IRREGULARITY OF THE RATE OF DEGREASE OF SEQUENCES OF POWERS IN THE VOLTERRA ALGEBRA

J. ESTERLE

1. Introduction. G. R. Allan and A. M. Sinclair proved in [1] that if a commutative radical Banach algebra \mathscr{R} possesses bounded approximate identities then for every sequence (α_{n}) of real numbers such that $\lim _{n \rightarrow \infty} \alpha_{n}=0$ there exists $b \in \mathscr{R}$ such that

$$
\liminf _{n \rightarrow \infty} \frac{\left\|b^{n}\right\|^{1 / n}}{\alpha_{n}}=+\infty .
$$

In the other direction it is shown in [6] that if \mathscr{R} is separable and if the nilpotents are dense in \mathscr{R} then for every sequence $\left(\beta_{n}\right)$ of positive reals there exists $b \in \mathscr{R}$ such that

$$
[b \mathscr{R}]^{-}=\mathscr{R} \quad \text { and } \quad \underset{n \rightarrow \infty}{\lim \sup } \frac{\left\|b^{n}\right\|^{1 / n}}{\beta_{n}}=0 .
$$

(This result was given in [2] for the Volterra algebra.)
We are concerned here with the irregularity of the rate of decrease of sequences of powers. It is known [5] that if a nonnilpotent element b of a commutative radical Banach algebra \mathscr{R} satisfies $b \in[b \mathscr{R}]^{-}$then there exists a nonnilpotent $c \in \mathscr{R}$ such that

$$
\limsup _{n \rightarrow \infty} \frac{\left\|b^{n}\right\|^{1 / n}}{\left\|c^{n}\right\|^{1 / n}}=\underset{n \rightarrow \infty}{\lim \sup } \frac{\left\|c^{n}\right\|^{1 / n}}{\left\|b^{n}\right\|^{1 / n}}=+\infty .
$$

We prove here that if \mathscr{R} is a commutative separable radical Banach algebra with b.a.i in which the nilpotents are dense then for any sequences $\left(\alpha_{n}\right)$ and $\left(\beta_{n}\right)$ of positive reals which converge to zero there exists $a \in \mathscr{R}$ such that $[a \mathscr{R}]^{-}=\mathscr{R}$ and

$$
\underset{n \rightarrow \infty}{\lim \sup } \frac{\left\|a^{n}\right\|^{1 / n}}{\alpha_{n}}=+\infty, \quad \liminf _{n \rightarrow \infty} \frac{\left\|a^{n}\right\|^{1 / n}}{\beta_{n}}=0 .
$$

This result does not extend to the weighted convolution algebra $L^{1}\left(R^{+}, e^{-t^{2}}\right)$ because there exists a sequence (λ_{n}) of positive reals such that $\left.\lim \inf \left\|b^{n}\right\|\right|^{1 / n} \lambda_{n}=+\infty$ for every nonzero element b of $L^{1}\left(R^{+}, e^{-t^{2}}\right)$ (see [2] or [6]).

2. Irregularity of the rate of decrease of sequences of powers.

Theorem 1. Let \mathscr{R} be a commutative nonzero separable Banach algebra with bounded approximate identities. If the nilpotents are dense in \mathscr{R} then for all sequences $\left(\alpha_{n}\right)$ and $\left(\beta_{n}\right)$ of positive reals which converge to zero there exists $a \in \mathscr{R}$ such that $[a \mathscr{R}]^{-}=\mathscr{R}$ and

$$
\underset{n \rightarrow \infty}{\lim \sup } \frac{\left\|a^{n}\right\|^{1 / n}}{\alpha_{n}}=+\infty, \quad \underset{n \rightarrow \infty}{\liminf } \frac{\left\|a^{n}\right\|^{1 / n}}{\beta_{n}}=0 .
$$

