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Abstract
The concept of distance between two rigid-body poses is important in path planning, positioning precision, mecha-
nism synthesis, and in many other applications. In the definition of such a distance, two approaches mainly prevail,
which lead to a number of formulas devised to match the needs of motion tasks. Despite the different approaches
and formulas, some important theoretical results, which drive toward distance-metrics definitions useful for design
and application purposes, have been stated. This paper summarizes the two different approaches together with a
critical review of the literature on the distance metrics they generated, and, then, it illustrates a technique, previ-
ously proposed by the author, for combining different metrics to obtain novel distance-metric definitions that are
tailored to specific applications.

1. Introduction
The concept of distance between two rigid-body poses (positions and orientations) is central for many
applications. For instance, path planning, positioning precision, manipulator calibration, and mechanism
synthesis are some of them. A real-valued mapping, ρ(x1, x2), of two six tuples (i.e., ρ: R6 ×R

6 →R),
x1 and x2 that identify two rigid-body poses, can be adopted as “distance metric,” if it is positive definite
(i.e., ρ(x1, x2) > 0 if x1 �= x2 and ρ(x1, x2) = 0 if x1 = x2), symmetric (i.e., ρ(x1, x2) = ρ(x2, x1)) and
satisfies the triangle inequality (i.e., ρ(x1, x2) ≤ ρ(x1, x3) + ρ(x3, x2) for any x3 ∈ R

6). The introduction
of a distance metric into the set of rigid-body poses makes it a particular metric space. Hereafter, the
terms “metric” or “distance metric” will refer to a metric of this particular metric space.

A distance metric is said to be bi-invariant if it depends neither on the choice of the reference system
fixed to the rigid body (body frame) nor on the choice of the reference system fixed to the observer
(inertial frame) (Fig 1a). Moreover, a distance metric is said to be left-invariant (right-invariant), if it
does not depend on the choice of the inertial frame (the body frame).

Defining a distance metric in rigid-body’s configuration space (c-space) is a difficult task many
researchers have dealt with. In the literature, it has been mainly addressed through two approaches:

a. By introducing a distance metric directly in the c-space [1–8];
b. By approximating a displacement in the c-space with a spherical or hyper-spherical displace-

ment, and, then, using a distance metric of the spherical, SO(3), or hyper-spherical, SO(N),
space [9–16].

†This paper is a deeply enhanced and updated version of a paper presented at the workshop “Seconda Giornata di Studio Ettore
Funaioli: 18 luglio 2008. AMS Acta: Bologna, IT, pp. 221–233. http://amsacta.unibo.it/2552/” whose proceedings do not hold
the copyrights.

C© The Author(s), 2023. Published by Cambridge University Press. This is an Open Access article, distributed under the terms of the Creative
Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution and reproduction,
provided the original article is properly cited.

https://doi.org/10.1017/S0263574723001388 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574723001388
https://orcid.org/0000-0003-3925-3016
mailto:raffaele.digregorio@unife.it
http://amsacta.unibo.it/2552/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1017/S0263574723001388


Robotica 303

(a) (b)

B

inertial frame

body frame

b

RO

b

R

1

1

b2
R2

R1
TR2

(b �b )2 1

first posesecond pose

inertial frame

B2 B1

Figure 1. Notations: (a) the inertial frame, fixed to the observer, and the body frame, fixed to the rigid
body (points O and B are the origins of the inertial frame and of the body frame, respectively; R and
b are the rotation matrix and the position vector (B–O), respectively, that identify the pose of the body
frame with respect to the inertial frame], and (b) displacement of the body frame from the first pose to
the second pose measured in the inertial frame.

Such investigations stated that:

i. No bi-invariant Riemannian metric can be defined in the special Euclidean group, SE(3) (see [4]
for references);

ii. The size of the rigid body must be considered for defining meaningful distance metrics [2, 3];
iii. Bi-invariance is not necessary to define meaningful distance metrics [6].

This paper presents a critical review of the most known distance metrics proposed in the literature
and a technique, proposed by the author [17], for generating distance metrics tailored for a specific
application by suitably combining other metrics. The aim of this work is providing a clear view of the
literature on the subject that contains sufficient details to use immediately some results or a suitable
combination of them and/or to guide the reader in selecting further readings on the subject.

The paper is organized as follows. Section 2 analyzes the direct introduction of distance metrics in
SE(3) (approach (a)). Section 3 discusses the indirect introduction of distance metrics in SE(3) (approach
(b)). Then, Section 4 presents the author proposal, and Section 5 draws the conclusions.

2. Distance metrics directly introduced in SE(3)
The natural way to define a distance metric [4] in a differentiable manifold, M, consists in implementing
the following three steps:

I. Definition of a Riemannian metric. It is worth reminding that a Riemannian metric is a smooth
assignment of an inner product, < ·, · >, to the tangent space at each point of the manifold;

II. Determination of the geodesic induced by the Riemannian metric, defined in the previous step.
It is worth reminding that the geodesic is the curve, X(t) ⊂ M with a ≤ t ≤ b, that minimizes
the integral L = ∫ b

a

√
< Ẋ, Ẋ>dt, by definition, L is the “length” of the curve X(t) measured by

using the inner product < ·, · >;
III. Calculation of the explicit expression of the length of the geodesic that joins two generic points,

say X1 and X2, of M.

In this procedure, the distance metric is the explicit expression of the geodesic length, determined in
the last step.
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The special Euclidean group, SE(3), is the set that collects all the rigid-body displacements. Its

generic element, X, can be represented by an homogeneous transformation, that is, X �
[

R b

0T 1

]
where

(see Fig. 1a) R is the rotation matrix that identifies the orientation of the body frame with respect to the
inertial frame, b is the position vector of the body-frame origin (i.e., point B in Fig. 1a) measured in the
inertial frame, and 0 is the null vector.

