
Bull. Aust. Math. Soc. 82 (2010), 10–17
doi:10.1017/S0004972710000043
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Abstract

We consider two problems concerning Kolmogorov widths of compacts in Banach spaces. The first
problem is devoted to relations between the asymptotic behavior of the sequence of n-widths of a compact
and of its projections onto a subspace of codimension one. The second problem is devoted to comparison
of the sequence of n-widths of a compact in a Banach space Y and of the sequence of n-widths of the
same compact in other Banach spaces containing Y as a subspace.
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1. Introduction

Our Banach space theory terminology and notation follow [3]. We denote the closed
unit ball of a Banach space Y by BY , the unit ball of `n

p by Bn
p, and the norm closure

of a set M ⊂ Y by M . Let Z be a subset of a Banach space X and x ∈ X . The distance
from x to Z is defined as dist(x, Z)= inf{‖x − z‖ : z ∈ Z}.

DEFINITION 1.1. Let K be a subset of a Banach space X , n ∈ N ∪ {0}. The
Kolmogorov n-width of K is given by

dn(K , X )= inf
Xn

sup
x∈K

dist(x, Xn),

where the infimum is over all n-dimensional subspaces. We use dn(K ) instead of
dn(K , X ) if X is clear from context.

This notion was introduced by Kolmogorov [6] in 1936. It has been the subject
of extensive study and has found many applications. See [7, 11, 14] for information
on the Kolmogorov n-width. In [9] it was discovered that some general asymptotic
properties of Kolmogorov widths are useful in the study of closures of sets of operators
in the weak operator topology. The purpose of this paper is to continue the analysis of
asymptotic properties of widths.
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[2] Kolmogorov widths 11

One of the results on asymptotic properties of widths proved in [9, Lemma 3.3] is
the following lemma.

LEMMA 1.2. Let K be a bounded subset in a Banach space X . If K0 = K ∩ L,
where L is a closed linear subspace in X which does not contain K , then there exists
a constant 0< C <∞ such that dn(K0)≤ Cdn+1(K ) for all n ∈ N ∪ {0}.

In view of possible applications in the spirit of [9] it is important to find out
whether one can prove a version of Lemma 1.2 for projections. In this connection
we consider the following problem. Let K be a compact in a Banach space X
such that X = lin(K ). Let K0 = P(K ), where P is a bounded linear projection
of X onto its subspace of codimension one. Does there exist 0< C <∞ such that
dn(K0, X )≤ Cdn+1(K , X ) for all n ∈ N ∪ {0}? The first purpose of this paper is to
answer this problem in the negative. Our example is an infinite-dimensional ellipsoid
in a Hilbert space.

DEFINITION 1.3. A set K of the form A(BH0), where A is an infinite-dimensional
bounded compact operator from a Hilbert space H0 to a Hilbert space H, is called an
ellipsoid. An ellipsoid K is called lacunary if

lim inf
n→∞

(dn+1(K , H)/dn(K , H))= 0.

THEOREM 1.4. There exists a lacunary ellipsoid K with dense linear span in a
Hilbert space H and an orthogonal projection P :H→H with one-dimensional
kernel such that there exists 0< C <∞ for which dn(K , H)≤ Cdn(P(K ), H).

Since for a lacunary ellipsoid K there is no 0< C <∞ such that dn(K , H)≤
Cdn+1(K , H), Theorem 1.4 answers the above-mentioned problem in the negative.
Theorem 1.4 is proved in Section 2.

Another problem considered in this paper is related to the well-known observation
that there exist a Banach space X , its closed subspace Y , and a subset K ⊂ Y such that
for some n the strict inequality

dn(K , X ) < dn(K , Y) (1.1)

holds. Examples of this type can be found in [1], [7, p. 446, Problem 10.3], [11, pp. 10
and 35], and [14]. Observe that the nonstrict inequality in (1.1) follows immediately
from the definition and holds for all triples K ⊂ Y ⊂ X .

Let K be a compact in a Banach space X and let Y = lin K . We consider the
following problem: how small in comparison with dn(K , Y) can dn(K , X ) be?
Using Kashin’s decomposition (see [4, 13]) we obtain the following result (proved
in Section 3).

