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Summary

A method is developed for calculating the probability of establishment of an allele which is
favoured in some places, but not others, in a large subdivided population. This method is quite
general, and could be used to calculate the chance that any system which is linear near an
absorbing boundary will move away from that boundary. The results are applied to a population
distributed along one dimension. Only mutants which arise within a distance ~ a/\/2s of the
region in which they are favoured stand an appreciable chance of establishment. The net chance of
establishment of mutations distributed randomly across the habitat will be decreased by gene flow
if selection against them is sufficiently strong. However, if the mutations are only weakly deleterious
outside some limited region, gene flow may increase the net chance of establishment.

Introduction

Most new mutations are lost within a few generations,
even if they are at a selective advantage, and even if
the population is infinitely large. Fisher (1930) showed
that the probability of establishment of a new allele is
approximately twice its selective advantage in the
heterozygote. Maruyama (1970) has shown that this
result also holds for a subdivided population, provided
that migration is symmetric, and selection does not
vary from place to place (see also Slatkin, 1981). This
effect of sampling drift reduces the rate of evolutionary
advance, and (other things being equal) favours the
accumulation of alleles of large effect.

However, species rarely encounter uniform condi-
tions: alleles may be advantageous only within limited
regions. Nagylaki (1975) and Walsh (1983) have
shown that if the region in which the allele is favoured
is sufficiently large then the allele can be established at
high frequency in this region. If the region is small,
then the selective advantage of the allele within the
region must be much larger than any deleterious effects
outside, if it is to be established.

This paper extends these deterministic results on the
ability of populations to adapt to local conditions, to
include stochastic effects. The aim is to find the
probability that a mutant which arises somewhere
within a very large population will be established at

appreciable frequency. We first derive a general
expression for the probability of establishment, which
applies to any system which is linear near an absorbing
boundary. This is then applied to the particular case
of a one-dimensional population.

General results

Consider a system which can be described by a set of
positive variables, xt. These might, for example, be a
set of gamete frequencies, or a set of allele frequencies
in different subpopulations. We assume that deter-
ministic forces are weak enough, and population size
large enough, that evolution under stochastic forces
can be approximated by a diffusion equation. Let the
probability of establishment, given an initial state pu

be F(pt).' Establishment' can be said to have occurred
when the system moves beyond some arbitrary
boundary (xt > x* > 0, say). The expected change
(dx^ in each generation is w<; and the variance of
changes is Vy. Then, F is given by the Kolmogorov
forward equation (Ewens, 1979, p. 134):

(1)

The boundary conditions are that F = 0 when
= 0 for all /, and F = 1 when pt > x* for all /. Now,
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expand mi and vti in a Taylor series about pt = 0. We
assume that the first derivatives are not zero:

mi = (2a)

(2b)

Here, s is a measure of selection strength, and 1 /N
is a measure of the rate of random drift.
Ltj = (dnii/dp^/s is a matrix which gives the effects of
selection, gene flow, etc. The diagonal form of the
variance (2b) is obtained immediately if thept are allele
frequencies in demes of effective size N. However, the
form is not restrictive, since it can be obtained by a
suitable change of variables for any vi}. We now
suppose that x*, the boundary at which establishment
is taken to occur, is extremely small: this assumption
is reasonable, provided that the population is
sufficiently large (4Ns > 1): establishment will then be
almost certain even at low x*, since there will be a very
large (^ 2Nx*) number of alleles in each deme. Then,
since we are only concerned with the region,
0 < pt < x*, terms of order p2 become negligible.

Pollak (1966) develops essentially the same model,
in terms of a branching process. He shows how the
probability of establishment can be derived from the
probability generating function associated with this
branching process. The method developed here differs
in that it is based on the diffusion equation (1). This
is only an approximation to the branching process
studied by Pollak, but on the other hand, it describes
a wider variety of population structures.