With this representation of X, the law of composition that gives SE(3) the structure of a group is
the product of matrices. Moreover, since a rigid-body path, X(t), can be easily defined together with
its derivative with respect to the parameter t, hereafter denoted Ẋ(t), SE(3) has the structure of a dif-
ferentiable manifold (i.e., it is a Lie group). In SE(3), the tangent space at X is the set of matrices

Ẋ �
[

Ṙ ḃ

0T 0

]
=
[
ω̃R ḃ

0T 0

]
, where

·
( · ) denotes the derivative of ( · ) with respect to t, and ω̃( = ṘRT)

is the skew-symmetric matrix associated to the vector ω that identifies an possible elementary change of
rigid-body orientation at X. It is worth stressing that vector ω, which is a geometric quantity related to a
rigid-body path, X(t), would become a possible rigid-body angular velocity if the parameter t would be
interpreted as the time. The so-defined tangent space together with the sum of matrices and the scalar
multiplication of a matrix by a real number becomes a vector space. Also, it is isomorphic both to the
tangent space at the identity element of SE(3) (called Lie algebra and denoted se(3)) and to the set of
rigid-body “geometric twists,” defined as {ωT, ḃT}T, when referred to the inertial frame (body-fixed
velocity), or {ωT, (ḃ − ω̃b)T}T, when referred to the body frame (space velocity). Thus, the derivative
at X can be uniquely determined either by an element of se(3) or by the corresponding geometric twist.

Hereafter, the geometric twist will be used to identify Ẋ and to write the explicit expressions involving
Ẋ (i.e., if it is not differently specified, it will be assumed Ẋ ≡ {ωT, ḃT}T in the inertial frame and Ẋ
≡ {ωT, (ḃ − ω̃b)T}T in the body frame). With this choice, a bi-invariant Riemannian metric could be
assigned through the following relationship:

< Ẋ1, Ẋ2 >� ẊT
1 Q Ẋ2 (1)

if and only if a symmetric, positive-definite, 6 × 6 matrix, Q, existed which makes ẊT
1 Q Ẋ2 independent

of the reference frame (i.e., inertial or base frame), used to represent Ẋ, and of X (i.e., of R and b,
which vary when either the inertial frame or the body frame is changed). Such a Q matrix does not exist
(see [4] for demonstration and references), whereas symmetric, positive-definite Q matrices that are
independent of X (i.e., of the inertial-frame and of the body-frame choices) exist, and, by using them,
left-invariant and right-invariant distance metrics can be defined according to the representation of Ẋ
used in relationship (1).

Among the Q matrices that generate left-invariant or right-invariant metrics through definition (1),
the following one has been suggested in refs. [4, 18] for left-invariant metrics:

Q =
[

c1I3 03

03 c2I3

]
(2)

where c1 and c2 are two positive scalar constants, whose role will be discussed later, whereas 03 and I3

are the null and the identity 3 × 3 matrices, respectively. The left-invariant distance metric generated by
using (2) and the inner product (1) is (see ref. [4] for details):

ρP(X1, X2) =
√

c1δ
2
S (R1, R2)+ c2δ

2
T (b1, b2) (3)

where Ri and bi (Fig. 1b), for i = 1, 2, are the rotation matrix and the position vector, respectively, which
locate the i-th rigid-body pose and the corresponding SE(3) element, Xi (i = 1, 2), whereas (the image
of cos−1(·) is restricted to the range [0, π] radians, and | · | denotes the Euclidean norm of R3):
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δS(R1, R2) = cos−1

(
tr
(
RT

1 R2

)− 1

2

)
, (4a)

δT(b1, b2) = |b2 − b1| (4b)

The above-defined δS, which is the rotation Euler angle about the Euler axis, and δT, which is the
Euclidean distance between two points, are the bi-invariant distance metrics of SO(3) and R

3, respec-
tively. Here, it is worth stressing that the restriction cos−1(·) ∈ [0, π] makes Eq. (4a) select the minimum
rotation angle between the two angle values that bring the orientation of the first pose to coincide with
the one of the second pose.

The parameters c1 and c2 together with relationship (3) define a two-parameter family of left-invariant
scale-dependent distance metrics. The geometric meaning of a limitation on ρP(X1, X2) (i.e., an inequal-
ity of type ρP(X1, X2) < ε) is difficult to be found, while it is clear that c1 and c2 assign different weights
to the rotational and translational parts of the geodesic path that brings the rigid body from X1 to X2.
Analogous considerations can be done on the right-invariant distance metrics generated by using (2) and
the inner product (1). Here, it is worth stressing that, since δS and δT have different measurement units,
the introduction of suitable values for c1 and c2, at least for homogenizing the two terms appearing in
Eq. (3), is always necessary, but this introduction makes Eq. (3) intrinsically arbitrary. In ref. [4], Park
applied the proposed metrics to planar-mechanism design problems and highlighted the critical role of
the values assigned to c1 and c2 in those specific problems. In particular, he showed that c1 and c2 play
the role of scaling factors that change the contribution to the value of ρP(X1, X2) of the frame rotation
and of the frame translation.

Rico-Martinez and Duffy [3] highlighted how critical is the scaling-factor choice for finite bodies
through the comparison of two distances referred to a square lamina with a unit-length side (see Fig. 2).
The first one, say d1, is between a reference pose (the blue one in Fig. 2, located by the points A1 and
C1) and the pose (the red one in Fig. 2, located by the points A2 and C2) obtained from the reference one
through a small counterclockwise rotation of 5◦ around the axis (z axis in Fig. 2) perpendicular to the
lamina plane. The second one, say d2, is between the same reference pose and the pose (the orange one
in Fig. 2, located by the points A3 and C3) obtained from the reference one through a translation (b2 –
b1) = (5, 3, 2) (see Fig. 1). Here, the vector components of (b2 – b1) together with d1 and d2 are measured
by taking the square-lamina side as unit length and the radian as unit angle, which makes all the lengths
dimensionless since they are ratios of lengths the same as the angles in radians and overcomes the non-
homogeneity issue involved in many definitions of rigid-body metrics. Such a comparison relies on the
fact that, due to the lamina sizes, in all the manipulator-design/manipulation-task problems a distance
metric that makes sense must give d2 >> d1. Indeed, if a rigid-body is shrunken until to become a point at
the three different poses shown in Fig. 2, a metric correctly defined for those problems must give results
that concur with the Euclidean distance between two points. This consideration, over demonstrating that
the rigid-body sizes are relevant in metric definitions, made Rico-Martinez and Duffy test a benchmark
that many authors adopted to measure the quality of their metrics. In the case of ρP(X1, X2) (see Eq. (3))
[4], d1 = 0.0873√

c1 and d2 = 6.164√
c2; thus, the condition d2 >> d1 yields (c2/c1) >> 0.0002, which

concurs with the results presented in ref. [4].
Over proposing the above-described test, in ref. [3], Rico-Martinez and Duffy showed that SE(3) is

an ordered set under the lexicographic order, which is based on the ordered couple (θ , d) where θ is the
rotation angle and d is the distance along the screw axis of the displacement,1 and that in the general
case the characteristic length is a spurious concept. Moreover, in ref. [19], Rico-Martinez showed that,
in the comparison between two displacements, if the rotation angle of one is greater, then it is always
possible to find a sufficiently large rigid body such that the “length” of its displacement is greater than
the other displacement with a smaller rotation angle and provided many argumentations on this effect,
which is due to the lexicographic order of SE(3).