THEOREM 1.5. For each n the Banach space `3n
1 contains a 2n-dimensional subspace

Y2n and a compact Kn ⊂ Y2n such that dn(Kn, `
3n
1 )≤ 1, but dn(Kn, Y2n)≥ c

√
n for

some absolute constant c > 0.
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12 M. I. Ostrovskii [3]

Theorem 1.5 shows that the sequence {dn(K , X )}n depends heavily on the ambient
Banach space. In this connection it is natural to recall a notion introduced in [2,
Section 2].

DEFINITION 1.6. Let K be a compact in a Banach space Y and n ∈ N. The nth
absolute width da

n (K ) of K is defined by da
n (K )= infX dn(K , X ), where the inf is

over all Banach spaces X containing Y as a subspace.

In Section 4 we use Theorem 1.5 to establish one asymptotic property of da
n .

It is worth mentioning that some aspects of the natural problem of evaluating
or estimating numbers {da

n (K )}, given a compact K in a Banach space Y , were
considered in [5, 8].

2. Asymptotic properties of widths of quotients

PROOF OF THEOREM 1.4. Let {ei } be the unit vector basis in H, {βi } be a sequence
satisfying βi ≥ βi+1 > 0, and let

K =

{ ∞∑
i=1

xi ei :

∞∑
i=1

(
xi

βi

)2

≤ 1
}
.

Let v =
∑
∞

i=1 ai ei be a unit vector (‖v‖ = 1) and let P be an orthogonal projection
in H whose kernel is the linear span of v, so Px = x − 〈x, v〉v. Desired properties of
sequences {βi } and {ai } will be described later. It is well known that dn(K )= βn+1
(see [7, p. 401]).

The well-known results on widths (see [7, Ch. 13, Section 5]) imply that in order
to prove the theorem it suffices to show that for suitable {βn}, {an}, and c > 0 we have
inf{‖Px‖ : x ∈ Sn} ≥ cβn , where

Sn =

{ ∞∑
i=1

xi ei :

n∑
i=1

(
xi

βi

)2

= 1 and 0= xn+1 = xn+2 = · · ·

}
.

Since βn+1 = dn(K ) and we are looking for a lacunary ellipsoid, we require that
{βn} satisfies lim infn→∞(βn+1/βn)= 0.

To simplify the computation, we prove that inf{‖Px‖ : x ∈Rn} ≥ cβn for

Rn =

{ ∞∑
i=1

xi ei :

∑n−1
i=1 x2

i

β2
n−1

+

(
xn

βn

)2

= 1 and 0= xn+1 = xn+2 = · · ·

}
.

Let {xi }
∞

i=1 ∈Rn . Denote by v(n) the orthogonal projection of v onto the subspace
En spanned by the first n vectors of {ei }. Then

‖Px‖2 = ‖x‖2 − 〈x, v〉2.
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Let x = w + zen ∈Rn , where w is the orthogonal projection of x to En−1. Then
‖x‖2 = ‖w‖2 + z2. Also (

‖w‖

βn−1

)2

+

(
z

βn

)2

= 1 (2.1)

and 〈x, v〉 = 〈w, v(n − 1)〉 + zan . Therefore

‖Px‖2 = ‖w‖2 + z2
− (〈w, v(n − 1)〉 + zan)

2

≥ ‖w‖2 + z2
− (‖w‖‖v(n − 1)‖ + zan)

2

= ‖w‖2(1− ‖v(n − 1)‖2)+ z2(1− a2
n)− 2‖w‖‖v(n − 1)‖zan.

We denote the first two summands in the last line by B2 and C2, respectively. We show
that for a suitable choice of the sequence {an} there is a constant 0< d < 1 which does
not depend on n and is such that

2‖w‖‖v(n − 1)‖zan ≤ 2d BC. (2.2)

Assume that we have shown (2.2). Then we get

‖Px‖2 ≥ B2
+ C2

− 2d BC ≥ (1− d2)max{B2, C2
}.

Observe that (2.1) implies that either ‖w‖2 ≥ β2
n−1/2 or z2

≥ β2
n/2.

In the former case we get

‖Px‖2 ≥ (1− d2)‖w‖2(1− ‖v(n − 1)‖2)≥
1− d2

2
β2

n−1(1− ‖v(n − 1)‖2),

and we are done if we assume that the sequences {βn} and {an} are selected in such a
way that

β2
n−1(1− ‖v(n − 1)‖2)≥ β2

n . (2.3)

In the latter case we have

‖Px‖2 ≥ (1− d2)z2(1− a2
n)≥

1− d2

2
β2

n (1− a2
n)≥

1− d2

4
β2

n ,

if we assume that a2
n ≤

1
2 for all n.

