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Semigroups and Generators

1.1 Motivation from Partial Differential Equations

Consider the following initial value problem on Rd :

∂u(t, x)

∂t
=

d∑
i, j=1

ai j (x)∂
2
i j u(t, x)+

d∑
i=1

bi (x)∂i u(t, x)− c(x)u(t, x),

u(0, ·) = f (·), (1.1.1)

where f ∈ C2
c (R

d). Here we have used the simplifying notation ∂i for ∂
∂xi

and ∂i j for ∂2

∂xi ∂x j
. We will assume that c, bi and a j,k are bounded smooth

(i.e., infinitely differentiable) functions on Rd for each i, j, k = 1, . . . , d with
c ≥ 0, and that the matrix-valued function a = (ai j ) is uniformly elliptic in
that there exists K > 0 so that

inf
x∈Rd

a(x)ξ · ξ ≥ K |ξ |2 for all ξ ∈ Rd ,

with (ai j (x)) being a symmetric matrix for each x ∈ Rd .
The point of these conditions is to ensure that (1.1.1) has a unique solution.1

We make no claims that they are, in any sense, optimal. We rewrite (1.1.1) as
an abstract ordinary differential equation:

dut

dt
= Aut ,

u0 = f, (1.1.2)

1 See, e.g., Chapter 6, section 5 of Engel and Nagel [31].
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10 Semigroups and Generators

where A is the linear operator

(Ag)(x) =
d∑

i, j=1

ai j (x)∂
2
i j g(x)+

d∑
i=1

bi (x)∂i g(x)− c(x)g(x),

acting on the linear space of all functions g : Rd → R that are at least twice
differentiable.

The original PDE (1.1.1) acted on functions of both time and space and the
solution u is a function from [0,∞) × Rd → R. In (1.1.2), we have hidden
the spatial dependence within the structure of the operator A and our solution
is now a family of functions ut : E → E , where E is a suitable space of
functions defined on Rd . It is tempting to integrate (1.1.2) naively, write the
solution as

ut = et A f, (1.1.3)

and seek to interpret et A as a linear operator in E . From the discussion above,
it seems that E should be a space of twice-differentiable functions, but such
spaces do not have a rich structure from a functional analytic perspective. Our
goal will be to try to make sense of et A when E is a Banach space, such as
C0(R

d), or L p(Rd) (for p ≥ 1). If we are able to do this, then writing Tt :=
et A, we should surely have that for all s, t ≥ 0,

Ts+t = Ts Tt and T0 = I.

We would also expect to be able to recapture A from the mapping t → Tt

by A = d
dt

∣∣
t=0 Tt . Note that if E = L2(Rd), then we are dealing with oper-

ators on a Hilbert space, and if we impose conditions on the bi ’s and a jk’s
such that A is self-adjoint,2 then we should be able to use spectral theory to
write

A =
∫
σ(A)

λd E(λ), Tt =
∫
σ(A)

etλd E(λ),

where σ(A) is the spectrum of A. We now seek to turn these musings into a
rigorous mathematical theory.

1.2 Definition of a Semigroup and Examples

Most of the material given below is standard. There are many good books on
semigroup theory and we have followed Davies [27] very closely.

2 This is non-trivial as A is not a bounded operator, see below.
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1.2 Definition of a Semigroup and Examples 11

Let E be a real or complex Banach space and L(E) be the algebra of all
bounded linear operators on E . A C0-semigroup3 on E is a family of bounded,
linear operators (Tt , t ≥ 0) on E for which

(S1) Ts+t = Ts Tt for all s, t ≥ 0,
(S2) T0 = I ,
(S3) the mapping t → Ttψ from [0,∞) to E is continuous for all ψ ∈ E .

We briefly comment on these. (S1) and (S2) are exactly what we expect
when we try to solve differential equations in Banach space – we saw this in
section 1.1. We need (S3) since without it, as we will see, it is very difficult to
do any analysis. For many classes of examples that we consider, (Tt , t ≥ 0)
will be a C0-semigroup such that Tt is a contraction4 for all t > 0. In this case,
we say that (Tt , t ≥ 0) is a contraction semigroup. Finally, if only (S1) and
(S2) (but not (S3)) are satisfied we will call (Tt , t ≥ 0) an algebraic operator
semigroup, or AO semigroup, for short.

The condition (S3) can be simply expressed as telling us that the mapping
t → Tt is strongly continuous in L(E). We now show that we can replace it
with the seemingly weaker condition:

(S3)′ The mapping t → Ttψ from R+ to E is continuous at t = 0 for all
ψ ∈ E .

Proposition 1.2.1 If (Tt , t ≥ 0) is a family of bounded linear operators on E
satisfying (S1) and (S2), then it satisfies (S3) if and only if it satisfies (S3)′.

Before we prove Proposition 1.2.1, we will establish a lemma that we will
need for its proof, and which will also be useful for us later on. For this we
need the principle of uniform boundedness, which states that if (Bi , i ∈ I) is
a family of operators in L(E) such that the sets {||Biψ ||, i ∈ I} are bounded
for each ψ ∈ E , then the set {||Bi ||, i ∈ I} is also bounded.5

Lemma 1.2.2

1. If (Tt , t ≥ 0) is a family of bounded linear operators on E so that t → Ttψ

is continuous for all ψ ∈ E, then for all h > 0,

ch = sup{||Tt ||, 0 ≤ t ≤ h} <∞.
2. If (Tt , t ≥ 0) is a family of bounded linear operators on E so that t → Ttψ

is continuous at zero for all ψ ∈ E, then there exists h > 0 so that ch <∞.

3 The reason for the nomenclature “C0” is historical. The founders of the subject introduced a
hierarchy of semigroups of type “C j ” (see Hille [45]). Only C0 remains in general use today.

4 A bounded linear operator X in E is a contraction if ||X || ≤ 1, or equivalently ||Xψ || ≤ ||ψ ||
for all ψ ∈ E .

5 This is proved in elementary texts on functional analysis, e.g., Simon [90], pp. 398–9.
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12 Semigroups and Generators

Proof. 1. From the given continuity assumption, it follows that the set
{||Ttψ ||, 0 ≤ t ≤ h} is bounded, for all ψ ∈ E , and then the result follows
from the principle of uniform boundedness.