When the new allele is rare (p ^ x* <$ 1 everywhere),
the chance that the offspring of two mutants will
interact with each other is negligible (~x*2).
Therefore, even if many alleles are introduced
simultaneously, they will be lost independently of each
other: mathematically,

(1 -F(Rl + p2)) = (1 -F(2l))(\ -F(p2)).

(This argument is developed rigorously by Pollak
(1966, (2.6)).) The probability of establishment must
therefore take the form:

F(p) = 1 -

Substituting (2) and (3) into (1) gives:

i )

This is satisfied if

(3)

(4a)

(4*)

We see that if/t = 0 is always a solution, and that if
"Lj Lit = 1 for all /, y/t = 2s is also a solution; the latter
corresponds to Maruyama's (1970) result for uniform
selection and symmetric migration.

It is conceivable that (4 b) may have more than one
solution. If establishment is impossible in an infinite
population (i.e. if all eigenvalues of Lti are negative),
then it can be shown that only the solution i]/t = 0
exists (see Appendix). If at least one eigenvalue is
positive, establishment is possible, and so we require
y/t > 0 for at least some /. Close to the threshold for
establishment, when the leading eigenvalue is small,
(4b) has a unique solution, proportional to the
product of the leading eigenvalue and eigenvector (see
Appendix). In the special cases described below, there
is also a unique positive solution; however, this has
not been proved to be true in general.

One-dimensional models

Suppose that a series of demes are arranged in an
infinite line, and exchange a proportion m/2 of their
individuals with each neighbour in every generation.
An allele has selective advantage sff in deme /. In the
limit of weak selection (s <% m < 0-5), the deterministic
evolution of such a population can be approximated
by a continuous diffusion equation (Nagylaki, 1975):

dp
—- = 0

where L = —+J{x);

as |x| -* oo, (5)

(x = ie/l, e = deme spacing, / = \/(o2/2s), a = me2,
t = s times no. of generations).

Since migration is assumed to be symmetric,
Ltj = Ljt, and so (4 b) becomes, in the continuous
approximation:

<t>\x) = = 0 as \x\-* oo, (6)

(here and below, cj> = y//2s).
This continuous limit can readily be derived from

(4 b), in the same way as (5) above (see Nagylaki,
1975).

(a) Step selection

Suppose that/(x) = -y3sp(.x < 0), and +1 (x^ 0).
The allele is favoured on the right, but selected against
to the left. Equation (6) then has solution (Fig. 1).

3/?

cosh(x+ix+)+l

(x < 0),

(x > 0),

(7)

(where a+, a_ are chosen so that the solutions match
at x = 0). When the allele is extremely disadvantage-
ous on the left (fi = oo), mutants introduced there are
immediately eliminated (y/ = 0 for x < 0). However,
alleles introduced on the right can be established there,
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2s-

Fig. 1. The probabilities of establishment, for stepped
selection. The selection coefficient is +s for x > 0, and
—fis for x < 0. Values are plotted for /? = 0, 1, oo, in
decreasing order of probability. The x axis is labelled in
units of the characteristic scale, / = \Z(cr2/2s).

0-5-

fl-

Fig. 2. The net probability of fixation (J y/ dx) for stepped
selection. The x axis is in units \Z(a2/2s). Values are
plotted for s = 005; changes in 5 would cause
proportionate changes in yi. The integral was arbitrarily
truncated at x = +5; since the probability of fixation
converges to 0-1 for large x, an increase in this truncation
point by one unit would raise the graph by 0-1.

and their probability of establishment rises to
approximately the panmictic limit (2s) when x > 2
(Fig. 1). As the selective disadvantage, fis, decreases,
the probability of establishment rises. When the allele
is neutral on the left (/? = 0), new mutants have an
appreciable chance of establishment even if they arise
well away from the region where they are favoured. In
the limit)? -> 0, (7) tends to <t> = 6/(x-a_)2 for x < 0;
thus, the chance of fixation decreases algebraically,
rather than exponentially, with distance.

