
The Review of Symbolic Logic

Volume 15, Number 4, December 2022

STRONG HOMOMORPHISMS, CATEGORY THEORY,
AND SEMANTIC PARADOX

JONATHAN WOLFGRAM

Independent Scholar
and

ROY T. COOK

University of Minnesota, Twin Cities

Abstract. In this essay we introduce a new tool for studying the patterns of sentential
reference within the framework introduced in [2] and known as the language of paradox LP:
strongLP-homomorphisms. In particular, we show that (i) strongLP-homomorphisms between
LP constructions preserve paradoxicality, (ii) many (but not all) earlier results regarding the
paradoxicality of LP constructions can be recast as special cases of our central result regarding
strong LP-homomorphisms, and (iii) that we can use strong LP-homomorphisms to provide
a simple demonstration of the paradoxical nature of a well-known paradox that has not
received much attention in this context: the McGee paradox. In addition, along the way we
will highlight how strong LP-homomorphisms highlight novel connections between the graph-
theoretic analyses of paradoxes mobilized in the LP framework and the methods and tools of
category theory.

§1. Introduction. A body of recent work on the semantic paradoxes has focused
on the patterns of sentential reference that do, or do not, generate paradoxes. One
powerful tool for studying these inferential patterns is a graph-theoretic approach
pioneered in [2] (hereafter referred to as the “Language of Paradox” or LP), which
allows us to prove a number of interesting and important theorems regarding what
sorts of patterns of reference give rise to paradoxes and other problematic semantic
phenomena.1 Three of the most powerful such results are:

1. A transitivity theorem: This result shows that any pattern of sentential reference
whose dependency graph within LP is transitive is paradoxical.

2. The unwinding theorem [2]: This result allows us to transform any finite,
circular pattern of sentential reference into a corresponding infinite, non-looping
pattern with the exact same status vis-a-vis paradoxicality, determinacy, or
indeterminacy.

3. The Duality Theorem [2]: This theorem states that the result of replacing con-
junctions within an LP construction with disjunctions (obtaining a “dual” LD
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construction) has exactly the same status vis-a-vis paradoxicality, determinacy,
or indeterminacy as the original (and vice versa).

While these results have provided deep insights into the structures that underlie
semantic paradox and similar phenomena, they are limited. There remain a great many
paradoxical constructions—including paradoxical infinitary constructions—that are
neither transitive, nor unwindings of simpler finite structures within LP, nor duals of
such finite structures or their unwindings, and hence resist explanation via these results.
One such paradox is the LP version of the McGee paradox (and, more convenient for
our purposes, the dual of this paradox).

Thus, one task that will be undertaken within this paper is providing an analysis of
(the dual of) the McGee paradox, thus filling this lacuna. In order to carry out this task,
however, we will need to introduce a new and powerful tool within the LP framework:
strong LP-homomorphisms. The applications of strong LP-homomorphisms are not
limited to the study of this single paradox, however, and thus we will take the time
to explore various ways that strong LP-homomorphisms can be used to broaden our
understanding of the patterns of sentential reference that generate paradoxes and
other puzzles. In particular, we will see that we can give a very simple proof of a
powerful theorem regarding LP-homomorphisms by re-formulating parts of the LP

framework within category theory, and this leads to the final task undertaken in the
paper: to identify novel and potentially fruitful connections between existing methods
for studying paradox such as LP and the powerful methods and tools of contemporary
category theory.

The essay will proceed as follows. In Section 2 we review the basics of the LP

approach; we introduce strong LP-homomorphisms; and we state, but not prove,
the main result of this paper—the strong LP-homomorphism theorem (hereafter
the SLPH theorem)—a result that entails that strong LP-homomorphisms preserve
paradoxicality. Then, in Section 3, we recast the central notions involved in the
LP framework—including the notion of a strong LP-homomorphism—in category-
theoretic terms, and provide an extremely simple category theoretic proof of our main
theorem. In this section we will also show how a number of extant results are now
merely applications of the SLPH theorem. In Section 4 we will show how to represent
(the dual of) the McGee paradox within LP, and show that, although (the dual of)
the McGee paradox is not transitive, it does exhibit another heretofore unrecognized
condition that is sufficient for paradoxicality. In Section 5 we introduce a novel LP

construction—the Infinite Flower—that also exhibits this paradox-sufficient condition,
but whose paradoxicality is much more obvious than that of (the dual of) the McGee
construction, and we show how to apply the SLPH theorem to give an extremely
simple alternative proof of the paradoxicality of (the dual of) the McGee paradox.
The Appendix extends the examination of the connections between LP and category
theory via providing an alternative category-theoretic proof of the duality theorem.

§2. The language of paradox LP. Our first task is a brief review of a powerful
framework for studying the patterns of sentential reference that generate semantic
paradoxes: the language of paradox LP. LP contains conjunction ∧, a proper class
of sentence names Sα, α ∈ On, and a falsity predicate F.2 We allow arbitrarily long

2 On is the (proper) class of all ordinals.
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infinitary conjunction—hence, given any non-empty class A ⊆ On,

∧{F(Sα) : α ∈ A}

is a well-formed formula. This follows the treatment in [2, 3]. For present purposes,
however, we will have no need for anything beyond countably infinite conjunctions.
The well-formed formulas WFFLP

are all and only the conjunctions of expressions of
the form F(Sα), where a formula of the form F(Sα) alone is a treated as a one-conjunct
conjunction and hence is in WFFLP

.
A quick note on notation: Officially, only the Sαs (α ∈ On) are sentence names inLP.

To improve clarity, however, we’ll sometimes use other letters in the same sans serif font
for sentences letters (e.g., L for the sentence name in the Liar paradox, Yαs for sentence
names in the Yablo paradox, and Mαs and MD

α s for sentence names in the McGee
construction and its dual), and we will also use ordered n-tuples and other convenient
constructions for indexing sentence letters. These more convenient notations should
be understood as merely abbreviations for official LP constructions.

We obtain interesting (e.g., paradoxical) constructions within LP by applying
a denotation function to LP. Denotation functions assign well-formed formulas to
sentence names:

Definition 2.1. A denotation function is any function

� : {Sα}α∈On → WFFLP
,

mapping each sentence name in LP to a well-formed formula of LP.

Denotation functions allow us to reconstruct familiar semantic puzzles within LP. For
example, the Liar paradox is obtained via selecting any denotation function �L such
that

�L(L) = F(L).

Loosely put: Sentence name L names the sentence stating that (the sentence named by)
L is false. We can express this more colloquially as

L : F(L).