2. Assume that the desired conclusion is false. Then ch = ∞ for all h > 0.
So taking h = 1, 1/2, . . . , 1/n, . . . , we can always find 0 < tn < 1/n so
that ||Ttn || > n. But then by the uniform boundedness theorem, there exists
ψ ∈ E so that {||Ttnψ ||, n ∈ N} is unbounded. But limn→∞ Ttnψ = T0ψ ,
and this yields the required contradiction.

Note that in Lemma 1.2.2 (2), c(h′) ≤ c(h) <∞ for all 0 ≤ h′ ≤ h , and if
we assume that T0 = I therein, then c(h′) ≥ 1.

Proof of Proposition 1.2.1. Sufficiency is obvious. For necessity, let t >

0, ψ ∈ E be arbitrary. Then for all h > 0, by (S1) and (S2)

||Tt+hψ − Ttψ || ≤ ||Tt ||.||Thψ − ψ || → 0 as h → 0.

Then t → Ttψ is right continuous from [0,∞) to E . To show left continuity,
let h be as in Lemma 1.2.2 (2) so that ch < ∞, and in view of the discussion
after the proof of the last lemma, we take h < t . Since t → Ttψ is continuous
at zero, given any ε > 0, there exists δ > 0 so that if 0 < s < δ, then
||Tsψ − ψ || < ε/[c2

h(||Tt−h || + 1)]. Now choose δ′ = min{δ, h}. Then for all
0 < s < δ′,

||Ttψ − Tt−sψ || ≤ ||Tt−s ||.||Tsψ − ψ ||
≤ ||Tt−δ′ ||.||Tδ′−s ||.||Tsψ − ψ ||
< ||Tt−δ′ ||cδ′ ε

(c2
h(||Tt−h || + 1)

≤ ||Tt−h ||
||Tt−h || + 1

||Th−δ′ ||
ch

cδ′

ch
ε

<
ch−δ′

ch
ε ≤ ε

(where we have repeatedly used (S1)), and the proof is complete.

Example 1.2.3 Take E = C. Fix a ∈ C and define for all t ≥ 0,

Tt z = etaz,

for each z in C. Then (Tt , t ≥ 0) is a C0-semigroup and you can check that

● if �(a) < 0, then (Tt , t ≥ 0) is a contraction semigroup,
● if �(a) = 0, then Tt is an isometry for all t > 0,
● if �(a) > 0, then limt→∞ ||Tt || = ∞.
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Example 1.2.4 If A is a bounded operator on E , define

Tt = et A =
∞∑

n=0

tn

n! A
n .

You can check in Problem 1.1 that the series is norm convergent (uniformly on
finite intervals) and that (Tt , t ≥ 0) is a C0-semigroup. Note that

||et A|| ≤
∞∑

n=0

tn

n! ||A||
n = et ||A||.

Example 1.2.5 (The Translation Semigroup) Here we take E = C0(R) or
L p(R) for 1 ≤ p <∞ and define

(Tt f )(x) = f (x + t).

Verifying (S1) and (S2) is trivial. We will establish (S3) in Chapter 3, when
this example will be embedded within a more general class, or you can prove
it directly in Problem 1.4.

Example 1.2.6 (Probabilistic Representations of Semigroups) Let (�,F , P)
be a probability space and (X (t), t ≥ 0) be a stochastic process taking values
in Rd . We obtain linear operators on Bb(R

d) by averaging over those paths
of the process that start at some fixed point. To be precise, we define for each
f ∈ Bb(R

d), x ∈ Rd , t ≥ 0:

(Tt f )(x) = E( f (X (t))|X (0) = x).

Then we may ask when does (Tt , t ≥ 0) become a semigroup, perhaps on a
nice closed subspace of Bb(R

d), such as C0(R
d)? We will see in Chapter 7

that this is intimately related to the Markov property.

Example 1.2.7 (Semidynamical Systems) Let M be a locally compact space
and (τt , t ≥ 0) be a semigroup of transformations of M so that τs+t = τsτt

for all s, t ≥ 0, τ0 is the identity mapping and t → τt x is continuous for all
x ∈ M . Then we get a semigroup on C0(M) by the prescription

Tt f = f ◦ τt .

If (τt , t ≥ 0) extends to a group (τt , t ∈ R), then we have reversible dynamics,
since the system can be run both backwards and forwards in time. If this is
not the case, we have irreversible dynamics. In physics, the latter is associated
with entropy production, which yields the “arrow of time”. These themes will
be developed in Chapter 8.
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14 Semigroups and Generators

For later work, the following general norm-estimate on C0-semigroups will
be invaluable.

Theorem 1.2.8 For any C0-semigroup (Tt , t ≥ 0), there exists M ≥ 1 and
a ∈ R so that for all t ≥ 0,

||Tt || ≤ Meat . (1.2.4)

Proof. First fix n ∈ N, and define cn := sup{||Tt ||, 0 ≤ t ≤ 1/n} < ∞ by
Lemma 1.2.2(1). Since ||T0|| = 1, we must have cn ≥ 1. By repeated use of
(S1), we deduce that ||Tt || ≤ c, where c := (cn)

n , for all 0 ≤ t ≤ 1. Now for
arbitrary t ≥ 0, let [t] denote the integer part of t . Again by repeated use of
(S1), we have

||Tt || ≤ c[t]c
≤ ct+1

≤ Meat ,

where M := c and a := log(c).

From the form of M and a obtained in the proof of Theorem 1.2.8, we see
that if (Tt , t ≥ 0) is a contraction semigroup, then M = 1 and a = 0. But in
some cases it is possible that we may also find that there exists b > 0 so that
||Tt || ≤ e−bt , for all t ≥ 0, due to some additional information. Indeed (see,
e.g., Engel and Nagel [32] p. 5), one may introduce the growth type a0 ≥ −∞
of the semigroup:

a0 := inf{a ∈ R; there exists Ma ≥ 1 so that ||Tt || ≤ Maeat for all t ≥ 0},
but we will not pursue this direction further herein.

