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In this semi-analytic study we develop a mathematical model for determining the
electromagnetic field due to a current-driven antenna immersed in a cold, magnetized
plasma, valid for frequencies below the electron plasma frequency. At each point in
the plasma, it is shown that the vacuum electric field of the antenna couples to the
plasma conductivity tensor and acts as an infinitesimal source term to drive plasma
currents – the total field is then found from the aggregate sum of these point sources,
expressed as an integral across the vacuum field. A general solution is provided for
both azimuthally symmetric cylindrical coordinates as well as a fully generalized
Cartesian solution. As an example of how this general solution may be applied, we
solve for the field due to an electric dipole antenna of length `, aligned along the
background field, at frequencies below the ion cyclotron frequency. It is found that
the near field decays exponentially with increasing k⊥z, whereas the far field exhibits
wave-like behaviour. The radiation zone exhibits propagation cones emanating from
either end of the dipole, with a propagation angle that is consistent with past analytic
studies of inertial Alfvén waves. The mathematical model presented here may be
advantageous over other numerical methods, as it allows the user to solve parts of
the problems analytically, thereby cutting down significantly on computation time, as
well as offering physical insight into the system that may not be evident with other
numerical solvers.
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1. Introduction
Understanding the behaviour and propagation of plasma waves is of fundamental

importance in both laboratory and space plasmas. In laboratory plasmas, waves are
a naturally occurring phenomena that arise due to various mechanisms, such as via
superthermal energetic particles in tokamaks (Heidbrink 2008), although they can
also be deliberately excited via external circuitry. There are many reasons one would
want to excite plasma waves in a laboratory environment, although the two most
common applications are for the purposes of plasma heating and diagnostics. As the
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exceedingly high energy densities found in the core of burning tokamak plasmas
prevent direct diagnostic measurements, many fusion diagnostic tools rely on exciting
waves along the edge of the plasma, and then inferring the various physical properties
of the plasma from the resulting wave propagation. Some examples of this include
laser interferometry (Baker & Lee 1978) and Doppler reflectometry (Hirsch et al.
2001). The predictive capability of antenna-based diagnostics is only as good as our
understanding of the underlying physics, as well as our ability to effectively and
accurately recreate the measured results in a simulated environment.

In general, plasma antennae fall into two major categories: those in direct electrical
contact with the plasma, and those which rely on indirect (i.e. inductive or capacitive)
coupling. Alfvén waves excited by direct coupling have been explored in great detail
in the large plasma device (LAPD) at UCLA (Gekelman et al. 2016), and was in fact
one of the original motivations for the machine being built (Gekelman et al. 1991).
Early studies of shear (or slow) Alfvén waves used a small metal disk in order to
drive plasma current and excite waves (Gekelman et al. 1994). In the inertial (cold)
regime, the resulting wave front was observed to emanate from the disk in a narrow
conical pattern, mediated by electrons in the parallel direction and a smaller ion
polarization current across the background field (Gekelman et al. 1999). A theoretical
companion paper, published around the same time, developed an analytic model
for determining the spatial structure of inertial Alfvén waves launched by a metal
disk exciter, and the predicted results were found to be in good agreement with
experimental measurements (Morales, Loritsch & Maggs 1994). Similar experiments
were later done in the kinetic regime using the same antenna (Gekelman et al. 1997),
and the corresponding theoretical paper again agreed with the results (Morales &
Maggs 1997). Both theoretical models take the general solution to the azimuthally
symmetric cold plasma wave equation, and then use the boundary conditions imposed
by the antenna (which can either be an equipotential or constant current surface)
to uniquely determine the resulting spatial structure of the excited wave. While this
methodology is successful for many simple antenna geometries, a generalization to
this approach is desired for antennae which cannot be easily mapped to a set of
straightforward boundary conditions.

Alfvén waves launched by inductively coupled antennae have also been studied in
detail, in both the laboratory as well as in simulations. The rotating magnetic field
(RMF) antenna, originally designed to study circularly polarized waves, consists of
two orthogonal loops of current-carrying wire (Gigliotti et al. 2009). Experimental
results showed that the RMF antenna excited large parallel electron currents where the
antenna’s vacuum electric field pointed along the background field. Three-dimensional
simulations of the RMF antenna were performed, which used a linear two-fluid
magnetohydrodynamic (MHD) spectral model, and the results were in good agreement
with experiment (Karavaev et al. 2011). A similar semi-analytical model for analysing
inductively coupled waves was previously devised by Jaeger et al. (1995) and used to
model the behaviour of radio frequency (RF) power deposition in high-density plasma
tools. Both of these theoretical models for inductively coupled antennae are similar
in that they treat the external antenna currents as a ‘source’ term to the cold plasma
wave equation, which is contrary to the strategy of boundary condition matching that
was employed for the electrostatic disk exciter.

A vast array of numerical tools exists for simulating the behaviour of plasma waves
launched by various antennae. Many tokamak plasmas are adequately described by
a single fluid MHD model, and so several ray tracing codes exist to map out wave
propagation in this simple regime (Smirnov 2003). On the other end of the complexity
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spectrum, finite element (Glasser et al. 1999) and full-wave (Hillesheim et al. 2012)
models divide space and time up into a discrete grid (or mesh), and solve Maxwell’s
equations incrementally to find the full spatial structure of the field. While these sorts
of calculations are generally very accurate, they can also be extremely computationally
expensive, and for simpler plasma systems a more semi-analytical approach may be
advantageous. Unfortunately, in many situations where spatial inhomogeneities of the
plasma are present and expected to play a large role in wave coupling, such numerical
methods may be necessary for yielding accurate results. The ALOHA code (Hillairet
et al. 2010) is an example of a full-wave simulation tool which was developed to
model the coupling of lower hybrid waves to a cold, inhomogeneous plasma, such
as those found in the scrape-off layer of tokamak plasmas. An example of a model
which handles wave propagation in non-uniform plasmas while retaining a degree of
analyticity is given by Chen & Arnush (1997) and Arnush & Chen (1998), and was
developed to study helicon waves in cylindrical plasmas.

In this paper we present a robust semi-analytic model for modelling antenna-driven
waves in a cold, uniform plasma. A semi-analytic model has the benefit of rewarding
the user with reduced computation time in exchange for being able to solve any
of the steps analytically, as well as granting physical insight into the problem that
otherwise might not be evident with other numerical solvers. In order to simplify the
problem, we will consider antennae which are current driven by external electronics,
meaning any induced fields (either by the active elements of the antenna or the
nearby plasma response) have no effect on the antenna currents. In practice, complex
antennae will often have passive elements containing induced currents, in addition
to the actively driven antenna current, and the total radiated field is then due to the
contribution from both current types. The simulation code TOPICA (Milanesio et al.
2009), originally developed to establish predictive capability in ion cyclotron radio
frequency (ICRF) heating schemes, is able to account for details in the antenna such
as geometry, housing and shielding, as well as the induced currents within the passive
antenna structures and their resulting radiated fields.

The remainder of the paper is organized as follows. In § 2 we derive the antenna
wave equation, which is a system of partial differential equations that describes the
plasma field excited by an indirectly coupled antenna, and then derive a simplified
version for the case of an azimuthally symmetric antenna. In § 3 we find the general
solution to the antenna wave equation, expressed as an integral over the vacuum field
of the antenna. In § 4 we solve the general solution for the case of an electric dipole
antenna of length `, aligned along the background magnetic field, and discuss the
resulting radiation (and near-field) behaviour. In § 5, we forgo all symmetry constraints
and find the fully generalized solution to the antenna wave equation in Cartesian
coordinates. Finally, in § 6 we offer some concluding remarks, including a discussion
of the key physical insights gained from this analytic study as well as the advantages
of this model in the context of simulations/numerical analysis.