It remains to establish (2.2). Analysis of this inequality shows that we need to prove
the inequality

‖v(n − 1)‖an ≤ d
√
(1− ‖v(n − 1)‖2)(1− a2

n),

but this follows from the obvious inequality ‖v(n − 1)‖2 ≤ (1− a2
n) and the

observation that we can select {an} in such a way that

a2
n ≤ d2(1− ‖v(n − 1)‖2).
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This can be done because 1− ‖v(n − 1)‖2 = a2
n + a2

n+1 + · · · , and we may select the
sequence {an} in such a way that, for example, a2

n+1 + · · · ≥ a2
n .

For clarity we describe the way in which {ai } and {bi } can be chosen. First we
choose {ai } in such a way that

∑
n a2

n = 1, a2
n ≤ a2

n+1 + a2
n+2 + · · · , and a2

n ≤
1
2 for

all n; one of the possible choices is an = (
√

2)−n .
Now we choose {βi } satisfying βi ≥ βi+1 > 0, lim infn→∞(βn+1/βn)= 0,

and (2.3). It is clear that such choice is possible and that with these choices all steps
of our argument work. 2

3. Dependence of widths on the ambient Banach space

PROOF OF THEOREM 1.5. It is well known and is easy to see that the unit ball B3n
1

of `3n
1 contains (1/

√
3n)B3n

2 , where B3n
2 is the unit ball of `3n

2 . When we use the
term ‘orthogonal projection’ we mean a projection orthogonal with respect to the inner
product corresponding to `3n

2 .
The celebrated result of Kashin [4] (see also [13] and [12, Ch. 6]) states that

there is an absolute constant A and a (2n)-dimensional subspace Y2n of `3n
1 such that

Y2n ∩ B3n
1 ⊂ (A/

√
3n)B3n

2 , so that Y2n is A-isomorphic to a Hilbert space.
We let Pn be an orthogonal projection onto Y2n and Kn = Pn(B3n

1 ). Since the kernel
of Pn is n-dimensional, it follows that dn(Kn, `

3n
1 )≤ 1.

It remains to show that dn(Kn, Y2n)≥ c
√

n. Since the norm of Y2n is A-equivalent
to the

√
3n-multiple of the norm of `3n

2 restricted to Y2n , it suffices to show the
inequality dn(Kn, Y2n)≥ c1 with respect to the norm of `3n

2 on Y2n .
Let En be any n-dimensional subspace of Y2n . Let Q : Y2n→ E⊥n be an orthogonal

projection onto the orthogonal complement of En in Y2n . It suffices to show that the
diameter of Q(Kn) with respect to the norm of `3n

2 is greater than or equal to c1.
Let {e j }

3n
j=1 be the unit vector basis of `3n

1 . We need to show that ‖Q Pne j‖`3n
2
≥ c1

for some j ∈ {1, . . . , 3n}.
Let { fi }

n
i=1 be an orthonormal basis of E⊥n . Then

fi =

3n∑
j=1

〈 fi , e j 〉e j .

Therefore
∑3n

j=1〈 fi , e j 〉
2
= 1 and

n∑
i=1

3n∑
j=1

〈 fi , e j 〉
2
= n.

This implies that there exists j ∈ {1, 2, . . . , 3n} such that
n∑

i=1

〈 fi , e j 〉
2
≥

1
3
,

and this inequality means that ‖Q Pne j‖ ≥ 1/
√

3. 2
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REMARK 3.1. Later we shall need a slight generalization of the statement proved
above: the set Kn contains 3n vectors {Pnei }

3n
i=1 such that for each orthogonal

projection Q with rank at least αn (0< α < 1) on Y2n endowed with the norm whose
unit ball is (1/

√
3n)B3n

2 ∩ Y2n there exists j ∈ {1, . . . , 3n} such that ‖Q Pne j‖ ≥√
αn.