For readers who like abstract mathematics, an (algebraic) semigroup is a
set S that is equipped with a binary operation ∗, which is associative, i.e.,
(a∗b)∗c = a∗(b∗c) for all a, b, c ∈ S. The semigroup is said to be a monoid
if there is a neutral element e, so that a ∗ e = e ∗ a = a for all a ∈ S. We have
a topological semigroup (or monoid) if the set S is equipped with a topology
such that the mapping (a, b) → a ∗ b from S × S to S is continuous. Finally
a representation of a topological monoid S is a mapping π : S → L(E),
where E is a real or complex Banach space so that π(a ∗ b) = π(a)π(b)
for all a, b ∈ S, π(e) = I and for all ψ ∈ E , the mapping a → π(a)ψ
is continuous from S to E . Now [0,∞) is easily seen to be a topological
monoid, under addition, when equipped with the usual topology inherited
from R, and what we have called a C0-semigroup is simply a representation
of [0,∞).
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1.3 Unbounded Operators and Generators 15

1.3 Unbounded Operators and Generators

1.3.1 Unbounded Operators and Density of Generators

Our next goal is to seek insight into the infinitesimal behaviour of semigroups.
We will seek to answer the following question, motivated by our work in sec-

tion 1.1: Is there always a linear operator A in E such that Aψ = dTtψ
dt

∣∣∣
t=0

,

and if so, what properties does it have? We will see that the answer to the
first part of the problem is affirmative. But in general, we expect A to be an
unbounded operator,6 i.e., an operator that is only defined on a linear mani-
fold D that is a proper subset of E ; indeed this was exactly the case with the
second-order differential operator that we considered in section 1.1. We use
the term “unbounded” for such operators, since if ||Aψ || ≤ K ||ψ || for all
ψ ∈ D, and if D is dense in E , then it is easy to see that A may be extended
to a bounded operator on the whole of E (see Problem 1.8(a)). The operators
that we deal with will usually have the property that D is dense, but no such
bounded extension as just discussed, can exist. Let us make a formal definition
of linear operator that includes both the bounded and unbounded cases.

Let D be a linear manifold in a complex Banach space E . We say that
X : D → E is a linear operator with domain D if

X (c f + g) = cX f + Xg

for all f, g ∈ D and all c ∈ C. We sometimes use the notation Dom(X) or
DX for the space D. The operator X is said to be densely defined if D is dense
in E . We say that a linear operator X1 having domain D1 is an extension of X
if D ⊆ D1 and X1 f = X f for all f ∈ D. In this case, we also say that X is a
restriction of X1 to D, and we write X ⊆ X1.

Example 1.3.9 Let E = C([0, 1]) and consider the linear operator (X f )(x) =
f ′(x) for 0 ≤ x ≤ 1, with domain D = C∞([0, 1]). Then X is densely
defined. It has an extension to the space D1 = C1([0, 1]). Consider the
sequence (gn) in D where gn(x) = e−nx for all x ∈ [0, 1]. Then ||Xgn|| = n,
and so X is clearly unbounded.

Now let (Tt , t ≥ 0) be a C0-semigroup acting in E . We define7

DA =
{
ψ ∈ E; ∃φψ ∈ E such that lim

t→0

∣∣∣∣∣∣∣∣Ttψ − ψ
t

− φψ
∣∣∣∣∣∣∣∣ = 0

}
.

6 A good reference for unbounded operators, at least in Hilbert spaces, is Chapter VIII of Reed
and Simon [76]. For Banach spaces, there is a great deal of useful information to be found in
Yosida [101].

7 The limit being taken here and in (1.3.5) below is one–sided.
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16 Semigroups and Generators

It is easy to verify that DA is a linear space and thus we may define a linear
operator A in E , with domain DA, by the prescription

Aψ = φψ,
so that, for each ψ ∈ DA,

Aψ = lim
t→0

Ttψ − ψ
t

. (1.3.5)

We call A the infinitesimal generator, or for simplicity, just the genera-
tor, of the semigroup (Tt , t ≥ 0). We also use the notation Tt = et A, to
indicate that A is the infinitesimal generator of a C0-semigroup (Tt , t ≥ 0).
We have already seen examples, such as Example 1.2.4 above, where this
notation agrees with familiar use of the exponential mapping. We will show
below that DA is dense in E . For now, in the general case, we may only assert
that 0 ∈ DA.

Example 1.3.10 It is easy to see that the generators in Examples 1.1 and 1.2
are z with domain C, and A with domain E (respectively). For Example 1.2.5
the generator is the differentiation operator X f = f ′, with domain

DX := { f ∈ C1
0(R); f ′ ∈ C0(R)}.

To see this, observe that for f ∈ DX , given any ε > 0, there exists δ > 0 so

that for all |h| < δ

sup
x∈R

∣∣∣∣ f (x + h)− f (x)

h
− f ′(x)

∣∣∣∣ < ε,

and the result follows. (Hint: First take f ∈ C∞c (R)).

In order to explore properties of A we will need to use Banach space inte-
grals. Let 0 ≤ a < b <∞. We wish to integrate continuous functions � from
[a, b] to E . As we are assuming continuity, we can define

∫ b
a �(s)ds to be an

E-valued Riemann integral, rather than using more sophisticated techniques.
To be precise,

∫ b
a �(s)ds is the unique vector in E so that for any ε > 0 there

exists a partition a = t0 < t1 < · · · < tn < tn+1 = b so that∣∣∣∣∣∣
∣∣∣∣∣∣
∫ b

a
�(s)ds −

n+1∑
j=1

�(u j )(t j − t j−1)

∣∣∣∣∣∣
∣∣∣∣∣∣ < ε,

where t j−1 < u j < t j , for all j = 1, . . . , n+1. The following basic properties
will be used extensively in the sequel. They are all established by straightfor-
ward manipulations using partitions, or by variations on known arguments for
the case E = R (see Problem 1.2).
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Proposition 1.3.11 (Properties of the Riemann Integral) Let � : [0,∞] → E
be continuous.

(RI1) For all c > 0,
∫ b

a �(s + c)ds = ∫ b+c
a+c �(s)ds.

