estimates Baker developed a new method in which he used certain ideas of Siegel [6], [7]. The aim of the present paper is to use this same method to obtain estimates analogous to those of Baker, but here F_i (i = 1, 2, ..., k) are certain values of the function

(1)
$$\phi_{\lambda}(z) = \sum_{n=0}^{\infty} z^{n}/(\lambda+1) \dots (\lambda+n)$$

with rational $\lambda \neq 0, \pm 1, \pm 2, \ldots$.

We define

(2)
$$f_i(z) = \phi_\lambda(\alpha_i z)$$
 $(i = 1, 2, ..., k)$,

where α_i are distinct non-zero rational numbers. The following theorems will be proved.

THEOREM 1. Let $\lambda \neq 0, \pm 1, \pm 2, \ldots$ be a rational number, and let the numbers $f_1(1), f_2(1), \ldots, f_k(1)$ be defined by (2), where $\alpha_1, \alpha_2, \ldots, \alpha_k$ are distinct non-zero rational numbers. There then exists a constant $c_0 = c_0(k, \lambda, \alpha_1, \ldots, \alpha_k) > 0$ such that for any integer y the inequality

163

THEOREM 2. Let λ , α_1 , α_2 , ..., α_k satisfy the hypotheses of Theorem 1. Then there exist constants $c_1 = c_1(k, \lambda, \alpha_1, \ldots, \alpha_k) > 0$ and $\bar{c}(c_1) > 0$ such that for any integers y_1, y_2, \ldots, y_k the inequality

(4)
$$|yf_1(1)-y_1| \cdots |yf_k(1)-y_k| < y^{-1-c_1(\log\log y)^{-\frac{1}{2}}}$$

can be satisfied only if the positive integer y is less than \bar{c} .

Fel'dman [3] considered the function values $\phi_{\lambda_i}(\alpha)$, proving that if $\alpha \neq 0$ is a rational number and $\lambda_1, \lambda_2, \ldots, \lambda_k$ are rational numbers other than negative integers satisfying $\lambda_i - \lambda_j \notin \mathbb{Z}$ if $i \neq j$, then there exists a constant $c_0 = c_0(\alpha, \lambda_1, \ldots, \lambda_k) > 0$ such that, for all integers x_1, x_2, \ldots, x_k , y, $x_1^2 + x_2^2 + \ldots + x_k^2 > 0$,

$$\left|x_{1}\phi_{\lambda_{1}}(\alpha) + \ldots + x_{k}\phi_{\lambda_{k}}(\alpha) + y\right| > x^{-1-c_{0}}(\operatorname{loglog}(X+2))^{-1}$$

where $X = x'_1 x'_2 \dots x'_k$, $x'_i = \max\{1, |x_i|\}$.

It should be noted that the arithmetic nature of the function values $\phi_{\lambda_i}(\alpha_j)$ has been considered in many papers. Sidlovskiĭ [5] has established the algebraic independence over Q of the *mn* numbers $\phi_{\lambda_i}(\alpha_j)$, if $\lambda_1, \lambda_2, \ldots, \lambda_n$ are rational numbers such that λ_i , $\lambda_i - \lambda_j$ (*i*, $j = 1, 2, \ldots, n$; $i \neq j$) are not integers, and $\alpha_1, \alpha_2, \ldots, \alpha_m$ are distinct non-zero algebraic numbers.

In the present paper we follow Baker's method. First we shall establish certain lemmas analogous to those of [1], and we shall then prove the above theorems using deductions analogous to the corresponding proofs of [1].

2. Lemmas

We begin with a lemma which can be proved easily by means of a box argument (see [7], p. 36).

LEMMA 1. Let m, n be positive integers with n > m. Suppose that a_{ij} (i = 1, 2, ..., m; j = 1, 2, ..., n) are integers with absolute values at most A. Then there are integers $x_1, x_2, ..., x_n$, not all zero, with absolute values at most $(nA)^{m/(n-m)} + 2$, such that

$$\sum_{j=1}^{n} a_{ij} x_{j} = 0 \quad (i = 1, 2, ..., m) .$$

In the following let c_2, c_3, \ldots denote positive constants which depend only on $k, \lambda, \alpha_1, \ldots, \alpha_k$. First we should aim at a result analogous to Baker's [1], Lemma 2.