4. Absolute widths

We start by mentioning the fact observed in [2, Section 2] that there exists a wide
class of compacts K for which their widths in lin(K ) is the same as their absolute
widths. Examples can be constructed in the following way. Let Y be an arbitrary
infinite-dimensional Banach space. Let {Zn}

∞

n=1 be a family of subspaces of Y
satisfying dim Zn = n and Zn ⊂ Zn+1, let Bn be the unit ball of Zn and let {tn} be a
decreasing sequence of positive numbers with limn→∞ tn = 0. Consider the compact

K = conv
( ∞⋃

n=1

tn Bn

)
. (4.1)

Then dn(K , X )= tn+1 for each n ∈ N and each Banach space X containing Y as a
subspace. The estimate from above follows from K ⊂ Zn + tn+1 BX . The estimate
from below is an immediate consequence of [7, Theorem 5.1, p. 419].

The proof of Theorem 1.5 can be used to construct an infinite-dimensional
compact K in a Hilbert space H for which lim infn→∞ da

n (K )/dn(K , H)= 0.
See [3, p. 5] for definitions of direct sums used below.

THEOREM 4.1. There exist a compact K ⊂H and an isometric embedding I of H
into a Banach space X isomorphic to L= (

∑
∞

n=1 `
3n
1 )2, such that

lim inf
n→∞

(dn(IK , X )/dn(K , H))= 0.

PROOF. We let {ni }
∞

i=1 be an increasing sequence of positive integers satisfying

k∑
i=1

(2ni )≤
nk+1

2
. (4.2)

We represent H as (
∑
∞

i=1 `
2ni
2 )2. We define Ei : `

2ni
2 → `

3ni
1 as a linear embedding

which maps B2ni
2 onto the intersection (1/

√
3ni )B

3ni
2 ∩ Y2ni , where Y2ni are the same

as in Theorem 1.5. Combining these embeddings we get an embedding E of H into L.
This embedding is not isometric but it satisfies ‖x‖/A ≤ ‖Ex‖ ≤ ‖x‖ for the absolute
constant A introduced in the proof of Theorem 1.5.

The well-known argument [10, Proposition 1] implies that to complete the proof of
the theorem it suffices to find a compact K ⊂H such that

lim inf
n→∞

(dn(EK , L)/dn(K , H))= 0.
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We let Kni ⊂ Y2ni be the compacts Pni (B
3ni
1 ) defined in Theorem 1.5 and Hi =

E−1
i Kni be their pre-images considered as compacts in `2ni

2 . The desired compact K

will be found in the form K = conv(
⋃
∞

i=1 αi Hi ), where Hi is considered as a subset
of H and {αi } is a converging to zero sequence of positive real numbers satisfying

αn ≥

∞∑
i=n+1

(αi diam(Hi )).

We let p = pk =
∑k

i=1(2ni )+ nk+1. To complete the proof of the theorem it
suffices to show that:

(1) dp(EK , L)≤ 2αk+1;
(2) dp(K , H)≥ 1

√
2

√
nk+1αk+1.

To prove (1) we consider the p-dimensional space L p =
∑k

n=1 Y2ni + ker Pnk+1

in L. Then

K ⊂ L p + αk+1 B3nk+1
1 + conv

( ∞⋃
i=k+2

αi Kni

)
.

Therefore

dp(K , L)≤ αk+1 +

∞∑
i=k+2

(αi diam(Hi ))≤ 2αk+1.

To prove (2) assume the contrary. Then for some k there is a pk-dimensional
subspace A p ⊂H such that K ⊂A p + c

√
nk+1αk+1 BH, where c < 1

√
2
. Therefore

αk+1 Hk+1 ⊂A p + c
√

nk+1αk+1 BH

and
αk+1 Hk+1 ⊂ Z p + c

√
nk+1αk+1 BH,

where Z p is a p-dimensional subspace in `2nk+1
2 .

Let Q : `2nk+1
2 → Z⊥p be an orthogonal projection onto the orthogonal complement

of Z p in `2nk+1
2 . The inequality (4.2) implies that dim Z⊥p = 2nk+1 − p ≥ 1

2 nk+1. By

Remark 3.1 there is a vector z ∈ αk+1 Hk+1 such that ‖Qz‖ ≥ 1
√

2
αk+1
√

nk+1. We
arrive at a contradiction. 2

In connection with the examples presented in this section we suggest the following
problems.

PROBLEM 4.2. Does there exist an infinite-dimensional compact K such that

lim
n→∞

da
n (K )/dn(K , lin(K ))= 0?

PROBLEM 4.3. Characterize compacts K for which the absolute widths do not differ
much from the widths of K in lin(K ).
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