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1. Introduction and results. In [2], H. Delange gives the following characterization of the
sine function.

THEOREM A. f(x) = sinx is the only infinitely differentiable real-valued function on the real

line such that f'(0) =1 and
lf®e)) =1 (1)

Jor allreal x andn=0,1,2,. ...

It is clear that, if f satisfies (1), then the analytic continuation of fis an entire function
satisfying

|f(2)| £ exp (|Im z])

for all z in the complex plane. Hence f'is of at most order one and type one. In this note, we
prove the following theorem.

THEOREM 1. Let f be an entire function of at most order one and type one, such that f(x) is
real, I f(x)| £ 1 for all real x, and

S +f(x0)* 21, f'(xo) #0 @
for some real xy. Then f(2) = sin(z+c) for some real constant c. In particular, if f'(0) = 1,
then f(z) = sinz for all z.
The example sinz/z shows that the condition (2) above cannot be omitted. Also, it is
easy to see that, in the above theorem, if fis of finite type ¢ > 1 and satisfies

O_iz-f ‘(X0)*+f(x0)* 21,  fl(x0) #0 @)
instead, then, by considering F(z) = f(z/s), we can conclude that f(z) = sin(oz+c). However,
the function f defined by

f(z) = 171;“._: texp [iatz/b]exp[—|t|log(1+¢%)]dt,
where
a= ZJw texp[—|t|log(1+1%)]dt
and °

b= 2{ Pexp[—|t|log(1+1*)]dt,
0

is an entire function of order one and maximal type, such that f'(0) =1, f(x) is real and
|/(x)| £ 1 for all real x.
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2. Proof of Theorem 1. For —1 < & < 1, it is easy to show that

4
exp (iaf)cosa—ifexp (iaf)sina = Y c exp(iknf), €))
k==
where « is real and
_(—=1)sina ,
T )

Let f(&) be the Fourier transform of f(x) (x real). Then, by the Paley-Wiener Theorem [cf. 1,
p. 103], the support of f lies in [—1,1]. Hence, multiplying (3) by f(— (1 +€)&), we have

f(-(1+8)¢) coso— iEf(—=(1+¢)¢)sina = Z crexp [i(kn— —a)E]f(— (1 +£)8), )

k=—-o

where ¢ > 0. Here, the series converges uniformly since the support of f(—(1+¢)¢) lies in
(—1,1). Applying the inverse Fourier transform to both sides of (4), we obtain

x & x
f<1+ ) +1—+8f( >s1na—k_z_:wc,‘f<1—;—e—k1t+a).

Now fis continuous and the series converges uniformly for any positive &. By the boundedness
of f(x) for any x > 0, we can let & go to zero and obtain, using (3"),

f(x)coso+f'(x)sina = Z (—1)tsin’a

s (a—k—)—z—'f( k7t+d). (5)

If we take f(x) = cos x, then (5) yields the well-known formula

©  sinta
p>

Lo(a—kn)? =1L | ©

Thus we have

. 2 [I—(-DYGx—kn+a)] .
1- [f(x) cosa+f'(x)sina] = kaz_‘,w [1=¢ (;_I;)z T+l sin?a. )
From the condition (2), we can assume that
f(xo) =Acosay, and f'(x,) = Asina, ®)

for some 4 = 1 and some real #y,. Let x = x, and a = «, in (7); we have

& [1=(=D)Y(xo~ k”"'“o)] -
Dy e 1-4<0.
Since | f(x)| £ 1, we can conclude that, for k =0, +1,...,
1= (=) (xo=kn+a). )

E2
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As (5) holds for all entire functions of at most order one and type one, we also have

. @ (—=1)sina
’ = 2o - 10
F(x)cosa+ F'(x)sina k=2m k)’ F(x+a—kr), (10)
with

F(x) = f(xo+ao+Xx).
By letting « = —x in (10), we obtain, from (9) and (6),
® 1

D= 1. (11)

F(x)cos x—F'(x)sinx = sin? x

Integrating (11) gives
F(x) =cosx+bsinx (12)

for some real constant b.\ Since S is a translation of F, (12) iﬁlplies that
f(x) =dsin(x+c),

where d is positive and c is real. Since f(x) is bounded by one and f2+f'2 is not less than one
at some point x4, d must be equal to one and the proof is completed.

3. Final remarks. We should like to point out the essential difference between our proof
and Delange’s. In Delange’s paper [2], some rather complicated residues are computed and
Liouville’s Theorem is used to give Theorem A. Here, we use the Paley-Wiener Theorem and
finally solve the equation (11) to prove Theorem 1. Of course, Theorem 1 can also be obtained
by applying a Phragmén-Lindelsf theorem and Delange’s method. It can also be proved by
combining a result of Bernstein (cf. page 206 in [1]) and a result of Duffin and Schaeffer [3].
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