2. Derivation of the antenna wave equation
Consider an electrically insulated antenna immersed in a cold, magnetized plasma,

with background field B0 = B0ẑ, which is driven by external circuitry at frequency ω.
We will assume the plasma to be infinite and unbounded. The combination of
Ampere’s and Faraday’s laws gives us the following expression:

∇× (∇× E)= iωµ0 Jpl + iωµ0 Jext +
ω2

c2
E. (2.1)

https://doi.org/10.1017/S0022377820000446 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377820000446


4 J. Robertson

Note that we have adopted the sign convention ∂t → −iω. In (2.1), Jext is the
externally driven antenna current, and Jpl is the plasma current. For positions within
the plasma, we will assume the current density is related to the local electric field by
a conductivity tensor, i.e. Jpl=

↔

σ · E. Additionally, the electric field can be redefined
as E= E0+ Epl, where E0 is the vacuum electric field of the antenna and Epl is the
rest of the field, which can be thought of as the plasma’s response to the antenna.
Inserting these assumptions into (2.1) gives the following:

∇×∇× Epl +∇×∇× E0 = iωµ0
↔

σ · (Epl + E0)+ iωµ0 Jext +
ω2

c2
Epl +

ω2

c2
E0. (2.2)

Subtracting out the vacuum wave equation, given by ∇ × ∇ × E0 = iωµ0 Jext +

(ω2/c2)E0, and defining the plasma dielectric tensor as
↔

ε =
↔

I + (iε0ω)
↔

σ allows us to
express equation (2.2) in the following form:

∇×
(
∇× Epl

)
−
ω2

c2

↔

ε · Epl = iµ0ω
↔

σ · E0. (2.3)

For a cold, strongly magnetized plasma, the dielectric tensor is given in cylindrical
coordinates by the following (Stix 1962):

↔

ε · E=

 S −iD 0
iD S 0
0 0 P

 ·
Er

Eθ
Ez

 ,
S= 1−

∑
s

ω2
ps

ω2 −Ω2
s

,

D=
∑

s

Ωs

ω

ω2
ps

ω2 −Ω2
s

,

P= 1−
∑

s

ω2
ps

ω(ω+ iνe)
,


(2.4)

where the summations are over all particle species. In (2.4), ωps and Ωcs are the
plasma and cyclotron frequencies, respectively, and νe is the total electron collision
frequency. Note that the dielectric tensor defined by (2.4) is only valid for a plasma
with background field B0 = B0ẑ pointing entirely in the z direction, and is not valid
when an azimuthal component of the background field is present (analogous to the
background poloidal field commonly found in tokamaks). Equation (2.3) contains, in
principle, all the information required to determine the field due to an antenna in the
plasma. In the absence of an antenna, the right hand side of (2.3) goes to zero and the
resulting differential equation is the cold plasma wave equation, whose solution gives
all the wave-like modes predicted by the cold plasma model. The general solution to
the cold plasma wave equation in cylindrical coordinates has been calculated before
(Ram & Hizanidis 2016), in the context of the scattering of RF plane waves due
to a cylindrical density filament. The right-hand side of (2.3) can be thought of as
a ‘source’ term to the cold plasma wave equation, and is physically interpreted as
the vacuum field coupling to the plasma conductivity to excite plasma currents. This
is consistent with previous observations of Alfvén waves in the laboratory. Waves
launched by a magnetic dipole antenna, lying in the XZ plane, were shown to induce
two antiparallel current channels on either end of the dipole, where the vacuum
electric field points in ±ẑ (Gigliotti et al. 2009). It is speculated that cross-field
currents are also excited in front of the antenna, where the vacuum field points in x̂,
although for antennae of that scale they are generally much smaller than the induced
parallel electron currents.
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The cold plasma assumption allows us to solve (2.3) in configuration space, as the
dielectric tensor is not a function of the wave vector k. For simplicity we will consider
an antenna possessing azimuthal symmetry in cylindrical coordinates, although the
general Cartesian solution is derived in § 5. The plasma response field excited by an
azimuthally symmetric antenna is assumed to have the following form:

Epl =
1
2 [Er(r, z, ω)r̂+ Eθ(r, z, ω)θ̂ + Ez(r, z, ω)ẑ]e−iωt

+ c.c. (2.5)

Equation (2.3) can then be expanded out in cylindrical coordinates to give the
following system of equations:

−
∂

∂z

(
∂Er

∂z
−
∂Ez

∂r

)
−
ω2

c2
SEr +

ω2

c2
iDEθ =

ω2

c2
(S− 1)Er0 −

ω2

c2
iDEθ0, (2.6)

−
∂2Eθ
∂z2
−
∂

∂r

(
1
r
∂

∂r
(rEθ)

)
−
ω2

c2
iDEr −

ω2

c2
SEθ =

ω2

c2
iDEr0 +

ω2

c2
(S− 1)Eθ0, (2.7)

1
r
∂

∂r

(
r
∂Er

∂z
− r

∂Ez

∂r

)
−
ω2

c2
PEz =

ω2

c2
(P− 1)Ez0. (2.8)

Note that we have dropped the pl subscript on the plasma response term Epl for
brevity. Equations (2.6)–(2.8) can be reduced down to two differential equations if we
recast it in terms of the azimuthal and radial magnetic field, given by Faraday’s law
to be iωBθ = (∂zEr − ∂rEz) and iωBr = −∂zEθ . We can then perform the operations
∂z (equation (2.6))–(S/P)∂r (equation (2.8)) and ∂z (equation (2.7))–(iD/P)∂r
(equation (2.8)) to get the following coupled equations:

∂2Bθ
∂z2
+
ω2

c2
SBθ +

ω2

c2
iDBr +

S
P
∂

∂r

(
1
r
∂

∂r
(rBθ)

)
=−

ω2

c2
SBθ0 −

ω2

c2
iDBr0, (2.9)

∂2Br

∂z2
+
∂

∂r

(
1
r
∂

∂r
(rBr)

)
−
ω2

c2
iDBθ +

ω2

c2
SBr −

iD
P
∂

∂r

(
1
r
∂

∂r
(rBθ)

)
=
ω2

c2
iDBθ0 −

ω2

c2
SBr0. (2.10)

In deriving (2.9) and (2.10), we made the assumption that we are at low enough
frequencies such that the vacuum displacement current can be neglected in the plasma
dielectric (which is to say ω�ωpe). At this point, equation (2.9) could be solved for
Br and then inserted into (2.10), resulting in a single fourth-order differential equation
for Bθ(r, z). The result, however, is messy and uninspiring. Instead, let us consider the
first-order Hankel transform of the field, defined by

Bj (r, z, ω)=
∫
∞

0
B̃j (k⊥, z, ω) J1 (k⊥r) k⊥ dk⊥, (2.11)

and its reverse transform

B̃j (k⊥, z, ω)=
∫
∞

0
Bj (r, z, ω) J1 (k⊥r) r dr. (2.12)

The conditions for the existence of a Hankel transform are generally satisfied for
physically realistic fields. Namely, the field must be defined and piecewise continuous
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for r∈ (0,∞), and the integral of
∣∣Bj(r)

∣∣ r1/2 across all space should be finite. Invoking
Bessel’s differential equation, it is straightforward to prove the following identity:

∂

∂r

(
1
r
∂

∂r

(
rBj
))
=−

∫
∞

0
B̃j (k⊥, z, ω) J1 (k⊥r) k3

⊥
dk⊥. (2.13)

We can then use identities (2.11) and (2.13) to recast our two differential equations
in terms of B̃θ and B̃r. Finally, we substitute (2.9) into (2.10) to eliminate B̃r and get
a single fourth-order differential equation for B̃θ

∂4B̃θ
∂z4
+ α

∂2B̃θ
∂z2
+ βB̃θ

=−
ω2

c2
S
∂2B̃θ0

∂z2
−
ω2

c2
iD
∂2B̃r0

∂z2
−
ω4

c4

[
RL− Sn2

⊥

]
B̃θ0 + iDn2

⊥
B̃r0, (2.14)

where R, L= S±D, nj≡ ckj/ω is the refractive index in direction j, and α and β are
given by the following:

α =
ω2

c2

[
S
(

1−
n2
⊥

P

)
+ S− n2

⊥

]
,

β =
ω4

c4

[
RL− Sn2

⊥

] (
1−

n2
⊥

P

)
.