1It is worth stressing that the so-defined θ and d are the only two invariant quantities in any displacement.
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Figure 2. Rico-Martinez and Duffy [3] test for rigid-body metrics: (a) top view and (b) 3D view.

Successively, Zefran et al. [5] analyzed the possible Riemannian metrics (i.e., defined through Eq. (1)
with a positive-definite Q matrix) and affine connections on SE(3) that could be of interest in kinematic
analysis and path planning. Their analysis brought them to demonstrate that

(z.1) There is no Riemannian metric whose geodesics are screw motion (i.e., a displacement in which
the rigid body simultaneously translates along and rotates around the finite screw axis, identified by its
initial and final poses, with constant translation and rotation velocities);

(z.2) There is a two-parameter family of bi-invariant semi-Riemannian (i.e., with Q matrix of Eq. (1)
that is not positive definite) metrics whose geodesics are screw motions; the Q matrix of such metrics is
a linear combination of the Killing form and of the Klein form [20], that is, it can be written as follows:

Q =
[
αI3 βI3

βI3 03

]
where α and β are two constants;

(z.3) The left-invariant metrics defined by Eq. (2) are the unique ones compatible with the kinematic
connection (see section 4.1 of ref. [5] for the definition), which is the unique symmetric affine connection
on SE(3) that produces physically meaningful accelerations (i.e., as defined in rigid-body kinematics).

Moreover, the same authors in refs. [21, 22] investigated the use of Riemannian metrics, defined by
means of Eq. (2), to formulate the problem of generating a smooth rigid-body path between two assigned
poses as a variational problem on SE(3) that looks for the minimal path (i.e., the geodesic) between
the two assigned poses (which, here, are the “boundary conditions” of the variational problem). Their
investigations proved through planar and spatial examples that the found minimal path depends on the
used metric (i.e., on the coefficients c1 and c2 appearing in Eq. (2)), on the choice of the body frame and,
of course, on the boundary conditions.

The above-reported technique has the advantage of providing definitions, which allow the measure
of rigid-body paths’ lengths. Such an appealing feature is not required in many technical applications
that involve only discrete poses (e.g., precision points of synthesis problems, generation of a continuous
path by interpolation of a finite number of assigned poses, etc.). In these cases, the direct introduction
of a distance metric into SE(3) can be done without considering the tangent space. This was done, for
instance, by Kazerounian and Rastegar in ref. [2] where they proposed the following family of distance
metrics, named “object norms”:

ρKR(X1, X2) = 1

V

∫
V

w (P) |P (X2)− P (X1)|2 dV (5)

where V is the volume of the rigid body that assumes the two poses identified by X1 and X2; P is the
position vector, measured in the inertial frame, that locates a generic point P of the rigid body; and w(P)
is a weighting function whose values depend on P.
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Distance metrics assigned through relationship (5) measure weighted average square errors on the
positioning of a given rigid body. They are bi-invariant, even though they depend on the rigid-body
shape and are cumbersome to be repeatedly evaluated, for instance in optimization or control procedures,
since their evaluation requires the computation of volume integrals. Relationship (5) allows the distance
metric to be calibrated so that it matches suitable design criteria by changing the weighting function.
As observed in ref. [4], the “object norms” (i.e., definition (5)) are not Riemannian distance metrics on
SE(3) since they depend on the rigid-body shape and are not able to measure the length of a curve, X(t),
in SE(3). That is why they can be bi-invariant, which is an attractive feature. Unfortunately, when there
is no standard shape of the rigid body, as it happens in mechanism design, they are not usable. Also,
since they compute an average displacement of the rigid-body points, a limitation on ρKR(X1, X2) (i.e., an
inequality of type ρKR(X1, X2) < ε) limits the maximum displacement of the points of a finite-size rigid
body in a way that is difficult to evaluate, which is a problem when positioning precision is evaluated
as in manipulator calibration or in mechanism synthesis (e.g., motion generation) even when the shape
of the rigid body is completely defined. Anyway, definition (5), for the way it is built, always passes the
Rico-Martinez and Duffy test [3] (Fig. 2), which brings the conclusion that a well-defined metric, in
addition to purely geometric conditions, must also accomplish practical-use requirements.

The computation burden of definition (5) can be eliminated if only a few points fixed to the rigid body
are considered so that the integral is transformed into a summation. On this line, Mazzotti et al. [23] pro-
pose the use of the vertices of platonic solids embedded in the rigid body by defining the distance metric
as the root mean square (RMS) of the distances between the two point-positions these vertices assume in
the two rigid-body poses. Such a metric is fast to compute, but the distances it computes depend on the
size of the chosen platonic solid and on where the solid is fixed to the rigid body. Successively, Fontana
et al. [24] try to solve these issues in the context of point cloud registration by choosing the points on
the external surface of the rigid body and by defining the distance metric as the average of the distances
between homologous points divided by the distances of the same points from the rigid-body centroid.