Similarly, we can reconstruct the Yablo paradox by selecting a denotation function �Y
where, for all n ∈ N,

�Y(Yn) = ∧{F(Ym) : m ∈ N & m > n},

and we can express this a bit more informally as

Y0 : F(Y1) ∧ F(Y2) ∧ F(Y3) ∧ ··· ,
Y1 : F(Y2) ∧ F(Y3) ∧ F(Y4) ∧ ··· ,
Y2 : F(Y3) ∧ F(Y4) ∧ F(Y5) ∧ ··· ,

etc.

It will be useful to have some notation that tracks how a particular denotation function
“behaves” with respect to a particular sentence or collection of sentences. Thus:
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Y0 �� �� �� �� ��
Y1 �� �� �� ��

Y2 �� �� ��
Y3 ��

��
Y4 �� Y5 ...

Fig. 1. An initial segment of Dep�Y .

Definition 2.2. Given a denotation function �, the dependency relation on � is:3

Dep� = {〈Sα,S�〉 : �(Sα) = ∧{F(S�) : � ∈ Γ} and � ∈ Γ}.
The dependency relation Dep� tracks dependencies amongst the sentences in LP

induced by the denotation function �: if 〈Sα,S�〉 ∈ Dep� , then the truth value of Sα
depends (in part) on the truth value of S� , since Sα refers to a conjunction containing
S� (according to �). We will write Dep�(Sα,S�) as shorthand for 〈Sα,S�〉 ∈ Dep� .
Figure 1 depicts (an initial segment of) the dependency relation for the LP version of
the Yablo paradox (i.e., {Yn}n∈N with �Y).4

It will be convenient to restrict our attention to collections of sentence names (with
a denotation function) that are closed in the following sense:

Definition 2.3. Given a denotation function � and a class of ordinals A, {Sα}α∈A is
closed under � if and only if, for all α, � ∈ On, if α ∈ A and Dep�(Sα,S�), then � ∈ A.

Informally: A class of sentence names (with a denotation function) is closed if,
whenever it contains a sentence name Sα , it contains all sentence names that Sα depends
on. All examples discussed in the remainder of this essay are closed.

We evaluate the status of various (usually closed) collections of sentence names
relative to a particular denotation function via considering assignments:

Definition 2.4. An assignment is any (total ) function � mapping the sentence names to
truth values:

� : {Sα}α∈On → {�,⊥}.
LP-acceptability of an assignment is straightforward:

Definition 2.5. Given a denotation function �, an assignment �, and a class of ordinals
A, � is LP-acceptable on {Sα}α∈A with � if and only if, for any α ∈ A, �(Sα) = � if and
only if, for all � such that Dep�(Sα,S�), �(S�) = ⊥.

An assignment is LP-acceptable when it assigns truth to a sentence name Sα if and
only if it assigns falsity to every sentence name occurring in the conjunction denoted
by Sα (and hence, intuitively, assigns truth to the conjunction itself).

We can now define what it means to say that an LP construction is paradoxical,
determinate, or indeterminate:

3 Note that, since denotation functions are total, and we do not allow empty conjunctions,
the dependency relation for a denotation function � is always serial.

4 Of course, since denotation functions are total, this only depicts (an initial segment of) the
portion of the dependency relation in question that corresponds to the Yablo paradox.
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Definition 2.6.

• A set of sentence names {Sα}α∈A with denotation function � is paradoxical if
there is no assignment � that is LP-acceptable on {Sα}α∈A with �.

• A set of sentence names {Sα}α∈A with denotation function � is determinate if
there is an assignment � that is LP-acceptable on {Sα}α∈A with �, and every �
that is LP-acceptable on {Sα}α∈A with � agrees on the values assigned to each
S� ∈ {Sα}α∈A.

• A set of sentence names {Sα}α∈A with denotation function � is indeterminate
if there exist assignments �1, �2 such that �1 and �2 are both LP-acceptable on
{Sα}α∈A with � and there is an S� ∈ {Sα}α∈A such that �1(S�) 
= �2(S�).

It is now straightforward to prove that the LP version of the Yablo paradox is
paradoxical:

Theorem 2.7 [2]. {Yn}n∈N with �Y is paradoxical.

Proof. Assume for reductio that there is an assignment function � that is
LP-acceptable on {Yn}n∈N with �Y.

Let n ∈ N be arbitrary. Assume for reductio that �(Yn) = �. Then, for all Ym such
that Dep�Y (Yn,Ym), �(Ym) = ⊥. Dep�Y(Yn,Ym) if and only if n < m. Let j > n. Then
�(Yj) = ⊥. So, there is a Yk such that Dep�Y(Yj ,Yk) (i.e., k > j) and �(Yk) = �. But
then Dep�Y(Yn,Yk). So �(Yk) = ⊥. Contradiction.

Since n was arbitrary, it follows that, for all m ∈ N, �(Ym) = ⊥. Let j ∈ N be
arbitrary. Then �(Yj) = ⊥. Then there is aYk such thatDep�Y(Yj ,Yk) and �(Yk) = �.
Contradiction.

Actually, the paradoxicality of the Yablo paradox is merely a special case of the
following phenomenon:5

Theorem 2.8 [3]. If Dep� is transitive on {Sα}α∈A, then {Sα}α∈A (with �) is paradoxical.

Proof. Assume for reductio that there is an assignment function � that is LP-
acceptable on {Sα}α∈A.

Let j ∈ A be arbitrary. Assume for reductio that �(Sj) = �. Then, for all Sk such that
Dep�(Sj ,Sk), �(Sk) = ⊥. Since Dep� is serial, there is a k ∈ A such that Dep�(Sj ,Sk).
So �(Sk) = ⊥. Again, by seriality, there is an m ∈ A such that Dep�(Sk,Sm) and
�(Sm) = �. By transitivity, Dep�(Sj ,Sm). So �(Sm) = ⊥. Contradiction.

Since j was arbitrary, it follows that, for all j ∈ A, �(Sj) = ⊥. Let k ∈ A be arbitrary.
Then �(Sk) = ⊥. Then there is an m ∈ A such that Dep�(Sk,Sm) and �(Sm) = �.
Contradiction.

Note that this result is unifying, in the sense that it identifies a property shared by
many (but not all—see below!) paradoxes. For example, the LP version of the Liar
paradox is also transitive. Thus, LP is a powerful tool for identifying general properties
of paradoxes, allowing us to shift our attention away from isolated examples, and
towards general types.

The connections between the Liar paradox and the Yablo paradox are actually much
deeper than the mere fact that both are transitive, however, since the Yablo paradox is
(isomorphic to) the “unwinding” of the Liar paradox. First, a definition:

5 A reminder: We are assuming that {Sα}α∈A with � is closed.
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Definition 2.9. � is the lexicographic ordering on pairs of ordinals:

〈α1, α2〉 � 〈�1, �2〉 iff either: α1 < �1,

or: α1 = �1 and α2 < �2.