 (2.15)

The left-hand side of (2.14) can be factored and alternatively expressed as the
product of two second-order differential operators(

∂2

∂z2
+ k2
‖+

)(
∂2

∂z2
+ k2
‖−

)
B̃θ =

ω4

c4
f (z), (2.16)

where k‖+ and k‖− are given by

(
c2

ω2

)
k2
‖±
= S−

n2
⊥

2

(
1+

S
P

)
±

√(
n2
⊥

2

)2 (
1−

S
P

)2

+D2

(
1−

n2
⊥

P

)
. (2.17)

In (2.17), k2
‖−

and k2
‖+

correspond to the dispersion relations for the fast and slow
waves, respectively, and are the two fundamental modes that exist in a cold plasma.
Meanwhile, f (z) is given by the right-hand side of (2.14)

f (z)=−
c2

ω2
S
∂2B̃θ0

∂z2
−

c2

ω2
iD
∂2B̃r0

∂z2
−
[
RL− Sn2

⊥

]
B̃θ0 + iDn2

⊥
B̃r0. (2.18)

Equation (2.16) is identical in principle to (2.3), except that it has been reformulated
in such a way that the underlying physics is more readily apparent. In the absence of
an externally applied field, f (z)= 0 and (2.16) can be decoupled into two second-order
differential equations, whose solutions correspond to the fast and slow waves, and so
the general solution is a linear superposition of both modes. But when an externally
applied field is present and f (z) 6= 0, the two modes cannot be decoupled and the
full fourth-order differential equation of (2.16) must be considered. In many laboratory
plasmas, such as those found in the LAPD (Gekelman et al. 2016), the fast wave is
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generally evanescent below the ion cyclotron frequency, and so it is common practice
to assume that only the slow wave is present in the system. Conversely, it is typical
in the context of ICRF heating of tokamaks to ignore the slow wave contribution
and assume only the fast wave is present, such as is done in the semi-analytical
code ANTITER II (Messiaen et al. 2010). The implication of (2.16), however, is that
neither branch can be ignored, as both branches fundamentally alter how the antenna
couples to the plasma. In other words, even though the fast wave is evanescent and
immeasurably small in the far field, a portion of antenna energy in the near field will
couple to the fast wave, which in turn will affect the measured wave pattern of the
slow wave. Therefore, a proper analytic treatment of the spatial structure of the slow
wave must account for fast wave coupling in the near field, as we have done in (2.16).

Equations (2.9) and (2.10) can alternatively be combined to get a similar differential
equation for B̃r(k⊥, z) (

∂2

∂z2
+ k2
‖+

)(
∂2

∂z2
+ k2
‖−

)
B̃r =

ω4

c4
g(z), (2.19)

where g(z) is given by

g(z)=
c2

ω2
iD
∂2B̃θ0

∂z2
−

c2

ω2
S
∂2B̃r0

∂z2
− RL

(
1−

n2
⊥

P

)
B̃r0. (2.20)

Once B̃θ(k⊥, z) and B̃r(k⊥, z) are known, B̃z(k⊥, z) can be found from ∇ · B= 0 and
then the electric field through the rest of Maxwell’s equations.

It is worth mentioning that some authors (Allis, Buchsbaum & Bers 2003; Swanson
2012) have followed alternative, but similar, procedures in which (2.9) and (2.10) are
Fourier transformed in direction z, resulting in a fourth-order differential equation in
r (analogous to (2.16) and (2.19)). Either method should lead to similar results. One
of the advantages of expressing our system as a differential equation in z is that the
math is a lot more tractable in the next section, where we find the Green’s function
of (2.16). Additionally, this method makes it straightforward to consider the behaviour
of the field at positions z far away from the antenna, which is useful for comparison
to experimental studies of antenna-launched shear (or slow) waves in the laboratory
(Gekelman et al. 2011). For inhomogeneous plasmas with radially varying parameters,
it may be preferable to Fourier transform in z and consider the differential equation
in r instead, as was done for the study of helicon waves in non-uniform plasmas by
Arnush & Chen (1998).

3. Solution to the antenna wave equation by method of Green’s functions
Equation (2.16) is essentially a fourth-order wave equation, driven by a ‘source’

term f (z). In order to solve this differential equation we will employ the method of
Green’s functions. Consider the following differential equation:

∂4G
∂z4
+ α

∂2G
∂z2
+ βG= δ(z− z′). (3.1)

Here, G=G(z, z′) is physically interpreted as the field due to an infinitesimal point
source1 at z= z′. The total magnetic field at position z, then, is found by summing up

1Note that this is a ‘point source’ in the mathematical sense of (2.16), and should not be interpreted as
a physical point source (such as a point charge).
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the field contributions from all of these point sources

B̃θ(k⊥, z)=
ω4

c4

∫
G(z, z′)f (z′) dz′, (3.2)

where the integral of (3.2) is taken over all space. When z 6= z′, equation (3.1) can
be decoupled into two second-order differential equations, and the solution is the
superposition of both modes of the system

G(z, z′)=

{
Aeik‖+z

+ Beik‖−z for z> z′,
Ce−ik‖+z

+De−ick‖−z for z< z′.
(3.3)

As our plasma was assumed to be infinite and unbounded, the Green’s function
given by (3.3) is motivated by our request to have radiation at z→±∞, although
(3.3) can be modified to consider alternative boundary conditions. The coefficients of
(3.3) can be found by iteratively integrating equation (3.1) across an infinitesimally
small region centred on z= z′, and gives the following four boundary conditions:

lim
ε→0

∂3G
∂z3

∣∣∣∣z′+ε
z′−ε

= 1,

lim
ε→0

∂2G
∂z2

∣∣∣∣z′+ε
z′−ε

= 0,

lim
ε→0

∂G
∂z

∣∣∣∣z′+ε
z′−ε

= 0,

lim
ε→0

G|z′+εz′−ε = 0.


(3.4)

The discontinuity in the third derivative of G arises from the presence of the
Dirac delta function in (3.1). Equation (3.3) can be inserted into the above boundary
conditions to solve for A, B, C and D, and gives the following solution for the
Green’s function:

G(z, z′)=


ieik‖+(z−z′)

2k‖+(k2
‖+ − k2

‖−)
+

ieik‖−(z−z′)

2k‖−(k2
‖− − k2

‖+)
for z> z′,

ie−ik‖+(z−z′)

2k‖+(k2
‖+ − k2

‖−)
+

ie−ik‖−(z−z′)

2k‖−(k2
‖− − k2

‖+)
for z< z′.