Other techniques are usable to introduce a distance metric directly into SE(3). Among these other
techniques, it is worth mentioning the direct introduction into SE(3) of distance metrics by the definition
of a mapping (kinematic mapping) [25], from the rigid-body c-space into a suitable image projec-
tive space, and the successive introduction of a distance metric into the image space of the kinematic
mapping. Even though this technique, proposed by Ravani and Roth in ref. [1] for planar motions and
successively extended in refs. [26, 27] by using Study’s parameters through a reconfiguration of Study’s
soma space into a three-dimensional dual projective space, gives the bases for the indirect introduction
of distance metrics, it is a direct introduction. Actually, in principle, the image space is just a different
representation of the c-space (i.e., the kinematic mapping practically is a change of coordinates in the
c-space) and the idea of approximating an actual displacement with a fictitious one is not present here. In
ref. [1], the pose of a rigid body constrained to perform planar motion is given through four parameters,
say qi for i = 1,. . ., 4, constrained to satisfy the following scalar equation:

q2
3 + q2

4 = 1 (6)

which are interpretable as a special case of Study’s parameters in the plane under constraint (6).
The quadruplet q� {q1, q2, q3, q4}T , named planar quaternion, identifies a point that lies on an hyper-

surface, σ , of R4. Such a hypersurface is the geometric representation of the projective image space into
which the c-space is mapped. With reference to Fig. 3, if b = {bx, by}T is the position vector locating the
origin B of the body frame in the inertial frame, and φ is the rotation angle, positive if counterclockwise,
the inertial frame must rotate to have the same orientation of the body frame, the triplet {bx, by, φ} will
collect all the c-space coordinates. Accordingly, the kinematic mapping from the c-space into σ is given
by the following relationships:

q1 = 1

2

[
bx sin

(
φ

2

)
− by cos

(
φ

2

)]
(7a)
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Figure 3. Inertial frame and body frame in planar motion.

q2 = 1

2

[
bx sin

(
φ

2

)
+ by cos

(
φ

2

)]
(7b)

q3 = sin

(
φ

2

)
(7c)

q4 = cos

(
φ

2

)
(7d)

Then, in the image space, the following distance metric is defined [1]:

ρRR(q1, q2) =
√
(q2 − q1)

T
(q2 − q1) (8)

where q1 and q2 are the two planar quaternions corresponding to the two poses whose distance has to be
computed. Definition (8) is the Euclidean norm of R4, it is scale-dependent, and it is not bi-invariant [3].
In ref. [1], Ravani and Roth show how to use definition (8) in the dimensional synthesis of four-link pla-
nar mechanisms, thus proving the effectiveness of definition (8) in mechanism synthesis. Nevertheless,
the design constraint given through a limitation on ρRR(q1, q2) (i.e., an inequality of type ρRR(q1, q2)
< ε) is difficult to identify. Rico-Martinez and Duffy test [3] can be used for planar displacements by
considering only the x and y components of the translation displacement, that is, bx = 5 and by = 3 for
the pose A3C3 (Fig. 2), which corresponds to consider only the projections of the square lamina onto the
xy-coordinate plane (Fig. 2a). In addition, points A1, A2, and A3 (see Fig. 2a) are chosen as positions of
body-frame’s origin. So doing, the values d1 = 1 and d2 = 2.3452 are obtained through definition (8).
This result satisfies the condition d2 >> d1 and concurs with the conclusion reported in ref. [1] for the
four-bar dimensional synthesis.

On the same line, in ref. [26, 27], this approach has been extended to spatial motions. In ref.
[26], Ravani and Roth showed that Euclidean geometry with spatial displacements as elements cor-
responds to elliptic geometry of points in a projective dual three-dimensional space and that Study’s
eight parameters are usable to define the mapping of spatial kinematics into points of this projective
dual three-dimensional space. Then, in this projective space (Study’s soma), they defined the distance
between two points by using their normalized coordinates, which are normalized dual quaternions, thus
getting an analytic expression of the distance that appears as the dot product of two four-dimensional unit
vectors. Eventually, they proved the effectiveness of their proposal by applying it to the motion analysis
of four-bar spatial mechanisms. Nevertheless, Rico-Martinez and Duffy [3] proposed and applied their
above-described test (Fig. 2) specifically for this spatial extension computing d1 = 5 and d2 = 0 (i.e.,
the condition d2 >> d1 is not satisfied for the spatial extension) thus proving that metrics coming from
this approach are not suitable for solving spatial synthesis problems, which always involve finite rigid
bodies. Later, in ref. [27], Eberharter and Ravani used a stereographic projection of Study’s quadric to
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define a local affine space where the Euclidean definition of a metric can be used for rigid body displace-
ments and techniques from design of curves and surfaces can be directly utilized for motion design. The
so-defined local metrics depend on the chosen type of stereographic projection, and an optimization
technique aiming at choosing a stereographic projection with minimal local distortions is necessary.
They tested their approach with the Rico-Martinez and Duffy test [3] to see whether the limitation of
proposal [26] was over; so doing, they found d1 = 0.0436 and d2 = 3.0822, that is, the condition d2

>> d1 is satisfied in the new approach and only the scale-dependence problem, which is common to
other metrics, is still present in it, but it can be eliminated through a suitable scaling factor. In addi-
tion, they advised that their approach is not able to compute a rigid body pose exactly half way between
two other poses since their local metric is not defined in the Euclidean space where the two others are
defined. Eventually, they proved the effectiveness of their proposal in motion design through a numerical
example.

In the context of path planning, Kuffner [28] presented a comparison on the use of different orienta-
tion parameters. In [28], the distance metric is defined as the sum of two terms multiplied by arbitrary
weights: one term is the Euclidean norm of the translation parameters and the other is a norm built
only with the orientation parameters whose expression changes according to the used parameters but
remains simple to compute. The result of this comparison is that utilizing unit quaternions to represent
the rotation component is both efficient and effective for path planning, and it is recommended over
other alternatives such as Euler angles.

3. Distance metrics indirectly introduced in SE(3)
In R

3, a spherical motion is a mapping σ : R3 →R
3 that does not change the distances between points

(i.e., corresponds to a rigid motion) and keeps one point fixed. Such a motion is representable through
the motion of an oriented great-circle arc on a sphere centered at the fixed point and, accordingly, it is
sometimes named two-spherical motion since a sphere inR3 is a two-dimensional manifold. By analogy,
in R

n, an (n–1)-spherical motion is a mapping ψ: Rn →R
n that does not change the distances between

points and keeps one point fixed, that is, it is representable through the motion of an oriented great-
circle arc on a hypersphere centered at the fixed point. In this case, the name comes from the fact that
an hypersphere in R

n is an (n–1)-dimensional manifold.
McCarthy [9] showed how planar and spatial rigid-body motions can be approximated by spherical

and three-spherical motions, respectively. He exploited the fact that the motion of an oriented great-
circle arc on a sphere with radius r completely identifies a rigid-body spherical motion centered at the
sphere center, and that, if r is sufficiently large, the spherical motion approximately describes a planar
motion in a plane tangent to the sphere.