Given an LP construction, we can “unwind” it, obtaining an infinite analogue that
contains no loops in its dependency relation:

Definition 2.10. The unwinding of {Sα}α∈A with � is {Sα}Uα∈A with �U where:

{Sα}Uα∈A = {S〈n,α〉 : n ∈ N and α ∈ A}
and

�U(S〈n,α〉) = ∧{S〈m,�〉 : 〈n, α〉 � 〈m, �〉 and Dep�(Sα,S�)}.
Given an assignment� and a set of sentence names {Sα}α∈Awith denotation function �,
the following construction provides us with a new assignment that treats each sentence
name in {Sα}Uα∈A with �U analogously to the way � treats its correlate in the original
{Sα}α∈A with �:

Definition 2.11. The N-image of an assignment � is �N where ( for any α ∈ On, n ∈ N):

�N(S〈n,α〉) = �(Sα).

We now obtain the following striking result:6

Theorem 2.12. For any{Sα}α∈Awith � and assignment�,� isLP-acceptable on{Sα}α∈A
with � if and only if �N is LP-acceptable on {Sα}Uα∈A with �U.

Proof. See [3, p. 143].

Further, it turns out that the assignments provided by Definition 2.11 are the only
assignments (if any) that can be LP-acceptable on any unwinding:

Definition 2.13. An assignment � is recurrent on {Sα}Uα∈A with �U if and only if, for
any α ∈ A and n,m ∈ N:

�(S〈n,α〉) = �(S〈m,α〉).

Theorem 2.14. Any assignment LP-acceptable on {Sα}Uα∈A with �U is recurrent on
{Sα}Uα∈A with �U.

Proof. See [3, p. 142].

Thus, the following corollary is immediate:7

Corollary 2.15. {Sα}α∈A with � is paradoxical if and only if {Sα}Uα∈A with �U is
paradoxical.

This result allows us to further unify our explanation of at least some semantic
paradoxes: Not only are the Liar and the Yablo paradox both instances of the
transitivity-entails-paradoxicality phenomenon, but in addition, the latter is the

6 Cook [2] proves a version of this theorem, and the theorem regarding recurrent assignments
discussed below, for unwindings of finite LP constructions.

7 And further, the number of acceptable assignments on {Sα}α∈A with � is identical to the
number of acceptable assignments on {Sα}Uα∈A with �U.
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unwinding of the former, and hence will have the same status vis-a-vis paradoxicality,
determinacy, or indeterminacy. As we shall see, there are other well-known semantic
paradoxes that can be easily re-formulated within LP, but which are neither transitive
nor the unwindings of any simpler LP constructions.

Our next result concerns LD
P—the dual of the language of paradox LP. We obtain LD

P

by replacing the conjunctions in LP with disjunctions. The definitions of denotation
function, dependency relation, closure, and assignments remain the same, and the only
modification required is adopting the following definition of LD

P -acceptability, which
reverses the role of truth and falsity:

Definition 2.16. Given a denotation function �, an assignment �, and a class of ordinals
A, � is LD

P -acceptable on {Sα}α∈A with � if and only if, for any α ∈ A, �(Sα) = ⊥ if and
only if, for all � such that Dep�(Sα,S�), �(S�) = �.

Thus, an assignment is LD
P -acceptable when it assigns falsity to a sentence name Sα if

and only if it assigns truth to every sentence name occurring in the disjunction denoted
by Sα (and hence, intuitively, assigns falsity to the disjunction itself).

The following definition and theorem provide the connection between constructions
in LP and constructions in LD

P .

Definition 2.17. Given an assignment �, �D is the assignment:

�D(Sα) = �, if �(Sα) = ⊥,
= ⊥, if �(Sα) = �.

Theorem 2.18. Given a denotation function � and assignment �, � is LP-acceptable on
{Sα}α∈A with � if and only if �D is LD

P -acceptable on {Sα}α∈A with �.

Simply put, replacing the conjunctions in an LP construction with disjunctions
(resulting in an LD

P construction) preserves the status of the construction with respect
to the paradoxicality/determinacy/indeterminacy trichotomy (and vice versa).

So far, we have only discussed results that are already well-known from the literature
on LP. We now state a novel result, which we shall prove in the next section. First,
some additional definitions:

Definition 2.19. A unary function:

f : {Sα}α∈A → {S�}�∈B
is a strong LP-homomorphism from {Sα}α∈A with �1 to {S�}�∈B with �2 if and only if:

• Homo: For every Sα1 ,Sα2 ∈ {Sα}α∈A, if Dep�1(Sα1 ,Sα2), then Dep�2(f(Sα1),
f(Sα2)).

• Strong: For every Sα1 ∈ {Sα}α∈A,S�1 ∈ {S�}�∈B , if Dep�2(f(Sα1),S�1 ), then
there is an Sα2 ∈ {Sα}α∈A such that Dep�1(Sα1 ,Sα2) and f(Sα2) = S�1 .

Definition 2.20. A strong LP-homomorphism f from {Sα}α∈A with �1 to {S�}�∈B with
�2 is surjective if and only if:

• Surj: For every S�1 ∈ {S�}�∈B , there is an Sα1 ∈ {Sα}α∈A such that f(Sα1) =
S�1 .

We will write:

〈{Sα}α∈A, �1〉
StrLP−� 〈{S�}�∈B, �2〉
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if there is a strong LP-homomorphism from {Sα}α∈A with �1 to {S�}�∈B with �2, and

〈{Sα}α∈A, �1〉
StrSurLP−� 〈{S�}�∈B, �2〉

if there is a strong surjective LP-homomorphism from {Sα}α∈A with �1 to {S�}�∈B
with �2.8

Given a strong LP-homomorphism f from {Sα}α∈A with �1 to {S�}�∈B with �2, any
assignment � on {S�}�∈B determines a corresponding assignment �f on {Sα}α∈A:

Definition 2.21. Given a strong LP-homomorphism f from {Sα}α∈A with �1 to {S�}�∈A
with �2,

〈{Sα}α∈A, �1〉
StrLP−� 〈{S�}�∈B, �2〉,

and any assignment �, the assignment induced by f on {Sα}α∈A (with �) is �f where:

�f(Sα) = �(f(Sα)), if α ∈ A,
= �, otherwise.