(3.5)

The general solution of B̃θ(k⊥, z) can then be found from (3.2)

B̃θ(k⊥, z) =
ω4

c4

∫ z

−∞

[
ieik‖+(z−z′)

2k‖+(k2
‖+ − k2

‖−)
−

ieik‖−(z−z′)

2k‖−(k2
‖+ − k2

‖−)

]
f (z′) dz′

+
ω4

c4

∫
∞

z

[
ie−ik‖+(z−z′)

2k‖+(k2
‖+ − k2

‖−)
−

ie−ik‖−(z−z′)

2k‖−(k2
‖+ − k2

‖−)

]
f (z′) dz′, (3.6)

where k2
‖±

can be found from (2.17), and f (z) is given by (2.18). The general
solution for B̃r(k⊥, z) is the same as (3.6), except with g(z) (given by (2.20)) in place
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of f (z). Inserting the solution of (3.6) into the inverse Hankel transform of (2.11)
will give the complete general solution of Bθ(r, z). We emphasize again here that the
preceding derivation is predicated on the assumption that the plasma is infinite and
spatially uniform, which allowed us to solve the differential equation given by (2.3)
in configuration space.

Equation (3.6) is just the magnetic field due to the plasma response – the total
magnetic field will be the sum of (3.6) plus the vacuum field of the antenna, although
the latter is generally much smaller far from the antenna. The general solution for
Bθ(r, z) is a linear superposition of the fast and slow wave branches, which are
the two fundamental modes of the cold plasma, and is valid in both the near and
far fields of the antenna. At every position in the plasma, the vacuum field of the
antenna couples to the plasma conductivity and acts as an infinitesimal point source
emitter – the total field is then found by integrating across the entire vacuum field to
find the aggregate sum of all these tiny point source fields. The integral of (3.6) can
be truncated wherever the quantity f (z) or the vacuum field is deemed sufficiently
small. For an observation point +z that is sufficiently far away from the antenna, the
contribution to the field due to backwards propagating waves (i.e. the second integral
in (3.6)) is vanishingly small and the resulting wave is entirely forward propagating.
Points close to the antenna will experience both forward and backward propagating
waves, and the resulting interference creates a much more complicated near-field
structure in the vicinity of the antenna. We therefore define the radiation zone of
the wave as the region far enough from the antenna such that the vacuum field is
sufficiently small, and the field, for a given k⊥, is a forward propagating plane wave
(or backwards for z < 0). Note that this is in contrast with the classical definition
of the radiation zone in vacuum, which is typically defined as the region in space
several wavelengths from the source (Jackson 1962).

In our discussion of the antenna wave equation (2.16), we asserted that the presence
of an antenna couples the slow and fast wave branches, meaning the physics of the
two cannot be separated. This is apparent in our solution given by (3.6), as the
amplitude of the slow wave is a function of the fast wave’s dispersion (and vice
versa for the fast wave’s amplitude). Even when the fast wave is evanescent, a
portion of the antenna’s field will couple to the fast branch and this will ultimately
affect the radiation pattern of the slow wave. In deriving (3.6), it was required that
we assume k‖+ 6= k‖−. When k‖+= k‖−, the fast and slow waves are virtually identical,
and mode conversion may occur (Swanson 1998).

4. Electromagnetic field of an electric dipole in a cold plasma
4.1. Radiation field

As an example of how to apply the general solution derived in § 3, we will consider
the wave pattern resulting from an electric dipole antenna. An infinitely thin dipole
of length ` is centred on the origin and aligned along the background magnetic field
(see figure 1), and the two ends are biased against each other at frequency ω. Assume
the antenna is externally driven such that the amplitude of the current in the dipole
is constant and independent of changing plasma conditions. We are interested in the
far-field wave pattern in the +z direction, and so we can ignore the contribution to
(3.6) due to backwards propagating waves. Additionally, we will consider frequencies
below the ion cyclotron frequency and assume the fast wave to be evanescent, as is
typical in laboratory plasmas at these frequencies. Equation (3.6) can then be written
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10 J. Robertson

FIGURE 1. An electric dipole of length `, with oscillating point charges ±qe−iωt on either
end, is aligned parallel to the background magnetic field B=B0ẑ. A cylindrical coordinate
system is assumed, with the origin centred on the midpoint of the dipole.

as the following:

B̃θ(k⊥, z)=
ieik‖z

2k‖
(
k2
‖ − k2

‖−

) ω4

c4

∫
∞

−∞

e−ik‖z′ f (z′) dz′, (4.1)

where k‖ and k‖− are the wavenumbers of the slow and fast waves, respectively, given
by (2.17), and f (z) is given by (2.18). The full field solution should also include the
vacuum field B̃θ0, which (4.1) does not, but we will assume that far away from the
antenna this contribution is negligibly small (this is verified in figure 3). The vacuum
magnetic field of the dipole is entirely azimuthal, and is identical to that of a finite
wire element carrying current I

Bθ0(r, z)=
µ0I
4πr

[
z+ `/2√

r2 + (z+ `/2)2
−

z− `/2√
r2 + (z− `/2)2

]
, (4.2)

where a e−iωt time dependence is understood. It is straightforward to show via charge
conservation that this corresponds to a charge density distribution of ρc = q[δ(z +
`/2)− δ(z− `/2)]e−iωt, where q= I/iω. Note that in deriving (4.2) we have assumed
the quasi-magnetostatic limit, in which we ignore radiative effects due to the time-
retarded vacuum potential (Zangwill 2012). This approximation is valid so long as
our region of interest is much closer to the antenna than one vacuum wavelength.
At higher frequencies, where the vacuum wavelength of the antenna is of comparable
length to the size of the plasma, a more complete radiative theory of the vacuum field
should be employed (Jackson 1962).

The first-order Hankel transform of the vacuum field, derived in appendix A, is

B̃θ0(k⊥, z)=
µ0I

2πk⊥


e−k⊥z sinh k⊥

`

2
for z> `/2,(

1− e−k⊥(`/2) cosh k⊥z
)

for − `/2< z< `/2,

ek⊥z sinh k⊥
`

2
for z<−`/2.

(4.3)
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It can be shown that B̃θ0 is continuous and differentiable everywhere, although
its second derivative experiences a discontinuity at z=±`/2. Since B̃θ0 and its first
derivative go to zero at z→±∞, integration by parts can be performed on the ∂2

z B̃θ0
term of f (z) to express (4.1) as the following:

B̃θ(k⊥, z)=
ieik‖z(Sn2

− RL)
2k‖(k2

‖ − k2
‖−)

ω4

c4

∫
∞

−∞

e−ik‖z′ B̃θ0(z′) dz′, (4.4)

where n2
= n2

⊥
+ n2

‖
. The remaining integral is recognized as the inverse Fourier

transform of the vacuum field in z, evaluated at kz= k‖. Inserting (4.3) into (4.4), we
get the following unsolved integrals:

B̃θ(k⊥, z)= A(k⊥)
[

sinh k⊥
`

2

∫
−`/2

−∞

e(k⊥−ik‖)z′dz′

+

∫ `/2

−`/2
e−ik‖z′

(
1− e−k⊥(`/2) cosh k⊥z′

)
dz′ + sinh k⊥

`

2

∫
∞

`/2
e−(k⊥+ik‖)z′dz′

]
, (4.5)

where

A(k⊥)=
ω4

c4

µ0I
2πk⊥

ieik‖z(Sn2
− RL)

2k‖(k2
‖ − k2

‖−)
. (4.6)

The solution to (4.5) is as follows:

B̃θ(k⊥, z)= i
µ0I

2πk⊥

(
S−

RL
n2

) n2
⊥

eik‖z sin k‖
`

2
n2
‖(n2
‖ − n2

‖−)
, (4.7)

while the vacuum magnetic field is entirely azimuthal, the off-diagonal E× B drift in
the plasma response will drive a B̃r in the plasma. An expression for B̃r(k⊥, z) can be
found by substituting g(z) into (4.1) in place of f (z), and yields the following:

B̃r(k⊥, z)=
µ0I

2πk⊥

Dn2
⊥

eik‖z sin k‖
`

2
n2(n2

‖ − n‖−)
. (4.8)

Figure 2 shows the magnitude of B̃θ(k⊥, z) and B̃r(k⊥, z), as a function of k⊥, in
the radiation zone of a single-ion species plasma. A helium plasma with B0= 1500 G
and n0= 1012 cm−3 was assumed, as these are typical conditions for many laboratory
plasmas, such as those found in the LAPD. For the antenna, a frequency of ω =
0.75Ωci and length `= 20δe was assumed, where Ωci is the ion cyclotron frequency
and δe ≡ c/ωpe is the electron skin depth. We normalized the k⊥ axis to the electron
skin depth, as this is the natural cross-field scale length of inertial Alfvén waves
(Morales et al. 1994). We have also assumed a collisionless plasma (νe= 0), in order
to elucidate some of the fine-structure features of the wave that would otherwise be
washed out by collisions. In the limit k⊥→ 0, B̃θ and B̃r are equal in magnitude and
π/2 out of phase. In this limit, the slow wave dispersion of (2.17) gives n2

‖
=R, which

corresponds to a right-handed circularly polarized wave. As k⊥ increases, the relative
strength of B̃r falls off and the field is almost entirely azimuthal. In this limit, the
slow wave’s dispersion is approximated by the following expression:

n2
‖
= S

(
1−

n2
⊥

P

)
. (4.9)
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12 J. Robertson

FIGURE 2. Magnitude of the magnetic field resulting from an electric dipole of length
` aligned along the background field, in a single-ion species plasma at frequency ω =
0.75Ωci. For comparison, we show the field resulting from a disk exciter with radius `/2.

FIGURE 3. Comparison of the azimuthal field of the slow wave, fast wave and vacuum
field, at a distance z= vA/ω away from the electric dipole antenna. The same plasma and
antenna conditions from figure 2 are assumed. The dashed line in the fast wave branch
denotes where the wave is evanescent.

Equation (4.9) is commonly known as the inertial Alfvén wave. In the limit k⊥→ 0,
the Alfvén wave is mediated entirely by the cross-field ion polarization and E × B
currents. When k⊥ 6= 0, a parallel electron current is excited in order to satisfy current
closure (i.e. ∇ · J = 0). When n2

⊥
� |S|, the induced parallel electron current is so

much larger than the cross-field currents that it becomes predominantly responsible for
setting the perpendicular magnetic field of the wave – hence the dominant azimuthal
magnetic field seen in the k⊥δe � 1 regime. From inspection of (4.7) and (4.8),
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the coupled antenna power is zero when ` = nλ‖, for integer n, and greatest when
`= ( 1

2 + n)λ‖.
Previous analytic studies have been done on the spatial structure of Alfvén waves

launched from a metal disk exciter, both in the inertial (Morales et al. 1994) and
kinetic (Morales & Maggs 1997) regimes. For a disk exciter of radius a, maintained
at a fixed AC voltage, B̃θ(k⊥, z) was shown to have the following form:

B̃θ(k⊥, z)=
µ0I

2πk⊥

sin k⊥a
k⊥a

. (4.10)

Figure 2 includes B̃θ(k⊥, z) of a disk exciter antenna, with radius equal to half the
dipole length, for comparison. The total integrated power of the disk exciter wave
is much greater, which is due in part to the fact that the disk is in direct electrical
contact with the plasma, whereas the dipole relies on capacitive coupling. In addition,
the dipole experiences worse coupling at lower frequency, while the disk is unaffected.

We previously asserted that the fast wave is evanescent for the plasma parameters
being considered, as well as claiming that the vacuum field is much smaller than
the radiative field far from the antenna. Figure 3 compares the magnitude of the
slow wave to both the fast wave and vacuum field, at a distance kAz= 1 away from
the dipole, where kA = ω/vA and vA is the Alfvén speed. The dashed line denotes
evanescence. The fast wave is seen to be real and propagating at k⊥δe� 1, but the
vast majority of coupled power exists at values of k⊥ where the fast wave is heavily
evanescent. Additionally, the magnitude of the vacuum field is vanishingly small
compared to that of the slow wave. We conclude that, given the assumed plasma
conditions, the total magnetic field in the plasma far from the antenna (in the ẑ
direction) will be due entirely to propagating slow waves.

4.2. Near-field response
In the previous section we solved (3.6) for points far away from the antenna, which
allowed us to drop the contribution due to backward propagating waves. We will now
solve (3.6) everywhere in the plasma. In doing so, our goal is to see how near-field
effects modify the resulting field for regions close to the antenna.

Ignoring the fast wave contribution as we did before, equation (3.6) can be written
as the following:

B̃θ(k⊥, z)= B̃θ0 +
i(ω4/c4)

2k‖(k2
‖ − k2

‖−)

[∫ z

−∞

eik‖(z−z′)f (z′) dz′ +
∫
∞

z
e−ik‖(z−z′)f (z′) dz′

]
. (4.11)

The interference between the forward and backward propagating waves, given by
the first and second integrals respectively, is what will give rise to the near-field
response. Note that we have included the vacuum field in the above solution. It was
shown in the previous section that the vacuum field can be ignored far from the
antenna, but we will show here that this is not the case in the near field.

The source term f (z) can be found by inserting the (Hankel-transformed) vacuum
field, given by (4.3), into (2.18)

f (z)=
µ0I

2πk⊥


−RLe−k⊥z sinh k⊥

`

2
for z> `/2,

Sn2
⊥
− RL(1− e−k⊥(`/2) cosh k⊥z) for − `/2< z< `/2,

−RLek⊥z sinh k⊥
`

2
for z<−`/2.

(4.12)

https://doi.org/10.1017/S0022377820000446 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377820000446


14 J. Robertson

From here it is straightforward to insert the above expression for f (z) into (4.11).
Because our vacuum field is divided up into three distinct regions, equation (4.11) will
have to be solved separately for the three different regions as well. For demonstrative
purposes, we will consider the two outer regions first, defined by |z| > `/2. The
solution to (4.11) for z> `/2 and z<−`/2 are given by the following:

B̃θ(k⊥, z) = i
µ0I

2πk⊥

(
S−

RL
n2

) n2
⊥

eik‖|z| sin k‖
`

2
n2
‖(n2
‖ − n2

‖−)︸ ︷︷ ︸
Radiation field

+
µ0I

2πk⊥

(
1+

RL
n2(n2

‖ − n2
‖−)

)
e−k⊥|z| sinh k⊥

`

2︸ ︷︷ ︸
Near-field response

. (4.13)

The first term is identified as the radiation field, and is identical to the far-field
response derived in the previous section, given by (4.7). The second term arises from
the inclusion of the contribution from backward propagating waves in the general
solution, and can be thought of as the near-field response. The near field in (4.13)
is the sum of both the near-field plasma response as well as the vacuum field. The
near field is observed to decay exponentially as one moves away from the antenna,
dropping off much more rapidly for larger values of k⊥. Note that the near-field
response does not propagate as a wave, like the radiation field, but rather is a region
around the antenna which pulsates at frequency ω.