LEMMA 2. Let $r_1, r_2, ..., r_k$ be positive integers and let $r = \max\{r_i\} > 2$, $r_0 = r$. Then there are polynomials $P_i(z)$ (i = 0, 1, ..., k), not all identically zero, with the following properties:

1°. for each i, $P_i(z)$ has degree at most r, a zero at z = 0 of order at least $r - r_i$, and integer coefficients with absolute values at most

$$r_i!c_2^{r(\log r)^{\frac{1}{2}}}$$

2°. the approximation form

(5)
$$R(z) = P_0(z) + \sum_{i=1}^{k} P_i(z) f_i(z) = \sum_{h=0}^{\infty} \rho_h z^h$$

vanishes at z = 0 of order at least

(6)
$$m = r + r_1 + \dots + r_k + k - [r(\log r)^{-\frac{1}{2}}]$$

and, for each h,

(7)
$$|\rho_h| < r!(h!)^{-1} c_3^{h+r(\log r)^2}$$

Proof. Put $L = \max\{|\alpha_i|\}$. Further, let l denote the least common denominator of the numbers $\alpha_1, \alpha_2, \ldots, \alpha_k$ and let L_h $(h = 0, 1, \ldots)$

denote the least common denominator of the numbers

$$\frac{j!}{(\lambda+1)(\lambda+2)\dots(\lambda+j)} \quad (j = 0, 1, \dots, h)$$

We put $p_{ij} = 0$ for all integral values i, j other than the $n = r + r_1 + \ldots + r_k + k + 1$ pairs given by $0 \le i \le k$, $r - r_i \le j \le r$. For these values i, j we define p_{ij} as integers, not all zero, satisfying the following system of m equations;

(8)
$$L_h l^h p_{0h} + \sum_{i=1}^k \sum_{j=0}^h {h \choose j} L_h l^h \alpha_i^{h-j} \frac{(h-j)!}{(\lambda+1)(\lambda+2)\dots(\lambda+h-j)} p_{ij} = 0$$

(h = 0, 1, ..., m-1).

Lemma 1 implies that such integers exist. Further, since

$$\max_{j=0,1,\ldots,h} \left\{ L_h, \left| \frac{L_h(h-j)!}{(\lambda+1)(\lambda+2)\ldots(\lambda+h-j)} \right| \right\} \le c_h^h \quad (h = 0, 1, \ldots)$$

(see [7], pp. 56-58), we can take p_{ij} with absolute values at most

$$M = \left\{ n \left(2c_{\downarrow} LL \right)^m \right\}^{m/(n-m)} + 2 .$$

We may now prove that the polynomials

÷.,

$$P_i(z) = r! \sum_{j=0}^r p_{ij}(j!)^{-1} z^j \quad (i = 0, 1, ..., k)$$

satisfy the conditions of Lemma 2.

First consider 1°. We have m < n < 2(k+1)r and $n - m > r(\log r)^{-\frac{1}{2}}$. Thus

(9)
$$M < \left\{ 2(k+1)r \left(2c_{\downarrow} LL \right)^{2(k+1)r} \right\}^{2(k+1)(\log r)^{\frac{1}{2}}} + 2 < c_{5}^{r(\log r)^{\frac{1}{2}}}$$

By noting that $p_{i,j} = 0$ for $j < r - r_i$ we obtain the upper bound

$$\frac{r!M}{(r-r_i)!} \leq 2^r M(r_i!)$$

for the absolute values of the coefficients of $P_i(z)$. By (9) this gives part 1° of our lemma.

To prove 2° we note that

$$P_0(z) + \sum_{i=1}^k P_i(z) f_i(z) = r! \sum_{h=0}^\infty \sigma_h(h!)^{-1} z^h$$
,

where, for each h, $L_h l^h \sigma_h$ denotes the left-hand side of (8). We thus have (5) with $\rho_h = r! (h!)^{-1} \sigma_h$ satisfying (6). For $h \ge m$ we have, by (9),

$$|\sigma_{h}| < (2Lc_{\mu})^{h} M(k+1)(h+1) < c_{3}^{h+r(\log r)^{\frac{1}{2}}}$$

This implies (7), and thus Lemma 2 is proved.

The function $\phi_{\lambda}(z)$ satisfies the differential equation

(10)
$$y' = \left(1 - \frac{\lambda}{z}\right)y + \frac{\lambda}{z}$$

Thus the functions $f_0(z) \equiv 1$, $f_i(z) = \phi_\lambda(\alpha_i z)$ (i = 1, 2, ..., k)satisfy the following homogeneous system of differential equations,

(11)
$$y'_{i} = \frac{\lambda}{z} y_{0} + \left(\alpha_{i} - \frac{\lambda}{z}\right) y_{i} \quad (i = 1, 2, ..., k) .$$