(RI2) For all a < c < b,
∫ b

a �(s)ds = ∫ c
a �(s)ds + ∫ b

c �(s)ds.

(RI3)
∣∣∣∣∣∣∫ b

a �(s)ds
∣∣∣∣∣∣ ≤ ∫ b

a ||�(s)||ds.

(RI4) For all t ≥ 0, limh→0
1
h

∫ t+h
t �(s)ds = �(t).

In addition, it is a straightforward exercise to check that for any X ∈ L(E)

X
∫ b

a
�(s)ds =

∫ b

a
X�(s)ds. (1.3.6)

We will mostly want to consider the case where [a, b] = [0, t] and �(s) =
Tsψ for some fixed vector ψ ∈ E and C0-semigroup (Tt , t ≥ 0), so the desired
continuity follows from (S3). From now on we will use the notation

ψ(t) :=
∫ t

0
Tsψds, (1.3.7)

and we will frequently take X = Ts for some s > 0 in (1.3.6) to obtain

Tsψ(t) =
∫ t

0
Ts+uψdu. (1.3.8)

The following technical lemma will be very useful for us. In particular, it
tells us that DA contains much more than just the zero vector.

Lemma 1.3.12 For each t ≥ 0, ψ ∈ E, ψ(t) ∈ DA and

Aψ(t) = Ttψ − ψ.
Proof. Using (1.3.8), (RI1), (RI2) and (RI4), we find that for each t ≥ 0,

lim
h→0

1

h

[
Thψ(t)− ψ(t)

] = lim
h→0

(
1

h

∫ t

0
Th+uψ du − 1

h

∫ t

0
Tuψ du

)
= lim

h→0

(
1

h

∫ t+h

h
Tuψ du − 1

h

∫ t

0
Tuψ du

)
= lim

h→0

(
1

h

∫ t+h

t
Tuψ du − 1

h

∫ h

0
Tuψ du

)
= Ttψ − ψ,

and the result follows.

We now show that the generator of a C0-semigroup is always densely
defined.
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18 Semigroups and Generators

Theorem 1.3.13

(1) DA is dense in E.
(2) Tt DA ⊆ DA for each t ≥ 0.
(3) Tt Aψ = ATtψ for each t ≥ 0, ψ ∈ DA.

Proof. (1) By Lemma 1.3.12, ψ(t) ∈ DA for each t ≥ 0, ψ ∈ E , but by (RI4),
limt→0(ψ(t)/t) = ψ ; hence DA is dense in E as required.

For (2) and (3), suppose that ψ ∈ DA and t ≥ 0; then, by the definition of
A and the continuity of Tt , we have[

lim
h→0

1

h
(Th − I )

]
Ttψ = lim

h→0

1

h
(Tt+h − Tt )ψ

= Tt

[
lim
h→0

1

h
(Th − I )

]
ψ = Tt Aψ.

From this it is clear that Ttψ ∈ DA whenever ψ ∈ DA, and so (2) is satisfied.
We then obtain (3) when we take the limit.

1.3.2 Differential Equations in Banach Space

Let D be a dense linear manifold in E , I be an interval in R and t → ψ(t)
be a mapping from I to D. Let t ∈ I be such that there exists δ > 0 so that
(t − δ, t + δ) ⊆ I . We say that the mapping ψ is (strongly) differentiable at t
if there exists ψ ′(t) ∈ E so that

lim
h→0

∣∣∣∣∣∣∣∣ψ(t + h)− ψ(t)
h

− ψ ′(t)
∣∣∣∣∣∣∣∣ = 0.

We then call ψ ′(t) the (strong) derivative of ψ at t , and (with the usual
abuse of notation) we write dψ

dt := ψ ′(t). If O ⊆ I is open we say that ψ
is differentiable on O if it is differentiable (in the above sense) at every point
in O . By a standard argument, we can see that if ψ is differentiable on O , then
it is continuous there. In principle, we could try to solve differential equations
in Banach space that take the general form

dψ

dt
= F(ψ, t),

where F : D × O → E is a suitably regular mapping. We are only going to
pursue this theme in the special case where I = [0,∞), O = (0,∞), D = DA

and F(ψ, t) = Aψ , where A is the generator of a C0-semigroup. For more
general investigations in this area, see, e.g., Deimling [28].
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1.3 Unbounded Operators and Generators 19

Lemma 1.3.14

1. If f ∈ DA then for all t ≥ 0,

Tt f − f =
∫ t

0
Ts A f ds. (1.3.9)

2. The mapping ψ(t) = Tt f is a solution of the initial value problem (ivp)

dψ

dt
= Aψ , ψ(0) = f.

Proof. 1. Let φ ∈ E ′ and define F : [0,∞)→ C by

F(t) =
〈
Tt f − f −

∫ t

0
Ts A f, φ

〉
,

where we recall that 〈·, ·〉 denotes the dual pairing between E and E ′. Then
the right derivative D+F(t) = 〈ATt f − Tt A f, φ〉 = 0 for all t > 0, by
Theorem 1.3.13(3) and (RI4). Since F(0) = 0 and F is continuous, it fol-
lows by a variation on the mean value theorem (see Lemma 1.4.4 on p. 24
of Davies [27] for details) that F(t) = 0 for all t > 0. Since φ is arbitrary,
the result follows.

2. From (1), (RI2) and Theorem 1.3.13 (3), we have

1

h
(Tt+h f − Tt f ) = 1

h

∫ t+h

t
ATs f ds,

and the result follows when we pass to the limit using (RI4).

In relation to Lemma 1.3.14, we would like to be able to show that u(t, ·) :=
Tt f is the unique solution to our ivp. We will do this in the next theorem.

Theorem 1.3.15 If A is the generator of (Tt , t ≥ 0) and ψ : [0,∞)→ DA is
such that ψ0 = f and dψ

dt = Aψ , then ψ(t) = Tt f for all t ≥ 0.