In most cases, the rate of mutation will be the same
everywhere. Then the net probability of establishing a
mutation per generation is 2pp. J y/ dx, where p is the
density of diploid individuals. The integral of y/ can
be calculated numerically, and is plotted against /? in
Fig. 2. Values there are for s = 005; changes in s will
change y/ in proportion. (The integral was truncated
arbitrarily at x = + 5.) The net probability of
establishment can be compared with that in the
absence of gene flow: 2s x 5 = 0-5. When fi is small

37

(<0-87) gene flow increases the net probability:
mutants arising on the left, where they are not
favoured, may move to the right, and be established
there. However, when /? is large, the net probability is
decreased by gene flow: mutants arising on the right,
where they are favoured, may move to the left and be
lost.

(b) A local pocket

Suppose that J{x) = —/? outside a region of width W
centred on x = 0; J{x) = 1 within this region.
Equation 4b has solution:

3/?
cosh ((x-ocWP)- 1

3/?

(\x\ < W/2),

(\x\ > W/2),

(8 a)

(86)
cosh((x+a)V/?)-l

I can find no explicit solutions for the central region
(\x\ < W/2). However, (6) can be integrated to give:

u
F{^~1J^-\^0)~/(pC))'\, («/&)). (8 c)

where

Jo

da

is the elliptic integral;

b = f[_

By matching the derivatives of y/ at |x| = W/2 one can
also obtain:

By combining (8 c) and (8rf), one obtains a re-
lation between the width of the local region, W,
and the maximum probability of establishment
(y/(0) = 2.s^(0)). In the limit where the region is so
narrow that the allele has almost no chance of
establishment (y(0) -»0), this relation reduces to:

This agrees with the threshold obtained by
Nagylaki's (1975) deterministic analysis: if/? exceeds
this value, there is no positive solution for y/{x).

Figure 3 shows the probability of fixation as a
function of position, for an allele favoured only in a
region W =21 wide. This was calculated numerically
using a stepping-stone model with 21 demes (m = 0-4,
s = 005). Values with larger numbers of demes or
weaker selection did not differ appreciably. The graph
shows the cases /? = 0, 1; when /? > tan2(2/2) = 2-43,
establishment becomes impossible.

The net probability of establishment (§y/dx) is
plotted in Fig. 4, for the case s = 005. Values were
integrated over a range of x large enough to be
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2s-

Fig. 3. As for Fig. 1, but for an allele favoured only in a
local pocket of width W = 2. The disadvantage about this
pocket is proportional to /? = 0 (upper curve), ft = 1
(lower curve).

6-5

Fig. 4. As for Fig. 2, but for an allele favoured only in a
local pocket of width W = 4 (upper curve), W = 2
(middle curve), W = 1 (lower curve). Beyond a threshold
P = tan2(W/2), establishment is impossible, s = 005, as
above.

effectively infinite. The curves correspond to the cases
W = 1, 2, 4, in increasing order of probability. They
may be compared with the net probability in the
absence of gene flow, which is 2slx 1, 2, 4 = 0-1/, 0-2/,
0-4/. As for stepped selection, gene flow increases the
net probability when /? is small, but decreases it when
P is large. When W < nl, establishment is impossible
when /? exceeds the critical value tan2 (W/2). However,
when W > nl, establishment is possible regardless of
the strength of selection against the allele outside the
pocket. The net probability therefore converges to a
definite value as /? becomes large.