Let y_0, y_1, \ldots, y_k be an arbitrary solution of (11) and let P_0, P_1, \ldots, P_k be the polynomials given in Lemma 2. We denote

$$R_{0}^{*} = \sum_{i=0}^{k} Q_{i0} y_{i}, \quad Q_{i0} = P_{i} \quad (i = 0, 1, ..., k) ,$$
$$R_{j}^{*} = \frac{d^{j}}{dz^{j}} R_{0}^{*} = \sum_{i=0}^{k} Q_{ij} y_{i} \quad (j = 1, 2, ...) ,$$

where, by (11),

(12)
$$Q_{0j} = Q'_{0,j-1} + \frac{\lambda}{z} \sum_{i=1}^{k} Q_{i,j-1}, \quad Q_{i,j} = Q'_{i,j-1} + \left(\alpha_i - \frac{\lambda}{z}\right) Q_{i,j-1}$$

(*i* = 1, 2, ..., *k*; *j* = 1, 2, ...).
LEMMA 3. Suppose that $Q_{i0}(z) \neq 0$ (*i* = 1, 2, ..., *h*; $1 \le h \le k$),

and $Q_{h+1,0} = \ldots = Q_{k0} \equiv 0$. Then the determinant

$$\Delta_{l}(z) = \det\left(z^{j}Q_{ij}\right)_{i,j=0,1,\ldots,h} \ddagger 0$$

Proof. We follow Siegel's deduction (see [7], p. 43). If $\Delta_1(z) \equiv 0$, then there exist $\mu + 1 \leq h + 1$ polynomials A_0, \ldots, A_{μ} satisfying

$$A_{0}Q_{i0} + A_{1}zQ_{i1} + \dots + A_{\mu}z^{\mu}Q_{i\mu} = 0 \quad (i = 0, 1, \dots, h) ;$$
$$A_{\mu} \neq 0 .$$

This implies that

$$B_{0}R_{0}^{*} + B_{1}R_{1}^{*} + \dots + B_{\mu}R_{\mu}^{*} = 0 ; \quad B_{j} = z^{j}A_{j} \quad (j = 0, 1, \dots, \mu) ,$$

and, by the definition of R_{j}^{*} ,

(13)
$$B_{\mu}R_{0}^{*}(\mu) + \ldots + B_{1}R_{0}^{*} + B_{0}R_{0}^{*} = 0$$
.

Thus each of the functions

$$R_{0,l}^{*} = \sum_{i=0}^{k} Q_{i0} y_{il} \quad (l = 0, 1, ..., h) ,$$

where

$$y_{i,0} = f_i(z)$$
, $y_{i,l} = \delta_{il} z^{-\lambda} e^{\alpha_i z}$ $(i = 0, 1, ..., k; l = 1, 2, ..., h)$

(here $\delta_{il} = 1$ if i = l, and $\delta_{il} = 0$ if $i \neq l$) satisfy the homogeneous linear differential equation (13) of order $\mu \leq h$. This means that we have constants C_0, \ldots, C_h , not all zero, such that

$$\sum_{l=0}^{h} C_{l} R_{0,l}^{\star} = 0$$

We now immediately obtain

$$c_0(Q_{00} + Q_{10}f_1(z) + \dots + Q_{k0}f_k(z)) = -z^{-\lambda} \sum_{l=1}^{h} c_l Q_{l0} e^{\alpha_l z}.$$

Here the left-hand side of this equation and $\sum_{l=1}^{h} C_{l} Q_{l0} e^{\alpha_{l} z}$ are entire functions, and since $\lambda \notin Z$, we get

$$C_0(Q_{00} + Q_{10}f_1(z) + \dots + Q_{k0}f_k(z)) = 0$$
; $\sum_{l=1}^h C_l Q_{l0}e^{\alpha_l z} = 0$.

The functions $f_1(z)$, ..., $f_k(z)$ are algebraically independent over C(z) (see [5]), and so $C_0 = 0$. Further $\alpha_i \neq \alpha_j$ if $i \neq j$, and thus the

functions $e^{\substack{\alpha,z\\ i}}$ (i = 1, 2, ..., h) are linearly independent over C(z). This means that $C_l Q_{l0} = 0$ (l = 1, 2, ..., h). Our assumption $Q_{l0} \neq 0$ (l = 1, 2, ..., h) implies $C_l = 0$ for all these l. This contradiction means that $\Delta_1(z) \neq 0$, thus proving our lemma.

We now denote

(14)
$$R_{j}(z) = z^{j} \frac{d^{j}}{dz^{j}} \left(\sum_{i=0}^{k} P_{i}(z) f_{i}(z) \right) \quad (j = 0, 1, ...),$$

obtaining

(15)
$$R_{j}(z) = \sum_{i=0}^{k} P_{ij}(z) f_{i}(z) \quad (j = 0, 1, ...),$$

where the polynomials P_{ii} are given by

(16)
$$P_{ij}(z) = z^j Q_{ij}(z)$$
 $(i = 0, 1, ..., k; j = 0, 1, ...)$.