Proof. Let φ ∈ E ′ and fix t > 0. For 0 ≤ s ≤ t , define

F(s) := 〈Ttψ(t − s), φ〉.
Then the right derivative

D+F(s) = lim
h→0

〈
1

h
(Ts+hψ(t − s − h)− Tsψ(t − s)), φ

〉
= lim

h→0

〈
1

h
(Ts+h − Ts)ψ(t − s − h), φ

〉
+ lim

h→0

〈
1

h
(Ts(ψ(t − s − h)− ψ(t − s)), φ

〉
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20 Semigroups and Generators

= 〈ATsψ(t − s), φ〉 − 〈Ts Aψ(t − s), φ〉
= 0,

by Theorem 1.3.13 (3). F is continuous, so as in the proof of Lemma 1.3.14,
we have F(t) = F(0) for all t > 0, i.e., 〈Ttψ0, φ〉 = 〈ψ(t), φ〉, and so ψ(t) =
Ttψ0. This shows that any solution of the ivp is generated from the initial value
by a C0-semigroup with generator A.

To complete the proof, suppose that (Tt , t ≥ 0) and (St , t ≥ 0) are two
distinct C0-semigroups having the same generator A. Then ψ(t) = Ttψ0 and
ξ(t) = Stψ0 both satisfy the conditions of the theorem. Then we conclude
from the above discussion that Stψ0 = Ttψ0 for all ψ0 ∈ DA. But DA is dense
in E and hence St = Tt for all t ≥ 0, and the result follows.

1.3.3 Generators as Closed Operators

Unbounded operators cannot be continuous, as they would then be bounded.
The closest we can get to continuity is the property of being closed, which we
now describe. Let X be a linear operator in E with domain DX . Its graph is
the set G X ⊆ E × E defined by

G X = {(ψ, Xψ);ψ ∈ DX }.
We say that the operator X is closed if G X is closed in E × E . You can check
that this is equivalent to the requirement that, for every sequence (ψn, n ∈ N)

in DX which converges to ψ ∈ E , and for which (Xψn, n ∈ N) converges to
φ ∈ E , ψ ∈ DX and φ = Xψ . If X is closed and DX = E , then the closed
graph theorem states that X is bounded.

If X is a closed linear operator, then it is easy to check that its domain DX

is itself a Banach space with respect to the graph norm |||·||| where

|||ψ ||| = ||ψ || + ||Xψ ||
for each ψ ∈ DX (see Problem 1.9).

It is not difficult to construct examples of linear operators that are densely
defined, but not closed, or closed but not densely defined. We are fortunate that
generators of C0-semigroups satisfy both of these properties.

Theorem 1.3.16 If A is the generator of a C0-semigroup, then A is closed.

Proof. Let (ψn, n ∈ N) be a sequence in E such that ψn ∈ DA for all n ∈ N,
limn→∞ ψn = ψ ∈ E and limn→∞ Aψn = φ ∈ E . We must prove that
ψ ∈ DA and φ = Aψ .
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1.3 Unbounded Operators and Generators 21

First observe that, for each t ≥ 0, by continuity, equation (1.3.9) and
Theorem 1.3.13 (3),

Ttψ − ψ = lim
n→∞(Ttψn − ψn)

= lim
n→∞

∫ t

0
Ts Aψn ds

=
∫ t

0
Tsφ ds, (1.3.10)

where the passage to the limit in the last line is justified by the fact that∣∣∣∣∣∣∣∣∫ t

0
Ts Aψn ds −

∫ t

0
Tsφ ds

∣∣∣∣∣∣∣∣ ≤ ∫ t

0
||Ts(Aψn − φ)||ds

≤ t M ||(Aψn − φ)|| → 0, as n →∞,
with M := sup{||Ts ||, 0 ≤ s ≤ t} < ∞ by Lemma 1.2.2. Now, by (RI4)
applied to (1.3.10), we have

lim
t→0

1

t
(Ttψ − ψ) = φ,

from which the required result follows.

1.3.4 Closures and Cores

This section may be omitted at first reading.
In many situations, a linear operator only fails to be closed because its

domain is too small. To accommodate this we say that a linear operator X
in E is closable if it has a closed extension X̃ . Hence X is closable if and only
if there exists a closed operator X̃ for which G X ⊆ G X̃ . Note that there is
no reason why X̃ should be unique, and we define the closure X of a closable
operator X to be its smallest closed extension (i.e., its domain is the intersec-
tion of the domains of all of its closed extensions), so that X is the closure of
X if and only if the following hold:

1. X is a closed extension of X ;
2. if X1 is any other closed extension of X , then DX ⊆ DX1 .

The next theorem gives a useful practical criterion for establishing closabil-
ity.

Theorem 1.3.17 A linear operator X in E with domain DX is closable if and
only if for every sequence (ψn, n ∈ N) in DX which converges to 0 and for
which (Xψn, n ∈ N) converges to some φ ∈ E, we always have φ = 0.
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Proof. If X is closable, then the result is immediate from the definition. Con-
versely, let (x, y1) and (x, y2) be two points in G X . Our first task is to show
that we always have y1 = y2. Let (x (1)n , n ∈ N) and (x (2)n , n ∈ N) be two
sequences in DX that converge to x ; then (x (1)n − x (2)n , n ∈ N) converges to
0 and (X x (1)n − X x (2)n , n ∈ N) converges to y1 − y2. Hence y1 = y2 by the
criterion.

From now on, we write y = y1 = y2 and define X1x = y. Then X1 is a
well-defined linear operator with

DX1 = {x ∈ E; there exists y ∈ E such that (x, y) ∈ G X }.
Clearly X1 extends X and by construction we have G X1 = G X , so that X1 is
closed, as required.

It is clear that the operator X1 constructed in the proof of Theorem 1.3.17
is the closure of X . Indeed, from the proof of Theorem 1.3.17, we see that a
linear operator X is closable if and only if it has an extension X1 for which

G X1 = G X .

Having dealt with the case where the domain is too small, we should also
consider the case where we know that an operator X is closed, but the domain
is too large or complicated for us to work in it with ease. In that case it is very
useful to have a core available.

Let X be a closed linear operator in E with domain DX . A linear subspace
C of DX is said to be a core for X if

X |C = X,

i.e., given any ψ ∈ DX , there exists a sequence (ψn, n ∈ N) in C such that
limn→∞ ψn = ψ and limn→∞ Xψn = Xψ .