Simulations

The application of (4 b) to a linear stepping-stone
model was checked by simulating the increase of a
single new mutant. The population was assumed to be
infinite: the simulations therefore followed the number
of copies of the new allele, rather than its frequency.
(Total population size is irrelevant to an allele at
vanishingly low frequency.) In other respects, the
method was identical to that of Slatkin (1981). In each
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generation, and each deme, a number (nt) of genes
produce a much larger number of offspring. Selection,
followed by migration, then act deterministically.
Finally, a small number of genes is sampled to found
the next generation; this number is chosen from a
Poisson distribution with expectation

(\-m)winl + (w/2) (wi+1 ni+1 + w^ n^),

where wi — 1 + sfj is the fitness of the new allele relative
to the old. (Since the common allele does not appear
explicitly in the simulation, this model, and the above
theory, also apply to the chances of establishment of
a whole population in a linear habitat following a
founder event; s is then a measure of the intrinsic rate
of increase.) To the extent that the spatial and
stochastic diffusion approximations hold, the results
should not depend on details of the population
structure.

Table 1 gives results for 21 demes, with m = 0-4,
s = 005 (these values were chosen to give results
reasonably quickly, and yet close to the continuous
approximation). A sharp transition from J[x) = 1 to
f(x) = —/? at x0 was approximated by setting/= 0 at
the deme corresponding to x0. With these parameters,
the demes are quite widely spaced, relative to the
characteristic scale set by migration and selection
(s = 0-5/). Nevertheless, the theoretical predictions
given by the approximation of spatial continuity ((7)
and (8)) are very close to those derived by exact
numerical solution of (4 b).

The simulations give probabilities reasonably close
to those expected: only 3 out of 36 likelihood-ratio (G)
tests are statistically significant, at the 5% level.
However, the overall xl« — 62-84 is significant at the
0-5% level. The simulated probabilities tend to be
lower than the theoretical expectation; this discrep-
ancy may be because s = 005 is appreciable, or
because the diffusion approximation breaks down
when only a few mutant alleles are present. However,
the discrepancy is not large: of the 27 runs where the
expected probability was greater than 1 %, the largest
% relative error (100 x(O-E)/E) was -22-7% (not
significant), and the average was —6-4%.

The average times to establishment and loss,
together with their standard deviations, are given in
Table 1. Times to loss are essentially independent of
initial position, and of the pattern of selection: they lie
between 50 and 10-2 generations. This is consistent
with Kimura and Ohta's (1969) results for advan-
tageous alleles. Times to establishment are some-
what arbitrary, since establishment is taken as certain
when more than 200 copies of the allele are present.
The time expected if increase were deterministic is
In (200)/0-05 = 106 generations: this is approximately
the same as the mean from the simulations. However,
alleles which arise far from the region in which they
are favoured take somewhat longer to become
established, since they must move into that region
before increasing.

https://doi.org/10.1017/S0016672300023314 Published online by Cambridge University Press

https://doi.org/10.1017/S0016672300023314


T
ab

le
 1

. 
T

he
 r

es
ul

ts
 o

f 
si

m
ul

at
io

ns
 (

se
e 

te
xt

 f
or

 
de

ta
il

s)

In
it

ia
l 

po
si

ti
on

: 
d

em
e.

..
v 

=

(a
) 

S
te

p 
se

le
ct

io
n

/?
 =

 0
 

O
bs

er
ve

d 
\f

i
E

xa
ct

 i
//

D
if

fu
si

on
 y

i
y

2 t 
(e

st
ab

.)
Sd

(t
) 

(e
st

ab
.)

/ 
(l

os
s)

Sd
(t

) 
(l

os
s)

N
o.

 o
f 

it
er

at
io

ns

ft
 =

 
1 

O
bs

er
ve

d 
if

/
E

xa
ct

 \f
i

D
if

fu
si

on
 i

f/
X

\ t 
(e

st
ab

.)
Sd

(t
) 

(e
st

ab
.)

/ 
(l

os
s)

Sd
(t

) 
(l

os
s)

N
o.

 o
f 

it
er

at
io

ns
(b

) 
L

oc
al

 p
oc

ke
t

W
 =

 4
 d

em
es

 
O

bs
er

ve
d 

^
/?

 =
 0

 
E

xa
ct

 i
f/

x\ t 
(e

st
ab

.)
Sd

(t
) 

(e
st

ab
.)