We now state (but do not yet prove) what we shall call the strong LP-homomorphism
theorem (or SLPH theorem):

Theorem 2.22. If

〈{Sα}α∈A, �1〉
StrLP−� 〈{S�}�∈B, �2〉,

then (where f is any function witnessing the strong LP-homomorphism), for any
assignment �, if � is LP-acceptable on {S�}�∈B with �2 then �, �f are LP-acceptable on
{Sα}α∈A with �1.

We can strengthen the conditional to a biconditional by requiring that the strong
LP-homomorphism be surjective:9

8 It is worth noting that
StrSurLP−� induces a partial order on equivalent classes of isomorphic

LP constructions. That is, if

[〈{Sα}α∈A, �1〉]� = {〈{S�}�∈B , �2〉 : 〈{S�}�∈B , �1〉 � 〈{Sα}α∈A, �1〉}
and

[〈{Sα}α∈A, �1〉]�
StrLP[�]
−� [〈{S�}α∈A, �2〉]�

if and only if there are

〈{S�}�∈G, �2〉 ∈ [〈{Sα}α∈A, �1〉]�,
〈{S�}�∈E, �2〉 ∈ [〈{S�}�∈B , �2〉]�,

such that

〈{S�}�∈G, �1〉
StrSurLP−� 〈{S�}�∈E, �2〉,

then
StrSurLP[�]

−� is a partial order on the space of [{Sα}α∈A, �]�s. Additionally, this partial
order contains least upper bounds. Proof of these facts is left to the reader.

9 Note that Theorem 2.23 does not entail that, for any assignment �1 that is LP-acceptable on
{Sα}α∈A with �1, there is corresponding assignment �2 that is LP-acceptable on {S�}�∈B
with �2. See the discussion of the Open Pair in Section 3 for a counterexample.
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Theorem 2.23. If

〈{Sα}α∈A, �1〉
StrSurLP−� 〈{S�}�∈B, �2〉,

then (where f is any function witnessing the strong LP-homomorphism), for any
assignment �, �f is LP-acceptable on {Sα}α∈A with �1 if and only if � is LP-acceptable
on {S�}�∈B with �2.

We could prove the SLPH theorem (and its strengthening Theorem 2.23) within the
framework just described.10 Here we shall take a somewhat different path. It turns out
that these theorems can be easily reformulated and proven with very basic category-
theoretic tools. Doing so is the task of the next section.

§3. LP-homomorphisms and category theory. In this section we will reconstruct
some of the machinery of the language of paradox LP within the category of sets Set,
and use this reconstruction to prove the results given at the end of the previous section.

Before doing so, a historical note is in order. The results given in this section,
and applied in the sections that follow, are not the first time that investigations of
paradoxicality and related phenomenon have mobilized category-theoretic tools. Of
particular note, in this regard, is [6], which proves a number of fixed-point theorems
(including versions of Tarski’s Theorem and Cantor’s Theorem) within a category-
theoretic setting. Thus, the idea that category theory has something to teach us about
paradoxes is not new. The particular methods deployed below, however, are novel, and
no doubt merely scratch the surface of what can be learned about semantic paradoxes
via adopting a category-theoretic perspective.11

Back to the mathematics! Understood category-theoretically, a denotation function
� is just a P-coalgebra from S to P(S) (where P is the (covariant) powerset functor P
in Set) for some set S (understood as our set of sentence names).

Given this understanding of a denotation function, we can define acceptability as
follows: Let Ω be the set of truth values (i.e., {�,⊥}), and ↓ : P(Ω) → Ω be the
following morphism from P(Ω) to Ω:

↓({⊥}) = ↓(∅) = �,
↓({�}) = ↓({�,⊥} = Ω) = ⊥,

↓ is the category-theoretic analogue of the Pierce arrow expressing, in the present
context (and put somewhat loosely), something like “all of the sentences are false.”12

Then, given a denotation function � : S → P(S), an assignment is just a morphism

10 In fact, in an early draft of this paper, we did just this. Thanks are owed to an anonymous
referee for pointing out the connection to category theory, and urging us to explore the
resulting connections between paradoxical patterns of reference and category-theoretic
notions.

11 In more detail: we do not claim that these results, viewed purely as theorems regarding the
category Set, are either particularly novel or particularly deep. The novelty and importance
of the material in the present section is tied to the applications of category theory to the study
of paradoxes, not to the category-theoretic results taken in-and-of-themselves.

12 Actually, our category-theoretic reconstruction is a bit more general than the original notion
of a denotation function, since it allows one to map a sentence name to the empty conjunction
(i.e., it might map a member of S to∅). This is harmless, since the intended cases are covered.
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S1

�
��

� �� Ω

P(S1)
P�

�� P(Ω)

↓

��

Fig. 2. � is LP-acceptable on �.

S1

�1
��

f �� S2

�2
��

P(S1)
Pf

�� P(S2)

Fig. 3. f is a strong homomorphism from �1 to �2.

� : S → Ω, and an assignment � is LP-acceptable relative to a denotation function � if
and only if Figure 2 commutes.

Next, a strong homomorphism between denotation functions �1 and �2 is, in the
category-theoretic setting, just a coalgebra morphism between the P-coalgebras �1 :
S1 → P(S1) and �2 : S2 → P(S2). f : S1 → S2 is a coalgebra morphism from �1 to �2
if and only if Figure 3 commutes.

Finally, the additional requirement that a strong homomorphism be surjective,
needed for the strengthened version of the SLPH theorem (i.e., Theorem 2.23),
becomes, in the present context, the requirement that the coalgebra morphism f is
an epimorphism.

We can now provide a very simple category-theoretic proof of the SLPH theorem:

Theorem 3.1. If �1 : S1 → P(S1) and �2 : S2 → P(S2) are P-coalgebras in Set, and
f : S1 → S2 is a coalgebra morphism from �1 to �2, then, for any � : S2 → Ω, if � is
LP-acceptable on �2 then � ◦ f is LP-acceptable on �1.

Proof. Assume f : S1 → S2 is a coalgebra morphism from � : S1 → P(S1) to �2 :
S2 → P(S2), and hence

S1

�1
��

f �� S2

�2
��

P(S1)
Pf

�� P(S2)

commutes. Now, assume � is acceptable on 〈S2, �2〉, and hence

S2

�2
��

� �� Ω

P(S2)
P�

�� P(Ω)

↓

��
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commutes. Then

S1

�1
��

f �� S2

�2
��

� �� Ω

P(S1)
Pf

�� P(S2)
P�

�� P(Ω)

↓

��

commutes, and hence

S1

�1
��

�◦f �� Ω

P(S1)
P�◦Pf=P(�◦f)

�� P(Ω)

↓

��

commutes. Hence � ◦ f is LP-acceptable on 〈S1, �1〉.
Adding in surjectivity, we obtain the following category-theoretic version of

Theorem 2.23:

Theorem 3.2. If �1 : S1 → P(S1) and �2 : S2 → P(S2) are P-coalgebras in Set, and
f : S1 → S2 is a coalgebra epimorphism from �1 to �2, then, for any � : S2 → Ω, �2, if
� ◦ f is LP-acceptable on �1 then � is LP-acceptable on �2.