Now we return to the study of C0-semigroups (Tt , t ≥ 0). The next result is
extremely useful in applications.

Theorem 1.3.18 If D ⊆ DA is such that

1. D is dense in E,
2. Tt (D) ⊆ D for all t ≥ 0,

then D is a core for A.

Proof. Let D be the closure of D in DA with respect to the graph norm |||.|||
(where we recall that |||ψ ||| = ||ψ || + ||Aψ || for each ψ ∈ DA).

Let ψ ∈ DA; then by hypothesis (1), we know there exists (ψn, n ∈ N) in D
such that limn→∞ ψn = ψ . Defineψ(t) = ∫ t

0 Tsψ ds andψn(t) =
∫ t

0 Tsψn ds
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1.4 Norm-Continuous Semigroups 23

for each n ∈ N and t ≥ 0. Approximating ψn(t) by Riemann sums, and using
hypothesis (2), we deduce that ψn(t) ∈ D. Now using (1.3.9), Lemma 1.3.12,
Lemma 1.2.2 and (1.2.4) we find that there exists Ct > 0 so that

lim
n→∞ |||ψ(t)− ψn(t)|||
= lim

n→∞ ||ψ(t)− ψn(t)|| + lim
n→∞ ||Aψ(t)− Aψn(t)||

≤ lim
n→∞

∫ t

0
||Ts(ψ − ψn)||ds + lim

n→∞ ||(Ttψ − Ttψn|| + lim
n→∞ ||ψ − ψn)||

≤ (tCt + Meat + 1) lim
n→∞ ||ψ − ψn)|| = 0,

and so ψ(t) ∈ D for each t ≥ 0.
Now using (1.3.9) again and also (RI4), we obtain

lim
t→0

∣∣∣∣∣∣∣∣∣∣∣∣1

t
ψ(t)− ψ

∣∣∣∣∣∣∣∣∣∣∣∣
= lim

t→0

∣∣∣∣∣∣∣∣1

t

∫ t

0
Tsψ ds − ψ

∣∣∣∣∣∣∣∣+ lim
t→0

∣∣∣∣∣∣∣∣1

t
Aψ(t)− Aψ

∣∣∣∣∣∣∣∣
= lim

t→0

∣∣∣∣∣∣∣∣1

t

∫ t

0
Tsψ ds − ψ

∣∣∣∣∣∣∣∣+ lim
t→0

∣∣∣∣∣∣∣∣1

t
(Ttψ − ψ)− Aψ

∣∣∣∣∣∣∣∣ = 0.

From this we can easily deduce that DA ⊆ D, from which it is clear that D
is a core for A, as required.

Example 1.3.19 If we return to the translation semigroup discussed in Exam-
ples 1.3 and 1.7, then it is very easy to check the hypotheses of Theorem 1.3.18
and show that C∞c (R) is a core for the generator.

1.4 Norm-Continuous Semigroups

Let (Tt , t ≥ 0) be a family of linear operators in L(E) that satisfy (S1) and
(S2), but instead of (S3), we have that for all t ≥ 0, Ts → Tt in the norm
topology in L(E) as s → t , i.e.,

lim
s→t

||Tt − Ts || = 0.

If we imitate the proof of Proposition 1.2.1, we find that the above convergence
is equivalent to requiring lims→0 ||Ts − I || = 0. Semigroups that satisfy this
condition are said to be norm continuous. It is clear that every norm-continuous
semigroup is a C0-semigroup. Note that for a norm-continuous semigroup
(Tt , t ≥ 0), the mapping t → Tt is continuous from [0,∞) to L(E), and
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24 Semigroups and Generators

so the (Riemann) integral
∫ t

0 Tsds, is well defined in the sense discussed in
section 1.1.

Example 1.4.20 If we return to Example 1.2.4, then using an ε/3–argument,
one can easily show that et A := ∑∞

n=0
tn

n! A
n is norm continuous for A ∈

L(E) (see Problem 1.1(b)). The next result shows that this class of examples
comprises the entirety of the norm-continuous semigroups.

Theorem 1.4.21 A C0-semigroup (Tt , t ≥ 0) is norm continuous if and only
if its generator A is bounded.

Proof. By the discussion in Example 1.4.20, we need only prove necessity.
So let (Tt , t ≥ 0) be norm continuous. By (RI4) we can and will choose h
sufficiently small so that ∣∣∣∣∣∣∣∣I − 1

h

∫ h

0
Tt dt

∣∣∣∣∣∣∣∣ < 1.

Now for such a value of h, define W = ∫ h
0 Tt dt . Then W is bounded and

invertible (and its bounded inverse is given in terms of a Neumann series8).
Define V ∈ L(E) by V := W−1(Th− I ). We will show that V is the generator
of the semigroup, and then we are done. First observe that for t > 0, by (1.3.8)
and (RI2) we have

W (Tt − I ) =
∫ t+h

t
Tsds −

∫ h

0
Tsds

=
∫ t+h

h
Tsds −

∫ t

0
Tsds

= (Th − I )
∫ t

0
Tsds.

Then by (1.3.6)

Tt − I = V
∫ t

0
Tsds =

∫ t

0
V Tsds,

and so

Tt − I

t
= 1

t

∫ t

0
V Tsds.

8 To be precise,

W−1 = 1

h

∞∑
n=0

(
I − 1

h
W

)n
.
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1.5 The Resolvent of a Semigroup 25

From here, we can easily deduce that the mapping t → Tt is norm-
differentiable and that

V = lim
t→0

Tt − I

t

is the generator.

1.5 The Resolvent of a Semigroup

1.5.1 The Resolvent of a Closed Operator

Let X be a linear operator in E with domain DX . Its resolvent set is

ρ(X) := {λ ∈ C; λI − X is a bijection from DX to E}.
The spectrum of X is the set σ(X) = ρ(X)c. Note that every eigenvalue of X
is an element of σ(X). If λ ∈ ρ(X), the linear operator Rλ(X) = (λI − X)−1

is called the resolvent of T . For simplicity, we will sometimes write Rλ :=
Rλ(X), when there can be no doubt as to the identity of X .