By formalizing this concept, he stated a first-order correspondence in r−1 between the 3 × 3 homo-
geneous transformation matrix, which identifies the pose of a rigid body constrained to perform planar
motion, and a rotation matrix of SO(3). Then, he generalized this approximation technique till to state a
first-order correspondence in r−1 between the 4 × 4 homogeneous transformation matrix, which identi-
fies the finite motion that brings the body frame from the coincidence with the inertial frame to its actual
pose, and a 4 × 4 orthogonal matrix with determinant equal to 1, which is an element of SO(4) and iden-
tifies a six-parameter non-physical motion, named three-spherical motion. These correspondences can
be seen as kinematic mappings, from the c-space into SO(3) or SO(4), which depend on the parameter
r−1. Once they are stated, the distance metrics of the image space (i.e., SO(3) or SO(4)) can be adopted
as distance metrics of the c-space [11], as same as it was done in ref. [1]. In the remaining part of this
section, this procedure will be briefly illustrated.

The 16 entries of a 4 × 4 orthogonal matrix satisfy 10 scalar conditions: 4 conditions impose that the
columns are unit vectors, and 6 more conditions impose that the 4 columns are mutually orthogonal.
Therefore, they can be parameterized as a function of only six parameters. The four column vectors
of such a matrix constitute a basis of R4, and they can be considered four-dimensional unit vectors that
identify the directions of four coordinate axes, say x, y, z, and w, that, when combined two by two, locate
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six coordinate hyperplanes: xy, yz, zx, xw, yw, and zw. An elementary rotation in R
4 can be defined as a

four-dimensional motion of a four-dimensional vector, with constant magnitude, that changes only two
components of that vector measured in the reference basis. The four-dimensional vector collecting the
new components after the rotation can be obtained by multiplying a suitable 4 × 4 orthogonal matrix
by the four-dimensional vector collecting the old component (i.e., the ones before the rotation). Such
suitable matrices will be called elementary rotation matrices. Since six couples of coordinate axes can
be counted in R

4, as many elementary rotations (one for each coordinate hyper-plane) can be defined in
R

4, and the associated elementary rotation matrices are (c(·) and s(·) denote cos(·) and sin(·), respectively)

Hxy(φ) =

⎡
⎢⎢⎢⎢⎣

cφ −sφ 0 0

sφ cφ 0 0

0 0 1 0

0 0 0 1

⎤
⎥⎥⎥⎥⎦ ; Hzx(ψ) =

⎡
⎢⎢⎢⎢⎣

cψ 0 sψ 0

0 1 0 0

−sψ 0 cψ 0

0 0 0 1

⎤
⎥⎥⎥⎥⎦ ; (9a)

Hyz(θ ) =

⎡
⎢⎢⎢⎢⎣

1 0 0 0

0 cθ −sθ 0

0 sθ cθ 0

0 0 0 1

⎤
⎥⎥⎥⎥⎦ ; Hxw(α) =

⎡
⎢⎢⎢⎢⎣

cα 0 0 sα

0 1 0 0

0 0 1 0

−sα 0 0 cα

⎤
⎥⎥⎥⎥⎦ ; (9b)

Hyw(β) =

⎡
⎢⎢⎢⎢⎣

1 0 0 0

0 cβ 0 sβ

0 0 1 0

0 −sβ 0 cβ

⎤
⎥⎥⎥⎥⎦ ; Hzw(γ ) =

⎡
⎢⎢⎢⎢⎣

1 0 0 0

0 1 0 0

0 0 cγ sγ

0 0 −sγ cγ

⎤
⎥⎥⎥⎥⎦ ; (9c)

Moreover, the generic element, H, of SO(4) can always be written as follows:

H = J(α, β, γ ) K(θ ,ψ , φ) (10)

with

J(α, β, γ ) = Hzw(γ ) Hyw(β) Hxw(α) =

⎡
⎢⎢⎢⎢⎣

cα 0 0 sα

−sαsβ cβ 0 cαsβ

−sαcβsγ −sβsγ cγ cαcβsγ

−sαcβcγ −sβcγ −sγ cαcβcγ

⎤
⎥⎥⎥⎥⎦ (11a)

K(θ ,ψ , φ) = Hxy(φ) Hzx(ψ) Hyz(θ ) =
[

R (θ ,ψ , φ) 0

0T 1

]
(11b)

where R(θ , ψ, φ) is an element of SO(3) (i.e., a 3 × 3 rotation matrix) parameterized through the angles
θ , ψ, and φ that are the roll, pitch, and yaw angles of the RPY parameterization [29]. It is worth noting
that the subset {H ∈ SO(4)|α = β = γ = 0} of SO(4) is a different representation of SO(3) made through
4 × 4 matrices (i.e., in this representation, SO(3) is a subgroup of SO(4)).

The generic element, X �
[

R b

0T 1

]
, of SE(3) can be mapped into an element H(b, R) of SO(4)

through the following analytic relationships (b = {bx, by, bz}T):
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α= bx

r
; β = by

r
; γ = bz

r
; (12)

where r is a parameter denoting the radius of an hypersphere of R4. The coordinates of a generic point,
P, lying on this hypersphere can be given through the following four-dimensional position vector:

P̂ = r

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

sξcηcζ

sηcζ

sζ

cξcηcζ

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(13)

where ξ, η, and ζ are three angular parameters that locate the point on the four-dimensional hypersphere.
It is worth noting that P̂T P̂ is always equal to r2 (i.e., the equation of the hypersphere, P̂T P̂ = r2, is
satisfied).

A position vector, p = {px, py, pz}T, which locates a point P of R
3, can be mapped into a four-

dimensional position vector, P̂, which locates a point of the hypersphere, through the following analytic
relationships:

ξ = px

r
; η= py

r
; ζ = pz

r
; (14)

If the radius, r, of the hypersphere is sufficiently greater than the components of b and of p, so that the
angles α, β, γ, ξ, η, and ζ, given by the linear mappings (12) and (14), are small enough to approximate
their sine with the argument and their cosine with 1, the following relationship holds:

H =
[

R 1
r
b

0T 1

]
; P̂ =

{
p

r

}
(15)

.
The analysis of Eq. (15) shows that, by increasing r, the hypersphere points can be confused with

the points of the hyper-plane w = r, which gives a particular homogeneous representation of the points
of R3. Moreover, it reveals that the product HP̂ is exactly equal to {(R p + b)T, r}T, which gives the
homogeneous coordinates of the point P, located by p in R

3 after the displacement, X of SE(3), given
by R and b, so matrix H can be considered another representation of the element X of SE(3). Therefore,
the mapping of SE(3) into SO(4) given by Eq. (10), together with Eqs. (12), (13), and (14), identifies a
correspondence between 4 × 4 matrices that tend to coincide with one another when r increases.