Proof. Assume f : S1 → S2 is a coalgebra morphism from � : S1 → P(S1) to �2 :
S2 → P(S2), and hence

S1

�1
��

f �� S2

�2
��

P(S1)
Pf

�� P(S2)

commutes, and assume further that f is an epimorphism, and hence, for any two
g, h : S2 → X , if gf = hf, then g = h. Assume � ◦ f is LP-acceptable on 〈S1, �1〉,
and hence

S1

�1
��

�◦f �� Ω

P(S1)
P�◦Pf

�� P(Ω)

↓

��

commutes. The second diagram gives us

↓ ◦ P� ◦ Pf ◦ �1 = � ◦ f,
while the first diagram provides

�2 ◦ f = Pf ◦ �1.
A simple substitution then gives us

↓ ◦ P� ◦ �2 ◦ f = � ◦ f,
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which, since f is an epimorphism, provides

↓ ◦ P� ◦ �2 = �.

Hence,

S2

�2
��

� �� Ω

P(S2)
P�

�� P(Ω)

↓

��

commutes, and � is LP-acceptable on 〈S2, �2〉.
The following corollary is straightforward:

Corollary 3.3. If 〈{Sα}α∈A, �1〉
StrSurLP−� 〈{S�}�∈B, �2〉 then

|{� : � is LP-acceptable on {Sα}α∈A with �1}|
≥ |{� : � is LP-acceptable on {S�}�∈B with �2}|.

Proof. Assume that 〈{Sα}α∈A, �1〉
StrSurLP−� 〈{S�}�∈B, �2〉, and let

f : {Sα}α∈A → {S�}�∈B
be any LP-homomorphism witnessing this fact. Then, if �1 and �2 are distinct
assignments that are LP-acceptable on {S�}�∈B , then there is an S�1 ∈ {S�}�∈B such
that

�1(S�1) 
= �2(S�1).

But then, where Sα1 ∈ {Sα}α∈A is such that f(Sα1 ) = S�1 , we have:13

�f1 (f(Sα1 )) = �1(S�1) 
= �2(S�1) = �f2 (f(Sα1 )).

Thus, the mapping (�)f (induced by the strong LP homomorphism f ) from LP-
acceptable assignments on {S�}�∈B with �2 to LP-acceptable assignments on {Sα}α∈A
with �1 is one-to-one (but not necessarily onto).

As hinted in the final line of this proof, the inequality between the cardinalities of
the classes of LP-acceptable assignments cannot be strengthened to an identity, as
the following simple example shows. Select a denotation function � that provides an
instance of the Liar

�(L) = F(L)

and an instance of the Open Pair14

�(OP1) = F(OP2),
�(OP2) = F(OP1),

13 Note that it is at this step that we require surjectivity.
14 The Open Pair was first introduced (as the No-No Paradox) in [9]. Our choice of terminology

reflects the fact that, as understood here, the Open Pair is not paradoxical (of course, this
does not count against Sorensen’s compelling argument that, despite its formal consistency,
the Open Pair is pathological in a different sense).
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OP1

��

�����������

L
��

OP2

��

		���������

Fig. 4. A simple strong (surjective) LP-homomorphism.

then f : {OP1,OP2} → {L} where

f(OP1) = f(OP2) = L,

which is pictured in Figure 4, is a strong surjective LP-homomorphism from
{OP1,OP2} with � to {L} with �. But the Liar is paradoxical, while the Open Pair
is not (it is indeterminate, with two LP-acceptable truth value assignments, each of
which assigns � to one sentence name and ⊥ to the other).

This example of a strong surjective LP-homomorphism from a non-paradoxical LP

construction to a paradoxical one is an instance of the following fact:

Theorem 3.4. For any {Sα}α∈A with denotation function �,

〈{Sα}α∈A, �〉
StrSurLP−� 〈{L}, �L〉.

Proof. Let

f(Sα1 ) = L

for any Sα1 ∈ {Sα}α∈A.
If Dep�(Sα1 ,Sα2), then, since f(Sα1 ) = f(Sα2 ) = L, and Dep�L(L, L), Homo is

satisfied.
For Strong, the only case is Dep�L(f(Sα1 ), L) for some Sα1 ∈ {Sα}α∈A. Let Sα2 ∈

{Sα}α∈A be such thatDep�(Sα1 ,Sα2 ) (the existence of such is guaranteed by the seriality
of Dep� and the non-emptiness of {Sα}α∈A). Then f(Sα2 ) = L.

f is clearly surjective.

Perhaps the simplest and most useful corollary of the SLPH theorem is the following
corollary:15

Corollary 3.5. If 〈{Sα}α∈A, �1〉
StrLP−� 〈{S�}�∈B, �2〉 and {Sα}α∈A with �1 is para-

doxical, then {S�}�∈B with �2 is paradoxical.

Given this, we can use strong LP-homomorphisms to categorize LP constructions
in two (ultimately equivalent) ways:

15 Note this corollary follows directly from the SLPH theorem, and does not require surjectivity.
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• We can show that 〈{Sα}α∈A, �1〉 is paradoxical by identifying an 〈{S�}�∈B, �2〉
such that

〈{S�}�∈B, �2〉
StrLP−� 〈{Sα}α∈A, �1〉,

where 〈{S�}�∈B, �2〉 is known to be paradoxical.
• We can show that 〈{Sα}α∈A, �1〉 is non-paradoxical by identifying an

〈{S�}�∈B, �2〉 such that

〈{Sα}α∈A, �1〉
StrLP−� 〈{S�}�∈B, �2〉,

where 〈{S�}�∈B, �2〉 is known to be non-paradoxical.16

We can further demonstrate the usefulness of strong LP-homomorphisms by noting
that we can re-construe part of the content of the unwinding theorem as a mere special
case of the SLPH theorem. We begin with the following observation:

Theorem 3.6. Given any {Sα}α∈A with �,

〈{Sα}Uα∈A, �U〉
StrLP−� 〈{Sα}α∈A, �〉.

Proof. The reader is invited to verify that

f : {Sα}Uα∈A → {Sα}α∈A,
where

f(S〈n,α〉) = Sα

is a strong LP-homomorphism from {Sα}Uα∈A with �U to {Sα}α∈A with �.