LEMMA 4. Let the hypotheses of Lemma 2 be true, and let $P_i(z)$ (i = 0, 1, ..., k) be the polynomials given there. Let

(17)
$$s = [r(\log r)^{-\frac{1}{2}}] + k(k-1)/2$$

and suppose that $r_i > 2s$ for all i. Let the polynomials $P_{ij}(z)$ (i = 0, 1, ..., k; j = 0, 1, ...) be defined inductively by the equations (12) and (16). Then the determinant

$$\Delta(z) = \det(P_{ij}(z))_{i,j=0,1,\ldots,k} \ddagger 0 ,$$

and cannot have a zero at $z = \alpha \neq 0$ of order greater than s.

Proof. First we prove that $P_i(z) \ddagger 0$ (i = 1, 2, ..., k). The argument here is similar to that of Baker ([1], pp. 619-620). We suppose that exactly h of the polynomials $P_i(z)$ (i = 1, 2, ..., k) do not vanish identically. Without loss of generality we may assume that these are $P_1(z)$, ..., $P_h(z)$ (clearly $h \ge 1$). Let

$$\Delta_{\underline{1}}(z) = \det(P_{ij}(z))_{i,j=0,1,\ldots,h}$$

From Lemma 3 it follows that $\Delta_1(z) \ddagger 0$. Thus $\Delta_1(z)$ is a polynomial of degree at most

$$d = (h+1)r + h(h+1)/2$$
.

On the other hand

$$\Delta_{1}(z) = \begin{vmatrix} R_{0}(z) & R_{1}(z) & \dots & R_{h}(z) \\ P_{10}(z) & P_{11}(z) & \dots & P_{1h}(z) \\ \vdots & \vdots & \ddots & \vdots \\ P_{h0}(z) & P_{h1}(z) & \dots & P_{hh}(z) \end{vmatrix},$$

and thus $\Delta_{\eta}(z)$ has a zero at z = 0 of order at least

$$d_0 = m + \sum_{i=1}^{h} (r - r_i) = (h+1)r + k - [r(\log r)^{-\frac{1}{2}}] + \sum_{i=h+1}^{k} r_i.$$

Since $r_i > 2s$, we obtain $d < d_0$ if h < k. Hence h = k. Thus Lemma 3 implies that $\Delta(z) \ddagger 0$.

The polynomial $\Delta(z)$ is of degree at most

$$d_1 = (k+1)r + k(k+1)/2$$
.

As before, we find immediately that $\Delta(z)$ has a zero at z = 0 of order at least

$$d_2 = m + \sum_{i=1}^{k} (r - r_i) = (k + 1)r + k - [r(\log r)^{-\frac{1}{2}}].$$

Thus $d_1 - d_2 \leq s$, which proves our lemma.

LEMMA 5. Let the hypotheses of Lemma 4 be valid. Then there are integers $0 \le J(0) < J(1) < \ldots < J(k) \le k + s$ such that

$$D = \det(P_{i,J(j)}(1))_{i,j=0,1,...,k} \neq 0.$$

Proof. Let J(j) (j = 0, 1, ..., k) be any integers satisfying $0 \le J(0) < J(1) < ... < J(k)$. We denote

$$D(z; J(0), J(1), \ldots, J(k)) = \begin{pmatrix} P_{0,J}(0) & P_{0,J}(1) & \cdots & P_{0,J}(k) \\ P_{1,J}(0) & P_{1,J}(1) & \cdots & P_{1,J}(k) \\ & & & \ddots & & \\ P_{k,J}(0) & P_{k,J}(1) & \cdots & P_{k,J}(k) \end{pmatrix}$$

.

From equations (12) and (16) it follows that

$$\begin{split} zP_{0j}^{\prime} &= jP_{0j}^{\prime} + P_{0,j+1}^{\prime} - \lambda \sum_{i=1}^{k} P_{ij}^{\prime}, \\ zP_{ij}^{\prime} &= jP_{ij}^{\prime} + P_{i,j+1}^{\prime} - (\alpha_{i}^{\prime}z^{-}\lambda)P_{ij}^{\prime} \quad (i = 1, 2, ..., k; j = 0, 1, ...) \;. \end{split}$$
Let D_{ij}^{\prime} denote the complement of D corresponding to the element $P_{i,J(j)}^{\prime}$. We then obtain
 $zD^{\prime}(z; J(0), J(1), ..., J(k))$

$$&= \sum_{j=0}^{k} \left\{ J(j)D(z; J(0), J(1), ..., J(k)) + D(z; J(0), ..., J(j-1), J(j)^{+}1, J(j^{+}1), ..., J(k)) - \lambda \sum_{i=1}^{k} P_{i,J(j)}D_{0j} - \sum_{i=1}^{k} (\alpha_{i}^{\prime}z^{-}\lambda)P_{i,J(j)}D_{ij} \right\}$$
 $&= D(z; J(0), J(1), ..., J(k)) \left\{ J(0) + \sum_{j=1}^{k} (J(j) - \alpha_{j}^{\prime}z^{+}\lambda) \right\}$
 $&+ \sum_{j=0}^{k} D(z; J(0), ..., J(j^{-}1), J(j^{+}1), J(j^{+}1), ..., J(k)) \;.$