An one-to-one correspondence between the elements of SO(4) and suitable couples of unit quater-
nions, named biquaternions, has been presented in ref. [30]. By exploiting this correspondence, the
following distance metric of SO(4), which becomes a distance metric of SE(3) through relationships
(11) and (12), has been proposed in ref. [11]:

ρEM(H1, H2) =
√(

ĝ2 − ĝ1

) (
ĝ2 − ĝ1

)∗ +
(

ĥ2 − ĥ1

) (
ĥ2 − ĥ1

)∗
(16)

where H1 and H2 are the two elements of SO(4) whose distance has to be measured, (ĝi, ĥi) for i = 1, 2
is the couple of unit quaternions corresponding to Hi, and (·)∗ denotes the conjugate quaternion of (·).
In ref. [11], Etzel and McCarthy applied the Rico-Martinez and Duffy test [3] (Fig. 2) to their metric
(Eq. (16)) by using three different values of the hypersphere radius, r, and obtained the results reported
in Table I. The analysis of Table I reveals that the greater is r, the lower is the weight of the translational
component of the displacement with respect to the one of the rotational components of the displacement,
which is not affected by the adopted r value, that is, r plays the role of a scaling factor. In addition, the
same analysis shows that by increasing r always an r value is reached that makes condition d2 >> d1 not
satisfied. So r must be sufficiently high to make the angles α, β, γ, ξ, η, and ζ (see Eqs. (12) and (14))
small enough to approximate their sine with the argument and their cosine with 1, but not too high for
keeping condition d2 >> d1 (i.e., the Rico-Martinez and Duffy test) satisfied. In ref. [11], the relationship
r = L/ε0.5, where ε is the maximum position error introduced when approximating SE(3) with SO(4)
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Table I. Results of the Rico-Martinez and Duffy test [3] for
definition (16) (all the parameters are dimensionless since the
length of the square-lamina side (Fig. 2) is the length unit and
the angles are measured in radians).

r d1 d2

25 0.0617 0.1741
50 0.0617 0.0872
75 0.0617 0.0581

and L is the maximum length characterizing the workspace (i.e., the maximum displacement of rigid-
body’s points), is deduced. In the case of Fig. 2, where L = 5, this relationship gives r = 50 for ε = 0.01.
Unfortunately, Table I for r = 50 gives d2 > d1, but not d2 >> d1, which brings the conclusion that error
greater than 0.01 must be accepted to have the Rico-Martinez and Duffy test fully satisfied. Despite this,
Etzel and McCarthy [11] showed with one example that their metric (Eq. (16)) computes a mid-pose
between two other assigned poses that has a very low dependence on the body-frame choice and that
really appears as located between the two assigned poses more or less in the middle, which would make
their metric suitable for the mechanism synthesis.

Relationship (16), proposed in ref. [11], comes from a distance metric that is bi-invariant in SO(4).
Another bi-invariant distance metric of SO(4) can be defined as follows [16]:

ρL(H1, H2) = ∥∥I4 − H2HT
1

∥∥
F

(17)

where I4 is the 4 × 4 identity matrix, and ‖A‖F denotes the Frobenius norm of matrix A. In ref. [16],
definition (17) is used after having computed through the polar decomposition (PD) of the 4 × 4 homo-
geneous matrix X∈SE(3), to be approximated, an orthogonal matrix H∈SO(4) that is demonstrated
[31] to be the nearest one to X. Purwar and Ge [32] demonstrated that both ρEM(H1,H2) (definition
(16)) and ρL(H1,H2) (definition (17)) can be computed with an unified method that exploits a par-
ticular biquaternion-based approach [30]. In this context, defining a bi-invariant distance metric of
SO(4) induces an approximate bi-invariant distance metric of SE(3) [12, 13] and, also, studies on the
inertial-frame choice that is more suitable to use for this purpose have been presented in refs. [33, 34].

With reference to any type of metric defined on SE(3), Chirikjian, in ref. [35], introduced the concept
of partial bi-invariant metric. He stressed the fact that many metrics, which are left- or right-invariant
when the whole SE(3) group is considered, can be bi-invariant when only specific displacement subsets
of SE(3) are considered and called this property “partial bi-invariance.” Indeed, for instance, all the
metrics obtained through a linear combination of a bi-invariant metric of SO(3) (e.g., definition (4a)) and
of a bi-invariant metric of the spatial-translation subgroup (e.g., definition (4b)) are bi-invariant when
only pure rotations or only pure translations are considered. In ref. [35], he explicitly cited definition
(3) [4] and the below-reported definition (18) [17] to illustrate this case. Then, he went in depth on this
aspect and demonstrated that, for any left-invariant metric, there is a five-dimensional subspace of SE(3)
where it is bi-invariant, and that, in the general case, there is an eleven-dimensional space of pose pairs
whose distances are bi-invariant. Later, Chirikjian et al., in ref. [36], showed that, when changes in pose
are viewed from an inertial frame, the space of pose changes, named PCG(3), can be endowed with a
direct product group structure, which is different from the semi-direct product structure of SE(3) and
that, in PCG(3), a bi-invariant metric can be defined. Nevertheless, the same authors stressed that the
actions in PCG(3) are very different from the ones in SE(3).

Eventually, Ge et al. [37] proved that dual quaternions are an efficient tool for solving the problem of
computing an average (or mean) displacement from a set of given spatial displacements when a suitably
defined distance metric based on relative displacements is adopted.
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4. Combination of different SE(3) distance metrics
This author, in a previous paper [17], has proposed a technique for generating new distance metrics of
SE(3) by combining already defined distance metrics that can be either directly or indirectly introduced
in SE(3). Such a technique brings one to determine distance metrics that contain arbitrary coefficients
into their final expressions. The presence of arbitrary coefficients has the advantage that they are com-
putable to make the distance metric fit particular design criteria, which is relevant for engineering
applications even though the introduction of such coefficients could be questionable from the theoretical
assessment’s point of view. In this section, this technique is illustrated.