The field in the region −`/2< z< `/2 is found from (4.11) to be the following:

B̃θ(k⊥, z) =
µ0I

2πk⊥

n2
⊥

n2
‖(n2
‖ − n2

‖−)

(
S−

RL
n2

) (
eik‖(`/2) cos k‖z− 1

)
+

µ0I
2πk⊥

(
1+

RL
n2(n2

‖ − n2
‖−)

) (
1− e−k⊥(`/2) cosh k⊥z

)
. (4.14)

Figure 4 shows how B̃θ(k⊥, z) varies with z, for several different values of k⊥. The
same plasma and antenna conditions as figures 2 and 3 were assumed. The field is
peaked in the region −`/2< z< `/2 and drops off exponentially for |z|> `/2, with
larger values of k⊥ experiencing a more abrupt drop off. The radiation zone for a
given k⊥ is defined as the region far enough from the antenna where the field exhibits
wave-like motion, as the only remaining field out there is due to the propagating slow
wave. In the limit k⊥→∞, the field in the vicinity of the antenna converges to a
constant value of B̃θ = µ0I/2πk⊥, whereas the radiation field drops off more rapidly
with increasing k⊥.

4.3. Numerical results
The spatially resolved magnetic field is found from the inverse Hankel transform of
B̃θ(k⊥, z). For the radiation field, this amounts to solving the following integral:

Bθ(r, z, ω)= i
µ0I
2π

ω2

c2

∫
∞

0

(
S−

ω2

c2

RL
k2

) k2
⊥

eik‖z sin k‖
`

2
k2
‖(k2
‖ − k2

‖−)
J1(k⊥r) dk⊥, (4.15)
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FIGURE 4. Azimuthal magnetic field versus axial position kAz, due to an electric dipole
antenna of length `, for various values of k⊥. In the region |z| < `/2, near-field effects
dominate. The near-field response decays exponentially with increasing |z|, and far from
the antenna only the radiation field remains.

where k‖ and k‖− are the slow and fast wave dispersions, respectively, and are given
by (2.17). Equation (4.15) will, in general, need to be solved numerically. The
time-resolved field is then found from the real part of Bθ(r, z, ω)e−iωt. Close to the
antenna, the near-field solution given by (4.13) and (4.14) should be used. The results
that follow in this section assume the same plasma conditions as before. Numerical
integration of (4.15) was done using the algorithm devised by Ogata (2005), which
uses a quadrature formula with the zeros of the Bessel function as nodes.

Figure 5 shows the time evolution of the resulting waveform, for two different
frequencies. Two conical structures are seen emanating from either end of the dipole,
with an angle of propagation that increases with frequency. The cone’s propagation
angle can be found from the ratio of the wave’s perpendicular and parallel group
velocities. For antennae whose scale length is of the order of the electron skin depth
δe≡ c/ωpe, the majority of antenna power couples to large enough values of k⊥ where
the inertial Alfvén wave dispersion, given by (4.9), is valid. The ratio of the inertial
wave’s perpendicular to parallel group velocities gives the propagation angle of the
wave

tan θ =
∣∣∣∣∂ω/∂k⊥
∂ω/∂k‖

∣∣∣∣=√me

mi

ω√
Ω2

ci −ω
2

k⊥δe√
1+ k2

⊥δ
2
e

, (4.16)

when k⊥δe � 1, the propagation angle approaches an asymptotic limit that is
independent of k⊥, resulting in a conical structure. The propagation angle θc of
the cone is given by

tan θc =

√
me

mi

ω̄
√

1− ω̄2
, (4.17)

where ω̄=ω/Ωci. The propagation angles observed in figure 5 are in close agreement
with (4.17). Similar conical spreading was predicted to exist for Alfvén waves
launched by a metal disk exciter in a cold plasma (Morales et al. 1994), and was
consequently observed in the laboratory (Gekelman et al. 1994). The amplitude of
the field is shown in figure 6 at various axial positions. At each z position, the field
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(a) (b)

FIGURE 5. Time animation of the azimuthal magnetic field of the slow wave launched
from an electric dipole, for frequencies (a) 0.25Ωci and (b) 0.75Ωci. The z axis was
normalized to the antenna length ` to show how the parallel wavelength decreases with
increasing frequency. The propagation angle of the cones emanating from either end of
the dipole can be determined from the inertial Alfvén wave dispersion.

is observed to increase with increasing r until it reaches the edge of the cone,
where it exhibits a 1/r drop-off. The 1/r dependence outside the cone suggests that
the parallel plasma current excited by the antenna is contained entirely within the
conical region. Additionally, the magnitude of the field outside the cone is constant
with z in the radiation zone of the plasma, as the total parallel plasma current is
conserved with z. The inclusion of electron collisionality, which we have omitted for
demonstrative purposes, results in a field outside the cone which decays with z. Far
from the antenna, where kAz� 1, diffraction patterns begin to emerge in the radial
profile. All these results are consistent with countless previous experimental studies
of inertial Alfvén waves in the LAPD (Gekelman et al. 2011). For a disk exciter
antenna whose radius is of the order of the electron skin depth, the wave’s radial
profile experiences a strong azimuthal magnetic field with an off-axis maximum that
spreads out conically with increasing z, eventually producing a radial diffraction
pattern far from the disk.
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FIGURE 6. Amplitude of the azimuthal magnetic field versus radius, at various distances
from the antenna. The field increases with radius up until a certain point, where it exhibits
a 1/r drop off.

4.4. Fast wave considerations
In the previous section we asserted that the fast wave was evanescent for the assumed
plasma conditions, and therefore focused exclusively on the spatial structure of the
slow wave. While it is straightforward to prove the fast wave’s contribution is
negligible in the far field, the same is not obvious in the vicinity of the antenna.
For the relatively large values of k⊥ imposed by our assumed antenna, it can be
shown that the fast wave dispersion, given by the ±→− branch of (2.17), can be
approximated by the following:

n2
‖
= S− n2

⊥
. (4.18)

Since n2
⊥
� |S|, equation (4.18) suggests the fast wave will be purely evanescent.

We can find the fast wave’s magnetic field from (4.13) and (4.14), but with the fast
and slow wave dispersions switched. Substituting the above dispersion into these two
equations, we get the following approximate form of the field for the fast wave:

B̃θ(k⊥, z)=−
µ0I

2πk⊥

S
n2
⊥

e−k⊥|z| sinh k⊥
`

2
for |z|> `/2,

1− e−k⊥(`/2) cosh k⊥z for |z|< `/2.
(4.19)

Note that (4.19) ignores the small part of the k⊥ spectrum which contributes
propagating waves, as can be seen in figure 3. Comparing the above equation to the
vacuum field, given by (4.2), we see that the fast wave is a factor of S/n2

⊥
smaller

than the vacuum field’s contribution. In the region |z| > `/2, it is straightforward to
show that the exponentially decaying near field is dominated by the vacuum field,
followed by the evanescent fast wave and then the near-field part of the slow wave.
Similarly, in the region |z| < `/2, the near field is again dominated by the vacuum
field, followed by the slow wave and then the fast wave.
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In plasmas with sufficiently high density to permit fast wave propagation, or
alternatively at high enough frequencies where n2

⊥
� |S| is no longer satisfied, the

physics of the near field is expected to change drastically and may be dominated by
the slow wave, fast wave or both. Looking at the slow wave solution given by (4.13),
the slow wave’s near-field plasma response will be larger than the vacuum field when
the following condition is satisfied:∣∣∣∣ RL

n2(n2
‖ − n2

‖−)

∣∣∣∣> 1. (4.20)

Since the approximate form of the fast wave solution, given by (4.19), is predicated
on the assumption n2

⊥
� |S|, a deeper investigation of the fast wave is warranted in

order to determine the conditions for fast wave dominance in the near field.