Thus, given any LP construction {Sα}α∈A (with �), there is a strong LP-
homomorphism from the unwinding of {Sα}α∈A (with �) to {Sα}α∈A (with �) itself.
As a result, the right-to-left direction of Corollary 2.15 is also an immediate corollary
of the SLPH theorem.17

Before moving on to our examination of the McGee paradox (and its dual), we
further strengthen the connections between the LP approach and category theory by
noting that the Duality Theorem can also be given a simple category-theoretic proof.
The proof is given in the Appendix.

§4. The McGee paradox in LP. The McGee paradox was originally formulated
within the language of arithmetic with a truth predicate [7], and in that context the
main point of interest in the construction is that it was the central component in a

16 Note that the existence of a strongLP-homomorphism from 〈{Sα}α∈A, �1〉 to 〈{S�}�∈B , �2〉,
where 〈{S�}�∈B , �2〉 is indeterminate, entails that 〈{Sα}α∈A, �1〉 is indeterminate, but the
existence of a strong LP-homomorphism from 〈{Sα}α∈A, �1〉 to 〈{S�}�∈B , �2〉, where
〈{S�}�∈B , �2〉 is determinate, only guarantees that 〈{Sα}α∈A, �1〉 is not paradoxical, but on
its own is insufficient to determine whether 〈{Sα}α∈A, �1〉 is determinate or indeterminate.

17 Recall that, as we noted in Section 2, the left-to-right direction of Corollary 2.15 depends on
a fact particular to unwindings: any assignment LP-acceptable on the unwinding of an LP
construction must be recurrent. Thus, we should not expect the other half of Corollary 2.15
to follow merely from the existence of the strong LP-homomorphism.
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proof that certain axiomatic theories of truth (in particular, FS; see [4]) are consistent
but 	-inconsistent. Here our interests will be quite different, since we will be looking
at the McGee Paradox in the context of LP, and we will, as a result, be implicitly
assuming that we are working in the standard model of arithmetic (and hence that
the McGee construction is genuinely paradoxical). Nevertheless, a quick reminder of
McGee’s original construction is in order.

Let LT be any language sufficient for Peano Arithmetic (PA) supplemented with
a unary truth predicate T(�). �Φ� is the name (or Gödel code) of Φ. We abbreviate
iterated applications of the truth predicate as follows:

T1(�) =df T(�),

Tn+1(�) =df T(�Tn(�)�).

We define falsity in terms of truth and negation:

F(�) =df ¬T(�).

And we abbreviate the iteration of falsity predicates along the same lines:

F1(�) =df F(�),

Fn+1(�) =df F(�Fn(�)�).

We now obtain the McGee Paradox via an application of Gödel’s celebrated
diagonalization theorem [5] to the predicate

¬(∀n ≥ 1)Tn(�)

obtaining the McGee sentence M, where

�PA M ↔ ¬(∀n ≥ 1)Tn(�M�).

Loosely put, the McGee Sentence M is true if and only if it is not the case that all
sentences of the form:

It is true that ...it is true that M

are true. Equivalently,M is true if and only if some sentence of that form is false—that is,

�PA M ↔ (∃n ≥ 1)¬Tn(�M�).

McGee’s construction has a dual version that will be more convenient for our purposes,
since it can be reconstructed relatively straightforwardly within LP (McGee’s original
construction is more naturally reconstructed in the LD

P). The Dual McGee Sentence is
MD where (again via Gödelian diagonalization)

�PA MD ↔ (∀n ≥ 1)¬Tn(�MD�).

Loosely put, the Dual McGee Sentence MD is true if and only if all sentences of the
form:

It is true that ...it is true that MD

are false.
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Calling this the “dual” of the original McGee construction is justified via noting
that the above is equivalent to

�PA MD ↔ ¬(∃n ≥ 1)Tn(�MD�).

In short, just as the move from LP to LD
P involves switching conjunctions and

disjunctions, the move from the original McGee construction to its dual involves
replacing a universal quantifier (akin to an infinitary conjunction) with an existential
quantifier (akin to an infinitary disjunction).

Given that we want to represent the McGee Paradox within LP, it will be somewhat
more convenient to work with the Dual of the McGee Paradox formulated in terms
of our (defined) falsity predicate, rather than the (primitive) truth predicate.18 The
following is equivalent to the formulation of the McGee Sentence given above:

�PA MD ↔ ¬(∃n)T(�Tn(�MD�)�).

Replacing each occurrence of T(�) with F(�F(�)�), we obtain

�PA MD ↔ ¬(∃n)F(�F(�F2n(�MD�)�)�).

Commuting the initial negation and the quantifier, we obtain

�PA MD ↔ (∀n)¬F(�F(�F2n(�MD�)�)�).

Finally, we can simplify this a bit, via “cancelling out” the initial negation-falsity prefix,
obtaining the following falsity variant of the Dual McGee Sentence:19

MD ≡ (∀n)F(�F2n(�MD�)�).

Reconstructing the Dual of the McGee Paradox in LP is now straightforward: Our
sentence names are {MD

n }n∈N, and our denotation function �MD is such that, for all
n ∈ N,

�MD(MD
0 ) = ∧{F(MD

2m) : m ∈ N},
�MD(MD

n+1) = F(MD
n ).

We can write this a bit more colloquially as

MD
0 = F(MD

0 ) ∧ F(MD
2 ) ∧ F(MD

4 ) ∧ F(MD
6 ) ∧ ··· ,

MD
1 = F(MD

0 ),

MD
2 = F(MD

1 ),

MD
3 = F(MD

2 ),

etc.

18 Results analogous to all those demonstrated with respect to the Dual of the McGee follow
for McGee’s original construction via the Duality Theorem.

19 We can perform a similar transformation to obtain a falsity variant of the original McGee
sentence

M ≡ (∃n)F(�F2n(�M�)�).

Details are left to the reader.
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MD
0

�� �� ��




MD

1
�� MD

2
�� MD

3
�� MD

4
�� MD

5
�� M D

6 ...��

Fig. 5. An initial segment of Dep�
MD

.

Loosely speaking,MD
0 “is”MD in the informal construction from Section 1, and (again,

loosely speaking) each MD
n+1 “is” F(MD

n ). Hence, for n ≥ 1,

MD
n “is” Fn(MD

0 ),

and we can thus “rewrite” MD
0 as

MD
0 ≡ F(F0(MD

0 )) ∧ F(F2(MD
0 )) ∧ F(F4(MD

0 )) ∧ F(F6(MD
0 )) ∧ ···

and hence as

MD
0 ≡ F(MD

0 ) ∧ F3(MD
0 ) ∧ F5(MD

0 ) ∧ F7(MD
0 ) ∧ ··· .