Proof. Put, for every $n \in N: \mu_{n}=\left(\beta_{n} H / n\right)^{n}$. Add a unit e to \mathscr{R}. By the Johnson-Varopoulos extension of Cohen's factorization theorem [3], [7], [8] there exists $x \in \mathscr{R}$ such that $[x \mathscr{R}]^{-}=\mathscr{R}$ and it follows from a result of [1] that there exists $b \in \mathscr{R}$ such that $x \in b \mathscr{R}$ and

$$
\underset{n \rightarrow \infty}{\liminf } \frac{\left\|b^{n}\right\|^{1 / n}}{\alpha_{n}}=+\infty .
$$

So $[b \mathscr{R}]^{-}=\mathscr{R}$.
Define by induction a sequence (λ_{n}) of positive reals, two sequences $\left(p_{n}\right)$ and $\left(q_{n}\right)$ of positive integers and two sequences $\left(f_{n}\right)$ and ($\left.g_{n}\right)$ of elements of \mathscr{R} such that if we put

$$
\begin{aligned}
X_{n}= & \left(\lambda_{1} e+f_{1}\right)\left(2 \lambda_{1}^{-1} e+g_{1}\right) \ldots \\
& \left.\quad \lambda_{n-1} e+f_{n-1}\right)\left(2 \lambda_{n-1}^{-1} e+g_{n-1}\right)\left(\lambda_{n} e+f_{n}\right) \\
Y_{n}= & \left(\lambda_{1} e+f_{1}\right)\left(2 \lambda_{1}^{-1} e+g_{1}\right) \ldots\left(\lambda_{n} e+f_{n}\right)\left(2 \lambda_{n}^{-1} e+g_{n}\right)
\end{aligned}
$$

the following conditions are satisfied (we put for convenience $X_{0}=$ $\left.Y_{0}=e\right)$.
(1) $\left\|b X_{m}^{-1} Y_{n-1}-b X_{m}{ }^{-1} X_{n}\right\|<2^{-n}(0 \leqq m \leqq n-1, n \geqq 1)$

$$
\begin{align*}
& \left\|b^{p_{m}} Y_{n-1}^{p_{m}}-b^{p_{m}} X_{n}^{p_{m}}\right\|<2^{-n} \mu_{p_{m}}(1 \leqq m \leqq n-1, n \geqq 2) \tag{2}\\
& \left\|b^{q_{m}} Y_{n-1}^{q_{m}}-b^{q_{m}} X_{n}^{q_{m}}\right\|<2^{-n}\left\|b^{q_{m}}\right\|(1 \leqq m \leqq n-1, n \geqq 2) \tag{3}\\
& \left\|b X_{m}^{-1} X_{n}-b X_{m}^{-1} Y_{n}\right\|<2^{-n}(1 \leqq m \leqq n, n \geqq 1) \tag{4}\\
& \left\|b^{p_{m}} X_{n}^{p_{m}}-b^{p_{m}} Y_{n}^{p_{m}}\right\|<2^{-n} \mu_{p_{m}}(1 \leqq m \leqq n, n \geqq 1) \tag{5}\\
& \left\|b^{q_{m}} X_{n}^{q_{m}}-b^{q_{m}} Y_{n}^{q_{m}}\right\|<2^{-n}\left\|b^{q_{m}}\right\|(1 \leqq m \leqq n-1, n \geqq 2) \tag{6}\\
& \left\|b^{p_{n}} X^{p_{n}}\right\|<\mu_{p_{n}}(n \geqq 1) \tag{7}\\
& \left\|b^{q_{n}} Y_{n}^{q_{n}}\right\|>\left\|b^{q_{n}}\right\| \quad(n \geqq 1) . \tag{8}
\end{align*}
$$