/ 
(l

os
s)

Sd
(t

) 
(l

os
s)

N
o 

of
 i

te
ra

ti
on

s

W
 =

 4
 d

em
es

 
O

bs
er

ve
d 

y/
P

 =
 1

 
E

xa
ct

 i
f/

x\ t 
(e

st
ab

.)
Sd

(t
) 

(e
st

ab
.)

/ 
(l

os
s)

Sd
(t

) 
(l

os
s)

N
o.

 o
f 

it
er

at
io

ns

2
-

4

0
0

1
1

7
5

00
13

59
0

0
1

1
5

0
10

6
15

3-
5

59
-8 8
0

18
-6

40
00 00

00
00

00
00

73
00

00
66

5-
85

— —
5

0
0

8-
55

40
00 0

0
1

5
2

5
00

15
82

0
0

8
15

7-
2

66
1

6-
7

15
-2

40
00 0

0
0

0
2

5
00

00
78

1 
95

— —
5-

1
9-

4
40

00

4
-

3

00
19

00
0

0
1

6
6

6
0

0
1

5
4

9
1-

28
14

7-
8

6
3

0
7

1
17

-5
40

00 0
0

0
2

5
0

0
0

0
1

8
4

00
01

81
0-

85
10

8-
2

20
-8 5-
3

9
0

40
00 00

18
25

0
0

1
9

9
4

0-
60

14
3-

8
60

-6 6-
4

14
 9

40
00 00

01
75

00
01

96
0

0
9

17
11

47
-9 5-
4

11
-4

40
00

6
-

2

00
22

00
0

0
2

2
5

8
0

0
2

1
9

9
0

0
6

11
7-

8
53

-5 6-
7

14
-7

40
00 00

03
75

00
04

96
0

0
0

4
9

6
1-

30
12

0-
8

48
-6 5-
2

8-
9

40
00 00

28
75

00
28

18
0

0
5

12
5-

6
53

-9 6-
6

15
 6

40
00 0

0
0

6
0

0
00

05
27

0-
39

1
7

1
0

94
-6 6
1

15
-3

40
00

8
-1

0
0

3
0

2
5

00
33

82
0

0
3

3
6

3
1-

62
10

11
42

-3 5-
9

11
-5

40
00 0

0
1

1
7

5
00

13
68

0
0

1
3

8
7

11
6

91
-3

2
5

0
5-

2
9-

4
40

00 00
42

25
00

44
82

0-
63

11
4-

2
55

-2 7
1

14
 9

40
00 00

11
50

0-
01

45
5

2-
80

15
6-

91
69

-9
2 7-
7

21
-5

40
00

10 0

00
50

50
00

57
32

0
0

5
7

7
4

3-
58

92
-9

47
-8 6-
4

13
0

40
00 00

39
25

00
39

49
0

0
4

0
8

2
0

0
2

88
-7

29
-4 5-
4

10
-2

80
00 00

60
75

00
57

15
0-

94
11

2-
2

55
-3 7-
9

19
-7

40
00 00

22
75

00
23

13
0

0
3

15
1-

6
76

-4
10

-2
27

-7
40

00

12 1

00
80

00
00

82
60

0
0

8
2

8
4

0-
36

82
-5

30
-8 5-
9

11
-4

40
00 00

66
00

00
74

17
0

0
7

4
8

2
8-

12
81

-7
27

-6 6-
2

12
0

80
00 00

40
50

00
44

82
1-

80
11

5-
2

54
-6 7-
1

16
-8

40
00 00

11
25

00
14

55
3-

30
15

51
98

-3 7-
3

22
-1

40
00

14 2

0
0

9
4

7
5

0
0

9
3

2
9

0
0

9
3

3
4

0
1

0
75

-7
30

1
5-

6
10

-6