A distance metric in an n-dimensional c-space (n ≤ 6) is a real-valued mapping d: Rn ×R
n →R of

type d(y1, y2), where y1, y2 ∈R
n identify two poses in the c-space, that satisfies the following properties:

d(y1, y2) = d(y2,y1); (symmetry)
d(y1, y2) > 0 if y1 �= y2 and d(y1, y2) = 0 if y1 = y2; (positive definiteness)
d(y1, y2) ≤ d(y1, y3) + d(y3, y2) for any y3 ∈R

n; (triangle inequality)
The following statement holds:

Statement 1. If di(y1, y2) for i = 1,. . ., m are m different distance metrics defined on the same n-
dimensional c-space, then any linear combination, δ(y1, y2), with non-negative coefficients of the d i(y1,
y2) is a distance metric of the same c-space, provided that at least one coefficient be different from zero
(in formulas: δ(y1, y2) ∈ {

∑
i=1,m aidi(y1, y2)|(ai ≥ 0) & (∃k : ak �= 0)}).

Proof.

– Symmetry: since di(y1, y2) = di(y2, y1), then
∑

i=1,m aidi(y1, y2) =∑
i=1,m aidi(y2, y1); that is, δ(y1,

y2) = δ(y2, y1).
– Positive definiteness: since each di(y1, y2) is positive definite and, for the coefficient ai, the

following properties hold (ai ≥ 0) & (∃k : ak �= 0), then
∑

i=1,m aidi(y1, y2) > 0 if y1 �= y2 and∑
i=1,m aidi(y1, y2) = 0 if y1 = y2; that is, δ(y1, y2) is positive definite.

– Triangle inequality: since each di(y1, y2) satisfies the triangle inequality and, for the coefficient
ai, the following properties hold (ai ≥ 0) & (∃k : ak �= 0), then∑

i=1,m aidi(y1, y2) ≤∑
i=1,m ai[di(y1, y3) + di(y3, y2)] =∑

i=1,m aidi(y1, y3) +∑
i=1,m aidi(y3, y2) for any

y3 ∈R
n; that is, δ(y1, y2) satisfies the triangle inequality. �

Considering the displacement of a body frame from the coincidence with the inertial frame to an
assigned rigid-body pose, and, then, giving the geometric parameters of that displacement is a common
way to identify the assigned pose in the c-space. The special Euclidean group, SE(3), collects all the
possible displacements of a rigid body. SE(3) admits 10 classes of subgroups [38] with dimension greater
than zero and lower than six (lower-mobility subgroups).

The elements of SE(3) are 4 × 4 transformation matrices that depend on six geometric parame-
ters. These parameters can be collected in a six-tuple, say x. Hereafter, for simplifying the notation,
the six-tuple x is confused with the element of SE(3) computed through the entries of x. The same
notation simplification is used for the subgroups of SE(3). A generic element of SE(3) can be always
obtained through the composition of elements that belong to particular lower-mobility subgroups (e.g.,
one translation composed with one spherical motion). This property allows a rigid-body pose to be
parameterized through a six-tuple, x, whose entries can be collected into p nk-tuples, ky with k = 1, . . .,
p and

∑
k=1,p nk = 6, where each ky identifies an element of a given lower-mobility subgroup, Sk, with

dimension nk (in formulas: x ∈ {(1yT, . . ., pyT)T | ky ∈ Sk < SE(3)}).
With these notations, the following statement holds:

Statement 2. If δk(ky1, ky2) is a distance metric of Sk, then any linear combination, ρ(x1, x2), where
x1 = (1y1

T, . . ., py1
T)T and x2 = (1y2

T, . . ., py2
T)T, of the δk(ky1, ky2) with positive coefficients is a distance
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Figure 4. Geometric interpretation of (a) condition δT(b1, b2) < c and of (b) condition δS(R1, R2)<φ.

metric of SE(3) (in formulas: ρ(x1, x2) ∈ {
∑

k=1,p bkδk(ky1, ky2)| (x1 = (1y1
T, . . ., py1

T)T) & (x2 = (1y2
T, . . .,

py2
T)T) & (∀bk > 0)}).

Proof.

– Symmetry: since δk(ky1, ky2) = δk(ky2, ky1), then
∑

k=1,p bkδk(ky1, ky2) =∑
k=1,p bkδk(ky2, ky1); that

is, ρ(x1, x2) = ρ(x2, x1).
– Positive definiteness: since each δk(ky1, ky2) is positive definite and the coefficient bk are

all positive, then
∑

k=1,p bkδk(ky1, ky2) > 0 if x1 = (1y1
T, . . ., py1

T)T �= x2 = (1y2
T, . . ., py2

T)T and∑
k=1,p bkδk(ky1, ky2) = 0 if x1 = x2; that is, ρ(x1, x2) is positive definite.

– Triangle inequality: since each δk(ky1,ky2) satisfies the triangle inequality and the coefficient bk

are all positive, then∑
k=1,p bkδk(ky1, ky2) ≤∑

k=1,p bk[δk(ky1,
ky3) + δk(ky3, ky2)] =∑

k=1,p bkδk(ky1,
ky3) +∑

k=1,p bkδk(ky3, ky2)
for any x3 = (1y3

T, . . ., py3
T)T ∈R6; that is, ρ(x1, x2) satisfies the triangle inequality. �

Statement 2 makes it possible to generate a large family of distance metrics of SE(3) by decomposing
a generic displacement into displacements of lower-mobility subgroups and by defining one distance
metric in each subgroup. Once a family of distance metrics is determined, how to select meaningful
distance metrics among the members of this family still is an open problem. In the next subsection, this
problem will be addressed by looking for distance metrics that have an immediate geometric meaning.

4.1. Applicative example
The decomposition of a generic rigid-body displacement into displacements that belong to lower-
mobility subgroups can be implemented in many ways. Nevertheless, only some subgroups have distance
metrics that are easy to use and with a straightforward geometric interpretation. The subgroup of the
spatial translations, T(3), and the subgroup of the spherical motions, S(3), are among these subgroups.
Since any displacement can be obtained by composing one spatial translation with one spherical motion,
T(3) and S(3) are usable to decompose spatial displacements.