There exists a sequence $\left(e_{k}\right)$ of elements of \mathscr{P} such that $\lim _{k \rightarrow \infty} x e_{k}=x$ for every $x \in \mathscr{R}$, and we may assume that e_{k} is nilpotent for every $k \in \mathbf{N}$. Taking $f_{1}=e_{k}$ with k large enough we may arrange that $\left\|b-b f_{1}\right\|<\frac{1}{2}$. Let p_{1} be a positive integer such that $f_{1}^{p_{1}}=0$. Then

$$
\lim _{\lambda \rightarrow 0}\left\|b-b\left(\lambda e+f_{1}\right)\right\|<\frac{1}{2} \quad \text { and } \quad \lim _{\lambda \rightarrow \infty}\left\|b^{p_{1}}\left(\lambda e+f_{1}\right)^{p_{1}}\right\|=0
$$

So taking $\lambda_{1}>0$ small enough we may arrange that f_{1}, p_{1} and λ_{1} satisfy the conditions (1) and (7). Then

$$
\lim _{k \rightarrow \infty} b X_{1}\left[2 \lambda_{1}^{-1} e+\left(1-2 \lambda_{1}^{-1}\right) e_{k}\right]=b X_{1}
$$

so

$$
\lim _{k \rightarrow \infty} b^{m} X_{1}^{m} U^{m}\left[2 \lambda^{-1} e+\left(1-2 \lambda_{1}{ }^{-1}\right) e_{k}\right]^{m}=b^{m} X_{1}^{m} U^{m}
$$

for every $U \in \mathscr{R} \oplus \mathbf{C} e$ and for every $m \in \mathbf{N}$. So taking $g_{1}=\left(2 \lambda_{1}{ }^{-1}-\right.$ 1) e_{k} with k large enough we may arrange the conditions (4) and (5) to be satisfied. Then

$$
\lim _{m \rightarrow \infty} \frac{\left\|b^{m} Y_{1}^{m}\right\|^{1 / m}}{\left\|b^{m}\right\|^{1 / m}} \geqq \lim \frac{1}{\left\|Y_{1}^{-m}\right\|^{1 / m}}=2
$$

and there exists $q_{1} \in \mathbf{N}$ such that

$$
\left\|b^{q_{1}} Y_{1}^{q_{1}}\right\|>\left\|b^{q_{1}}\right\| .
$$

Now suppose that we have constructed finite families $\left(\lambda_{1}, \ldots, \lambda_{n}\right)$, $\left(f_{1}, \ldots, f_{n}\right),\left(g_{1}, \ldots, g_{n}\right),\left(p_{1}, \ldots, p_{n}\right)$ and (q_{1}, \ldots, q_{n}) satisfying the eight conditions. As $\lim _{k \rightarrow \infty} b e_{k}=b$ we have

$$
\lim _{k \rightarrow \infty} b^{m} U^{m} e_{k}^{m}=b^{m} U^{m}
$$

for every $k \in \mathbf{N}$ and every $U \in \mathscr{R} \oplus \mathbf{C} e$. Taking $f_{p+1}=e_{k}$ with k large enough we may arrange that the following inequalities hold:

$$
\begin{aligned}
& \left\|b X_{m}^{-1} Y_{n}-b X_{m}^{-1} Y_{n} f_{n+1}\right\|<2^{-n-1}(0 \leqq m \leqq n) \\
& \left\|b^{p_{m}} Y_{n}^{p_{m}}-b^{p_{m}} Y_{n}^{p_{m}} f_{n+1}^{p_{m}}\right\|<2^{-n-1} \mu_{p_{m}}(1 \leqq m \leqq n) \\
& \left\|b^{m} Y_{n}^{m}-b^{m} Y_{n}^{m} f_{n+1}^{m}\right\|<2^{-n-1}\left\|b^{q_{m}}\right\|(1 \leqq m \leqq n) .
\end{aligned}
$$