40

00 0
0

8
2

2
5

0
0

8
9

8
6

0
0

9
0

2
0

2-
91

77
-5

27
-4 5-
8

11
1

40
00 0

0
3

0
7

5
0

0
2

8
1

8
0-

93
13

50
62

-3 6-
6

15
-4

40
00 00

05
75

00
05

27
0

1
7

16
7-

6
78

-5 6-
2

15
-5

40
00

16 3

00
90

00
0

0
9

7
4

5
0

0
9

7
5

5
2-

58
73

-6
25

-4 5-
5

10
-3

40
00 00

90
75

00
96

11
0

0
9

6
3

2
1-

35
76

-2
28

-7 5-
6

11
-4

40
00 0

0
2

0
0

0
0

0
1

9
9

4
0

0
0

14
4-

3
7

3
0

7-
3

18
-4

40
00 0

0
0

0
2

5
00

01
96

9-
56

— —
5-

2
10

0
40

00

18 4

00
90

50
00

98
98

0
0

9
9

1
0

3-
31

74
-4

2
7

0
5-

2
9-

6
40

00 00
92

25
0

0
9

8
4

4
0

0
9

8
6

4
1-

76
71

-9
28

-3 5-
4

9
0

40
00 00

14
75

00
15

82
0-

30
15

40
62

-5 6-
7

14
 7

40
00 00

00
25

0
0

0
0

7
8

1-
95

— —
4-

8
8-

4
40

00

? r §• "^ §- 1

A
 s

in
gl

e 
al

le
le

 w
as

 r
el

ea
se

d 
at

 s
om

e 
in

it
ia

l 
po

si
ti

on
 i

n 
a 

ch
ai

n 
of

 2
1 

de
m

es
 (

nu
m

be
re

d 
0-

20
).

 T
hi

s 
po

si
ti

on
 i

s 
gi

ve
n 

in
 t

er
m

s 
of

 d
em

e 
nu

m
be

r,
 a

nd
 d

is
ta

nc
e 

x 
=

 i
e/

\/
(o

-2 /2
5)

.
T

he
 f

ir
st

 r
ow

 f
or

 e
ac

h 
se

t 
of

 p
ar

am
et

er
s 

gi
ve

s 
th

e 
pr

op
or

ti
on

 o
f 

ru
ns

 i
n 

w
hi

ch
 a

 t
hr

es
ho

ld
 o

f 
20

0 
co

pi
es

 w
as

 r
ea

ch
ed

. 
T

hi
s 

ca
n 

be
 c

om
pa

re
d 

w
ith

 t
he

 e
xa

ct
 p

re
di

ct
io

n 
fo

r 
th

e
st

ep
pi

ng
-s

to
ne

 m
od

el
 (

4b
),

 a
nd

 t
he

 d
if

fu
si

on
 a

pp
ro

xi
m

at
io

n 
((

7)
 a

nd
 (

8)
).

 T
h

e/
? 

va
lu

e 
is

 tw
ic

e 
th

e 
lo

g-
li

ke
li

ho
od

 r
at

io
 f

or
 t

he
 c

om
pa

ri
so

n 
be

tw
ee

n 
ob

se
rv

ed
 a

nd
 e

xa
ct

 i
//

. 
D

ev
ia

ti
on

s
si

gn
if

ic
an

t 
at

 t
he

 5
%

 l
ev

el
 i

n 
it

al
ic

s.
 T

he
 r

em
ai

ni
ng

 r
ow

s 
gi

ve
 t

he
 m

ea
n 

an
d 

st
an

da
rd

 d
ev

ia
ti

on
s 

of
 t

he
 t

im
es

 t
o 

es
ta

bl
is

hm
en

t 
an

d 
lo

ss
, 

an
d 

fi
na

lly
, 

th
e 

nu
m

be
r 

of
 r

ep
li

ca
te

s
fo

r 
ea

ch
 c

as
e.