Thus, if our lemma were not true, then for all $J(k) \leq k + s - \tau$,

$$D^{(\tau)}(1; J(0), J(1), \ldots, J(k)) = 0$$
.

On the other hand, by Lemma 4, there exists $\tau \leq s$ such that

$$D^{(\tau)}(1; 0, 1, ..., k) \neq 0$$
.

Hence $k > k + s - \tau$, which is impossible. Thus there exist the suffixes J(j) (j = 0, 1, ..., k) such that Lemma 5 holds.

Next we prove our final lemma, which is for use in the proof of Theorem 1.

LEMMA 6. Let the hypothesis of Lemma 4 be valid. Then we can find $(k+1)^2$ integers q_{ij} (i, j = 0, 1, ..., k) satisfying the following properties:

1°. det
$$(q_{ij}) \neq 0;$$

 2° . for each pair i, j we have

(18)
$$|q_{ij}| < r_i! c_6^{r(\log r)^{\frac{1}{2}}}$$

 3° . the inequality

(19)
$$\left|\sum_{i=0}^{k} q_{ij}f_{i}(1)\right| < c_{7}^{r(\log r)^{\frac{1}{2}}} \prod_{i=1}^{k} (r_{i}!)^{-1}$$

holds for each j = 0, 1, ..., k.

Proof. Let l be the least common denominator of the numbers λ , α_1 , ..., α_k , and put $L = \max\{1, |\lambda|, |\alpha_1|, ..., |\alpha_k|\}$. We shall prove that the integers

$$q_{ij} = l^{k+s} P_{i,J(j)}(1)$$
 (*i*, *j* = 0, 1, ..., *k*),

where J(j) (j = 0, 1, ..., k) are given in Lemma 5, have the required properties.

We see immediately by Lemma 5 that 1° holds.

To prove 2° we note, by Lemma 2, (12) and (16), that the coefficients $P_{i,J(j)}$ have absolute values of at most

$$(r+KL)^{k+s}(r_i!)c_2^{r(\log r)^{\frac{1}{2}}} < r_i!c_8^{r(\log r)^{\frac{1}{2}}}, K = \max\{2, k\}$$

We see easily that this implies (18).

From our definitions of q_{ij} and R_{j} it follows that

.

$$\left|\sum_{i=0}^{k} q_{ij} f_{i}(1)\right| = l^{k+s} |R_{J(j)}(1)|$$

Further, by (14),

$$R_{J(j)}(z) = z^{J(j)} \frac{d^{J(j)}}{dz^{J(j)}} \left(\sum_{i=0}^{k} P_i(z) f_i(z) \right) = \sum_{h=m}^{\infty} \frac{h!}{(h-J(j))!} \rho_h z^h ,$$

and here $\rho_h = r! (h!)^{-1} \sigma_h$, where σ_h is defined in the proof of Lemma 2. There it is also proved that

$$|\sigma_h| < c_3^{h+r(\log r)^{\frac{1}{2}}}$$
 (h = 0, 1, ...).

Using these facts and the inequality $J(j) \leq k + s$, we obtain the following relations

$$\begin{aligned} \left| \sum_{i=0}^{k} q_{ij} f_{i}(1) \right| &= \mathcal{I}^{k+s} \left| \sum_{h=m}^{\infty} \left(\left(h-J(j) \right)! \right)^{-1} r! \sigma_{h} \right| \\ &< \mathcal{I}^{k+s}(r!) c_{3}^{r(\log r)^{\frac{1}{2}}} \left| \sum_{h=m}^{\infty} \left(\left(h-J(j) \right)! \right)^{-1} c_{3}^{h} \right| \\ &< \mathcal{I}^{k+s}(r!) c_{3}^{r(\log r)^{\frac{1}{2}}} c_{3}^{m} \left(\left(m-J(j) \right)! \right)^{-1} e^{c_{3}} \\ &< c_{9}^{r}(r!) c_{3}^{r(\log r)^{\frac{1}{2}}} \left(\left(r+r_{1}+\dots+r_{k}-2s \right)! \right)^{-1} \\ &< c_{9}^{r}(r!) c_{3}^{r(\log r)^{\frac{1}{2}}} \left((k+1)r \right)^{2s} \frac{k}{1-1} \left(r_{i}! \right)^{-1} \\ &< c_{7}^{r(\log r)^{\frac{1}{2}}} \frac{k}{1-1} \left(r_{i}! \right)^{-1} . \end{aligned}$$

This completes the proof of our lemma.