5. Generalized solution to the antenna wave equation in Cartesian coordinates
In the preceding sections we found the solution to the antenna equation for an

azimuthally symmetric antenna. While this solution was instructive in highlighting
the underlying physics, it is useless for antennae which do not possess azimuthal
symmetry. In this section we will derive the fully generalized solution to the antenna
wave equation in Cartesian coordinates. We will again assume a cold, magnetized
plasma and frequencies such that the vacuum displacement current can be ignored,
but aside from that we will abstain from making any limiting assumptions about our
system. Our starting point is (2.3), which can be separated into the following system
of equations:

iny
(
inxẼy − inyẼx

)
−
∂

∂ z̄

(
∂Ẽx

∂ z̄
− inxẼz

)
− SẼx + iDẼy = SẼx0 − iDẼy0, (5.1)

∂

∂ z̄

(
inyẼz −

∂Ẽy

∂ z̄

)
− inx

(
inxẼy − inyẼx

)
− iDẼx − SẼy = iDẼx0 + SẼy0, (5.2)

inx

(
∂Ẽx

∂ z̄
− inxẼz

)
− iny

(
inyẼz −

∂Ẽy

∂ z̄

)
− PẼz = PẼz0, (5.3)

where we dropped the vacuum displacement current, and have defined z̄ ≡ (c/ω)z.
Ẽj(kx, ky, z) is the Fourier transform of Ej(x, y, z) in the x and y directions, given by

Ẽj(kx, ky, z)=
∫
∞

−∞

∫
∞

−∞

Ej(x, y, z)e−ikxxe−ikyy dx dy. (5.4)

Equations (5.1)–(5.3) can be expressed in terms of the magnetic field B via the
following transformations:

(inyS− nxD)[equation (5.1)] − (inxS+ nyD)[equation (5.2)],

P
∂

∂ z̄
[equation (5.1)] − (inxS+ nyD)[equation (5.3)],

P
∂

∂ z̄
[equation (5.2)] − (inyS− nxD)[equation (5.3)].

 (5.5)
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The resulting three equations are as follows:

(inxS+ nyD)
∂B̃x

∂ z̄
+ (inyS− nxD)

∂B̃y

∂ z̄
− (RL− Sn2

⊥
)B̃z = RLB̃z0, (5.6)

(−in2
yD+ nxnyS+ iDP)B̃x + (−n2

xS+ inxnyD+ SP)B̃y

− inyP
∂B̃z

∂ z̄
+ P

∂2B̃y

∂ z̄2
=−iDPB̃x0 − SPB̃y0, (5.7)

(−n2
yS− inxnyD+ SP)B̃x + (in2

xD+ nxnyS− iDP)B̃y

− inxP
∂B̃z

∂ z̄
+ P

∂2B̃x

∂ z̄2
=−SPB̃x0 + iDPB̃y0. (5.8)

Equation (5.6) can be inserted into (5.7) and (5.8) to eliminate B̃z, resulting in two
coupled differential equations for B̃x and B̃y[

inyP(inxS+ nyD)
RL− Sn2

⊥

]
∂2B̃x

∂ z̄2
+

[
inyP(inyS− nxD)

RL− Sn2
⊥

− P
]
∂2B̃y

∂ z̄2

+
[
iny(inxS+ nyD)− iDP

]
B̃x +

[
−inx(inxS+ nyD)− SP

]
B̃y

=

[
inyPRL

RL− Sn2
⊥

]
∂B̃z0

∂ z̄
+ iDPB̃x0 + SPB̃y0, (5.9)[

−inxP(inxS+ nyD)
RL− Sn2

⊥

+ P
]
∂2B̃x

∂ z̄2
+

[
−inxP(inyS− nxD)

RL− Sn2
⊥

]
∂2B̃y

∂ z̄2

+
[
iny(inyS− nxD)+ SP

]
B̃x +

[
−inx(inyS− nxD)− iDP

]
B̃y

=

[
−inxPRL
RL− Sn2

⊥

]
∂B̃z0

∂ z̄
− SPB̃x0 + iDPB̃y0. (5.10)

Equations (5.9) and (5.10) can be decoupled to get a differential equation for either
B̃x or B̃y, although the math is rather tedious. The final result is two fourth-order
differential equations for B̃x and B̃y, given by(

∂2

∂z2
+ k2
‖+

)(
∂2

∂z2
+ k2
‖−

) [
B̃x

B̃y

]
=
ω4

c4

[
f (z)
g(z)

]
, (5.11)

where k‖± is given by the following dispersion relation:(
c2

ω2

)
k2
‖±
= S−

n2
⊥

2

(
1+

S
P

)
±

√(
n2
⊥

2

)2 (
1−

S
P

)2

+D2

(
1−

n2
⊥

P

)
, (5.12)

where n2
⊥
= n2

x + n2
y . Aside from the new definition of n2

⊥
, this dispersion relation is

identical to the one derived in cylindrical coordinates in (2.17). The source terms f (z)
and g(z) are given by the following:

f (z) = −S
∂2B̃x0

∂ z̄2
+ iD

∂2B̃y0

∂ z̄2
+

[
−iny(inyS+ nxD)− RL

(
1−

n2
x

P

)]
B̃x0

+

[
iny(inxS− nyD)+ nxny

RL
P

]
B̃y0, (5.13)
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g(z) = −iD
∂2B̃x0

∂ z̄2
− S

∂2B̃y0

∂ z̄2
+

[
inx(inyS+ nxD)+ nxny

RL
P

]
B̃x0

+

[
−inx(inxS− nyD)− RL

(
1−

n2
y

P

)]
B̃y0. (5.14)

Alternatively, one can combine (5.7) and (5.8) with ∇ · B=0, and they will arrive at
the same fourth-order differential equation given by (5.11). Equation (5.11) is identical
to the differential equation that was solved in § 3 for cylindrical coordinates, and so
its general solution is the same[

B̃x(kx, ky, z)
B̃y(kx, ky, z)

]
=
ω4

c4

∫ z

−∞

[
ieik‖+(z−z′)

2k‖+(k2
‖+ − k2

‖−)
+

ieik‖−(z−z′)

2k‖−(k2
‖− − k2

‖+)

] [
f (z′)
g(z′)

]
dz′

+
ω4

c4

∫
∞

z

[
ie−ik‖+(z−z′)

2k‖+(k2
‖+ − k2

‖−)
+

ie−ik‖−(z−z′)

2k‖−(k2
‖− − k2

‖+)

] [
f (z′)
g(z′)

]
dz′. (5.15)

The Cartesian source terms given by (5.13) and (5.14) are lengthier than their
azimuthally symmetric counterparts (equations (2.18) and (2.20)), but that is the
trade-off we make in developing a fully generalized Cartesian solution. When
ny = 0, the variable substitutions x → r and y → θ in (5.12)–(5.15) will return
the general solution that was derived for the azimuthally symmetric case in § 3.
A fully generalized solution to the homogeneous cold plasma wave equation in
cylindrical coordinates is given by Ram & Hizanidis (2016), and consists of an
infinite summation of Bessel function eigenmodes. Depending on the geometry of a
given antenna, it may be advantageous to use either the generalized Cartesian solution
above or the generalized cylindrical solution.