This is just (modulo some unimportant notational changes, and replacing an infinite
conjunction with the corresponding universal quantification) the Dual of the McGee
Sentence given above:

M ≡ (∀n)F(�F2n(�M�)�)

Figure 5 depicts (an initial segment of) the dependency relation for the LP version of
the Dual of the McGee paradox (i.e., {MD

n }n∈N with �MD). Note that the dependency
relation in the LP version of the Dual of the McGee paradox is not transitive. {MD

n }n∈N

with �MD is, however, paradoxical. In this section we give a direct proof of this fact—one
that does not depend on the mobilization of strong LP-homomorphisms:

Lemma 4.1. For any assignment function � that is LP-acceptable on {MD
n }n∈N with

�MD , and any n,m ∈ N, �(MD
n ) = �(MD

n+2m).

Proof. Straightforward induction (or via direct inspection of Figure 5), left to the
reader.

Theorem 4.2. {MD
n }n∈N with �MD is paradoxical.

Proof. Assume for reductio that there is an assignment � that is LP-acceptable on
{MD
n }n∈N with �MD .

Assume that �(MD
0 ) = �. Then, for all MD

m such that Dep�
MD

(MD
0 ,M

D
m), �(MD

m) = ⊥.

In particular, �(MD
0 ) = ⊥. Contradiction.

Thus, �(MD
0 ) = ⊥. So there is an m ∈ N such that �(MD

2m) = �. This contradicts
our lemma. Contradiction.

Hence there is no such assignment.
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The paradoxicality of the Dual of the McGee paradox is, like the Yablo Paradox, a
special case of a more general phenomenon. First, some additional definitions:20

Definition 4.3. Given a denotation function �, an infinite sequence of ordinals

〈α0, α1, α2, α3 ... αn, αn+1 ... 〉
is a �-path if and only if, for all m ∈ N, Dep�(Sαm ,Sαm+1 ).

Definition 4.4. A �-path

〈α0, α1, α2, α3 ... αn, αn+1 ... 〉
is an n-repeater if and only if

α0 = αn

and there is no m ∈ N such that 0 < m < n and

α0 = αm.

Theorem 4.5. If {Sα}α∈A (with �) contains an S� such that every �-path beginning with
� is an n-repeater for odd n, then {Sα}α∈A (with �) is paradoxical.

Proof. Assume that {Sα}α∈A (with �) contains an S� such that every �-path
beginning with � is an n-repeater for odd n. Assume for reductio {Sα}α∈A (with �)
is not paradoxical. Then there is an assignment � that is LP-acceptable on {Sα}α∈A
(with �). If �(S�) = �, then there is a �-path

�, α1, α2, α3, ...

such that

�(Sαn ) = �, if n is even,

= ⊥, if n is odd.

Since every �-path beginning with � is an n-repeater for odd n, there is an m such that
m is odd and S� = Sαm . But then

� = �(S�) = �(Sαm ) = ⊥.
Contradiction. Hence �(S�) 
= �. A similar argument shows that �(S�) 
= ⊥. Hence,
there is no such LP-acceptable assignment.

This result, like the theorem regarding transitivity from the previous section, is also
unifying, in the sense that it also identifies a property shared by many (but again, not
all!) paradoxes. Note that the LP version of the Liar paradox is also a construction
involving a sentence where every �-path beginning with that sentence is an n-repeater
for odd n. But, just as the denotation relation on the Dual of the McGee paradox is
not transitive, the dependency relation on the LP version of the Yablo paradox does
not contain any such n-repeaters (since it contains no loops at all!).

20 Note that we only need to consider infinite paths, since, given seriality (i.e., the fact that any
denotation function � is a total function on sentence names), any path can be extended to
an infinite one.
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��

IF〈5,3〉
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IF〈7,3〉

����������
IF〈7,2〉��

Fig. 6. An initial segment of Dep�IF .

Now that we have given a proof of the paradoxicality of (the Dual of) the McGee
paradox using methods mobilized in extant work within the LP framework, it is time
to see what can be done using our new tool—strong LP-homomorphisms.

§5. The infinite flower and LP-homomorphisms. We will begin this section by
constructing a novel paradox: The Infinite Flower. First, we use the following pairs as
indexes for the sentence names:

A = {〈n,m〉 : 0 < m < n and n odd, or n = 1 and m = 0}.
We now define the denotation function as follows (using IF rather than S merely for
aesthetics—it’s a flower, after all):

�IF(IF〈n,m〉) =

⎧⎪⎨
⎪⎩

{IF〈j,1〉 : j odd} ∪ {IF〈1,0〉}, if n = 1 and m = 0,
{IF〈n,m+1〉 : n ∈ N}, if n odd and 0 < m < n – 1,
{IF〈1,0〉}, if n odd and m = n – 1.

The structure of the Infinite Flower can be seen a bit more clearly in Figure 6, which
represents its first four “petals.”

Clearly, any path in the Infinite Flower beginning with IF〈0,1〉 is an n repeater for
some odd n (the n is given by the first value of the pairs labeling the sentence names in
the relevant “petal”). Hence the Infinite Flower is paradoxical, and is another instance
of the sort of paradoxicality delineated by Theorem 4.5.

But we don’t need all of the fancy machinery involved in Theorem 4.5 in order to
see the paradoxicality of the Infinite Flower. There is a much more straightforward,
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rather obvious route to this knowledge. First, we merely need to note the familiar fact
that any “cyclic” LP construction of odd length is paradoxical:

Definition 5.1. Given a denotation function �, an finite sequence of n-many ordinals

〈α0, α1, α2, α3 ... αn–1〉
is an n-cycle (with �) if and only if:

Dep� = {〈Sαm ,Sαm+1〉 : 0 ≤ m < n – 1} ∪ {〈Sαn+1 ,Sα0〉}.
Theorem 5.2. [3] Given {Sα}α∈A (with �), if A (with �) is an n-cycle for odd n, then
{Sα}α∈A (with �) is paradoxical.

The Liar sentence L (with �L) is a 1-repeater (hence paradoxical), while the Open
Pair OP1,OP2 (with �OP) is a 2-cycle, hence not covered by this result.21 Examples of
n-cycles for lengths 3, 5, and 7 are given by the respective “petals” in Figure 6.

Now, once we have noted this very basic fact about odd cycles, the reader might
fairly ask what it has to do with the topic at hand: the McGee paradox and strong
LP-homomorphisms. The answer is simple: We can give an alternative argument to
show that (the dual of) the McGee paradox is indeed paradoxical by noting two facts:

1. The Infinite Flower is paradoxical.
2. There is a strong LP-homomorphism from the Infinite Flower to dual of the

McGee paradox.