3. Proof of Theorem 1

We define positive constants a, b , and c by setting

https://doi.org/10.1017/S0004972700025016 Published online by Cambridge University Press

172

(20)
$$a = (4kc_6c_7)^{16k^2}$$
, $b = 20k \log a$, $\log \log c = 2(\log a)^4$,

where c_6 and c_7 are constants appearing in Lemma 6. Here we assume, as we may without loss of generality, that c_6 and c_7 are greater than 1. To prove Theorem 1 we suppose that (3), where $c_0 = b$, is valid for some x_1, x_2, \ldots, x_k, y , and prove that this implies

$$x = \max\{x'_1, x'_2, \ldots, x'_k\} < c$$
.

Let us assume, against this, that $x \ge c$.

We define the function f of the positive integer r by putting

(21)
$$f(r) = r! a^{-r(\log r)^{\frac{1}{2}}}$$

Since (see [4], p. 73)

$$r! = \sqrt{2\pi r} r^{r} e^{-r+g(r)}$$
, $0 < g(r) < \frac{1}{12r}$,

we have, for $r \ge 2$,

(22)
$$\log r - (\log r)^{\frac{1}{2}} \log a - 1 < \frac{\log f(r)}{r} < \log r - (\log r)^{\frac{1}{2}} \log a$$
.

From this it follows that there exists a positive integer r satisfying

(23)
$$\log r > (\log a)^2$$
, $f(r-1) \le x \le f(r)$.

This yields

(24)
$$(r-1)! \leq a^{r(\log r)^{\frac{1}{2}}} x < r!$$

Further we define the integers r_1, r_2, \ldots, r_k by the inequalities

(25)
$$(r_i-1)! \leq a^{r(\log r)^{\frac{1}{2}}} x_i' < r_i! \quad (i = 1, 2, ..., k)$$

Clearly, we have $r = \max\{r_1, r_2, \dots, r_k\}$. We may now proceed by proving that these integers r_i satisfy all the other hypotheses of Lemma 4. By (20) and (23),

$$r(\log r)^{-\frac{1}{2}} > (\log r)^{\frac{1}{2}} > \log a > 16k^2$$
,

174

and thus $2s < 3r(\log r)^{-\frac{L}{2}}$. By using this inequality we obtain, if $r_i \leq 2s$,

 $\log r_i! \leq r_i \log r_i \leq 2s \log 2s$

<
$$3r(\log r)^{-\frac{1}{2}} \log(3r(\log r)^{-\frac{1}{2}}) < 3r(\log r)^{\frac{1}{2}}$$

,

This implies

$$r_i! < e^{3r(\log r)^{\frac{1}{2}}}$$

which is impossible by (25). Thus we have $r_i > 2s$ for all i = 1, 2, ..., k.

From (3) and (25) we obtain, by denoting

$$L = y + x_1 f_1(1) + x_2 f_2(1) + \dots + x_k f_k(1) ,$$

$$(26) |L| < x^{-b(\log\log x)^{-\frac{1}{2}}} \prod_{i=1}^{k} \frac{1}{x_{i}^{*}} \le x^{-b(\log\log x)^{-\frac{1}{2}}} a^{kr(\log r)^{\frac{1}{2}}} \prod_{i=1}^{k} r_{i}(r_{i}!)^{-1} \le a^{-r(\log r)^{\frac{1}{2}}} \left(\prod_{i=1}^{k} (r_{i}!)^{-1} \right) x^{-b(\log\log x)^{-\frac{1}{2}}} a^{(k+1)r(\log r)^{\frac{1}{2}}} r^{k}$$

We have

$$c \leq x \leq r! \leq r^{r} \leq e^{r^{2}}.$$

Using (20) we obtain

 $\log r > (\log \log x)/2 \ge (\log a)^4 > 16^4$.

By (21) and (22), this gives

$$\log f(r-1) > (r-1) \{ \log(r-1) - (\log(r-1))^{\frac{3}{2}} \log a - 1 \}$$

> (r-1) { log(r-1) - (log r)^{\frac{3}{4}} - 1 } > (r log r)/2

Now it follows from (23) that

 $(r \log r)/2 < \log x < r \log r$.