Let $p_{n+1}>p_{n}$ be a positive integer such that $f_{n+1}^{p_{n+1}}=0$. We have

$$
\lim _{\lambda \rightarrow 0}\left\|\left(\lambda e+f_{n+1}\right)^{p_{n+1}}\right\|=0 \quad \text { and } \lim _{\lambda \rightarrow 0} x^{m}\left(\lambda e+f_{n+1}\right)^{m}=x^{m} f_{n+1}^{m}
$$

for every $m \in \mathbf{N}$ and every $x \in \mathscr{R}$. So taking $\lambda_{n+1}>0$ small enough we may arrange the conditions (1), (2), (3) and (7) to be satisfied by λ_{n+1}, p_{n+1} and f_{n+1}.
Then

$$
\lim _{k \rightarrow \infty} b X_{n+1}\left[2 \lambda_{n+1^{-1}} e+\left(1-2 \lambda_{n+1} 1^{-1} e_{k}\right)\right]=b X_{n+1}
$$

so

$$
\lim _{k \rightarrow \infty} b^{m} X_{n+1}{ }^{m} U^{m}\left[2 \lambda_{n+1}{ }^{-1} e+\left(1-2 \lambda_{n+1}{ }^{-1} e_{k}\right)\right]^{m}=b^{m} X_{n+1}{ }^{m} U^{m}
$$

for every $U \in \mathscr{R} \oplus \mathbf{C} e$ and every $m \in \mathbf{N}$. So taking $g_{n+1}=$ ($\left.1-2 \lambda_{n+1}{ }^{-1}\right) e_{k}$ with k large enough we can arrange the conditions (4), (5) and (6) to be satisfied. Then

$$
\lim _{m \rightarrow \infty} \frac{\left\|b^{m} Y_{n+1}^{m}\right\|^{1 / m}}{\left\|b^{m}\right\|^{1 / m}} \geqq \lim _{m \rightarrow \infty} \frac{1}{\left\|Y_{n+1}^{-m}\right\|^{1 / m}}=2^{n} .
$$

So we can choose $q_{n+1}>q_{n}$ satisfying (8).

We thus see that we can construct by induction sequences $\left(\lambda_{n}\right),\left(f_{n}\right)$, $\left(g_{n}\right),\left(p_{n}\right)$ and $\left(q_{n}\right)$ satisfying the eight conditions. It follows from (1) and (4) that

$$
\left\|b X_{n}-b X_{n+1}\right\|<3.2^{-n-1}
$$

for every $n \geqq 0$ and that

$$
\lim _{n \rightarrow \infty}\left\|b X_{n}-b Y_{n}\right\|=0
$$

So the sequence $\left(b X_{n}\right)$ is Cauchy. Denote by a its limit. Then $a=$ $\lim _{n \rightarrow \infty} b Y_{n}$. We have, for every $m \geqq 0$ and every $n \geqq m$,

$$
\begin{aligned}
& \left\|b X_{m}^{-1} X_{n}-b X_{m}^{-1} X_{n+1}\right\| \leqq\left\|b X_{m}^{-1} X_{n}-b X_{m}^{-1} Y_{n}\right\| \\
& +\left\|b X_{m}^{-1} Y_{n}-b X_{m}^{-1} X_{n+1}\right\|<3.2^{-n-1}
\end{aligned}
$$

So

$$
\begin{aligned}
& \left\|a X_{m}^{-1}-b\right\| \leqq \sum_{n=m}^{\infty}\left\|b X_{m}^{-1} X_{n+1}-b X_{m}^{-1} X_{n}\right\|<3.2^{-m}, \quad \text { and } \\
& b=\lim _{m \rightarrow \infty} a X_{m}^{-1}
\end{aligned}
$$

So $b \in[a(\mathscr{R}+\mathbf{C} e)]^{-}, b \mathscr{R} \subseteq[a \mathscr{R}]^{-}$and $[a \mathscr{R}]^{-}=\mathscr{R}$. It follows from (2) and (5) that we have, for every $m \geqq 1$ and every $n \geqq m$,

$$
\left\|b^{m} X^{m}-b^{m} X_{n+1}^{m}\right\|<3.2^{-n-1} \cdot \mu_{p_{m}}
$$

So

$$
\begin{aligned}
& \left\|a^{p_{m}}\right\| \leqq\left\|b^{p_{m}}\right\|+\sum_{m=n}^{\infty}\left\|b^{p_{m}} X_{n+1}^{p_{m}}-b^{p_{m}} \cdot X_{n}^{p_{m}}\right\| \\
& \quad<\left(1+3.2^{-n}\right) \mu_{p_{m}}<3 \mu_{p_{m}} .
\end{aligned}
$$