The first fact is easily verified once one notes that the Infinite Flower consists merely
of a bunch of n-cycles pasted together (one for each odd n)—filling in the rather trivial
details is left to the reader. For the second fact:22

Theorem 5.3.

〈{IF〈m,n〉 : m, n ∈ N, m odd , 0 < n < m} ∩ {IF〈1,0〉}, �IF〉
StrLP−� 〈{MD

n : n ∈ N}, �MD〉.
Proof. The reader is invited to verify that

f(IF〈m,n〉) = Mn

is a strong LP-homomorphism from the Infinite Flower to the Dual of the McGee
paradox.

This result, plus the observation just made regarding the paradoxicality of the
Infinite Flower, provide a simple proof of the paradoxicality of (the dual of) the
McGee paradox via a quick application of the SLPH theorem (and, in particular,
of Corollary 3.5). Further, this proof is arguably a good bit simpler than the more
direct proofs given in the previous section (via either Theorem 4.2 or an application of
Theorem 4.5).

Thus, strong LP-homomorphisms are a powerful tool for showing that novel LP

constructions are paradoxical, as advertised. In order to show that an LP construction
{Sα}α∈A (with �) is paradoxical, we need only show some familiar or simpler

21 Any n-cycle where n is even and non-zero is indeterminate, with exactly two LP-acceptable
assignments. Again, see [3].

22 The mapping in Theorem 5.3 is surjective, but we do not need that fact for the result.
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construction whose paradoxicality has already been (or can easily be) established
can be mapped to it by a strong LP-homomorphism.

§6. Conclusion. In this essay, we have demonstrated that strong LP-homo-
morphisms are a powerful tool within the LP framework. They have allowed us to
identify straightforward characterizations of, and connections between, constructions
that have not been dealt with previously within the LP approach, such as (the dual of)
the McGee paradox and the Infinite Flower. In addition, strong LP-homomorphisms
have illuminated new connections between various more familiarLP constructions, and
have allowed us to generalize and unify extant results such as the unwinding theorem
(and the duality theorem, handled in the Appendix). Finally, they have provided us with
the tools to begin to draw important connections between the patterns of sentential
reference that generate paradox and the methods and tools of category theory. No
doubt, however, much more work remains to be done.

Appendix: Duality and category theory. Here, we give a novel category-theoretic
proof of the Duality Theorem (Theorem 2.18). Recall that the only distinction between
LP andLD

P is that the former uses conjunctions whereas the latter uses disjunctions, and
hence LD

L mobilizes LD
P -acceptability instead of LP-acceptability. Thus, our first task

is to formulate the notion of LD
P in the category-theoretic setting. Let | : P(Ω) → Ω be

the morphism

|({⊥}) = |({�,⊥} = Ω) = �,
|({�}) = |(∅) = ⊥.

| is the category-theoretic analogue of the Sheffer stroke (expressing something like
“at least one of the sentences is false”). Thus, given a denotation function � (i.e., a
coalgebra from S to P(S)), an assignment � (i.e., a morphism from S to Ω) is LD

P

acceptable on S relative to � if and only if Figure 7 commutes.
Now, let ¬ : Ω → Ω be the mapping:

¬(�) = ⊥,
¬(⊥) = �.

Note that ¬ ◦ ¬ = idΩ, and that ¬ is a monomorphism.23 Given an assignment �, the
dual assignment �D given in Definition 2.17 is just ¬ ◦ �. Recall that we defined the
functor ↓ : P(Ω) → Ω as

↓({⊥}) = ↓(∅) = �,
↓({�}) = ↓({�,⊥} = Ω) = ⊥.

The reader is invited to verify that

¬◦ ↓ ◦P¬ = |,
¬ ◦ | ◦ P¬ = ↓,

23 ¬ is also an epimorphism, but we will not need this fact.
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S1

�
��

� �� Ω

P(S1)
P�

�� P(Ω)

|

��

Fig. 7. � is LD
P -acceptable on �.

that is, the following diagrams commute:

P(Ω)

P¬
��

| �� Ω

P(Ω)
↓

�� Ω

¬

�� P(Ω)

P¬
��

↓ �� Ω

P(Ω)
|

�� Ω

¬

��

Now, in order to prove the duality theorem, we need to merely prove

Given a denotation function � and assignment �, � is LP-acceptable
on {Sα}α∈A with � if and only if �D is LD

P -acceptable on {Sα}α∈A
with �.

Which, in the present context, amounts to proving that the diagram on the left
commutes if and only if the diagram on the right commutes:

P(Ω)

�

��

� �� Ω

P(Ω)
P�

�� Ω

↓

�� P(Ω)

�

��

¬◦� �� Ω

P(Ω)
P(¬◦�)

�� Ω

|

��

But the diagram on the left commutes if and only if

S2

�
��

� �� Ω ¬ �� Ω

P(S2)
P�

�� P(Ω)
↓

�� Ω

¬

��

commutes (since ¬ is a monomorphism), which commutes if and only if

S2

�
��

� �� Ω ¬ �� Ω

P(S2)
P�

�� P(Ω)
P¬

�� P(Ω)
|

�� Ω ¬
�� Ω

¬

��
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commutes (since ¬ ◦ | ◦ P¬ = ↓), which commutes if and only if

S2

�2
��

� �� Ω ¬ �� Ω

P(S2)
P�

�� P(Ω)
P¬

�� P(Ω)

|

��

commutes (since ¬ ◦ ¬ = idΩ), which is just

S2

�2
��

¬◦� �� Ω

P(S2)
P(¬◦�)

�� P(Ω)

|

��

Thus, the Duality Theorem is proven.

Acknowledgements. Thanks are owed to an anonymous referee whose comments
and suggestions vastly improved this essay, and to the Undergraduate Research
Opportunities Program (UROP) at the University of Minnesota—Twin Cities for
providing funding to Jonathan Wolfgram to support his work on this project.

BIBLIOGRAPHY

[1] Beringer, T., & Schindler, T. (2018). A graph theoretical analysis of the semantic
paradoxes. Bulletin of Symbolic Logic, 23(4), 442–492.

[2] Cook, R. (2004). Patterns of paradox. Journal of Symbolic Logic, 69(3),
767–774.

[3] ———. (2014). The Yablo Paradox: An Essay on Circularity. Oxford: Oxford
University Press.

[4] Friedman, H., & Sheard, M. (1987). An axiomatic approach to self-referential
truth. Annals of Pure and Applied Logic, 33, 1–21.
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