Hence

$$x^{b(\log\log x)^{-\frac{1}{2}}} = \exp(b \log x(\log\log x)^{-\frac{1}{2}})$$

>
$$\exp(br \log r/4(\log r)^{\frac{1}{2}}) = \exp(5kr(\log r)^{\frac{1}{2}}\log a)$$

>
$$a^{\frac{1}{2}kr(\log r)^{\frac{1}{2}}r^{k}},$$

and this with (26) gives an inequality

(27)
$$|L| < a^{-r(\log r)^{\frac{1}{2}}} \prod_{i=1}^{k} (r_i!)^{-1}$$
.

Since the hypotheses of Lemma 6 hold, we can now use linearly independent forms

$$L_{j} = \sum_{i=0}^{k} q_{ij}f_{i}(1) \quad (j = 0, 1, ..., k)$$

obtained by this lemma. We can select k forms, say L_1, L_2, \ldots, L_k that together with L are linearly independent. We have

$$\begin{vmatrix} y & q_{01} & \cdots & q_{0k} \\ x_{1} & q_{11} & \cdots & q_{1k} \\ \vdots & & \vdots \\ x_{k} & q_{k1} & \cdots & q_{kk} \end{vmatrix} = \begin{vmatrix} L & L_{1} & \cdots & L_{k} \\ x_{1} & q_{11} & \cdots & q_{1k} \\ \vdots & & \vdots \\ x_{k} & q_{k1} & \cdots & q_{kk} \end{vmatrix}$$

and since the left-hand side of this equation is a non-zero integer, we obtain, by (18),

$$1 \leq \sum_{i=1}^{k} |L_{i}|(k-1)! \sum_{j=1}^{k} |x_{j}| \left(\prod_{\substack{l=1\\l\neq j}}^{k} \left(r_{l}! e_{6}^{r(\log r)^{\frac{1}{2}}} \right) \right) + |L|k! \prod_{i=1}^{k} \left(r_{i}! e_{6}^{r(\log r)^{\frac{1}{2}}} \right)$$

From the inequalities (19), (25), and (27) it follows that

$$1 \leq (k+1)! \left\{ \left(c_6^{k-1} c_7^{a^{-1}} \right)^{r(\log r)^{\frac{1}{2}}} + \left(c_6^{k} a^{-1} \right)^{r(\log r)^{\frac{1}{2}}} \right\}.$$

From the definition of a it follows that this is impossible. This contradiction proves our Theorem 1.

4. Proof of Theorem 2

Let a, b, and c be the numbers given in the preceeding section. Let $\alpha = 2kb$, $\beta = 4kc$, and, further, let γ be given by the equation $\log \log \gamma = (b\beta)^2$. We shall prove that if $c_1 = \alpha$, then (4) has no solution $y > \gamma$. Assume, against this, that there exist integers $y > \gamma$, y_1, y_2, \ldots, y_k such that

$$y^{1+\alpha(\log\log y)^{-\frac{1}{2}}}|yf_1(1)-y_1| \dots |yf_k(1)-y_k| < 1$$

We shall prove that this leads to a contradiction.

For this purpose we denote

(28)
$$w = y |yf_1(1) - y_1| \dots |yf_k(1) - y_k| ,$$

(29)
$$t_i = w^{1/k} |yf_i(1) - y_i|^{-1} \quad (i = 1, 2, ..., k) .$$

Without loss of generality we may assume that

$$t_1 \geq t_2 \geq \ldots \geq t_k > 0$$
 .

Since

$$t_1 t_2 \cdots t_k = y$$
,

we find the smallest integer $K \leq k$ for which

$$t_{K+1}t_{K+2} \cdots t_k \leq 1$$
.

Consider now the following system of K + 1 linear inequalities

(30)
$$\begin{aligned} |x_i| \leq t_i \quad (i = 1, 2, ..., K-1) ; \quad |x_k| \leq t_k t_{k+1} \dots t_k \leq t_k ; \\ |x_1 y_1 + \dots + x_k y_k + X y| < 1 \end{aligned}$$

176

for x_1, x_2, \ldots, x_K, X . By Minkoswki's Theorem on linear forms (see [2], p. 151) there exist integers x_1, x_2, \ldots, x_K, X , not all zero, satisfying these inequalities. From the last inequality we get

(31)
$$x_1y_1 + \ldots + x_Ky_K + Xy = 0$$

Thus we have non-zero integers in the set $\{x_1, x_2, \ldots, x_K\}$. Let these be $x_{i(1)}, x_{i(2)}, \ldots, x_{i(l)}$. Clearly, $1 \le l \le K$. Further, from (30) it follows that

(32)
$$|x_{i(1)}x_{i(2)}\cdots x_{i(l)}| \leq t_1 t_2 \cdots t_k = y$$
.