We remark that λ ∈ ρ(X) if and only if for all g ∈ E there exists a unique
f ∈ DX so that

(λI − X) f = g.

If we take X to be a partial differential operator, as in section 1.1, we see that
resolvents (when they exist) are the operators that generate unique solutions
to elliptic equations. For the next result we recall from section 1.3.3 that the
domain of a closed linear operator is a Banach space, when it is equipped with
the graph norm.

Proposition 1.5.22 If X is a closed linear operator in E with domain DX

and resolvent set ρ(X), then, for all λ ∈ ρ(X), Rλ(X) is a bounded oper-
ator from E into DX (where the latter space is equipped with the graph
norm).

Proof. We will need the inverse mapping theorem, which states that a continu-
ous bijection between two Banach spaces always has a continuous inverse (see,
e.g., Reed and Simon [76], p. 83). For each λ ∈ ρ(X), ψ ∈ DX ,

||(λI − X)ψ || ≤ |λ| ||ψ || + ||Xψ || ≤ max{1, |λ|} |||ψ |||.
So λI − X is bounded and hence continuous from DX to E . The result then
follows by the inverse mapping theorem.
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26 Semigroups and Generators

It follows from Proposition 1.5.22 that if X is both densely defined and
closed, then Rλ(X) extends to an operator in L(E), which we continue to
denote9 as Rλ(X). Indeed we have shown that for all ψ ∈ DX there exists
K > 0 so that

||Rλ(X)ψ || ≤ |||Rλ(X)ψ ||| ≤ K ||ψ ||,
and the result follows by the density of DX in E . It is a trivial, but useful,
consequence of the definition of resolvent set that if λ ∈ ρ(X), then for every
x ∈ DX there exists y ∈ E so that x = Rλ(X)y.

The next result summarises some key properties of resolvents:

Proposition 1.5.23 Let X be a closed linear operator acting in E.

1. The resolvent set ρ(X) is open.
2. For all λ,μ ∈ ρ(X),

Rλ − Rμ = (μ− λ)RλRμ. (1.5.11)

3. For all λ,μ ∈ ρ(X),
RλRμ = RμRλ.

4. For all λ ∈ ρ(X), f ∈ DX ,

RλX f = X Rλ f.

Proof. 1. We will never use this directly, so we omit the proof and direct the
reader to the literature (see, e.g., Lemma 8.1.3 in Davies [27] pp. 212–3).

2. For all f ∈ E , we have

(λI − X)[Rλ − Rμ − (μ− λ)RλRμ] f

= f − (λI − λI + μI − X)Rμ f

= 0,

but λI − X is invertible and so we must have Rλ− Rμ− (μ−λ)RλRμ = 0,
as is required.

3. This follows immediately from (2).
4. First note that X Rλ f is meaningful, as Rλ maps E to DX . The result

follows from writing

X Rλ f =− (λI − X)(λI − X)−1 f + λRλ f

=− (λI − X)−1(λI − X) f + λRλ f

=RλX f.

9 As is standard, we use the same notation, Rλ(X), to denote the resolvent acting from E to E ,
and from DX (equipped with the graph norm) to E ; it should always be clear which of these
we will mean from the context that we are in.
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1.5 The Resolvent of a Semigroup 27

Although we will mostly be concerned with the case where X is an
unbounded operator, the following result is instructive.

Proposition 1.5.24 If X is a bounded linear operator in E and λ ∈ C with
|λ| > ||X ||, then λ ∈ ρX .

Proof. It is well known from elementary Banach space theory that if c ∈ C

such that |c|.||X || < 1, then I − cX is invertible. Hence, if λ ∈ C with |λ| >
||X ||, then λ−1(λI − X) is invertible, and the result follows.

An immediate consequence of the last result is that the spectrum σ(X) ⊆
B||X ||(0) ⊂ C.

1.5.2 Properties of the Resolvent of a Semigroup

If (Tt , t ≥ 0) is a C0-semigroup having generator A, then since A is closed and
densely defined, Rλ(A) = (λI − A)−1 is a well-defined bounded linear oper-
ator in E for λ ∈ ρ(A). We call it the resolvent of the semigroup. Of course,
there is no a priori reason why ρ(A) should be non-empty. The following key
theorem will put that doubt to rest. Before we state it, we recall the key esti-
mate (1.2.4) ||Tt || ≤ Meat for some M > 1, a ∈ R, for all t ≥ 0. Using this
estimate, it is not difficult to see that for any h ∈ C((0,∞)) which satisfies∫∞

0 h(t)eat dt < ∞, we may define a bounded linear operator on E by the
prescription (∫ ∞

0
h(t)Tt dt

)
ψ = lim

T→∞

∫ T

0
h(t)Ttψdt, (1.5.12)

for all ψ ∈ E .

Theorem 1.5.25 Let A be the generator of a C0-semigroup (Tt , t ≥ 0)
satisfying ||Tt || ≤ Meat for all t ≥ 0. The following hold:

1. {λ ∈ C; �(λ) > a} ⊆ ρ(A),
2. for all �(λ) > a,

Rλ(A) =
∫ ∞

0
e−λt Tt dt, (1.5.13)

3. for all �(λ) > a,

||Rλ(A)|| ≤ M

�(λ)− a
. (1.5.14)

Proof. For each �(λ) > a, we define a linear operator Sλ(A) on E by the
Fourier–Laplace transform on the right-hand side of (1.5.13). Our goal is to
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prove that this really is the resolvent. Note first of all that Sλ(A) is a bounded
operator on E of the form (1.5.12); indeed, for each ψ ∈ E, t ≥ 0, on using
(RI3) and (1.2.4) we have,

||Sλ(A)ψ || ≤
∫ ∞

0
e−�(λ)t ||Ttψ ||dt ≤ ||ψ ||M

∫ ∞

0
e(a−�(λ))t dt

= M

�(λ)− a
||ψ ||.

Hence we have ||Sλ(A)|| ≤ M

�(λ)− a
.