6. Discussion and concluding remarks
In this paper we successfully developed a semi-analytic model for determining the

electromagnetic field due to a current-driven antenna in a cold, magnetized plasma.
We showed in § 2 that the vacuum electric field of the antenna couples to the plasma
conductivity tensor and acts as a source that drives plasma waves. In § 3, we derived a
general solution to the antenna wave equation for antennae with azimuthal symmetry.
The general solution is a superposition of the fast and slow waves, which are the two
fundamental modes of the cold plasma. It is typical in many laboratory plasmas for
the fast wave to be evanescent, with only the slow wave being measurable far away
from the antenna. In spite of this, it was shown that the fast wave physics cannot be
ignored due to the fact that the antenna will always couple to both branches, even if
one of them is evanescent. This is reflected in the general solution of (3.6), which
shows that the amplitude of the slow wave is a function of the fast wave dispersion
(and vice versa).

At every point in the plasma, the vacuum field of the antenna acts as an
infinitesimal point source emitter that launches both forward and backward propagating
waves. The total field is then found from the aggregate sum of all these infinitesimal
point sources, which is the physical interpretation of the integral across the vacuum
field in (3.6). For observation points close to the antenna, the interference of forward
and backward propagating waves gives rise to what we refer to as the ‘near field’ of
the antenna. Far away from the antenna, the field is shown to be a superposition of
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propagating plane waves (forward propagating for z� 0, and backwards for z� 0).
Because of this, we define the radiation zone of the plasma as the region sufficiently
far away from the antenna such that the near field and vacuum field are vanishingly
small compared to the propagating part of the field. In deriving (3.6), we made the
assumption that our plasma is infinite and unbounded, which allowed us to ignore
possible complications due to reflected waves. Section 3 can be generalized to allow
solutions which account for finite plasma boundaries, although this adds an additional
layer of complexity that is outside the scope of the present discussion.

In order to show how this model can be applied, we solved it for the case of
an electric dipole antenna aligned along the background magnetic field. For plasma
conditions that are typical of laboratory plasmas, such as those found in the LAPD,
we showed that the magnetic field is almost entirely azimuthal with the majority of its
power at large values of k⊥, where the slow wave is commonly known as the inertial
Alfvén wave. The wave was shown to emit cones out of either end of the dipole,
where the angle of propagation is given by (4.17). This is consistent with previous
analytic studies of inertial Alfvén waves launched by a disk exciter in a cold plasma
(Morales et al. 1994).

To summarize, this model provides a straightforward recipe for determining the
plasma field excited by current-driven antennae, given the vacuum field of the antenna.
For an azimuthally symmetric antenna, the steps are as follows:

(i) Calculate the first-order Hankel transform of the vacuum field, defined by (2.11).
(ii) Calculate the ‘source’ terms f (z) and g(z), given by (2.18) and (2.20).

(iii) Calculate the plasma response field, given by (3.6). The total field is then the
sum of this solution plus the vacuum field.

(iv) Calculate the inverse Hankel transform of the above solution to get the radial and
azimuthal fields of the plasma, Br(r, z) and Bθ(r, z).

(v) Bz(r, z) can then be found from ∇ · B= 0, and everything else from the rest of
Maxwell’s equations.

While the majority of this paper focused on antennae with azimuthal symmetry,
mostly for demonstrative purposes, in § 5 we provided a fully generalized solution for
Cartesian coordinates that is similar in format and methodology.

Appendix A. Hankel transform of the vacuum field of an electric dipole

Consider an infinitely thin wire element of length `, carrying current Ie−iωt,
that is aligned parallel to the background magnetic field B0ẑ. We will assume a
cylindrical coordinate system, with origin lying on the midpoint of the dipole. As the
current has nowhere to go, charge conservation results in a point charge buildup of
q=±(I/iω)e−iωt on either end of the wire element. The vacuum magnetic field is then
equivalent to that of a current-carrying wire element, and in the quasi-magnetostatic
limit (Zangwill 2012) is given by the following:

Bθ0(r, z)=
µ0I
4πr

[
z+ `/2√

r2 + (z+ `/2)2
−

z− `/2√
r2 + (z− `/2)2

]
, (A 1)

where an e−iωt time dependence is understood. Equation (A 1) can alternatively be
obtained by finding the electric field due to the charge buildup on the ends, and then
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the magnetic field via Ampere’s law. The first-order Hankel transform of (A 1) is
found from the following integral:

B̃θ0(k⊥, z)=
µ0I
4π

∫
∞

0

(z+ `/2)J1(k⊥r) dr√
r2 + (z+ `/2)2

−
µ0I
4π

∫
∞

0

(z− `/2)J1(k⊥r) dr√
r2 + (z− `/2)2

. (A 2)

In order to solve (A 2), we need to know how to solve integrals of the following
form: ∫

∞

0

J1(αx) dx
√

1+ x2
. (A 3)

This can be solved, interestingly enough, by considering the Laplace transform of
J1(t) (Oberhettinger & Badii 1973)∫

∞

0
J1(t)e−st dt= 1−

s
√

1+ s2
for s> 0. (A 4)

A change of variables allows (A 4) to be written in the following alternate form:∫
∞

0

e−α

α
J1(αx)α dα =

1
x

(
1−

1
√

1+ x2

)
for x> 0. (A 5)

The left-hand side of (A 5) is readily identified as the first-order Hankel transform
of e−α/α. It follows then that the inverse transform must also be true

e−α

α
=

∫
∞

0

1
x

(
1−

1
√

1+ x2

)
J1(αx)x dx. (A 6)

The first term in the integral can be solved by noting that
∫

J1(x) dx= 1. We then
arrive at the following:∫

∞

0

J1(αx) dx
√

1+ x2
=

1
α

(
1− e−α

)
for α > 0. (A 7)

The requirement α > 0 in (A 7) means that the full integral of (A 2) must be split
up and solved separately for the following 3 regions:

(i) z > `/2;
(ii) −`/2< z< `/2;

(iii) z 6−`/2.

We will consider the region z > `/2 first. Defining the variables x± = r/(z ± `/2)
and α± = k⊥(z± `/2), equation (A 2) can be rewritten as:

B̃θ0(k⊥, z)=
µ0I
4π

(z+ `/2)
∫
∞

0

J1(α+x+) dx+√
1+ x2

+

−
µ0I
4π

(z− `/2)
∫
∞

0

J1(α−x−) dx−√
1+ x2

−

. (A 8)

The identity from (A 7) can then be used, giving us the following solution:

B̃θ0(k⊥, z)=
µ0I

2πk⊥
e−k⊥z sinh

(
k⊥
`

2

)
for z> `/2. (A 9)

https://doi.org/10.1017/S0022377820000446 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377820000446


Current-driven antenna model 23

In the region −`/2< z< `/2, we must choose our variable substitutions carefully
such that (A 7) can still be used. We define the variables x+ = r/(z + `/2), x− =
r/(`/2 − z), α+ = k⊥(z + `/2) and α− = k⊥(`/2 − z), and can rewrite (A 2) as the
following:

B̃θ0(r, z)=
µ0I
4π

(z+ `/2)
∫
∞

0

J1(α+x+) dx+√
1+ x2

+

+
µ0I
4π

(`/2− z)
∫
∞

0

J1(α−x−) dx−√
1+ x2

−

. (A 10)

We redefined our variable substitutions slightly differently in order to ensure that
α± is positive–definite in the region of interest, so that identity (A 7) may be used.
In the last region, defined by z<−`/2, we would use the variable substitutions x±=
−r/(z± `/2) and α± =−k⊥(z± `/2) to ensure that α± > 0.

The full solution of (A 2) is then the following:

B̃θ0(k⊥, z)=



µ0I
2πk⊥

e−k⊥z sinh k⊥
`

2
for z> `/2

µ0I
2πk⊥

(
1− e−k⊥(`/2) cosh k⊥z

)
for− `/2< z< `/2

µ0I
2πk⊥

ek⊥z sinh k⊥
`

2
for z<−`/2.

(A 11)
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