By (31),

$$0 = x_1 y_1 + \dots + x_K y_K + Xy = (x_1 f_1(1) + \dots + x_K f_K(1) + X) y - \sum_{i=1}^K x_i (y f_i(1) - y_i) ,$$

which implies

$$(x_1f_1(1) + \ldots + x_Kf_K(1) + X)y = \sum_{i=1}^{K} x_i(yf_i(1)-y_i)$$

By (29) and (30),

$$|x_i| \le t_i$$
, $|yf_i(1)-y_i| = w^{1/k}t_i^{-1}$ $(i = 1, 2, ..., K)$.

Hence

(33)
$$|x_1f_1(1) + \ldots + x_Kf_K(1) + X| \le Kw^{1/k}y^{-1}$$
.

We define $x_{k+1} = \ldots = x_k = 0$, and denote as before

$$x = \max\{x_i'\}$$
, $x_i' = \max\{1, |x_i'|\}$ $(i = 1, 2, ..., k)$.

Then we obtain, by (32),

(34)
$$x \leq x_1' x_2' \cdots x_k' = |x_{i(1)} x_{i(2)} \cdots x_{i(l)}| \leq y$$
.

By (28), (33), (34), and our original hypothesis we obtain

7

,

$$(35) |x_1'x_2' \dots x_k'(x_1f_1(1) + \dots + x_kf_k(1) + x)|$$

$$(i = 1, 2, ..., k) . Again let v = max{v'_i}, v'_i = max{1, |v_i|} (i = 1, 2, ..., k) . We then have, by (35), (36) |v'_1v'_2 ... v'_k (v_1f_1(1) + ... + v_kf_k(1) + V)| < k(2c)^{k+1}y^{-2b(\log\log y)^{-\frac{1}{2}}}$$

where V = 2[c]X.

178

Since $y > \gamma$, where $\log \log \gamma = (b\beta)^2$, we obtain

$$y^{-b(\log\log y)^{-2}} = \exp(-b(\log\log y)^{-\frac{1}{2}}\log y) < \exp(-b(\log\log y)^{\frac{1}{2}}) < \exp(-b(\log\log y)^{\frac{1}{2}}) < \exp(-b^{2}\beta) < \exp(-20k\beta) < \beta^{-20k}$$

The use of (34) gives

$$c < v \leq 2cx \leq 2cy < \beta y$$

.

This implies

$$y^{-b(\log\log y)^{-\frac{1}{2}}} < \beta(\beta y)^{-b(\log\log y)^{-\frac{1}{2}}} < \beta(\beta y)^{-b(\log\log(\beta y))^{-\frac{1}{2}}} < \beta v^{-b(\log\log y)^{-\frac{1}{2}}}.$$

By these estimates and (36) we obtain the following inequality

$$|v_1'v_2' \cdots v_k' (v_1f_1(1) + \cdots + v_kf_k(1) + V)| < v^{-b(\log\log v)^{-\frac{1}{2}}}.$$

Since v > c, this is impossible by the previous section. Thus we have established the truth of Theorem 2.

References

- [1] A. Baker, "On some diophantine inequalities involving the exponential function", Canad. J. Math. 17 (1965), 616-626.
- [2] J.S.W. Cassels, An introduction to diophantine approximations
 (Cambridge Tracts in Mathematics and Mathematical Physics, 45. Cambridge University Press, Cambridge, 1957).
- [3] Н.И. Фельдман [N.I. Fel'dman], "Оценкн снизу для некоторых линейных форм" [Lower estimates for certain linear forms], Vestnik Moskov. Univ. Ser. I Mat. Meh. 22, No. 2 (1967), 63-72.
- [4] Kurt Mahler, "On a paper by A. Baker on the approximation of rational powers of e", Acta Arith. 27 (1975), 61-87.
- [5] А.Б. Шидловский [А.В. Šidlovskiĭ], "О трансцендентности и алгебраической независимости значений некоторых функций" [Transcendentality and algebraic independence of the values of certain functions], Trudy Moskov. Mat. Obšč. 8 (1959), 283-320; Amer. Math. Soc. Transl. (2) 27 (1963), 191-230.
- [6] C.L. Siegel, "Über einige Anwendungen diophantischer Approximationen", Abh. Preuss. Akad. Wiss. Phys.-mat. Kl. Berlin (1929), no. 1; Carl Ludwig Siegel Gesammelte Abhandlungen, I, 209-266 (Springer-Verlag, Berlin, Heidelberg, New York, 1966).
- [7] Carl Ludwig Siegel, Transcendental numbers (Annals of Mathematics Studies, 16. Princeton University Press, Princeton, 1949).

Department of Mathematics, University of Oulu, Oulu, Finland.