Now define ψλ = Sλ(A)ψ for each ψ ∈ E . Then by (1.3.8), change of
variable and (RI4), we have

lim
h→0

1

h
(Thψλ − ψλ)

= lim
h→0

(
1

h

∫ ∞

0
e−λt Tt+hψdt − 1

h

∫ ∞

0
e−λt Ttψ dt

)
= lim

h→0

(
1

h

∫ ∞

h
e−λ(t−h)Ttψdt − 1

h

∫ ∞

0
e−λt Ttψ dt

)
= − lim

h→0
eλh 1

h

∫ h

0
e−λt Ttψdt + lim

h→0

1

h
(eλh − 1)

∫ ∞

0
e−λt Ttψdt

= −ψ + λψλ.
Hence ψλ ∈ DA and Aψλ = −ψ + λSλ(A)ψ , i.e., for all ψ ∈ B

(λI − A)Sλ(A)ψ = ψ.
So λI − A is surjective for all λ > 0 and its right inverse is Sλ(A).

Our proof is complete if we can show that λI − A is also injective. To
establish this, assume that there exists ψ ∈ DA with ψ �= 0 such that (λI −
A)ψ = 0, and define ψt = eλtψ for each t ≥ 0. Then differentiation yields
the initial-value problem

ψ ′t = λeλtψ = Aψt

with initial condition ψ0 = ψ . But by Theorem 1.3.15, we have ψt = Ttψ for
all t ≥ 0. We then have

||Ttψ || = ||ψt || = |eλt | ||ψ ||,
and so ||Tt || ≥ ||Ttψ ||/||ψ || = e�(λ)t . But this contradicts ||Tt || ≤ Meat , as
is seen by taking �(λ) > a + log(M)

t . Hence we must have ψ = 0, and the
proof that Sλ(A) = Rλ(A) is complete. This establishes (1) and (2), while (3)
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follows from the estimate for Sλ(A), which was obtained at the beginning of
this proof.

Note that if (Tt , t ≥ 0) is a contraction semigroup, then it follows from
Theorem 1.5.25 (1) that

σ(A) ⊆ (−∞, 0] × iR.

If E is a Hilbert space and the semigroup is self-adjoint in that Tt is a self-
adjoint operator for all t ≥ 0, then σ(A) ⊆ (−∞, 0], and we may write the
spectral decomposition as

Tt =
∫
−σ(A)

e−λt E(dλ),

for each t ≥ 0, and the generator satisfies the “dissipativity condition”10

〈A f, f 〉 ≤ 0, for all f ∈ DA. This is why, in the literature, self-adjoint con-
traction semigroups are often written in the form Tt = e−t B , where B is a
positive, self-adjoint operator. We will study self-adjoint operators in greater
depth in Chapter 4.

Since most semigroups encountered in applications are contraction semi-
groups, it is a natural question to ask why we bother with the more general
C0-class? One reason, is that the theory (as we are seeing) is very intellec-
tually satisfying. Another reason is that norm-continuous semigroups, which
are an important subclass, are not necessarily contractions. Finally if A is the
generator of a contraction semigroup (St , t ≥ 0), then it is natural to want to
consider the trivial perturbations Ac = A + cI where c ∈ R, having domain
DA. It is easy to see that Ac generates the semigroup (Tt , t ≥ 0) and that
Tt = ect St for all t ≥ 0, but we can always find sufficiently large c so that Tt

is not a contraction. In the next chapter, we will see that the solutions of PDEs
may also give rise to C0-semigroups that are not necessarily contractions.

1.6 Exercises for Chapter 1

1. (a) Let A ∈ L(E). Show that the series
∑∞

n=0
tn

n! A
n is absolutely

convergent (uniformly on finite intervals).
(b) Deduce that Tt =∑∞

n=0
tn

n! A
n defines a norm-continuous semigroup.

(c) If E is a Hilbert space and A is self–adjoint, show that the result of (b)
agrees with that obtained by defining Tt = et A using spectral theory.

2. Prove Proposition 1.3.11 and (1.3.6).

10 We will say more about this, and generalise it to Banach spaces in the next chapter.
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3. Let (Tt ,≥ 0) be a family of bounded linear operators in E for which there
exists M ≥ 0 such that sup0≤t≤1 ||Tt || ≤ M . If (S3)′ is valid for these
operators on a dense subset of E , show that it holds on the whole of E .

4. Prove directly that the translation semigroup of Example 1.2.5 is strongly
continuous in both C0(R) and L p(R).
[Hint: On L p, find a suitable dense subspace and use the result of (3)].

5. Suppose that S is a bounded operator on E and that T is a closed operator
having domain DT . Show that S + T and ST are both closed opera-
tors, having domain DT . What can you say when T is only known to
be closeable? What can you say about T S?

6. Suppose that (T (1)t , t ≥ 0) and (T (2)t , t ≥ 0) are C0-semigroups in E for
which

T (1)s T (2)t = T (2)t T (1)s ,

for all s, t ≥ 0.
(a) Show that (T (1)t T (2)t , t ≥ 0) is a C0-semigroup on E .
(b) If for i = 1, 2, (T (i)t , t ≥ 0) has generator Ai , deduce that

(T (1)t T (2)t , t ≥ 0) has generator A1 + A2.
7. If c > 0 and (St , t ≥ 0) is a C0-semigroup with generator A, show that

Tt = e−ct St also defines a C0-semigroup. What is the generator of this
semigroup? Can you express its domain in terms of that of A?

8. (a) If A is a densely defined linear operator in E such that there exists
K ≥ 0 so that ||Aψ || ≤ K‖|ψ || for all ψ ∈ DA, show that A has a
unique bounded extension to a linear operator Ã defined on the whole
of E .

(b) If A is densely defined and DA is closed, show that DA = E .
(c) If A is the generator of a C0-semigroup, show that DA is closed if and

only if the semigroup is norm-continuous.
9. Show that if X is a closed linear operator on a Banach space, then its

domain is complete under the graph norm.
10. Let (Tt , t ≥ 0) be a C0-semigroup for which ||Tt || ≤ Meat for all t ≥ 0,

where M ≥ 1 and a ∈ R. Use induction to show that if �(z) > a and
n ∈ N then

Rn
z f =

∫ ∞

0

tn−1

(n − 1)!e
−zt Tt f dt.
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