We obtain

$$
\left\|a^{p_{m}}\right\|^{1 / p_{m}}<3^{1 / p_{m}} \cdot \mu_{p_{m}}^{1 / p_{m}}=3^{1 / p_{m}} \cdot \frac{\beta_{p_{m}}}{p_{m}} .
$$

So

$$
\lim _{m \rightarrow \infty} \frac{\left\|a^{p_{m}}\right\|^{1 / p_{m}}}{\beta_{p_{m}}}=0 \quad \text { and } \quad \underset{n \rightarrow \infty}{\lim \inf } \frac{\left\|a^{n}\right\|^{1 / n}}{\beta_{n}}=0
$$

Also it follows from (3) and (6) that we have, for every $m \geqq 1$ and every $n \geqq m$:

$$
\left\|b^{q_{m}} Y_{n}^{q_{m}}-b^{q_{m}} Y_{n+1}{ }^{q_{m}}\right\|<2^{-n}\left\|b^{q_{m}}\right\| .
$$

So

$$
\begin{aligned}
& \left\|a^{q_{m}}\right\|>\left\|b^{q_{m}} Y_{m}^{q_{m}}\right\|-\sum_{m=n}^{\infty}\left\|b^{q_{m}} \cdot Y_{n}^{q_{m}}-b^{q_{m}} \cdot Y_{n+1}{ }^{q_{m}}\right\| \\
& >\left\|b^{q_{m}}\right\|\left[1-2^{-m+1}\right] .
\end{aligned}
$$

We obtain

$$
\begin{aligned}
& \liminf _{m \rightarrow \infty} \frac{\left\|a^{q_{m}}\right\|^{1 / q_{m}}}{\left\|b^{q_{m}}\right\|^{1 / q_{m}}} \geqq 1 \\
& \liminf _{m \rightarrow \infty} \frac{\left\|a^{q_{m}}\right\|^{1 / q_{m}}}{\alpha_{q_{m}}}=+\infty
\end{aligned}
$$

So

$$
\limsup _{n \rightarrow \infty} \frac{\left\|a^{n}\right\|^{1 / n}}{\alpha_{n}}=+\infty
$$

This completes the proof of the theorem. The theorem applies in particular to the "Volterra algebra" $L_{*}{ }^{1}(0,1)$ discussed in [4], Section 7.

References

1. G. R. Allan and A. M. Sinclair, Power factorization in Banach algebras with bounded approximate identity, Studia Math. 56 (1976), 31-38.
2. W. G. Bade and H. G. Dales, Norms and ideals in some radical Banach algebra s, preprint.
3. P. J. Cohen, Factorization in group algebras, Duke Math. J. 26 (1959), 199-206.
4. H. G. Dales, Automatic continuity, a survey, Bull. London Math. Soc. 10' (1978), 129-183.
5. J. Esterle, Theorems of Gelfand Mazur type and continuity of epimorphisms from $\left.\mathscr{C}_{(\mathcal{H})}\right)$, J. Functional Analysis, to appear.
6. - Rate of decrease of sequences of powers in commutative radical Banach algebras, Pacific J. Math., to appear.
7. B. E. Johnson, Continuity of centralizers on Banach algebras, J. London Math. Soc. 41 (1966), 639-640.
8. N. Varopoulos, Continuité des formes linéaires positives sur une algèbre de Banach avec involution, C.R. Acad., Sci. Paris Ser. A258 (1964), 1121.

UCLA,
Los Angeles, California