When a rigid body is constrained to translate, its pose (≡position) is uniquely identified by the coor-
dinates of the origin, B (Fig. 1), of the body frame measured in the inertial frame. The distance metric
δT(b1, b2) defined by relationship (4b) is commonly adopted in T(3). δT(b1, b2) is bi-invariant in T(3).
Moreover, a limitation on δT(b1, b2) (e.g., δT(b1, b2) < c) has a clear geometric meaning. In fact, it means
that the position B2 of B must be located inside a sphere with center at the position B1 of B and radius
given by the imposed condition (Fig. 4a).

When a rigid body is constrained to perform spherical motions with the same center, hereafter
assumed coincident with the origin of the body frame, its pose (≡orientation) is uniquely identified
by the rotation matrix R, whose columns are the three unit vectors of the body-frame axes projected
onto the inertial frame (Fig. 1). The set that collects all the rotation matrices is named SO(3), and the
above considerations state an isomorphism between S(3) and SO(3). The distance metric δS(R1,R2),
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defined by relationship (4a), can be adopted in SO(3). δS(R1, R2) is bi-invariant in SO(3). It measures
the convex rotation angle, in radians, of the finite rotation that brings the first rigid-body orientation
to coincide with the second one. On a unit sphere centered at the center of the spherical motion, such
an angle measures the length of the great-circle arc between two points that lie on the equatorial circle
perpendicular to the rotation axis and coincide with each other after the above-mentioned finite rotation.
A limitation on δS(R1, R2) (e.g., δS(R1, R2) <φ) has a clear geometric meaning. In fact, it means that
each body-frame axis at the second orientation is confined to lie inside a circular cone with vertex at the
center of the spherical motion, cone axis coincident with the homologous body-frame axis at the first
orientation, and vertex angle given by the imposed condition (Fig. 4b).

The distance metrics (4a) and (4b) and Statement 2 can be used to generate the following family of
distance metrics of SE(3):

ρu(X1, X2) = δT(b1, b2) + u δS(R1, R2) (18)

where u is an arbitrary positive constant that is measured with the same measurement unit as δT.
The analysis of definition (18) reveals that a limitation on ρu(X1, X2) expressed in the following

form:

ρu(X1, X2)< h (19)

implies the following limitations on δT and δS, and the associated geometric meanings:

δT(b1, b2)< h (20a)

δS(R1, R2)<
h

u
(20b)

Since the value of ρu(X1, X2) depends on the choice of the origin, B, of the body frame, the dis-
tance metrics defined by Eq. (18) are, in general, left-invariant, but, as explained in ref. [35], they are
bi-invariant if either only pure rotations or only pure translations are considered (i.e., they are partial
bi-invariant).

In ref. [17], the author also shows how easy it is to deduce the value of u by imposing a specific
applicative condition. Indeed, in ref. [17], the imposition that a limitation on ρu(X1, X2) must limit the
maximum displacement of all the rigid-body’s points immediately brought the conclusion that u must be
equal to the maximum distance, rmax, of these points from the body-frame origin, B, which also implies
that choosing B coincident with the centroid of the rigid body should be in general the best choice.
Such a result confirms that the sizes of the rigid body must be considered when meaningful metrics
are sought after. Later, Merzić et al. [39] used definition (18) in an algorithm for visual localization
and found it valid and efficient to use, whereas Brégier et al. [40] found reasonable the proposed u
choice, and Chen et al. [41] used it to build their own metric definition. Then, Kendall et al. [42] and,
recently, Ocegueda-Hernández et al. [43] used definition (18) by choosing two different metrics for
SO(3) and found it efficient to compute the pose error when estimating the position and orientation of a
three-dimensional object from its projection onto a two-dimensional image. It is worth noting that the
above-proposed direct deduction of the u value immediately solves the problem of choosing a suitable
scaling factor together with the limitations highlighted by Rico-Martinez and Duffy [3] for finite rigid
bodies. In particular, for the square lamina (Fig. 2) of the Rico-Martinez and Duffy test [3], choosing
the centroid of the square lamina as point B yields u = rmax = 1/

√
2 whose introduction into formula

(18) gives d2 = 6.164 and d1 = 0.1234, that is, the condition d2 >> d1 is satisfied. Table II summarizes
the above-reported results of the Rico-Martinez and Duffy test [3] for different metric definitions.

Eventually, it is worth stressing that even though definition (18) is just a simple applicative example
of this combination technique, which can generate many other distance metrics, it shows that this combi-
nation technique is more prone to provide definitions with a clear geometric meaning (i.e., Eqs. (19) and
(20)) than others. Indeed, for instance, definition (3) that comes out from a specific choice of matrix Q
and is somehow similar to definition (18) has a less direct interpretation when used into inequalities like
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Table II. Results of the Rico-Martinez and Duffy test [3] when applied
to different metric definitions (all the parameters are dimensionless
since the length of the square-lamina side (Fig. 2) is the length unit
and the angles are measured in radians).

Eq./Ref. d1 d2

(3)/ [4] 0.0873√
c1 6.164√

c2

(8)/ [1] 1 2.3452
–/ [26] 5 0
–/ [27] 0.0436 3.0822
(16)/ [11] Table 1 Table 1
(18)/ [17] 0.1234 6.164

Eq. (19) and the two coefficients that appear in it are more difficult to compute through the imposition
of a particular further requirement the metric has to satisfy.

5. Conclusion
In the literature, metrics for measuring the distance between two rigid-body poses are defined mainly
through two approaches. The first one aims at directly introducing a metric in rigid-body’s configuration
space (i.e., in SE(3)), whereas the second one indirectly introduces it by approximating a displacement
of SE(3) with a spherical or hyperspherical displacement, and, then, by using a distance metric of the
spherical, SO(3), or hyperspherical, SO(4), space.

These two approaches have generated a number of formulas, each one with its pros and cons.
Nevertheless, in the literature, some general theoretical results have been stated: (i) no bi-invariant
Riemannian metric can be defined in SE(3), (ii) meaningful distance metrics must take into account
the sizes of the rigid-body, (iii) bi-invariance is not necessary for getting meaningful distance metrics,
and (iv) the rules for combining different distance metrics to generate other distance metrics have been
determined.

Since different distance metrics can be combined to generate other distance metrics, all the possible
distance metrics can be seen as a unique family inside which the one that is the most suitable for a specific
application can be searched. Accordingly, finding distance metrics tailored on specific applications could
be a research field for future works on distance metrics.
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