https://doi.org/10.1017/S0016672300023314 Published online by Cambridge University Press

https://doi.org/10.1017/S0016672300023314


N. H. Barton 40

Discussion

The dependence of the probability of establishment on
the initial position of the mutant is straightforward.
When an allele is at an advantage s only within some
limited region, the probability increases from zero
outside this region towards a maximum of 2s within
it (Fig. 1). The transition occurs over a characteristic
distance / = \/(a2/2s); if the region in which the allele
is favoured is small relative to this distance, then
establishment may be unlikely or impossible. Even if
the disadvantage is relatively small outside {P < 1),
mutants far from the region in which they are favoured
(> a/\/[2/is]) have little chance of establishment. If
the allele is precisely neutral outside, the situation is
somewhat different. The probability of establishment
then declines only algebraically (~x~2) with distance
from the favourable region. Thus, although distant
mutants still have little chance of increasing, the net
contribution of mutations from outside may become
large. Indeed, in two dimensions, the contribution of
mutations far from the region in which they are
favoured is expected to be much greater than that from
within the region (J r~2 r dr -> oo).

These results confirm the intuition that even when
an allele can become established at high frequency in
a limited area, thus aiding adaptation to conditions in
that area, the rate of adaptation may be limited by lack
of suitable variation: only mutants from the vicinity
of this area can contribute. This conclusion depends,
of course, on the assumption that adaptation occurs
through the accumulation of new alleles. If it relies
instead on polygenic variation maintained by recur-
rent mutation, or on adjustment of balanced poly-
morphisms, then local adaptation may occur more
readily.

This work was supported by a grant from the Science and
Engineering Research Council (GR/D/91529). Shahin
Rouhani supplied the proof that no positive solution to (6)
exists when all eigenvalues are negative (Appendix);
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Appendix

Relation of fixation probabilities to eigenvalues

Since the main application is to one-dimensional
models, derivations are given for these. However, the
same method gives analogous results for the discrete
case (4 b).

Let <t>(x) = y/(x)/2s be represented by a sum of
eigenfunctions, et(x), of the operator L.

(Al)

For simplicity, the range of x is assumed to be finite,
so that the eigenvalues, Xt, are discrete. The
eigenfunctions are normalized so that
]ei(x)ei{x)dx = 5tj, where 8tj = 1 if i=j, and 0
otherwise.

Consider the integral of the product of </>(x) and (6)

J <j>3 dx = J <j>L<j) dx = 2 A, a f . (A 2)
i

Since <f>{x) is proportional to the probability of
establishment it must be positive or zero everywhere;
therefore the left-hand side cannot be negative. But, if
all eigenvalues are negative, the right-hand side cannot
be positive. Therefore, establishment is only possible
if at least one eigenvalue positive. (This proof was
suggested by S. Rouhani.)

Now, consider the situation just beyond this
threshold: A1 is small and positive, whereas all other
eigenvalues are negative, and of order 1. The index i
now denotes all / > 1. From the fact that
Ax cc\+Zi Aj a? > 0, we have A2 af > Sf \lt\ af, and
hence ax >̂ <%. So, to a first approximation, <j>{x) is
proportional to c^e^x). To find the coefficient of
proportionality, substitute (A 1) into (6)

af e\ + O(<xl otj) + 0(a?) = at X1 e1 +1 txt Xt e{. (A 3)
i

Multiplying by ex or e(, and integrating, gives:

a?le\dx + O(x1 a*) + O(<x\) = a, K (A 4a)
o^Jgf e,dx +0(0^0,)+ OW) = OfXi (A 4b)

Hence (excluding the trivial case oq = 0, <xt = 0)

a, =

therefore

(A 5 a)

(A 5 b)

(A 5 c)

Near the threshold, the probability of fixation is
proportional to the leading eigenvalue (Ax) and the
leading eigenfunction {ex{x)). However, when k^ is
large, the probability of fixation will be a complicated
mixture of eigenfunctions.
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